
Earth Syst. Sci. Data, 14, 1377–1411, 2022
https://doi.org/10.5194/essd-14-1377-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

TimeSpec4LULC: a global multispectral time series
database for training LULC mapping models with

machine learning

Rohaifa Khaldi1,2,4, Domingo Alcaraz-Segura2,3,5, Emilio Guirado6, Yassir Benhammou1,7,
Abdellatif El Afia4, Francisco Herrera1, and Siham Tabik1

1Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science
and Computational Intelligence (DaSCI), University of Granada, 18071, Granada, Spain

2Department of Botany, Faculty of Science, University of Granada, 18071 Granada, Spain
3Andalusian Center for the Assessment and Monitoring of Global Change (CAESCG),

University of Almería, 04120, Almería, Spain
4ENSIAS, Mohammed V University, Rabat, 10170, Morocco

5iEcolab, Inter-University Institute for Earth System Research, University of Granada, 18006 Granada, Spain
6Multidisciplinary Institute for Environment Studies Ramón Margalef,

University of Alicante, San Vicente del Raspeig, 03690, Spain
7ENSA, Hassan I University, Berrechid, 218, Morocco

Correspondence: Rohaifa Khaldi (rohaifa@ugr.es) and Domingo Alcaraz-Segura (dalcaraz@ugr.es)

Received: 26 July 2021 – Discussion started: 12 October 2021
Revised: 3 February 2022 – Accepted: 14 February 2022 – Published: 30 March 2022

Abstract. Land use and land cover (LULC) mapping are of paramount importance to monitor and understand
the structure and dynamics of the Earth system. One of the most promising ways to create accurate global
LULC maps is by building good quality state-of-the-art machine learning models. Building such models re-
quires large and global datasets of annotated time series of satellite images, which are not available yet. This
paper presents TimeSpec4LULC (https://doi.org/10.5281/zenodo.5913554; Khaldi et al., 2022), a smart open-
source global dataset of multispectral time series for 29 LULC classes ready to train machine learning models.
TimeSpec4LULC was built based on the seven spectral bands of the MODIS sensors at 500 m resolution, from
2000 to 2021, and was annotated using spatial–temporal agreement across the 15 global LULC products avail-
able in Google Earth Engine (GEE). The 22-year monthly time series of the seven bands were created globally
by (1) applying different spatial–temporal quality assessment filters on MODIS Terra and Aqua satellites; (2) ag-
gregating their original 8 d temporal granularity into monthly composites; (3) merging Terra+Aqua data into a
combined time series; and (4) extracting, at the pixel level, 6 076 531 time series of size 262 for the seven bands
along with a set of metadata: geographic coordinates, country and departmental divisions, spatial–temporal con-
sistency across LULC products, temporal data availability, and the global human modification index. A balanced
subset of the original dataset was also provided by selecting 1000 evenly distributed samples from each class
such that they are representative of the entire globe. To assess the annotation quality of the dataset, a sample of
pixels, evenly distributed around the world from each LULC class, was selected and validated by experts using
very high resolution images from both Google Earth and Bing Maps imagery. This smartly, pre-processed, and
annotated dataset is targeted towards scientific users interested in developing various machine learning models,
including deep learning networks, to perform global LULC mapping.
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1 Introduction

Broadly, land cover (LC) refers to the different vegetation
types (usually following biotype, plant functional type, or
physiognomy schemes, such as forests, shrublands, or grass-
lands) or other biophysical classes (such as water bodies,
snow, or bare soil) that cover the Earth’s surface (Moser,
1996). Land cover is an essential variable that provides pow-
erful insights for the assessment and modeling of terres-
trial ecosystem processes, biogeochemical cycles, biodiver-
sity, climate, and water resources, among others (Luoto et al.,
2007; Menke et al., 2009; Polykretis et al., 2020), whereas
land use (LU) incorporates many types of modifications that
an increasing human population, more than 9 billion ex-
pected by 2050, causes to the LC (such as urban areas and
croplands). Accurate LULC information, including distribu-
tion, dynamics, and changes, is of paramount importance for
understanding and modeling the natural and human-modified
behavior of the Earth’s system (Tuanmu and Jetz, 2014; Ver-
burg et al., 2009).

LULCs are subjected to anomalies, trends, and changes
both from anthropogenic and natural origins (Polykretis
et al., 2020). LULC change is usually interpreted as the
conversion from one LULC category to another and/or the
modification of land management within LULC (Meyer and
Turner, 1994). LULC is an essential climate and biodiver-
sity variable (Bojinski et al., 2014; Pettorelli et al., 2016) to
model and assess the status and trends of social–ecological
systems from the local to the global scale in the pursuit of a
safe operating space for humanity (Steffen et al., 2015). For
example, characterizing such LULC changes is critical for
the climate through two mechanisms: biophysical (BPH) and
biogeochemical (BGC) feedbacks (Duveiller et al., 2020).
For instance, the conversion from forests to croplands (i.e.,
deforestation) generates a fast increase in land surface tem-
perature (i.e., biogeophysical effect) and also releases part
of the carbon stored in the forest into the atmosphere (i.e.,
biogeochemical component). Both mechanisms contribute to
local and global warming, respectively (Oki et al., 2013).
Other examples of LULC conversion are urban sprawl, agri-
culture expansion, or abandonment, which also affect the
biodiversity, soil and water quality, food security, and hu-
man health among many others (Lambin and Geist, 2008;
Feddema et al., 2005). For these reasons, continuous and
accurate LULC and LULC change mapping is essential in
policy and research to monitor ecological and environmen-
tal change at different temporal and spatial scales (Polykretis
et al., 2020; García-Mora et al., 2012) and as a decision sup-
port system to ensure an effective and sustainable planning
and management of natural resources (Kong et al., 2016;
Congalton et al., 2014; Grekousis et al., 2015).

Satellite remote sensing in combination with geographic
information systems (GISs) has provided convenient, inex-
pensive, and continuous spatial–temporal information for
mapping LULCs and detecting changes on the Earth’s sur-

face from regional to global scales (Kong et al., 2016; Kerr
and Ostrovsky, 2003; Pfeifer et al., 2012) thanks to their
strong ability to cover, timely and repeatedly, wide and in-
accessible areas, as well as to get high spatial and temporal
resolution data (Alexakis et al., 2014; Yirsaw et al., 2017;
Patel et al., 2019).

Deep learning (DL), a sub-field of machine learning essen-
tially based on deep artificial neural networks (Zhang et al.,
2018c), has shown impressive performance in computer vi-
sion and promising ones in remote sensing during the last
decades. Currently, two specific types of DL models, i.e.,
CNNs (convolutional neural networks) and RNNs (recurrent
neural networks), constitute the state of the art in respectively
extracting spatial and temporal/sequential patterns from data
records. Indeed, DL models are showing great performance
in LULC tasks such as scene classification (Zhang et al.,
2018a), object detection (Zhao et al., 2015; Guirado et al.,
2021), and segmentation (Zhao and Du, 2016; Guirado et al.,
2017; Safonova et al., 2021) in RGB and multispectral satel-
lite and aerial images. However, such good performance is
only possible when DL models are trained on smart data.
The concept of smart data involves all pre-processing meth-
ods that improve value and veracity of data and of associ-
ated expert annotations (Luengo et al., 2020), resulting in
high-quality and accurately annotated datasets. In general,
remote sensing datasets contain noise, missing values, and
high variability and complexity across space, time, and spec-
tral bands. Applying pre-processing methods, such as gap
filling and noise reduction to data, and consensus across mul-
tiple sources to annotations contribute to creating smart re-
mote sensing datasets.

Currently, there only exist few multispectral datasets an-
notated for training DL models to map LULC and monitor
their change (Table 1). However, most of these datasets pro-
vide very short time series of data, provide very few LULC
classes, and do not have a global coverage. As far as we
know, there is no dataset designed for DL models that al-
lows global-scale analysis of many LULC classes using long-
time-series data.

This paper presents TimeSpec4LULC, a new open-source,
smart, and global dataset of multispectral time series targeted
towards the development and evaluation of DL models to
globally map LULCs. TimeSpec4LULC was built using GEE
(Gorelick et al., 2017) by combining the seven 500 m spectral
bands of MODIS Aqua and MODIS Terra satellite sensors at
a monthly time step from 2000 to 2021. It contains millions
of pixels that were annotated based on a spatial–temporal
consensus across up to 15 global LULC products (Table 2)
for 29 broad and globally harmonized LULC classes. In ad-
dition, it provides metadata at pixel level: geographic coordi-
nates, country and departmental divisions, spatial–temporal
consistency across LULC products, statistics on temporal
data availability, and the global human modification index.
The annotation quality was further assessed by experts using
Google Earth and Bing Maps very high resolution images
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using 100 samples per class evenly distributed around the
world.

2 Methods

To build TimeSpec4LULC, we first determined the spatial–
temporal agreement across 15 heterogeneous global LULC
products (listed in Table 2) for 29 broad and globally harmo-
nized LULC classes. Then, for each class, we extracted a 22-
year monthly time series for the seven 500 m spectral bands
of MODIS Terra and Aqua combined. We carried out this
process in GEE since it provides access to freely available
satellite imagery under a unified programming, processing,
and visualization environment.

2.1 Finding spatial–temporal agreement across 15
global LULC products

Since the 1980s, multiple global LULC products (Table 2)
have been derived from remotely sensed data, providing al-
ternative characterizations of the Earth surface at varying ex-
tents of spatial and temporal resolutions (Townshend et al.,
1991; Loveland et al., 2000; Bartholome and Belward, 2005).
One of the most important limitations of global LULC prod-
ucts is the within-product variability of accuracy (across dif-
ferent years, regions, and LULC types) and the low agree-
ment among products in many regions of the world (Tsend-
bazar et al., 2015b, 2016; Gao et al., 2020; Gong et al.,
2013; Zimmer-Gembeck and Helfand, 2008). The accuracy
of the global products at the local level is low compared to
their accuracy at the global level and to the accuracy of lo-
cal products at the local level. Such lack of consensus can
translate into huge implications for subsequent global as-
sessments of biodiversity status, carbon balance, or climate
change (Estes et al., 2018; de la Cruz et al., 2017). In addi-
tion, accuracy at the local level can be too low, which im-
pedes the use of global or regional LULC products in lo-
cal studies (Hoskins et al., 2016; Tsendbazar et al., 2016),
since it can lead to different conclusions due to the com-
pelling amount of inconsistencies, uncertainties, and inaccu-
racies (Tsendbazar et al., 2015a; Estes et al., 2018). Multiple
reasons lie behind these discrepancies among LULC prod-
ucts (Congalton et al., 2014; Grekousis et al., 2015; Gómez
et al., 2016).

– Satellite sensors. The spatial, temporal, and spectral res-
olutions of the source satellite images strongly deter-
mine the precision and accuracy of derived LULCs. Na-
tive pixel size can vary from dozens of meters to kilo-
meters, which determines the precision. Revisiting fre-
quency can vary from daily images to several weeks,
which determines the possibility of removing cloud and
atmospheric noise effects. In addition, the greater the
number of spectral bands in a sensor, the greater the

amount of complementary information that can help to
differentiate among LULC classes.

– Processing techniques. The different algorithms for at-
mospheric correction, cloud filtering, image composi-
tion, viewing geometry corrections, etc., can also influ-
ence LULC accuracy.

– Acquisition year(s). Some LULC products just refer to
a particular year, while others are regularly updated.

– Classification schemes. LULC legends can greatly dif-
fer in the number of classes and typology definitions. In
general, LULC products tend to agree more in broader
general categories than in finer specific ones.

– Classification algorithms. The approaches and rules
used to identify each LULC have evolved from deci-
sion trees to multivariate clustering and machine learn-
ing, including now deep learning.

– Validation techniques of the final product. The amount
and global distribution of ground truth samples differ
across products and influence their reported accuracy.

Many efforts have been made to assess, compare, and har-
monize the increasing plethora of global, regional, and lo-
cal LULC products, including their integration into synthetic
products, which has shed light onto their strengths and weak-
nesses (Feng and Bai, 2019; Zhang et al., 2019; Gao et al.,
2020; Liu et al., 2021). Still, the myriad of existing products
with different specifications and accuracies have made their
selection by the users problematic and discouraging because
it is frequently unknown whether a product meets the user’s
needs for a particular area or LULC class (Tsendbazar et al.,
2015b; Xu et al., 2020). In addition, many of these efforts are
either limited to regional or national scale (e.g., Pérez-Hoyos
et al., 2012; Gengler and Bogaert, 2018), coarse spatial reso-
lution (e.g., Tuanmu and Jetz, 2014; Jung et al., 2006), or just
one LULC type (e.g., Fritz et al., 2011). The use of synergis-
tic products takes advantage from the strengths of individ-
ual products while attenuating their respective weaknesses.
However, they still face the challenge of taking into consider-
ation the spatial–temporal consistency within pixels. In gen-
eral, given a target maximum error of 5 %–15 % either per
class or for the overall accuracy, most of the current global
land cover maps still do not meet the accuracy demands of
many applications (Liu et al., 2021).

To overcome all the aforementioned limitations, a spatial–
temporal agreement across 15 global LULC products avail-
able in GEE was performed. To find the spatial–temporal
consensus across global LULC products for different LULC
classes, we followed five steps: (1) selection of global
LULC products, (2) standardization and harmonization of
LULC legends, (3) combination of products across space and
time, and (4) reprojection and selection of spatial agreement
thresholds to get a final consistent mask across the 15 prod-
ucts for each one of the 29 LULC classes.
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Table 1. A list of existing datasets of times series of satellite images, including the proposed TimeSpec4LULC dataset, for training machine
learning models.

Dataset Source No. images × (pixels) Spatial Temporal No. No. Extent Intra/inter- Labeled
resolution (m) resolution bands classes time series for

CaneSat
(Virnodkar
et al., 2020)

Sentinel-2 1627× (10× 10) 10 Monthly 6 2 India [2018, 2019] Sugarcane clas-
sification

SpaceNet-7
(Van Etten
et al., 2021)

Dove
satellite
constellation,

Planet
Labs

24× (1024× 1024) 4 Monthly 8 2 100 cities [2017, 2020] Buildings
tracking

Time series
spectral dataset
for croplands in
France
(Hubert-Moy
et al., 2019)

MODIS
and LPIS

21 129 pixels 250 8 d intervals 4 19 France [2006, 2017] Crop type map-
ping and moni-
toring

TiSeLaC (TiS,
2022)

Landsat 8× (2866× 2633) 30 Annually 10 9 Réunion 2014 Classification

BreizhCrops
(Rußwurm
et al., 2019)

Sentinel-2 610 000 pixels 60 – 10 9 Brittany dept.,
France

[1 Jan 2017,
31 Dec 2017]

Crop type map-
ping

TimeSpec4LULC

(ours)

MODIS 6 076 531 pixels 500 Monthly 7 29 Global [Mar 2000, Dec
2021]

LULC mapping

2.1.1 Selection of global LULC products

We used the 15 most updated global LULC products avail-
able in GEE (Table 2). These products widely differ in their
source satellite data, spatial resolution, temporal coverage,
class legend, and accuracy. Given such heterogeneity, we
used the consensus across all of them in space and time as
a source of reliability to support our annotation. That is, a
given LULC class is assigned to a 500 m pixel only if it was
consistent over time and space across all the 15 LULC prod-
ucts.

2.1.2 Standardization and harmonization of LULC
legends

To standardize and harmonize the LULC legends across the
15 LULC products, we used expert knowledge (Vancutsem
et al., 2013) to find a common nomenclature based on spa-
tial, temporal, and thematic consensus between equivalent
classes from different products. We always matched our re-
sulting consensus class into the hierarchy of FAO’s Land
Cover Classification System (LCCS) (Di Gregorio, 2005);
see correspondence across LULC products in Table 4, as well
as the correspondence with FAO’s LCCS in Table A1 of the
Appendix. Our final legend contained 29 classes at the finest
detail (6 LU classes and 23 LC classes) that were interoper-
able across all products (see the hierarchical structure of our
legend in Fig. 1) and FAO’s LCCS (Table A1). Table 3 pro-
vides the IDs, full names, and short names of the 29 LULC

classes. Table A2, in Appendix, provides the detailed defini-
tions of each one of the 29 classes from the definitions given
in the original products.

The LULC legend was structured into six hierarchical lev-
els (L0 to L5). The six anthropogenic LU classes contained
urban and built-up areas and five types of croplands. The 23
natural or semi-natural LC classes covered 5 aquatic systems
(marine water bodies, continental water bodies, and 3 types
of wetlands) and 18 terrestrial systems (permanent snow, bar-
ren lands, moss and lichen lands, grasslands, closed shrub-
lands, open shrublands, and 12 types of forests that differed
in their canopy type, phenology, and tree cover).

Some of the products provide discrete categorization of
LULC classes in each pixel (P1–P5, P8–P10, P13, and P14),
while other products provide continuous categorization rep-
resented by a class proportion in each pixel (P11, P12, and
P15), or even both continuous and discrete categorizations
of LULC (P6 and P7) (Table 4). To define the class of each
pixel within these two different categorization mechanisms,
we either specify a unique value (e.g., select the value 16 to
access barren lands in P1) or use a range of values (e.g., tree
canopy cover less than 10 (TCC< 10) to access barren lands
in P6).

2.1.3 Combining products across time and space

For each LULC class, we built a consensus image describ-
ing its global distribution by agreement over time and space

Earth Syst. Sci. Data, 14, 1377–1411, 2022 https://doi.org/10.5194/essd-14-1377-2022



R. Khaldi et al.: TimeSpec4LULC 1381

Ta
bl

e
2.

D
es

cr
ip

tio
n

of
th

e
G

E
E

gl
ob

al
L

U
L

C
pr

od
uc

ts
us

ed
in

th
is

st
ud

y.

Pr
od

uc
tI

D
Pr

od
uc

ts
V

er
si

on
Pr

ov
id

er
Se

ns
or

Sa
te

lli
te

or
sp

ac
eb

or
ne

Sp
at

ia
l

re
s-

ol
ut

io
n

A
cq

ui
si

tio
n

tim
e

D
at

a
ty

pe
L

in
k

R
ef

.

P1
:P

5
M

C
D

12
Q

1
(L

C
ty

pe
1

to
5)

v6
N

A
SA

L
P

D
A

A
C

at
th

e
U

SG
S

E
R

O
S

C
en

te
r

M
O

D
IS

A
qu

a–
Te

rr
a

50
0

m
20

01
–2

01
9

Im
ag

e
co

lle
ct

io
n

M
C

D
(2

02
2)

Fr
ie

dl
an

d
Su

lla
-M

en
as

he
(2

01
9)

P6
C

G
L

S-
L

U
L

C
10

0
v3

.0
.1

C
op

er
ni

cu
s

G
lo

ba
l

L
an

d
Se

rv
ic

e
(C

G
L

S)
PR

O
B

A
-V

10
0

m
20

15
–2

01
9

Im
ag

e
co

lle
ct

io
n

C
G

L
(2

02
2)

B
uc

hh
or

n
et

al
.(

20
20

)

P7
G

FC
C

v3
N

A
SA

L
P

D
A

A
C

at
th

e
U

SG
S

E
R

O
S

C
en

te
r

M
ul

ti-
se

ns
or

M
ul

ti-
sa

te
lli

te
30

m
20

00
,2

00
5,

20
10

,2
01

5
Im

ag
e

co
lle

ct
io

n
G

FC
(2

02
2a

)
Se

xt
on

et
al

.(
20

13
)

P8
G

L
O

B
C

O
V

E
R

v2
E

SA
an

d
by

th
e

C
at

ho
lic

U
ni

ve
rs

ity
of

L
ou

va
in

M
E

R
IS

E
N

V
IS

A
T

30
0

m
20

09
Si

ng
le

im
ag

e
G

lo
(2

02
2)

A
ri

no
et

al
.(

20
08

)

P9
G

FS
A

D
v0

.1
G

lo
ba

lF
oo

d
Se

cu
ri

ty
su

pp
or

tA
na

ly
si

s
D

at
a

at
30

m
pr

oj
ec

t
(G

FS
A

D
30

)

M
ul

ti-
se

ns
or

M
ul

ti-
sa

te
lli

te
10

00
m

20
10

Si
ng

le
im

ag
e

G
FS

(2
02

2)
Te

lu
gu

nt
la

et
al

.(
20

15
)

P1
0

PA
L

SA
R

2
vf

nf
JA

X
A

E
O

R
C

SA
R

A
L

O
S,

A
L

O
S2

25
m

20
07

–2
01

0
20

15
–2

01
7

Si
ng

le
im

ag
e

PA
L

(2
02

2)
Sh

im
ad

a
et

al
.(

20
14

)

P1
1

H
A

N
SE

N
v1

.7
H

an
se

n,
U

M
D

,
G

oo
gl

e,
U

SG
S,

N
A

SA
O

L
I

L
an

ds
at

8
30

.9
2

m
20

00
–2

01
9

Si
ng

le
im

ag
e

H
an

(2
02

2)
H

an
se

n
et

al
.(

20
13

)

P1
2

G
FC

H
v2

00
5

N
A

SA
,J

PL
L

id
ar

92
7.

67
m

20
05

Si
ng

le
im

ag
e

G
FC

(2
02

2b
)

Si
m

ar
d

et
al

.(
20

11
)

P1
3

JR
C

ye
ar

ly
w

at
er

cl
as

si
fic

at
io

n
hi

st
or

y

v1
.2

E
C

JR
C

,G
oo

gl
e

M
ul

ti-
se

ns
or

L
an

ds
at

(5
,

7,
8)

30
m

19
84

–2
01

9
Im

ag
e

co
lle

ct
io

n
JR

C
(2

02
2b

)
Pe

ke
le

ta
l.

(2
01

6)

P1
4

JR
C

gl
ob

al
su

rf
ac

e
w

at
er

m
ap

pi
ng

la
ye

rs

v1
.2

E
C

JR
C

,G
oo

gl
e

M
ul

ti-
se

ns
or

L
an

ds
at

(5
,

7,
8)

30
m

19
84

–2
01

9
Si

ng
le

im
ag

e
JR

C
(2

02
2a

)
Pe

ke
le

ta
l.

(2
01

6)

P1
5

T
si

ng
hu

a
FR

O
M

-G
L

C
v1

0
T

si
ng

hu
a

U
ni

ve
rs

ity
M

ul
ti-

se
ns

or
L

an
ds

at
30

m
19

85
–2

01
8

Si
ng

le
im

ag
e

T
si

(2
02

2)
G

on
g

et
al

.(
20

20
)

https://doi.org/10.5194/essd-14-1377-2022 Earth Syst. Sci. Data, 14, 1377–1411, 2022



1382 R. Khaldi et al.: TimeSpec4LULC

Figure 1. Hierarchical structure of the LULC classes contained in the TimeSpec4LULC dataset. C1 to C29: the 29 LULC classes. L0 to L5:
the 5 LULC levels. L0 includes the 2 blue boxes. L1 includes the 4 green boxes. L2 includes the 12 yellow boxes. L3 includes all the classes
of the 12 yellow boxes (from C1 to C5 and from C18 to C29) except the forests class where it includes only the 2 orange boxes (deciduous
and evergreen). L4 includes the same classes but expands the forests class into the 4 purple boxes: deciduous (broadleaf and needleleaf) and
evergreen (broadleaf and needleleaf). L5 includes all the 29 LULC classes (from C1 to C29).

Table 3. Description of the full name and short name of each LULC
class in the TimeSpec4LULC dataset.

Class ID Class full name Class short name

C1 Barren lands BarrenLands
C2 Moss and lichen lands MossAndLichen
C3 Grasslands Grasslands
C4 Open shrublands ShrublandOpen
C5 Closed shrublands ShrublandClosed
C6 Open deciduous broadleaf forests ForestsOpDeBr
C7 Closed deciduous broadleaf forests ForestsClDeBr
C8 Dense deciduous broadleaf forests ForestsDeDeBr
C9 Open deciduous needleleaf forests ForestsOpDeNe
C10 Closed deciduous needleleaf forests ForestsClDeNe
C11 Dense deciduous needleleaf forests ForestsDeDeNe
C12 Open evergreen broadleaf forests ForestsOpEvBr
C13 Closed evergreen broadleaf forests ForestsClEvBr
C14 Dense evergreen broadleaf forests ForestsDeEvBr
C15 Open evergreen needleleaf forests ForestsOpEvNe
C16 Closed evergreen needleleaf forests ForestsClEvNe
C17 Dense evergreen needleleaf forests ForestsDeEvNe
C18 Mangrove wetlands WetlandMangro
C19 Swamp wetlands WetlandSwamps
C20 Marshland wetlands WetlandMarshl
C21 Marine water bodies WaterBodyMari
C22 Continental water bodies WaterBodyCont
C23 Permanent snow PermanentSnow
C24 Croplands flooded with seasonal water CropSeasWater
C25 Irrigated cereal croplands CropCereaIrri
C26 Rainfed cereal croplands CropCereaRain
C27 Irrigated broadleaf croplands CropBroadIrri
C28 Rainfed broadleaf croplands CropBroadRain
C29 Urban and built-up areas UrbanBlUpArea

across the LULC products. Based on their data type, the
LULC products can be classified into two main categories:
(1) products with single image referring to a particular year
or period (P1 to P7) and (2) products with a collection of im-
ages over years (P8 to P12). Thus, the temporal agreement
can only be applied for the second category of products. In
(1) the single-image-based products, we obtained a binary
mask where value 1 corresponds to the targeted LULC class,
whereas in (2) the image-collection-based products, we first
obtained a binary mask for each year, and then we produced
their combination over years to obtain one mask. Afterwards,
we performed a spatial agreement over the 12 masks of the
first 12 products (P1 to P12), and then we used the masks of
the two water bodies products (P13 and P14) and the mask
of the impervious surface product (P15) to further refine the
consensus.

Based on the temporal consistency, the LULC classes
can be classified into (1) classes with high temporal stabil-
ity, namely urban and built-up areas, water bodies, perma-
nent snow, open shrublands, barren lands, and grasslands;
and (2) classes with low temporal stability characterized
with plausible inter-annual changes, namely moss and lichen
lands, forests, closed shrublands, wetlands, and croplands.
This instability is due to several reasons, for example wet-
lands affected by droughts, or large areas of no-forest cover
in one year preceded and followed by forest in the previ-
ous and following years, respectively. Our main objective is
to collect from each class a representative number of pix-
els that satisfy the temporal stability constraint of a specific
class type. Thus, the temporal agreement, over the masks of

Earth Syst. Sci. Data, 14, 1377–1411, 2022 https://doi.org/10.5194/essd-14-1377-2022



R. Khaldi et al.: TimeSpec4LULC 1383

each image-collection-based product, was performed based
on two different types of operators governed by Algorithm 1.
(1) The AND operator, which represents a hard temporal sta-
bility constraint, ensures getting pixels with stable class type
over time but more likely a small number of pixels. (2) The
MEAN operator, which represents a soft temporal stability
constraint, provides a large number of pixels but with fewer
stability patterns over time. A list of these operators mapping
each LULC class is provided in Table 5.

Subsequently, the spatial combination of the 15 masks was
performed following six rules according to the global abun-
dance of each class. The main rule (Rule 1) is to apply the
MEAN operator across products P1 to P12 and multiply the
result by the two water masks of P13 and P14 to eliminate
water pixels from land classes and land pixels from water
classes, as well as by the impervious surface mask of P15 to
eliminate impervious pixels from all classes but urban. How-
ever, when the number of pixels for some LULC classes is
small (less than 1000), Rule 1 was relaxed differently, gen-
erating five other different rules (Rule 2 to Rule 6). These
five rules were applied to five LULC classes that had too few
pixels with Rule 1: the moss and lichen lands (Rule 2), man-
grove wetlands (Rule 3), swamp wetlands (Rule 4), marsh-
land wetlands (Rule 5), and croplands flooded with seasonal
water (Rule 6). The usage of the spatial combination rules is
described in Algorithm 2.

Finally, the spatial–temporal combination of the 15 LULC
products resulted in a mask for each LULC class produced
at the resolution of the finest product (i.e., 30 m), where each
pixel had a consensus level value p in [0,1]. Hence, for each
LULC mask, the pixel value p indicates the spatial–temporal
agreement degree over the 15 LULC products on the be-
longing of this pixel to the class represented by this mask.

2.1.4 Re-sampling and selection of agreement threshold

The final mask of each LULC class maintained the spa-
tial resolution of the last aggregated LULC product P15 at
30 m resolution. The 30 m resolution LULC consensus was
re-sampled with MODIS resolution (approximately equal to
500 m) using the spatial MEAN reducer. This 500 m average
consensus was used to explore different agreement thresh-
olds θ for each LULC class. We used θ = 1 when the number
of retrieved 500 m pixels is greater than 1000, which means
that the 15 LULC products totally agree on the class type
of these pixels. Otherwise, we decreased the threshold θ by
0.05 until we reached at least 1000 pixels (Algorithm 3). Ta-
ble 7 provides the number of pixels obtained with each agree-
ment threshold. In any case, our dataset provides as metadata
the agreement percentage at pixel level, so that the user can
control the desired agreement threshold and subsequent sam-
ple size. To ensure collecting at least 1000 pixels from each
class, the lowest pixel-agreement threshold used is θ = 0.80
(Table 7).

After performing, for each LULC class, the spatial–
temporal agreement, the re-projection, and the selection of
the agreement threshold, we combined the final class masks
of all the 29 LULC classes to generate one global LULC
map describing their distribution (Fig. 2). This figure shows
in which place of the world the 29 LULC classes are more
stable in time and the 15 LULC products are more compli-
ant, since the number of the collected pixels in each class is
affected by the temporal consistency of the 29 LULC classes
and the spatial consistency over the 15 LULC products. To
illustrate all the steps of the spatial–temporal agreement pro-
cess across the 15 global LULC products, we provide an
example explaining the generation of the final mask for the
class “dense evergreen broadleaf forests” (Fig. 3).
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2.2 Extracting times series of spectral data for 29 LULC
classes globally

To extract the 22-year monthly time series of the seven 500 m
MODIS spectral bands for each of the 29 LULC classes
throughout the entire world, we followed four steps (Fig. 4):
(1) spatial–temporal filtering of Terra and Aqua data based
on quality assessment flags, (2) aggregation of the original
8 d Terra and Aqua data into monthly composites, (3) merg-
ing of the two monthly time series into a Terra+Aqua
combined time series, and (4) data extraction and archiving
(Fig. 6).

2.2.1 Spatial–temporal filtering of Terra and Aqua data
based on quality assessment flags

MODIS sensor has high temporal coverage, ensured by Terra
and Aqua satellite revisit frequencies, and also spectral and
spatial features that are highly suitable for LULC mapping
and change detection (García-Mora et al., 2012; Xiong et al.,
2017). Thus, we used two MODIS products, MOD09A1
(Ter, 2022) and MYD09A1 (Aqu, 2022), that estimate the 8 d
surface spectral reflectance for the seven 500 m bands from
Terra and Aqua, respectively.

The quality of any time series of satellite imagery is af-
fected by the internal malfunction of satellite sensor at-
mospheric (i.e., clouds, shadows, cirrus, etc.) or land (i.e.,
floods, snow, fires, etc.) conditions. In addition to the spectral
bands, MODIS products provide quality assessment (QA)
flags as metadata bands to allow the user to filter out spec-
tral values affected by disruptive conditions. Therefore, all
QA flags were used to remove noise, spurious values, and
outliers in the image collection. MODLAND QA flags (bits
0–1) were used to only select pixel values produced at ideal
quality.

Then, State QA flags were used to mask out clouds (bits 0–
1), internal clouds (bit 10), pixels adjacent to clouds (bit 13),
cirrus (bits 8–9), cloud shadows (bit 2), high aerosol quan-
tities (bits 6–7), and internal fires (bit 11). The water flag
(bits 3–5) was used to mask out water pixels in all terres-
trial systems, but not in the terrestrial systems of permanent
snow, and in croplands flooded with seasonal water to avoid
unrealistic data loss.

2.2.2 Aggregating the original 8 d Terra and Aqua data
into monthly composites

Filtering the MODIS Terra and Aqua data records produced
many missing values in their 8 d time series. To overcome
this issue and further reduce the presence of noise in our
dataset, the original 8 d time series were aggregated into
monthly composites by computing the mean over the obser-
vations of each month. Indeed, despite the fact that reduc-
ing the temporal resolution from 8 d to monthly composites
shortened the time series size, it generated two datasets with
fewer missing values and clear monthly patterns, which are
more intuitive to track LULC dynamics than the 8 d patterns.

2.2.3 Merging the two monthly time series into a
Terra+Aqua combined time series

Terra satellite daily orbits above the Earth’s surface from
north to south in the morning at around 10:30 local time,
while Aqua orbits in the opposite direction in the after-
noon at around 13:30. Having two opportunities per day at
each location increases the chances of capturing an image
under good atmospheric conditions. To further reduce the
number of missing values in our dataset, we merged the
monthly time series provided by these two satellites into a
Terra+Aqua combined time series. That is, for each pixel,
band, and month, when both Terra and Aqua had values,
we used the mean between them; when one satellite had a
missing value, we used the available one; and when both of
them had missing values, the combined value remains miss-
ing. Since Aqua was launched 3 years later (in 2002) after
Terra had been launched, the acquisition time of our dataset
is (1) from 5 March 2000 to 4 July 2002 using Terra time
series and (2) from 4 July 2002 to 19 December 2021 using
Terra+Aqua time series.

2.2.4 Extracting and archiving the dataset

One of the main advantages of our dataset is its global-scale
characteristic since all the LULC data were extracted glob-
ally from all the regions over the world. The data exporta-
tion process was performed in two steps (Fig. 6). (1) We ex-
ported the metadata of all the pixels generated by the consen-
sus. Then, (2) we exported their corresponding time series
data. Detailed descriptions and discussions about each step
are provided as follows.

1. From each LULC class mask, we first exported the
metadata of all the available pixels in one file. However,
for the class masks having more than 1 million pixels
(barren lands, water bodies, permanent snow, grass-
lands, open shrublands, and dense evergreen broadleaf
forests) we only exported the metadata of 500 000 pix-
els randomly selected over the globe because of the
memory limitations in GEE (Table 7). The exported
metadata includes the coordinates of the pixel center

https://doi.org/10.5194/essd-14-1377-2022 Earth Syst. Sci. Data, 14, 1377–1411, 2022
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Table 5. Description of the temporal–spatial combination of the 15 global LULC products (P1 :P15) masks to build a consensus image for
each LULC class.

Class ID LULC class(s) Spatial combination Temporal
combination∗

C1 Barren lands Rule 1: mean(P1 :P12) ·P13 ·P14 · P15 Operator 1: AND
C2 Moss and lichen lands Rule 2: mean(P1 :P5, P7 :P12) ·P6 ·P13 ·P14 ·P15 Operator 2: MEAN
C3 Grasslands Rule 1: mean(P1 :P12) ·P13 ·P14 · P15 Operator 1: AND
C4 Open shrublands Rule 1: mean(P1 :P12) ·P13 ·P14 ·P15 Operator 1: AND
C5 Closed shrublands Rule 1: mean(P1 :P12) ·P13 ·P14 ·P15 Operator 2: MEAN
C6:C17 Forests Rule 1: mean(P1 :P12) ·P13 ·P14 · P15 Operator 2: MEAN
C18 Mangrove wetlands Rule 3: mean(P1 :P7, P9 :P14) ·P8 ·P15 Operator 2: MEAN
C19 Swamp wetlands Rule 4: mean(P1 :P8.a, P9 :P12) ·P8.b ·P15 Operator 2: MEAN
C20 Marshland wetlands Rule 5: mean(P1 :P6, P8 :P10, P13 :P14) ·P7 ·P11 ·P12 ·P15 Operator 2: MEAN
C21:C22 Water bodies Rule 1: mean(P1 :P12) ·P13 ·P14 ·P15 Operator 1: AND
C23 Permanent snow Rule 1: mean(P1 :P12) ·P13 ·P14 ·P15 Operator 1: AND
C24 Croplands flooded with seasonal water Rule 6: mean(P1 :P12) · (P13 OR P14) ·P15 Operator 1: AND
C25 :C26 Cereal croplands Rule 1: mean(P1 :P12) ·P13 ·P14 ·P15 Operator 1: AND
C27 :C28 Broadleaf croplands Rule 1: mean(P1 :P12) ·P13 · P14 ·P15 Operator 1: AND
C29 Urban and built-up areas Rule 1: mean(P1 :P12) ·P13 · P14 ·P15 Operator 1: AND

∗ Inter-annual combination used in all products except in P13, where we first calculated the inter-annual mean and then transformed it into a water–no-water binary mask.

Figure 2. Distribution of the number of covered countries (Food and Agricultural Organization’s Global Administrative Unit Layers 2015
GAUL-ADM0) over the 29 LULC classes. This map combines all the final LULC class masks that were generated from the process of
spatial–temporal agreement across the 15 global LULC products available in GEE. In the map’s legend we are presenting the short names of
the LULC classes (their corresponding full names are presented in Table 3).

Earth Syst. Sci. Data, 14, 1377–1411, 2022 https://doi.org/10.5194/essd-14-1377-2022
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Figure 3. Example of the final mask creation process for the dense evergreen broadleaf forests LULC class produced through the spatial–
temporal agreement over the 15 global LULC products available in GEE.

and the percentage of agreement over the 15 LULC
products. To take into account all the differences across
the globe and thinking of regional interests that some
users may have, we used the Food and Agricultural
Organization’s Global Administrative Unit Layers 2015
(FAO GAUL) product, available in GEE, to provide
for each pixel the ADM0-CODE obtained from the
country boundaries (GAU, 2022a) of FAO GAUL (i.e.,
countries) and the ADM1-CODE obtained from the
first-level administrative units (GAU, 2022b) of FAO
GAUL (e.g., departments, states, provinces). Further,
to provide the user with extra metadata that could be
used to filter time series according to different levels
of human intervention on each pixel, the average GHM
index was included. The GHM index was derived from
the Global Human Modification dataset (CSP gHM)
(https://developers.google.com/earth-engine/datasets/
catalog/CSP_HM_GlobalHumanModification?hl=en,
last access: 22 March 2022; Kennedy et al., 2019)
available in GEE, which provides a cumulative measure

of human modification of terrestrial lands. Then, it was
projected to MODIS resolution using the spatial mean
reducer to generate the average GHM index.

2. After exporting the metadata, we accessed the coordi-
nates of each LULC class to download their time se-
ries data for the seven spectral bands (Table 6). Each
time series dataset contains 262 observations covering
almost 22 years (i.e., from 2000 to the end of 2021).
In order to optimize the exportation process, for each
LULC class, the 262 observations corresponding to the
262 months were exported separately in 262 parallel re-
quests. In each request, we exported seven values corre-
sponding to the seven spectral bands for all the LULC-
class-related pixels.

The exported data generated highly imbalanced LULC
classes obviously due to the differences in their spatial dis-
tributions. Thus, to facilitate the exploration of the dataset,
we also provided a balanced dataset ready to train machine
learning models. The balanced subset of TimeSpec4LULC
provides the time series data for 1000 pixels from each class
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Figure 4. Description of the spatial–temporal filtering of Terra and Aqua, their aggregation into monthly composites, and their merging into
Terra+Aqua combined time series. This process aims to filter out spectral values affected by disruptive conditions and to reduce the number
of gaps in the multispectral time series for the 29 LULC classes.

since the smallest LULC class contains 1194 pixels (Ta-
ble 7). The selection of these 1000 samples from each class
was performed using Algorithm 4 such that they are evenly
distributed in the globe and representative for the world. In
Fig. 5, we provide the distribution of the 1000 pixels selected
from the class “marine water bodies”.

The provided metadata can also be used in case the user
wants to export future time series observations for the com-
ing months. In this context, the user needs to make use of
the ADM0-CODE and the ADM1-CODE to access the coor-
dinates of any region in the world included in the consensus.

Then, the user can upload these coordinates to GEE to export
the time series data of the desired range of time.
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Table 6. Description of the seven spectral bands of MODIS sensor.

Band ID Band name Wavelength Description

B1 MCD09A1_B1 620–670 nm Surface reflectance for band 1
B2 MCD09A1_B2 841–876 nm Surface reflectance for band 2
B3 MCD09A1_B3 459–479 nm Surface reflectance for band 3
B4 MCD09A1_B4 545–565 nm Surface reflectance for band 4
B5 MCD09A1_B5 1230–1250 nm Surface reflectance for band 5
B6 MCD09A1_B6 1628–1652 nm Surface reflectance for band 6
B7 MCD09A1_B7 2105–2155 nm Surface reflectance for band 7

3 Data

To organize and assess the quality of the extracted global data
for all the 29 LULC classes, we first present the description
of the dataset structure, and then we evaluate the quality of
its annotation process.

3.1 Description of the data structure

The TimeSpec4LULC dataset is hosted by
https://doi.org/10.5281/zenodo.5020024 (Khaldi et al.,
2022). It contains two datasets: the original dataset “Time-
Spec4LULC_Original_data.zip” and the balanced subset of
the original dataset “TimeSpec4LULC_Balanced_data.zip”.
The structure of TimeSpec4LULC is organized as follows
(Fig. 7).

– The original dataset contains 30 folders, namely “Meta-
data”, and 29 folder corresponding to the 29 LULC
classes. The folder “Metadata” holds 29 different
CSV files named on behalf of the 29 LULC classes.
The naming of each file follows the structure “Clas-
sId_metadata.csv”. For instance, the metadata CSV file
for the barren lands class is named “C01_metadata.csv”.
Each CSV file holds the metadata of all the pixels gen-
erated by the consensus limited to 500 000 for classes
that exceed 1 million at agreement threshold 1.

The remaining 29 folders contain the time series data for
the 29 LULC classes. Each folder has the form “Clas-
sId_ClassShortName” and holds 262 CSV files corre-
sponding to the 262 months. For example, the CSV file
for the barren lands class for the last month is named
“C01_261.csv”. Inside each CSV file, we provide the
seven values of the spectral bands as well as the coordi-
nates for all the LULC-class-related pixels.

A clear description of the metadata folder along with
an example of the time series data for barren lands is
presented in Fig. 8.

– The balanced subset of the original dataset holds the
metadata and the time series data for 1000 pixels per
class representative of the globe selected by Algo-
rithm 4. It contains 29 different JSON files following the
names of the 29 LULC classes. The naming of each file
follows the structure “ClassId_ClassShortName.json”.
For instance, the JSON file for the barren lands class
is named “C01_BarrenLands.json”.

Each JSON file “Class_File” is a dictionary containing
the short name of the LULC class “Class_Name”, the
ID of the class “Class_Id”, and a list of all the relative
pixels “Pixels” (for more information about the LULC
classes short names, see Table 3). Each element of the
list “Pixels” is a dictionary holding the ID of the pixel
“Pixel_Id”, the class of the pixel “Pixel_Label”, the
metadata of the pixel “Pixel_Metadata”, and the seven
time series of the pixel “Pixel_TS”.

The variable “Pixel_Metadata” contains the geometry
and coordinates (longitude and latitude) of the pixel
center following the GEE format “.geo”, the GAUL
country code “ADM0_Code”, the GAUL first-level ad-
ministrative unit code “ADM1_Code”, the average of
the global human modification index “GHM_Index”,
the agreement percentage over the 15 LULC prod-
ucts “Products_Agreement_Percentage”, and a dictio-
nary carrying the temporal availability percentage for
each band “Temporal_Availability_Percentage” (i.e.,
percentage of non-missing data per band from B1 to
B7).
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Figure 5. Distribution of the 1000 points selected by Algorithm 4 for the class “marine water bodies”: (a) global view and (b) zoomed-in
view.

The variable “Pixel_TS” is a dictionary that holds the
names and the time series values of the seven spectral
bands (from MCD09A1_B1 to MCD09A1_B7) of size
262. A clear description of the JSON class file is pre-
sented in Fig. 9.

3.2 Data quality control

The quality of the dataset annotation was assessed and
validated visually by two co-author experts using two
very high resolution imagery (< 1 m/pixel) sources, namely
Google Earth (https://earth.google.com/web/, last access:
22 March 2022) and Bing Maps imagery (https://www.bing.
com/maps/, last access: 22 March 2022). The assessment
process includes three stages.

– First, a set of 100 samples is carefully selected from
each class following the maximum distance criteria de-
scribed in Algorithm 4. That is, depending on the overall
size of each LULC class, 100 evenly distributed pixels

over the globe were selected. Figure 10 shows the dis-
tribution of the 2900 selected pixels.

– Second, the class of each pixel of the 29× 100 sam-
ples is identified visually by the expert eye following
the next rule. We consider as ground truth the dominant
LULC class; such LULC class occupies at least 70 %
of the pixel. The presence of up to 30 % of features of
other different LULC classes within the dominate class
is ignored.

– Once the validated LULC classification matrix was ob-
tained (Table 8), the F1 score was calculated for all the
LULC levels (from L0 to L5). We used F1 score because
it evaluates the balance between precision and recall,
where (1) precision indicates how accurate the annota-
tion process is in predicting true positives and (2) the
recall, also called sensitivity, indicates how many actual
positives were predicted as true positives (Eq. 3).

F1 score= 2×
Precision×Recall
Precision+Recall

(1)
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Figure 6. Description of the data extraction process for the LULC class dense evergreen broadleaf forests from all the world’s partitions
(GAUL-ADM0, https://developers.google.com/earth-engine/datasets/catalog/FAO_GAUL_2015_level0, last access: 22 March 2022; and
GAUL-ADM1, https://developers.google.com/earth-engine/datasets/catalog/FAO_GAUL_2015_level1, last access: 22 March 2022) where
this class is available, in addition to a visualization of the first spectral band time series for some LULC classes.
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Table 7. Sensitivity analysis of the number of pixels with respect to different values of agreement thresholds along with the final number
of collected pixels at the selected threshold. When the number of pixels at threshold 1 exceeds 1 million, we collect 500 000 random pixels.
Otherwise, we decrease the threshold by 0.05 until we obtain at least 1000 pixels (Algorithm 3).

Class Class short name Agreement thresholds Collected Selected

ID 0.80 0.85 0.90 0.95 1 pixels threshold

C1 BarrenLands 85 293 945 83 484 114 81 157 460 73 495 569 65 332 858 500 000 1
C2 MossAndLichen 646 305 482 619 287 757 134 549 2807 2807 1
C3 Grasslands 55 588 334 34 749 935 21 729 176 4 082 093 1 032 092 500 000 1
C4 ShrublandOpen 32 024 725 21 664 056 14 594 193 2 117 778 223 062 223 062 1
C5 ShrublandClosed 549 792 128 113 38 656 2985 9 2985 0.95
C6 ForestsOpDeBr 130 123 7034 4 0 0 7034 0.85
C7 ForestsClDeBr 486 196 41 869 494 0 0 41 869 0.85
C8 ForestsDeDeBr 6 646 105 4 765 433 2 993 393 387 276 2240 2240 1
C9 ForestsOpDeNe 1402 28 0 0 0 1402 0.80
C10 ForestsClDeNe 71 446 1348 0 0 0 1348 0.85
C11 ForestsDeDeNe 1 109 793 703 062 242 614 10 979 0 10 979 0.95
C12 ForestsOpEvBr 2719 86 0 0 0 2719 0.80
C13 ForestsClEvBr 58 552 3322 149 1 0 3322 0.85
C14 ForestsDeEvBr 49 150 065 45 678 189 40 445 318 32 048 990 3 000 060 500 000 1
C15 ForestsOpEvNe 2735 10 0 0 0 2735 0.80
C16 ForestsClEvNe 154 341 4332 26 0 0 4332 0.85
C17 ForestsDeEvNe 6 987 918 4 562 614 1 966 655 558 406 362 558 406 0.95
C18 WetlandMangro 14 095 4750 716 78 0 4750 0.85
C19 WetlandSwamps 8453 1194 100 7 0 1194 0.85
C20 WetlandMarshl 18 748 9491 4500 1405 80 1405 0.95
C21 WaterBodyMari 47 953 196 46 869 483 40 323 857 39 200 046 35 848 199 500 000 1
C22 WaterBodyCont 47 541 101 45 792 728 6 016 114 5 630 082 4 789 580 500 000 1
C23 PermanentSnow 7 593 382 7 540 486 7 469 482 7 354 210 6 827 318 500 000 1
C24 CropSeasWater 233 404 190 947 134 486 97 732 38 642 38 642 1
C25 CropCereaIrri 6 559 822 4 949 682 1 392 245 1 005 469 405 340 405 340 1
C26 CropCereaRain 17 025 686 13 632 125 6 334 106 3 693 354 848 583 848 583 1
C27 CropBroadIrri 2 977 417 2 349 114 1 099 282 896 775 392 630 392 630 1
C28 CropBroadRain 6 965 150 5 686 144 2 596 559 1 561 992 359 674 359 674 1
C29 UrbanBlUpArea 1 832 276 1 178 905 704 481 501 219 159 073 159 073 1

Total number of collected pixels 6 076 531

Precision=
True Positive

True Positive+False Positive
(2)

Recall=
True Positive

True Positive+False Negative
(3)

As it can be observed from Table 8, as we go up from level
L0 to level L5 the obtained F1 score decreases from 96 % to
87 % mainly due to the classification of forests, grasslands,
open shrublands, water bodies, and croplands flooded with
seasonal water. Typically, the obtained F1 score of each class
is independent of the selected agreement threshold. In some
classes, even if the agreement threshold is equal to 1, the F1
score is low compared to other classes with small agreement
threshold. For instance, the agreement threshold of grass-
lands and open deciduous needleleaf forests is equal to 1
and 0.80, respectively. However, the F1 score of grasslands is
lower (0.68) than the F1 score of open deciduous needleleaf
forests (0.90).

4 Results and discussions

The total number of collected time series (pixels) in all the 29
LULC classes is 6 076 531, which is large enough to build
high-quality DL models (Table 7). This number covers the
29 LULC classes in unbalanced way due to two reasons:
(1) the global abundance of each class and (2) the choice of
the agreement threshold. We provide, in Table 7, the varia-
tion of the number of pixels with respect to different values
of agreement thresholds. It can be noticed that as we decrease
the agreement threshold, the number of pixels increases. Ta-
ble 7 highlights also the classes that reduced the consen-
sus F1 score (with selected threshold less than 1) which are
the three wetlands classes, closed shrublands, and all forests
classes except dense deciduous broadleaf and dense ever-
green broadleaf.

In 15 LULC classes, the number of collected time series, at
agreement threshold 1, is at least 2240 per class. This means
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Figure 7. Dataset structure.

Figure 8. Data structure of the metadata folder (a) and the time series data folder (b) for the class “barren lands” in the original dataset.

that the 15 LULC products are 100 % compliant with re-
gard to the nature of these classes. Thus, these classes have
enough pure spectral information, describing their behavior
over time, to train DL models with very high accuracy. How-
ever, in the remaining 14 LULC classes, the number of time
series, collected at agreement threshold 100 %, is either small
(with closed shrublands, dense evergreen needleleaf forests,
and marshland wetlands) or null in the remaining wetlands
classes and forests classes (except dense broadleaf classes).
This implies that, within 500 m pixels, the LULC products
are less consistent within these classes, and there may be
remaining noise in one class from other classes. Since our
dataset provides, as metadata, the agreement percentage at
the pixel level, the user can always select the desired agree-
ment threshold.

The collected time series data in each LULC class still
contains some missing data that could be handled neither
with the monthly aggregation process nor with the Terra–
Aqua merging process (Table 10). For some classes, the aver-

age temporal availability percentage is very high (e.g., grass-
lands, shrublands, and open deciduous broadleaf forests).
However, it is low for other classes (e.g., moss and lichen
lands, marshland wetlands, marine water bodies, and perma-
nent snow), which implies that their multispectral time series
information is hugely affected by atmospheric and/or land
conditions. For all LULC classes, it is noticeable that the av-
erage temporal availability percentage in band 6 is low com-
pared to the other bands which make band 6 the most con-
taminated by gaps. The reason behind this is the “dead lines”
in Aqua band 6 caused by the already reported malfunction-
ing or noise in some of its detectors (Zhang et al., 2018b).

The unbalanced dataset (Table 9) and the balanced dataset
corresponding to the 1000 pixels per class (Table 10) are dis-
tributed all over the world’s GAUL partitions: ADM0 (i.e.,
countries) and ADM1 (e.g., departments, states, provinces).
Each LULC class, in the two datasets, covers more than 6
countries and more than 13 departments, except moss and
lichen lands as well as deciduous needleleaf forests that
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Figure 9. Data structure of an LULC class JSON file for the bal-
anced subset of the original dataset.

cover fewer countries and departments because of their nat-
urally scarce distribution over the world, whereas some of
the LULC classes, namely continental water bodies, rainfed
croplands (cereal and broadleaf), and urban and built-up ar-
eas, have a broad world coverage, i.e., more than 70 countries
and more than 400 departments. In addition, the GHM index
of the five cropland classes and the urban and built-up areas
class is widely higher (more than 59 % of human change)
compared to the other land cover classes, which proves their
accurate annotation as human land uses. In a cultivated land-
scape, some plots may be in rotational fallow while other
plots are being cultivated, even though the main signal from
this class would come from the cultivated land because it is
the main land use of the pixel.

5 Advantages, limitations, and potential
applications of the dataset

The produced dataset is of high quality both in terms of
the annotation and the generation of spectral reflectance.
On the one hand, our dataset was annotated using the pro-
cess of spatial–temporal combination of 15 global LULC
products available in GEE. On the other hand, the time se-
ries of spectral reflectance were generated with less noise
thanks to (1) the application of the quality assessment filters
(MODLAND QA and State QA) in both MODIS products
(MOD09A1 and MYD09A1), (2) the temporal aggregation
from 8 d to monthly data, and (3) the Terra+Aqua merging
process.

In addition, the annotation accuracy was assessed in two
ways. First, thanks to the spatial–temporal agreement across
the global GEE products, the level of consensus offered a
cross-validation across independent products. Second, the
annotation accuracy was assessed using a geographically
representative sample of 2900 pixels (100 pixels per class
selected by Algorithm 4) manually inspected by experts (vi-
sually photo-interpreted) using very high resolution imagery
from both Google Earth and Bing Maps. Then, it was jointly
agreed on which class each pixel corresponded to (agree-
ment across interpreters according to Muchoney et al., 1999).
Thus the high quality of this dataset will certainly ensure the
building of highly accurate machine learning models because
building good quality machine learning models is possible
only when trained on good quality data (García-Gil et al.,
2019).

This smartly, pre-processed, and annotated dataset is tar-
geted towards scientific users interested in developing and
evaluating various DL models to detect LULC classes. For
example, TimeSpec4LULC can be used (i) to study the intra-
class behaviors of LULCs, i.e., assess the behavior of one
specific LULC in different areas of the world and see whether
it maintains the same pattern or it reveals different patterns,
and (ii) to study the inter-class differences and similarities of
LULCs, i.e., recognize and compare the patterns and dynam-
ics of all LULCs (e.g., time series classification).

It appears that the dataset is only oriented towards LULC
mapping since we provide for each time series a unique la-
bel. Nevertheless, this data can also be used (i) to charac-
terize the seasonal and inter-annual dynamics and changes
of vegetation types and LULC classes and (ii) to perform
environmental monitoring, management, and planning. This
can be done by creating an artificial dataset characterized by
LULC change where each time series can have a sequence of
annotations relative to each LULC type. Then, time series-
based DL segmentation models can be trained on this artifi-
cial data and deployed on real time series to detect and mon-
itor the LULC change. On the other hand, the coordinates of
each class provided in the dataset can also be used to detect
anomalies in a specific class type, such as forest.
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Table 8. Description of the data quality control results of the 2900 pixels for each LULC level (L0 to L5) using the F1 score. The correspon-
dence between long and short names of the LULC classes is provided in Table 3.

L0 F1 L1 F1 L2 F1 L3 F1 L4 F1 L5 F1

Land cover 0.98

Terrestrial lands 0.98

BarrenLands 0.88 BarrenLands 0.88 BarrenLands 0.88 BarrenLands 0.88

MossAndLichen NA MossAndLichen NA MossAndLichen NA MossAndLichen NA

Grasslands 0.68 Grasslands 0.68 Grasslands 0.68 Grasslands 0.68

Shrubland 0.87
ShrublandOpen 0.74 ShrublandOpen 0.74 ShrublandOpen 0.74

ShrublandClosed 0.96 ShrublandClosed 0.96 ShrublandClosed 0.96

Forests 0.98

ForestsDe 0.99

ForestsDeBr 0.98
ForestsOpDeBr 0.81

ForestsCIDeBr 0.79

ForestsDeDeBr 0.93

ForestsDeNe 1
ForestsOpDeNe 0.90

ForestsCIDeNe 0.86

ForestsDeDeNe 0.91

ForestsEv 0.97

ForestsEvBr 0.94
ForestsOpEvBr 0.67

ForestsCIEvBr 0.78

ForestsDeEvBr 0.93

ForestsEvNe 1
ForestsOpEvNe 0.85

ForestsCIEvNe 0.84

ForestsDeEvNe 0.95

PermanentSnow 0.98 PermanentSnow 0.98 PermanentSnow 0.98 PermanentSnow 0.98

Aquatic lands 0.94
Wetland 0.92

WetlandMangro 0.88 WetlandMangro 0.88 WetlandMangro 0.88

WetlandSwamps 0.91 WetlandSwamps 0.91 WetlandSwamps 0.91

WetlandMarshl 0.95 WetlandMarshl 0.95 WetlandMarshl 0.95

WaterBody 0.97
WaterBodyMari 0.88 WaterBodyMari 0.88 WaterBodyMari 0.88

WaterBodyCont 0.86 WaterBodyCont 0.86 WaterBodyCont 0.86

Land use 0.93
Crop lands 0.95

CropSeasWater 0.85 CropSeasWater 0.85 CropSeasWater 0.85 CropSeasWater 0.85

CropCerea 0.92
CropCereaIrri 0.92 CropCereaIrri 0.92 CropCereaIrri 0.92

CropCereaRain 0.91 CropCereaRain 0.91 CropCereaRain 0.91

CropBroad 0.98
CropBroadIrri 0.96 CropBroadIrri 0.96 CropBroadIrri 0.96

CropBroadRain 0.96 CropBroadRain 0.96 CropBroadRain 0.96

UrbanBlUpArea 0.93 UrbanBlUpArea 0.93 UrbanBlUpArea 0.93 UrbanBlUpArea 0.93 UrbanBlUpArea 0.93

Mean 0.96 Mean 0.95 Mean 0.91 Mean 0.90 Mean 0.91 Mean 0.87

The dataset also has some limitations that we discuss be-
low and to which we tried to provide some alternative solu-
tions.

– Due to memory limitations in GEE, for some classes
(barren lands, grasslands, dense evergreen broadleaf
forests, water bodies, and permanent snow), we could
not export all the available pixels where the 15 LULC
products agree. But we are still providing the represen-
tative data number (500 000 time series) distributed over
the different GAUL partitions ADM0 and ADM1 where
the class types exist.

– Even though we aggregated the original 8 d Terra and
Aqua data into monthly composites and merged both
satellite monthly data into Terra+Aqua combined time
series, we still have time series contaminated by miss-
ing values (Table 10). To overcome this issue and im-
pute the time series, the user can apply different mod-
els, namely recurrent neural network (RNN)-based time
series imputation models, such as the Bidirectional Re-
current Imputation for Time Series (BRITS) (Cao et al.,
2018), or the generative adversarial network (GAN)-
based time series imputation models, for example the
end-to-end generative adversarial network (E2GAN)
(Luo et al., 2019).
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Table 9. Description of the number of Food and Agricultural Orga-
nization’s Global Administrative Unit Layers 2015 (GAUL) parti-
tions ADM0 and ADM1, the average GHM index, and the average
agreement percentage for the imbalanced version of the data. The
number of ADM0 and ADM1 partitions for the class “marine water
bodies” (C21) is not provided because the GAUL partitions do not
cover the seas and oceans.

Class ID No. GAUL No. GAUL Average Average
ADM0 ADM1 GHM agreement

index percentage

C1 29 207 16.46 100
C2 2 6 0.018 100
C3 42 248 18.09 100
C4 26 108 4.37 100
C5 11 28 8.43 96.84
C6 19 72 13.80 85.80
C7 20 97 13.03 86.16
C8 15 53 18.47 100
C9 1 8 2.65 81.32

C10 3 9 3.31 85.51
C11 3 14 2.90 96.09
C12 12 26 4.12 81.72
C13 36 92 12.82 86.57
C14 39 188 3.88 100
C15 6 23 0.47 80.83
C16 16 87 5.57 86.14
C17 65 460 10.04 97.35
C18 29 50 13.94 87.65
C19 37 87 12.96 86.95
C20 9 14 9.58 97.16
C21 - - 0.19 100
C22 121 916 1.15 100
C23 187 209 0.30 100
C24 30 146 59.72 100
C25 45 204 75.09 100
C26 101 954 61.14 100
C27 23 141 72.82 100
C28 83 593 60.88 100
C29 185 1277 89.75 100

– For some classes, the agreement percentage is less than
100 % (wetlands classes, closed shrublands, and almost
all forests classes) because the 15 LULC products do
not totally agree. In any case, we tried to slightly de-
crease the agreement threshold and retain at least a sam-
ple of 1000 with the highest agreement percentage. In
addition, we are providing at the pixel level the value
of the agreement percentage so that the user can control
the desired threshold and take it into consideration to
evaluate the F1 score of the models.

– For some pixels, the ADM0-CODE and the ADM1-
CODE are null because they are not provided by the
GAUL product, especially for almost all the pixels of
the class “marine water bodies” (Tables 9 and 10). This

is obvious since the GAUL partitions do not cover the
seas and oceans.

– The number of 100 validated pixels is relatively small
with regard to some classes containing a high number
of pixels. The choice of this number was due to the
challenging technical feasibility of the validation pro-
cess and the lack of control resources. However, the
pixels of each class were randomly selected following
the maximum distance criteria described in Algorithm 4
which make them spatially representative of each class
(Fig. 10).

– The original dataset is highly imbalanced since there is a
high variation of the number of time series between the
different 29 classes. This imbalance is due to three rea-
sons: (1) the spatial distribution of the different classes
over the world – e.g., barren lands class is more world
dominant than moss and lichen lands; (2) the agree-
ment between the 15 LULC products – e.g., with an
agreement threshold equal 1, the 15 products are com-
pliant on 223 062 pixels in open shrublands and only
on 9 pixels in closed shrublands; and (3) the temporal
stability of the 29 classes – e.g., the two water bod-
ies classes are more consistent in time than the three
wetlands classes. To train machine learning models it is
recommended to balance the dataset by selecting pixels
evenly distributed over the world, with high agreement
percentage and with high temporal availability percent-
age. Thus, we also provided a balanced subset of the
original dataset containing 1000 pixels in each class,
such that they are evenly distributed and representative
of the globe (Algorithm 4).

6 Code and data availability

This dataset (Version 1.2) (Khaldi et al., 2022) is available to
the public through an unrestricted data repository hosted by
Zenodo at https://doi.org/10.5281/zenodo.5913554.

7 Conclusions

Accurate LULC mapping is highly relevant for many ap-
plications, including Earth system modeling, environmental
monitoring, management and planning, or natural hazard as-
sessment, among many others. However, there still exists a
high level of disagreement across current global LULC prod-
ucts, particularly for some LULC classes. To address the
challenge of improving LULC products, we have created a
smart open-source global dataset of multispectral time se-
ries for 29 LULC classes containing almost 6 million pix-
els annotated by using the spatial–temporal agreement across
15 global LULC products available in GEE. The 29 LULC
classes were hierarchically grouped into a legend with five
levels. The monthly seven-band time series dataset was made
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Figure 10. Global distribution of the selected 2900 pixels to perform the quality control over all the 29 LULC classes.

Table 10. Description of the number of GAUL partitions ADM0 and ADM1, the average GHM index, the average agreement percentage,
and the average temporal availability percentage of each spectral band (B1 to B7) for the balanced version of the data. The number of ADM0
and ADM1 partitions for the class “marine water bodies” (C21) is not provided because the GAUL partitions do not cover the seas and
oceans.

Class ID No. GAUL No. GAUL Average GHM Average agreement Average temporal availability percentage

ADM0 ADM1 index percentage B1 B2 B3 B4 B5 B6 B7

C1 28 181 18.01 100 96.55 96.55 96.55 96.55 96.55 95.46 96.55
C2 2 5 0.008 100 66.77 66.77 66.77 66.77 66.77 62.54 66.77
C3 42 211 15.62 100 97.93 97.93 97.93 97.93 97.93 97.07 97.93
C4 25 96 6.22 100 99.61 99.61 99.61 99.61 99.61 99.47 99.61
C5 11 27 8.46 96.48 98.81 98.81 98.81 98.81 98.81 98.16 98.81
C6 17 64 14.40 85.69 97.63 97.63 97.63 97.63 97.63 96.53 97.63
C7 20 92 13.90 85.83 96.18 96.18 96.18 96.18 96.18 94.46 96.18
C8 14 43 18.84 100 92.10 92.10 92.10 92.10 92.10 88.12 92.10
C9 1 8 2.35 81.10 89.06 89.06 89.06 89.06 89.06 87.83 89.06
C10 2 6 3.17 85.52 79.18 79.18 79.18 79.18 79.18 77.14 79.18
C11 3 13 2.78 95.77 86.40 86.40 86.40 86.40 86.40 83.84 86.40
C12 11 18 12.74 81.52 89.37 89.37 89.37 89.37 89.37 86.00 89.37
C13 26 64 14.76 86.17 93.89 93.89 93.89 93.89 93.89 91.97 93.89
C14 38 161 8.22 100 87.06 87.06 87.06 87.06 87.06 82.09 87.06
C15 6 22 0.88 80.82 84.10 84.10 84.10 84.10 84.10 81.67 84.10
C16 15 70 6.84 85.93 94.63 94.63 94.63 94.63 94.63 92.93 94.63
C17 46 303 15.18 96.38 88.78 88.78 88.78 88.78 88.78 85.73 88.78
C18 9 29 13.55 87.05 96.78 96.78 96.78 96.78 96.78 94.81 96.78
C19 33 69 10.25 86.73 91.77 91.77 91.77 91.77 91.77 89.44 91.77
C20 9 13 8.52 96.54 74.28 74.28 74.28 74.28 74.28 71.48 74.28
C21 – – 0.51 100 71.51 71.51 71.51 71.51 71.51 62.02 71.51
C22 110 525 9.18 100 91.07 91.07 91.07 91.07 91.07 86.84 91.07
C23 16 37 0.31 100 71.06 71.06 71.06 71.06 71.06 69.42 71.06
C24 27 132 64.40 100 85.66 85.66 85.66 85.66 85.66 82.27 85.66
C25 25 154 69.69 100 88.44 88.44 88.44 88.44 88.44 86.33 88.44
C26 86 521 59.19 100 94.34 94.34 94.34 94.34 94.34 92.65 94.34
C27 23 123 69.36 100 91.13 91.13 91.13 91.13 91.13 89.31 91.13
C28 77 428 60.69 100 94.66 94.66 94.66 94.66 94.66 93.13 94.66
C29 144 655 83.19 100 85.61 85.61 85.61 85.61 85.61 82.50 85.61
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by merging the two MODIS sensor data records, Terra and
Aqua, at 500 m resolution and expands 22 years from 2000 to
the end of 2021. Each pixel is provided with a set of metadata
about geographic coordinates, country and departmental di-
visions, spatial–temporal consistency across LULC products,
temporal data availability, and the global human modification
index. Finally, to assess the annotation quality of the dataset,
a sample of 100 pixels per class, evenly distributed around
the world, was selected by maximizing the distance among
sampled pixels and validated with photo-interpretation by ex-
perts using very high resolution images from both Google
Earth and Bing Maps. The overall F1 score of the annota-
tion varied from 96 % at the coarser classification level to
87 % at the finest level. This smartly pre-processed and anno-
tated dataset is targeted towards scientific users interested in
developing and evaluating various machine learning models,
including deep learning networks, to perform global LULC
mapping.
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Appendix A

Table A1. Translation of TimeSpec4LULC legend to FAO’s Land Cover Classification System (LCCS).

FAO’s LCCS system
TimeSpec4LULC nomenclature

Dichotomous phase 1 Dichotomous phase 2 Dichotomous phase 3

A
.P

ri
m

ar
ily

ve
ge

ta
te

d

A1. Terrestrial

A11. Cultivated and managed terrestrial
areas

C25 Irrigated cereal croplands
C26 Rainfed cereal croplands
C27 Irrigated broadleaf croplands
C28 Rainfed broadleaf croplands

A12. Natural and semi-natural terres-
trial vegetation

C2 Moss and lichen lands
C3 Grasslands
C4 Open shrublands
C5 Closed shrublands
C6 Open deciduous broadleaf forests
C7 Closed deciduous broadleaf forests
C8 Dense deciduous broadleaf forests
C9 Open deciduous needleleaf forests
C10 Closed deciduous needleleaf forests
C11 Dense deciduous needleleaf forests
C12 Open evergreen broadleaf forests
C13 Closed evergreen broadleaf forests
C14 Dense evergreen broadleaf forests
C15 Open evergreen needleleaf forests
C16 Closed evergreen needleleaf forests
C17 Dense evergreen needleleaf forests

A2. Aquatic or regularly flooded

A23. Cultivated aquatic or regularly
flooded areas

C24 Croplands flooded with seasonal water

A24. Natural and semi-natural aquatic
or regularly flooded vegetation

C18 Mangrove wetlands
C19 Swamp wetlands
C20 Marshland wetlands

B
.P

ri
m

ar
ily

no
n-

ve
ge

ta
te

d

B1. Terrestrial
B15. Artificial surfaces and associated
areas

B16. Bare areas C1 Barren lands

B2. Aquatic or regularly flooded

B27. Artificial water bodies, snow and
ice

B28. Natural water bodies, snow and
ice

C21 Marine water bodies
C22 Continental water bodies
C23 Permanent snow
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Table A2. Detailed description of each LULC class used to build
the legend for TimeSpec4LULC dataset. NU: not used. NA: not
available.

Class Product Description

C1

P1 16. Barren: at least 60 % of area is non-vegetated barren (sand, rock, soil) areas with less than 10 % vegetation.
P2 15. Non-vegetated lands: at least 60 % of area is non-vegetated barren (sand, rock, soil) or permanent snow and ice with less than 10 %

vegetation.
P3 NA
P4 7. Non-vegetated lands: at least 60 % of area is non-vegetated barren (sand, rock, soil) or permanent snow/ice with less than 10 % vegetation.
P5 11. Non-vegetated lands: at least 60 % of area is non-vegetated barren (sand, rock, soil) with less than 10 % vegetation.
P6 60. Bare/sparse vegetation. Lands with exposed soil, sand, or rocks and never more than 10 % vegetated cover during any time of the year.
P7 Tree canopy cover < 10 %
P8 200. Bare areas
P9 0. Non-cropland
P10 2. Non-forest
P11 (Tree cover < 10 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights < 1 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C2

P1 16. Barren: at least 60 % of area is non-vegetated barren (sand, rock, soil) areas with less than 10 % vegetation.
P2 15. Non-vegetated lands: at least 60 % of area is non-vegetated barren (sand, rock, soil) or permanent snow and ice with less than 10 %

vegetation.
P3 NA
P4 7. Non-vegetated lands: at least 60 % of area is non-vegetated barren (sand, rock, soil) or permanent snow/ice with less than 10 % vegetation.
P5 11. Non-vegetated lands: at least 60 % of area is non-vegetated barren (sand, rock, soil) with less than 10 % vegetation.
P6 100. Moss and lichen
P7 Tree canopy cover < 10 %
P8 (200. Bare areas) OR (150. sparse (> 15 %) vegetation (woody vegetation, shrubs, grassland))
P9 0. Non-cropland
P10 2. Non-forest
P11 (Tree cover < 10 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights < 1 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C3

P1 10. Grasslands: dominated by herbaceous annuals (< 2 m).
P2 10. Grasslands: dominated by herbaceous annuals (< 2 m).
P3 1. Grasslands: dominated by herbaceous annuals (< 2 m) including cereal croplands.
P4 6. Annual grass vegetation: dominated by herbaceous annuals (< 2 m) including cereal croplands.
P5 6. Grass: dominated by herbaceous annuals (< 2 m) that are not cultivated.
P6 30. Herbaceous vegetation. Plants without persistent stem or shoots above ground and lacking definite firm structure.

Tree and shrub cover is less than 10 %.
P7 Tree canopy cover < 10 %
P8 140. Closed to open (> 15 %) grassland
P9 NA
P10 2. Non-forest
P11 (Tree cover < 10 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights < 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C4

P1 7. Open shrublands: dominated by woody perennials (1–2 m height) 10 %–60 % cover.
P2 7. Open shrublands: dominated by woody perennials (1–2 m height) 10 %–60 % cover.
P3 2. Shrublands: shrub (1–2 m) cover > 10 %.
P4 NA
P5 5. Shrub: shrub (1–2 m) cover > 10 %.
P6 (20. Shrubs. Woody perennial plants with persistent and woody stems and without any defined main stem being less than 5 m tall. The shrub

foliage can be either evergreen or deciduous.) AND (10< shrub-cover fraction< 50)
P7 Tree canopy cover < 10 %
P8 150. Sparse (> 15 %) vegetation (woody vegetation, shrubs, grassland)
P9 0. Non-cropland
P10 2. Non-forest
P11 (Tree cover < 10 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights < 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)
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Table A2. Continued.

Class Product Description

C5

P1 6. Closed shrublands: dominated by woody perennials (1–2 m height) > 60 % cover.
P2 6. Closed shrublands: dominated by woody perennials (1–2 m height) > 60 % cover.
P3 2. Shrublands: shrub (1–2 m) cover > 10 %.
P4 NA
P5 5. Shrub: shrub (1–2 m) cover > 10 %.
P6 (20. Shrubs. Woody perennial plants with persistent and woody stems and without any defined main stem being less than 5 m tall. The shrub

foliage can be either evergreen or deciduous.) AND (shrub-cover fraction > 50).
P7 Tree canopy cover < 10 %
P8 130. Closed to open (> 15 %) shrubland (< 5 m)
P9 0. Non-cropland
P10 2. Non-forest
P11 (Tree cover < 10 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights < 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C6

P1 NA
P2 NA
P3 NA
P4 4. Deciduous broadleaf vegetation: dominated by deciduous broadleaf trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 4. Deciduous broadleaf trees: dominated by deciduous broadleaf trees (> 2 m). Tree cover > 10 %.
P6 (15 % < tree-cover fraction < 30 %) ADD (4. deciduous broad leaf)
P7 15 % < tree canopy cover < 30 %
P8 60. Open (15 %–40 %) broadleaved deciduous forest (> 5 m)
P9 NA
P10 1. Forest
P11 (15< tree cover < 30 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C7

P1 NA
P2 NA
P3 NA
P4 4. Deciduous broadleaf vegetation: dominated by deciduous broadleaf trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 4. Deciduous broadleaf trees: dominated by deciduous broadleaf trees (> 2 m). Tree cover > 10 %.
P6 (40 % < tree-cover fraction < 60 %) ADD (4. deciduous broad leaf)
P7 40 % < tree canopy cover < 60 %
P8 50. Closed (> 40 %) broadleaved deciduous forest (> 5 m)
P9 NA
P10 1. Forest
P11 (40 < tree cover < 60 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C8

P1 4. Deciduous broadleaf forests: dominated by deciduous broadleaf trees (canopy > 2 m). Tree cover > 60 %.
P2 4. Deciduous broadleaf forests: dominated by deciduous broadleaf trees (canopy > 2 m). Tree cover > 60 %.
P3 6. Deciduous broadleaf forests: dominated by deciduous broadleaf trees (canopy > 2 m). Tree cover > 60 %.
P4 4. Deciduous broadleaf vegetation: dominated by deciduous broadleaf trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 4. Deciduous broadleaf trees: dominated by deciduous broadleaf trees (> 2 m). Tree cover > 10 %.
P6 (Tree-cover fraction > 60 %) ADD (4. deciduous broad leaf)
P7 Tree canopy cover > 60 %
P8 50. Closed (> 40 %) broadleaved deciduous forest (> 5 m).
P9 NA
P10 1. Forest
P11 (Tree cover > 60 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)
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Table A2. Continued.

Class Product Description

C9

P1 NA
P2 NA
P3 NA
P4 2. Evergreen broadleaf vegetation: dominated by evergreen broadleaf and palmate trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 2. Evergreen broadleaf trees: dominated by evergreen broadleaf and palmate trees (> 2 m). Tree cover > 10 %.
P6 (15 % < tree-cover fraction < 30 %) ADD (2. evergreen broad leaf)
P7 15 % < tree canopy cover < 30 %
P8 40. Closed to open (> 15 %) broadleaved evergreen and/or semi-deciduous forest (> 5 m)
P9 NA
P10 1. Forest
P11 (15< tree cover < 30 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C10

P1 NA
P2 NA
P3 NA
P4 2. Evergreen broadleaf vegetation: dominated by evergreen broadleaf and palmate trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 2. Evergreen broadleaf trees: dominated by evergreen broadleaf and palmate trees (> 2 m). Tree cover > 10 %.
P6 (40 % < tree-cover fraction < 60 %) ADD (2. evergreen broad leaf)
P7 40 % < tree canopy cover < 60 %
P8 40. Closed to open (> 15 %) broadleaved evergreen and/or semi-deciduous forest (> 5 m)
P9 NA
P10 1. Forest
P11 (40 < tree cover < 60 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C11

P1 2. Evergreen broadleaf forests: dominated by evergreen broadleaf and palmate trees (canopy > 2 m). Tree cover > 60 %.
P2 2. Evergreen broadleaf forests: dominated by evergreen broadleaf and palmate trees (canopy > 2 m). Tree cover > 60 %.
P3 5. Evergreen broadleaf forests: dominated by evergreen broadleaf and palmate trees (canopy > 2 m). Tree cover > 60 %.
P4 2. Evergreen broadleaf vegetation: dominated by evergreen broadleaf and palmate trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 2. Evergreen broadleaf trees: dominated by evergreen broadleaf and palmate trees (> 2 m). Tree cover > 10 %.
P6 (Tree-cover fraction > 60 %) ADD (2. evergreen broad leaf)
P7 Tree canopy cover > 60 %
P8 40. Closed to open (> 15 %) broadleaved evergreen and/or semi-deciduous forest (> 5 m)
P9 NA
P10 1. Forest
P11 (Tree cover > 60 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C12

P1 NA
P2 NA
P3 NA
P4 3. Deciduous needleleaf vegetation: dominated by deciduous needleleaf (larch) trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 3. Deciduous needleleaf trees: dominated by deciduous needleleaf (larch) trees (> 2 m). Tree cover > 10 %.
P6 (15< tree-cover fraction < 30 %) ADD (3. deciduous needle leaf)
P7 15 % < tree canopy cover < 30 %
P8 NA
P9 NA
P10 1. Forest
P11 (15< tree cover < 30 %) AND (gain=0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)
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Table A2. Continued.

Class Product Description

C13

P1 NA
P2 NA
P3 NA
P4 3. Deciduous needleleaf vegetation: dominated by deciduous needleleaf (larch) trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 3. Deciduous needleleaf trees: dominated by deciduous needleleaf (larch) trees (> 2 m). Tree cover > 10 %.
P6 (40< tree-cover fraction < 60 %) ADD (3. deciduous needle leaf)
P7 40 % < tree canopy cover < 60 %
P8 NA
P9 NA
P10 1. Forest
P11 (40< tree cover < 60 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C14

P1 3. Deciduous needleleaf forests: dominated by deciduous needleleaf (larch) trees (canopy > 2 m). Tree cover > 60 %.
P2 3. Deciduous needleleaf forests: dominated by deciduous needleleaf (larch) trees (canopy > 2 m). Tree cover > 60 %.
P3 8. Deciduous needleleaf forests: dominated by deciduous needleleaf (larch) trees (canopy > 2 m). Tree cover > 60 %.
P4 3. Deciduous needleleaf vegetation: dominated by deciduous needleleaf (larch) trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 3. Deciduous needleleaf trees: dominated by deciduous needleleaf (larch) trees (> 2 m). Tree cover > 10 %.
P6 (Tree-cover fraction > 60 %) ADD (3. deciduous needle leaf)
P7 Tree canopy cover > 60 %
P8 NA
P9 NA
P10 1. Forest
P11 (Tree cover > 60 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C15

P1 9. Savannas: tree cover 10 %–30 % (canopy > 2 m).
P2 9. Savannas: tree cover 10 %–30 % (canopy > 2 m).
P3 NA
P4 1. Evergreen needleleaf vegetation: dominated by evergreen conifer trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 1. Evergreen needleleaf trees: dominated by evergreen conifer trees (> 2 m). Tree cover > 10 %.
P6 (15 % < tree-cover fraction < 30 %) ADD (1. evergreen needle leaf)
P7 15 % < tree canopy cover < 30 %
P8 90. Open (15 %–40 %) needleleaved deciduous or evergreen forest (> 5 m)
P9 NA
P10 1. Forest
P11 (15 % < tree cover < 30 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C16

P1 8. Woody Savannas: tree cover 30 %–60 % (canopy > 2 m).
P2 8. Woody savannas: tree cover 30 %–60 % (canopy > 2 m).
P3 4. Savannas: between 10 %–60 % tree cover (> 2 m).
P4 1. Evergreen needleleaf vegetation: dominated by evergreen conifer trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 1. Evergreen needleleaf trees: dominated by evergreen conifer trees (> 2 m). Tree cover > 10 %.
P6 (40 % < tree-cover fraction < 60 %) ADD (1. evergreen needle leaf)
P7 40 % < tree canopy cover < 60 %
P8 70. Closed (> 40 %) needleleaved evergreen forest (> 5 m)
P9 NA
P10 1. Forest
P11 (40 % < tree cover < 60 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)
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Table A2. Continued.

Class Product Description

C17

P1 1. Evergreen needleleaf forests: dominated by evergreen conifer trees (canopy > 2 m). Tree cover > 60 %.
P2 1. Evergreen needleleaf forests: dominated by evergreen conifer trees (canopy > 2 m). Tree cover > 60 %.
P3 7. Evergreen needleleaf forests: dominated by evergreen conifer trees (canopy > 2 m). Tree cover > 60 %.
P4 1. Evergreen needleleaf vegetation: dominated by evergreen conifer trees and shrubs (> 1 m).

Woody vegetation cover > 10 %.
P5 1. Evergreen needleleaf trees: dominated by evergreen conifer trees (> 2 m). Tree cover > 10 %.
P6 (Tree-cover fraction > 60 %) ADD (1. evergreen needle leaf)
P7 Tree canopy cover > 60 %
P8 70. Closed (> 40 %) needleleaved evergreen forest (> 5 m)
P9 NA
P10 1. Forest
P11 (Tree cover > 60 %) AND (gain= 0) AND (loss= 0) AND (data mask 6= 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C18

P1 11. Permanent wetlands: permanently inundated lands with 30 %–60 % water cover and > 10 % vegetated cover.
P2 11. Permanent wetlands: permanently inundated lands with 30 %–60 % water cover and > 10 % vegetated cover.
P3 NA
P4 NA
P5 NA
P6 90. Herbaceous wetland. Lands with a permanent mixture of water and herbaceous or woody vegetation.

The vegetation can be present in either salt, brackish, or fresh water.
P7 Tree canopy cover > 10 %
P8 170. Closed (> 40 %) broadleaved semi-deciduous and/or evergreen forest regularly flooded – saline water
P9 NA
P10 NA
P11 (Tree cover > 10 %) AND (gain= 0) AND (loss= 0) OR (data mask = 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (2. Seasonal water) OR (3. permanent water)
P14 1. max_extent
P15 Not (≥ 1)

C19

P1 11. Permanent wetlands: permanently inundated lands with 30 %–60 % water cover and > 10 % vegetated cover.
P2 11. Permanent wetlands: permanently inundated lands with 30 %–60 % water cover and > 10 % vegetated cover.
P3 NA
P4 NA
P5 NA
P6 90. Herbaceous wetland. Lands with a permanent mixture of water and herbaceous or woody vegetation.

The vegetation can be present in either salt, brackish, or fresh water.
P7 Tree canopy cover > 10 %
P8 (180. Closed to open (> 15 %) vegetation (grassland, shrubland, woody vegetation) on regularly flooded or waterlogged

soil – fresh, brackish, or saline water) OR (160. closed (> 40 %) broadleaved forest regularly flooded – fresh water)
P9 NA
P10 NA
P11 (Tree cover > 10 %) AND (gain= 0) AND (loss= 0) OR (data mask = 2. permanent water bodies)
P12 Tree heights > 2 m
P13 (2. Seasonal water) OR (3. permanent water)
P14 1. max_extent
P15 Not (≥ 1)

C20

P1 11. Permanent wetlands: permanently inundated lands with 30 %–60 % water cover and > 10 % vegetated cover.
P2 11. Permanent wetlands: permanently inundated lands with 30 %–60 % water cover and > 10 % vegetated cover.
P3 NA
P4 NA
P5 NA
P6 90. Herbaceous wetland. Lands with a permanent mixture of water and herbaceous or woody vegetation.

The vegetation can be present in either salt, brackish, or fresh water.
P7 Tree canopy cover < 10 %
P8 (180. Closed to open (> 15 %) vegetation (grassland, shrubland, woody vegetation) on regularly flooded or waterlogged

soil – fresh, brackish, or saline water) OR (170. closed (> 40 %) broadleaved semi-deciduous and/or evergreen forest
regularly flooded – saline water) OR (160. closed (> 40 %) broadleaved forest regularly flooded – fresh water)

P9 NA
P10 NA
P11 (Tree cover < 10 %) AND (gain= 0) AND (loss= 0) OR (data mask = 2. permanent water bodies)
P12 Tree heights < 2 m
P13 (2. Seasonal water) OR (3. permanent water)
P14 1. max_extent
P15 Not (≥ 1)
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Table A2. Continued.

Class Product Description

C21

P1 17. Water bodies: at least 60 % of area is covered by permanent water bodies.
P2 0. Water bodies: at least 60 % of area is covered by permanent water bodies.
P3 0. Water bodies: at least 60 % of area is covered by permanent water bodies.
P4 0. Water bodies: at least 60 % of area is covered by permanent water bodies.
P5 0. Water bodies: at least 60 % of area is covered by permanent water bodies
P6 200. Oceans, seas. Can be either freshwater or saltwater bodies.
P7 NA
P8 210. Water bodies
P9 NA
P10 3. Water
P11 NA
P12 NA
P13 3. Permanent water
P14 1. max_extent
P15 Not (≥ 1)

C22

P1 17. Water bodies: at least 60 % of area is covered by permanent water bodies.
P2 0. Water bodies: at least 60 % of area is covered by permanent water bodies.
P3 0. Water bodies: at least 60 % of area is covered by permanent water bodies.
P4 0. Water bodies: at least 60 % of area is covered by permanent water bodies.
P5 0. Water bodies: at least 60 % of area is covered by permanent water bodies
P6 80. Permanent water bodies. Lakes, reservoirs, and rivers. Can be either freshwater or saltwater bodies.
P7 NA
P8 210. Water bodies
P9 NA
P10 3. Water
P11 NA
P12 NA
P13 3. Permanent water
P14 1. max_extent
P15 Not (≥ 1)

C23

P1 15. Permanent snow and ice: at least 60 % of area is covered by snow and ice for at least 10 months of the year.
P2 NA
P3 NA
P4 NA
P5 10. Permanent snow and ice: at least 60 % of area is covered by snow and ice for at least 10 months of the year.
P6 70. Snow and ice. Lands under snow or ice cover throughout the year.
P7 NA
P8 220. Permanent snow and ice
P9 NA
P10 NA
P11 NA
P12 NA
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C24

P1 12. Croplands: at least 60 % of area is cultivated cropland.
P2 12. Croplands: at least 60 % of area is cultivated cropland.
P3 (3. Broadleaf croplands: dominated by herbaceous annuals (< 2 m) that are cultivated with broadleaf crops.) OR

(1. grasslands: dominated by herbaceous annuals (< 2 m) including cereal croplands.)
P4 (5. Annual broadleaf vegetation: dominated by herbaceous annuals (< 2 m); at least 60 % cultivated broadleaf crops.) OR

(6. annual grass vegetation: dominated by herbaceous annuals (< 2 m) including cereal croplands.)
P5 (8. Broadleaf croplands: dominated by herbaceous annuals (< 2 m); at least 60 % cultivated broadleaf crops.) OR

(7. cereal croplands: dominated by herbaceous annuals (< 2 m); at least 60 % cultivated cereal crops.)
P6 40. Cultivated and managed vegetation/agriculture. Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single

and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.
P7 NA
P8 (11. Post-flooding or irrigated croplands) OR (14. rainfed croplands)
P9 (1. Croplands: irrigation major) OR (2. croplands: irrigation minor) OR (3. croplands: rainfed) OR

(4. croplands: rainfed, minor fragments) OR (5. croplands: rainfed, very minor fragments)
P10 NA
P11 NA
P12 NA
P13 (2. Seasonal water) OR (3. permanent water)
P14 (0. No change) OR (4. seasonal) OR (5. new seasonal) OR (8. permanent to seasonal) OR (10. ephemeral seasonal)
P15 Not (≥ 1)
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Table A2. Continued.

Class Product Description

C25

P1 12. Croplands: at least 60 % of area is cultivated cropland.
P2 12. Croplands: at least 60 % of area is cultivated cropland.
P3 1. Grasslands: dominated by herbaceous annuals (< 2 m) including cereal croplands.
P4 6. Annual grass vegetation: dominated by herbaceous annuals (< 2 m) including cereal croplands.
P5 7. Cereal croplands: dominated by herbaceous annuals (< 2 m). At least 60 % cultivated cereal crops.
P6 40. Cultivated and managed vegetation/agriculture. Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single

and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.
P7 NA
P8 11. Post-flooding or irrigated croplands
P9 (1. Croplands: irrigation major) OR (2. croplands: irrigation minor)
P10 NA
P11 NA
P12 NA
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C26

P1 12. Croplands: at least 60 % of area is cultivated cropland.
P2 12. Croplands: at least 60 % of area is cultivated cropland.
P3 1. Grasslands: dominated by herbaceous annuals (< 2 m) including cereal croplands.
P4 6. Annual grass vegetation: dominated by herbaceous annuals (< 2 m) including cereal croplands.
P5 7. Cereal croplands: dominated by herbaceous annuals (< 2 m). At least 60 % cultivated cereal crops.
P6 40. Cultivated and managed vegetation/agriculture. Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single

and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.
P7 NA
P8 14. Rainfed croplands
P9 (3. Croplands: rainfed) OR (4. croplands: rainfed, minor fragments) OR (5. croplands: rainfed, very minor fragments)
P10 NA
P11 NA
P12 NA
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C27

P1 12. Croplands: at least 60 % of area is cultivated cropland.
P2 12. Croplands: at least 60 % of area is cultivated cropland.
P3 3. Broadleaf croplands: dominated by herbaceous annuals (< 2 m) that are cultivated with broadleaf crops.
P4 5. Annual broadleaf vegetation: dominated by herbaceous annuals (< 2 m). At least 60 % cultivated broadleaf crops.
P5 8. Broadleaf croplands: dominated by herbaceous annuals (< 2 m). At least 60 % cultivated broadleaf crops.
P6 40. Cultivated and managed vegetation/agriculture. Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single

and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.
P7 NA
P8 11. Post-flooding or irrigated croplands
P9 (1. Croplands: irrigation major) OR (2. croplands: irrigation minor)
P10 NA
P11 NA
P12 NA
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

C28

P1 12. Croplands: at least 60 % of area is cultivated cropland.
P2 12. Croplands: at least 60 % of area is cultivated cropland.
P3 3. Broadleaf croplands: dominated by herbaceous annuals (< 2 m) that are cultivated with broadleaf crops.
P4 5. Annual broadleaf vegetation: dominated by herbaceous annuals (< 2 m). At least 60 % cultivated broadleaf crops.
P5 8. Broadleaf croplands: dominated by herbaceous annuals (< 2 m). At least 60 % cultivated broadleaf crops.
P6 40. Cultivated and managed vegetation/agriculture. Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single

and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.
P7 NA
P8 14. Rainfed croplands
P9 (3. Croplands: rainfed) OR (4. croplands: rainfed, minor fragments) OR (5. croplands: rainfed, very minor fragments)
P10 NA
P11 NA
P12 NA
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 Not (≥ 1)

Earth Syst. Sci. Data, 14, 1377–1411, 2022 https://doi.org/10.5194/essd-14-1377-2022



R. Khaldi et al.: TimeSpec4LULC 1407

Table A2. Continued.

Class Product Description

C29

P1 13. Urban and built-up lands: at least 30 % impervious surface area including building materials, asphalt, and vehicles.
P2 13. Urban and built-up lands: at least 30 % impervious surface area including building materials, asphalt, and vehicles.
P3 10. Urban and built-up lands: at least 30 % impervious surface area including building materials, asphalt, and vehicles.
P4 8. Urban and built-up lands: at least 30 % impervious surface area including building materials, asphalt, and vehicles.
P5 9. Urban and built-up lands: at least 30 % impervious surface area including building materials, asphalt, and vehicles.
P6 50. Urban/built up. Land covered by buildings and other man-made structures.
P7 NA
P8 190. Artificial surfaces and associated areas (urban areas > 50 %)
P9 NA
P10 NA
P11 NA
P12 NA
P13 (1. Not water) OR (0. no data)
P14 0. max_extent
P15 NU
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