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An integrable Hamiltonian system presents monodromy if the action-angle variables cannot be defined
globally. As a prototype of classical monodromy with azimuthal symmetry, we consider a linear molecule
interacting with external fields and explore the topology structure of its phase space. Based on the
behavior of closed orbits around singular points or regions of the energy-momentum plane, a semi-
theoretical method is derived to detect classical monodromy. The validity of the monodromy test is
numerically illustrated for several systems with azimuthal symmetry.

I. INTRODUCTION

Classical monodromy is the topological obstruction to define a global set of action-angle variables in certain
integrable classical systems1. This phenomenon has crossed the frontiers of mathematics, where it was introduced
by Duistermaat1 and initially considered as a mathematical curiosity with no significant physical applications, to
acquire an interdisciplinary interest and popularity in classical and quantum physics. The quantum analog, i. e.,
quantum monodromy, is the impossibility of assigning a unique set of quantum numbers to characterize all states
of a quantum system2,3. The existence of monodromy has been proved, both theoretically and experimentally,
for a wide variety of classical and quantum systems.
In classical mechanics, the action-angle variables characterize the dynamics of an integrable system and

determine the trajectories. Let us highlight that these quantities depend on the topological structure and
properties of the phase space. The static manifestation of monodromy, i. e., the absence of global action-angle
variables, is a singular fiber in the image of the energy-momentum map as an isolated singular value1. The
implications of monodromy have been extensively investigated for many classical systems, such as the classical
spherical pendulum2,3 or the champagne bottle potential4, among many others. The classical monodromy
has been experimentally investigated for the 1:1:2 resonant elastic pendulum showing that its precession is a
multivalued function of the constants of motion5. In addition to these static manifestations, the monodromy
presents dynamical consequences when a system is continuously driven around a monodromy circuit6,7. This
dynamical monodromy has been experimentally observed as topological changes on the time-dependent evolution
of a spherical pendulum driven by magnetic potentials8.
Quantum monodromy appears as a defect in the quantum lattice formed in the energy-momentum by the

quantum eigenenergies2,3,9. As a consequence, the quantum monodromy significantly influences the spectra of
atoms and molecules in external fields10–12, and even the stability of condensed bosons in optical lattices13.
Quantum monodromy has been also encountered in the bending spectra of molecules14–16. For instance, the
bending and symmetric stretching vibrations of the CO2 molecule16 provide a molecular realization of the quan-
tum 1:1:2 resonant swing spring17. Furthermore, quantum monodromy has been experimentally confirmed in
the energy-momentum maps of the end-over-end rotational energy and the two-dimensional bending vibrational
energy of cyanogen isothiocyanate molecules18 and in the bending levels of water molecules19. A dynamical
manifestation of quantum monodromy has been theoretically explored in terms of topological changes produced
in the quantum wave function of the Mexican hat system20.
Classical monodromy is nowadays a well developed mathematical theory. For two-degree of freedom integrable

systems, there are several ways to detect monodromy, for instance, the most recent criteria are linked to the
notion of focus-focus singularities21. However, the general reader can find some difficulties to access this theory
since it requires rather sophisticated mathematical tools. The purpose of this paper is to review the origins
of the theory and to make it accessible for the non-specialist, aiming at an audience of physicists, theoretical
chemists or general dynamicists.
In this work, we present a semi-theoretical method combining an intuitive description of the family of invariant

tori with the numerical computation of an integral. This integral, associated to a winding number, can only take
discrete values, therefore, an approximate numerical computation allows to obtain the exact value. With these
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elementary tools, we design a method that could be considered insufficient from a strict mathematical point
of view, but certainly is convincing as a monodromy test. Specifically, we explore the topological features of
classical monodromy and apply this monodromy test to a particle whose motion is constrained to the unit sphere
and governed by a potential with azimuthal symmetry. Following pioneering works on classical monodromy1,2,4,
we study the behavior of closed orbits around singular points or regions of the corresponding energy-momentum
plane, and present a monodromy test to identify and characterize numerically the monodromy of this system.
The validity of this test, which is based on the definition of monodromy1,2, is illustrated for the unperturbed
and perturbed classical spherical pendula, whose energy-momentum maps are also described.

The analyzed potentials also characterize the rotational dynamics of a linear molecule either in a static electric
field22, or in combined static electric and non-resonant laser fields23,24, where the phenomenon of quantum
monodromy has been previously analyzed12. This numerical study shows that the monodromy test is easily
implemented for different potentials and efficiently characterizes the monodromy of a wide variety of systems.

This work is organized as follows: in Sec. II we describe the dynamical systems under study as well as the
topology of the associated space. The phenomenon of monodromy is mathematically analyzed in Sec. III,
and an analytical test to determine if a dynamical system presents monodromy is derived. The validity of
this monodromy test is illustrated numerically for several systems with azymuthal symmetry in Sec. IV. In the
appendices we explain some details of the methods and theory discussed in the main text. The main conclusions
and perspectives of this work are presented in Sec. V.

II. THE SYSTEM AND ITS TOPOLOGY

The system is formed by a particle of mass m = 1, whose motion is constrained to the unit sphere

M = TS2 = {(x, p) ∈ R
3 × R

3 :‖ x ‖= 1, 〈x, p〉 = 0}

where x and p stand for the spatial coordinates and the momentum, respectively. The motion of the particle
can be described using Lagrangian coordinates θ ∈]0, π[ and ϕ ≡ ϕ + 2π, see Appendix A for more details.
As indicated in this appendix, this chart does not cover the tangent planes at the north and south poles at
θ = 0 and θ = π, respectively. The particle interacts with a conservative force whose potential is invariant
under rotations around the vertical axis, i. e., V (θ, ϕ) = V (θ). This potential is an analytic, non-constant,
even, and 2π-periodic function, i. e., V (−θ) = V (θ) and V (θ + 2π) = V (θ). Note that throughout this work
all functions (in one or several variables) are real analytic. This type of potentials describe the interaction of a
polar linear molecule with external electric fields parallel to Z-axis on the laboratory fixed frame. For instance,
the potential describing the interaction of a polar molecule with a static electric field22 is V (θ) = ǫ1 cos θ, which
is the same potential as the classical spherical pendulum. After adding a non-resonant laser to the static electric
field the new potential is23,24 V (θ) = ǫ1 cos θ + ǫ2 cos

2 θ. Finally, with a two-color non-resonant laser field the
potential becomes25 V (θ) = ǫ1 cos θ + ǫ2 cos

2 θ + ǫ3 cos
3 θ, with ǫi, i = 1, 2, 3, being determined by the applied

field strengths and the molecular features.

The Hamiltonian of this system reads

H =
1

2

(
p2θ +

p2ϕ

sin2 θ

)
+ V (θ),

and the equations of motion are





θ̇ = pθ, ṗθ =
p2ϕ cos θ

sin3 θ
− V ′(θ),

ϕ̇ =
pϕ

sin2 θ
, ṗϕ = 0.

(1)

Note that due to the azimuthal symmetry, pϕ is an integral of motion. By fixing the energy H = h, and the
momentum pϕ = j, the variables θ and ϕ satisfy

1

2
θ̇2 + Vj(θ) = h, (2)

ϕ̇ =
j

sin2 θ
(3)
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FIG. 1. (a) Modified potential Vj(θ) = 2 cos θ − 5 cos2 θ + j2/(2 sin2 θ) with j = 1 as a function of θ, the horizontal line
represents h = 0, (b) trajectories γ1 and γ2 for h = 0 in the phase space (θ, pθ).

where Vj(θ) is the modified potential

Vj(θ) =
j2

2 sin2 θ
+ V (θ),

with V0(θ) = V (θ). The energy and momentum are first integrals in involution (in two degrees of freedom this
condition is always satisfied for first integrals), i. e., {H, pϕ}M = 0, and the Hamiltonian system is Liouville
integrable on any region Ω ⊂M , satisfying: i) Ω is invariant under the flow (1); and ii) the differentials dH and
dpϕ are linearly independent on each point of Ω26,27. These differentials, which are linear forms on the tangent
space at each point of M , can be expressed in terms of the basis {dθ, dpθ, dϕ, dpϕ}. The linear independence of
dH and dpϕ is equivalent to saying that the matrix

∂(H, pϕ)

∂(θ, pθ, ϕ, pϕ)
=

(
V ′(θ)− p2

ϕ cos θ

sin3 θ pθ 0
pϕ

sin2 θ

0 0 0 1

)
(4)

has rank two. This is satisfied everywhere, except at the points fulfilling

pθ = 0, V ′(θ)−
p2ϕ cos θ

sin3 θ
= 0, (5)

where the rank is 1.

A. Invariant tori

The geometrical and dynamical structure of the sets Sh,j = {(θ, pθ, ϕ, pϕ) : H = h, pϕ = j} depends on the
values of j and h. For j 6= 0, the modified potential Vj(θ) diverges as θ → 0+ or θ → π−, i. e., Vj(θ) → ∞
as θ → 0+ or θ → π−. For a regular value h > min]0,π[ Vj(θ), i. e., V

′
j (θ) 6= 0 for each θ such that Vj(θ) = h,

Eqs. (2) and (3) describe a finite set of closed trajectories γk, with k = 1, . . . , r, in the plane (θ, pθ). An example
is presented in Fig. 1 (a) with a prototype potential Vj(θ), with two closed trajectories, r = 2, at h = 0. For
this potential and h > min]0,π[ Vj(θ), there are four turning points, as illustrated in Fig. 1. An example of the
trajectories in the phase space are plotted in Fig. 1 (b). The orbits γk are periodic with period

Tk(h, j) =
√
2

∫ α+

α−

dθ√
h− Vj(θ)

, (6)

where α± = α±(h, j) are the intersection points of the orbit γk with the horizontal line pθ = 0, see Fig. 1 (b).
In the cylinder (ϕ, pϕ), the conservation of the angular momentum pϕ and Eq. (3) lead to a closed orbit

γ̂ = {(ϕ, j) : ϕ ∈ [0, 2π]}, an example is given in Fig. 2. For this orbit, the period T̂k = T̂k(h, j) is implicitly
defined by

j

∫ T̂k

0

dt

sin2 θ(t)
= 2π, (7)
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and its orientation is determined by the sign of j. Thus, the set Sh,j is composed by a finite family of invariant

tori γk× γ̂, k = 1, . . . r. When the periods Tk and T̂k are commensurable, for instance, Tk = 2
√
2 and T̂k = 3

√
2,

then θ(t) and ϕ(t) have a common period and the invariant torus is foliated with closed orbits. If Tk and T̂k are

not commensurable, e.g., Tk = 2
√
2 and T̂k = 3, the orbits lying on the torus are quasiperiodic with frequencies

2π/Tk, and 2π/T̂k.
For j 6= 0 and h being a critical value of Vj , the set Sh,j can present different topological configurations. For

instance, the potential Vj in Fig. 1 has three critical values h1 < h2 < h3, corresponding to three equilibria
e1, e2 and e3, respectively. At the minimum h = h1, Sh,j = {e1} × γ̂ is homeomorphic to S

1, and at the local
minimum h = h2, Sh,j = (γ × {e2}) × γ̂, with γ a closed orbit, it is homeomorphic to the disjoint union of a
torus and a circle, (S1 × S

1)∨ S
1. Whereas, at the local maximum h = h3, Sh,j = E × γ̂, with E an eight figure

composed by {e3} and two homoclinic connections, and Sh,j is homeomorphic to two tori glued by an equator.
For j = 0, i. e., pϕ = 0, the potential V0 has no singularities and the trajectories can pass through θ = 0 and

θ = π, which are the singularities of the parametrization. For this reason, it is convenient to consider the whole
plane (θ, pθ) ∈ R

2 with the identifications (θ, pθ) ≡ (−θ,−pθ), (θ + 2π, pθ) ≡ (θ, pθ). Since θ is the latitude on
the sphere, this is consistent with the geometry of the problem. After reducing the phase space to the strip
[0, π] × R, the orbits touching the vertical lines θ = 0 or θ = π will jump from (θ, pθ) to (θ,−pθ). For a given
regular value h of V , there exists a finite number of closed orbits γ1, . . . γr with energy h. As an example, the
closed curves γ1, γ2 and γ̃ with r = 2 and r = 1, respectively, are presented in Fig. 3. The geometrical structures
of the phase space (θ, pθ, ϕ, pϕ) are the invariant tori γi × {(ϕ, 0) : ϕ ∈ [0, 2π]}.
In conclusion, if h is a regular value of Vj the set Sh,j is composed by a finite family of invariant tori for both

j = 0 and j 6= 0.

B. The energy-momentum map

The energy-momentum map is defined as follows

EM :M → R
2, (x, p) → (H, pϕ),

and associates an energy-momentum couple to each state. The range of EM is

EM(M) =

{
(h, j) ∈ R

2 : h ≥ min
[0,π]

Vj

}
.

As expected, this map does not cover the whole R
2 because not all the couples (h, j) ∈ R

2 are admissible.
A point (h, j) ∈ R

2 is a regular value if the differential of EM is onto for all the states (x, p) ∈ M such
that EM(x, p) = (h, j). Otherwise we say that (h, j) is a singular value. The validity of these definitions is
demonstrated by the use of the coordinates (θ, pθ, ϕ, pϕ), and the differential of EM given by the matrix (4).
This differential is onto wherever this matrix (4) has rank two. As a consequence, (h, j), with j 6= 0, is a
regular value of EM if and only if h is a regular value of Vj , and the same conclusion holds for j = 0. The
local surjectivity theorem28 implies that every regular value must be in the interior of EM(M). Hence, all
points (h, j) lying on the boundary of EM(M) are singular values. Additional singular values can appear in
the interior of EM(M).

FIG. 2. Phase space (ϕ, j) for j > 0 corresponding to different trajectories γ̂.
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FIG. 3. (a) Potential V (θ) = cos θ −
√

2
2

cos2 θ as a function of θ, and (b) the orbits γ1 and γ2 with h1 in the interval
V (0) < h1 < V (π/4), and γ̃ with h2 satisfying h2 > V (π/4) as a function of θ. The orbit γ̃ corresponds to motions
through a meridian of the sphere.

C. Action-angle variables: local theory

Given an invariant torus T0 such that the differential of EM has rank two over all the points of T0, the
theorem of Liouville-Arnold27 allows for a change of variables on a neighborhood of T0

(x, p) → (I1, I2, ϕ1, ϕ2)

with ϕi = ϕi + 2π, and the form is given by

dϕ ∧ dpϕ + dθ ∧ dpθ = dϕ1 ∧ dI1 + dϕ2 ∧ dI2.

Now, the Hamiltonian only depends on the actions H = H(I1, I2), and the equations of motion become

ϕ̇i =
∂H

∂Ii
, İi = 0 (8)

with i = 1, 2. The phase space is foliated by invariant tori I1 = c1, and I2 = c2, which can be also labeled in
terms of (h, j), say T0 = T0(h, j). This is always the case in a neighborhood of T0 = T (h0, j0). The actions
are constructed following Arnol’d and Novikov29. First, two oriented loops Γ1(h, j), and Γ2(h, j) are selected in
T (h, j) to generate the first Homology group of the torus in Fig. 4. These loops must be chosen so that they

FIG. 4. Oriented loops Γ1(h, j) and Γ2(h, j) in the invariant tori T = T (h, j).

depend continuously on (h, j). The actions are computed via the integrals

Ii =
1

2π

∫

Γi

(pθdθ + pϕdϕ) . (9)

Let us consider a domain G+ ⊂ {j > 0}, which is fibered by invariant tori and is small enough, so that the
Liouville-Arnold theorem is applicable. Assume that γ = γ(h, j) is a closed orbit of Eq. (2), which depends



6

analytically on (h, j). Assuming that γ is the projection of T (h, j) on the plane (θ, pθ), the loops are defined as

Γ1(h, j) = γ(h, j)× {(π, j)}, Γ2(h, j) = {(θ∗, p∗θ)} × γ̂,

where (θ∗, p∗θ) is a point in γ and γ̂ = γ̂(j) = {(ϕ, j) : ϕ ∈ [0, 2π]}. Combining this definition with Eq. (9), it
yields





I1 =
1

2π

∫
Γ1

pθdθ =
1

π

∫ α+

α−

√
2(h− Vj(θ))dθ,

I2 =
1

2π

∫
Γ2

pϕdϕ = j,

(10)

where α± = α±(h, j) are the points of γ lying on the horizontal axis pθ = 0 satisfying Vj(α±) = h. The value of
α+ will be 0 (resp. π) when γ does not intersect pθ = 0 by the left (resp. by the right). The action I1 = I1(h, j)
is analytic on G+. The actions can analogously be defined on the symmetric domain G− ⊂ {j < 0}.
It is interesting to discuss the behavior of the points α± as j → 0 and h→ h0. Assume that γ(h, j) converges

to a closed orbit γ(h0, 0) where h0 is a regular value of V0 with min V0 < h0 < maxV0, then

lim
(h,j)→(h0,0)

α±(h, j) = α±(h0, 0)

with 0 ≤ α−(h0, 0) < α+(h0, 0) ≤ π.
For h0 > maxV0, the orbit γ(h, j) converges to the closed curve composed by the arcs γ̃ and two segments of

the lines θ = 0 and θ = π (see Fig. 3). As a consequence

lim
(h,j)→(h0,0)

α−(h, j) = 0, lim
(h,j)→(h0,0)

α+(h, j) = π.

D. Action-angle variables: global aspects

The action-angle variables are quite rigid, and this implies that their global definition requires a deeper
analysis. Given a domain D ⊂ M invariant under the Hamiltonian flow, action-angle variables can be defined
on D if there is a symplectic diffeomorphism

ψ : D ⊂M → D1 ⊂ R
2 × S

1 × S
1, (x, p) → (I1, I2, ϕ1, ϕ2)

with H = H(I1, I2). Given two systems of action-angle ψ : D → D1 and ψ̃ : D̃ → D̃1, there exists a 2 × 2
matrix A, with constant integer entries and detA = 1, and a constant vector c ∈ R

2, such that the actions in
the two systems satisfy

(
I1

I2

)
= A

(
Ĩ1

Ĩ2

)
+ c (11)

on D ∩ D̃. This is valid for any integrable Hamiltonian system such that the frequencies of the invariant tori,
ωi =

∂H
∂Ii

with i = 1, 2, are Z-linearly independent and this holds for almost all tori27. For the systems considered

in this work, this is equivalent to say that the periods of θ(t) and ϕ(t), T (h, j) in Eq. (6) and T̂ (h, j) in Eq. (7),

are not commensurable for most (h, j). This is satisfied because the ratio T (h, j)/T̂ (h, j) is not constant. Indeed,
if (h, j) → (h0, 0), with h0 being a regular value of V0 and min V0 < h0 < maxV0, then T (h, j) tends to a positive

number, whereas T̂ (h, j) diverges to infinity.

III. MONODROMY

In the plane (h, j), we consider a circuit C contained in the region of regular values of EM, which crosses
the line j = 0 at two points h = a and b, and encircles a singular value lying on the line j = 0, see Fig. 5.
Associated to this circuit, there is a family of invariant tori T = T (h, j), (h, j) ∈ C, depending continuously on
(h, j). This circuit admits a system of action-angle variables defined in the domain D if there is a sympletic
diffeomorphism ψ satisfying the conditions given in section IID, and the domain D contains all invariant tori
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FIG. 5. (a) Circuit C around a singular value in the line j = 0 in the plane (h, j) contained in the region of regular
values of EM and (b) example of a family of domains Dk covering the contour C.

T (h, j). Note that it would be more precise to say that the family of invariant tori T admits these coordinates.
The Hamiltonian system possesses monodromy if some circuit in EM does not admit action-angle coordinates1.
To derive a semi-theoretical method to detect monodromy, it will be assumed that the family of invariant tori

T is of the first kind described in Section IIA. This means that for each (h, j) ∈ C the invariant torus γ(h, j)× γ̂
is such that h > minVj is a regular value of the modified potential and h < maxV0 if j = 0. In particular, it
holds

0 < α−(h, j) < α+(h, j) < π, (h, j) ∈ C, j 6= 0. (12)

The remaining cases can be treated similarly. For each (h, j) with j 6= 0, we define the function

χ(h, j) = −
j

π

∫ α+

α−

1√
2(h− Vj(θ))

dθ

sin2 θ
. (13)

The integrand has a singularity at θ = α±, which is of the order of |θ − α±|−1/2, and, therefore, the integral is
finite.
At the point (a, 0), which lies in the intersection of the circuit and the line j = 0, we define

∆(a, 0) = lim
(h,j)→(a,0)

j>0

2χ(h, j). (14)

We will prove that this limit always exists and it takes integer values. Analogously, ∆(b, 0) is defined at the
point (b, 0), which also takes integer values. The criterion for the existence of monodromy along the circuit C is

∆(a, 0) 6= ∆(b, 0). (15)

To justify these statements let us go back to the definition of action variables in Eq. (10). They are well
defined in a small neighborhood of C+ = C ∩{j > 0} or C− = C ∩{j < 0}. The Jacobian matrix of I = (I1, I2)
can be computed in each of these two regions,

DI(h, j) =

(
β χ

0 1

)

with

β = β(h, j) =
1

π

∫ α+

α−

dθ√
2(h− Vj(θ))

. (16)

Note that there are not additional terms involving the derivatives of α±(h, j) because V (α±) = h. Since β > 0,
DI(h, j) has an inverse for j 6= 0, and it is straightforward to show that β(h,−j) = β(h, j), χ(h,−j) = −χ(h, j)
and

DI(h, j)DI(h,−j)−1 =

(
1 2χ(h, j)

0 1

)
. (17)
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Let us now prove that the limit defining ∆(a, 0) in Eq. (14) really exists, and it is an integer number, which
also holds for ∆(b, 0). The Liouville-Arnold theorem can be applied at the invariant torus T (a, 0). The local
action-angle variables are defined on some open set Da ⊂ M with T (a, 0) ⊂ Da. The continuity of the family
of tori allows to find a neighborhood of (a, 0), U ⊂ EM, such that

T (h, j) ⊂ Da if (h, j) ∈ U . (18)

The corresponding actions, denoted by Ĩ1 and Ĩ2, are smooth functions of (h, j) ∈ U . The actions I1 and I2,
given by Eq. (10), are also smooth functions of (h, j) but they are defined in a region of {j > 0}. More precisely,
in a neighborhood D+ of C ∩{j > 0} as shown in Fig. 6. According to Eq. (11), in the common region D+∩U ,

FIG. 6. Domain D+ in a neighbourhood of C ∩ {j > 0}, and neighbourhood of (a, 0), U , in which the actions Ĩ1 and Ĩ2,
are smooth functions of (h, j).

it holds

DI(h, j) = A+DĨ(h, j), (19)

where A+ is a matrix in the unimodular group, i. e., it has integer entries and detA+ = 1. Since Ĩ(h, j) is a
smooth function in a neighborhood of (a, 0), the limit

DI(a, 0+) := lim
(h,j)→(a,0)

j>0

DI(h, j) = A+DĨ(a, 0) (20)

exists. Furthermore, since χ(h, j) is one of the entries of the matrix DI(h, j), the limit ∆(a, 0) in Eq. (14) also
exists.
Working on {j < 0} we obtain another limit DI(a, 0−) with

DI(a, 0−) = A−DĨ(a, 0) (21)

being A− another unimodular matrix. In consequence,

DI(a, 0+)DI(a, 0−)−1 = A+A
−1
− , (22)

and, from Eq. (17),

DI(a, 0+)DI(a, 0−)−1 =

(
1 ∆(a, 0)

0 1

)
. (23)

Since the matrix A+A
−1
− is unimodular, the entry ∆(a, 0) must be an integer. The previous discussion is also

applicable at the point (b, 0), obtaining that ∆(b, 0) is also a well defined integer.
Let us now explain why ∆(a, 0) 6= ∆(b, 0) implies monodromy. In the absence of it, there should exist a global

system of action-angle coordinates. This means that there exists a diffeomorphism ψ, satisfying the conditions
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FIG. 7. Neighborhood of C, V, where the action variables Ii = Ii(h, j), with i = 1, 2 are defined.

of Section II C, defined on a domain D containing the whole family of invariant tori, T (h, j) ⊂ D for each
(h, j) ∈ C. The action variables associated to this system I1 and I2 are smooth functions of (h, j), Ii = Ii(h, j),
and defined on some neighborhood of C, say V ⊂ EM, see Fig. 7. By previous arguments, we know that there
are unimodular matrices, again denoted by A±, and it holds

DI(h, j) = A+DI(h, j) on V ∩D+, (24)

DI(h, j) = A−DI(h, j) on V ∩D−. (25)

Then, it yields

DI(a, 0+)DI(a, 0−)−1 = lim
(h,j)→(a,0)

j>0

A+DI(h, j)DI(h,−j)−1A−1
− . = A+A

−1
− . (26)

Since the same argument applies at the point b, obtaining

DI(b, 0+)DI(b, 0−)−1 = A+A
−1
− , (27)

this implies that ∆(a, 0) = ∆(b, 0). In conclusion, the existence of monodromy can be confirmed by numerically
checking that ∆(a, 0) 6= ∆(b, 0), which means that a global system of action-angle coordinates cannot be
defined1.

IV. NUMERICAL EVALUATION OF MONODROMY

This section is devoted to illustrate the validity of the monodromy test by applying it to several physical
systems, which are known to present the phenomenon of monodromy. The generic potential for these systems
is given by

V (θ) = −ω cos θ − η cos2 θ − λ cos3 θ, (28)

with λ, η, ω ∈ R.
As a first example, we consider the classical spherical pendulum, V (θ) = −ω cos θ, with ω > 0 and λ = η = 0,

equivalent to V (θ) = ω cos θ. This potential also describes the interaction of a polar rigid molecule with a static
electric field parallel to the Z axis of the laboratory fixed frame with ω = dǫ, d being the permanent electric
dipole moment of the molecule and ǫ the electric field strength22. The equation (5) for the singular points, with
the change of coordinate x = cos θ, reads

ω(1− x2)2 − j2x = 0. (29)

This equation has exactly one root lying in the interval [−1, 1] for j 6= 0, and the roots ±1 for j = 0. The
singularities on the energy-momentum region EM are the isolated point (ω, 0) and the boundary, described by
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√
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and III=(1 +
√

2
4
,
√

2
4
) (full points) along a path connecting (a, 0) = ( 1

2
, 0) and (b, 0) = ( 3

2
, 0) around the singular point

(0, ω) (b) projections of the tori on the plane (θ, pθ), and (c) χ(h, j) as a function of j for several values of h.

the curve of equation h = j2

2(1−x(j)2) − ωx(j) where x(j) is the root of Eq. (29) lying in [−1, 1]. The EM map

is presented in Fig. 8 (a) where ω has been fixed to ω = 1 without lost of generality. Let us consider the family
of invariant tori through a path in EM ∩ {j ≥ 0} connecting the points (a, 0) and (b, 0) with −ω < a < ω < b
indicated in Fig. 8 (a). Specifically, we choose three tori along this path and present their projections on the
plane (θ, pθ) in Fig. 8 (b). As we observe, these trajectories smoothly connect the cases at each side of the
singularity (ω, 0), that is to say, open at θ = 0 and open at θ = 0 and π for (a, 0) and (b, 0), respectively.

Fig. 8 (c) shows χ(h, j) as a function of j for several values of h. In Appendix B, the numerical procedure
to compute the integral χ(h, j) is explained. For h > 1, it holds limj→0+ χ(h, j) = −1, whereas for h < 1,
limj→0+ χ(h, j) = −1/2. Thus, the inequality in Eq. (15) is satisfied because

[
∆(b, 0+)−∆(a, 0+)

]
= −1, (30)

with −1 < a < 1 and b > 1, which indicates the existence of monodromy.

The next system is a perturbed classical spherical pendulum V (θ) = −ω cos θ − η cos2 θ, with ω, η < 0, and
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FIG. 9. For the modified spherical pendulum with ω = −1 and η = −2, (a) the energy momentum plane EM and tori
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ω > 2η. Using again as coordinate x = cos θ and assuming θ 6= 0, π, the singular-point equation (5) reads

(ω + 2ηx)(1− x2)2 − j2x = 0. (31)

The computations show that this equation possesses only one solution for j 6= 0 lying in [-1,1], whereas for
j = 0, there are three roots lying in [-1,1] with values ±1,− ω

2η . Thus, the singularities on EM for this potential

are two isolated points and the boundary, with equation h = j2

2(1−x(j)2) − ωx(j) − ηx(j)2, where x(j) ∈ [−1, 1]

is the root of Eq. (31). Specifically, the singular points for j = 0 are −ω − η = |η|+ |ω|, ω − η = |η| − |ω|, and
ω2

4η = − ω2

4|η| , which is included in the boundary. The EM map is presented in Fig. 9 (a). The points |η| ± |ω|
are the candidates to be the monodromy points, which are 1 and 3 for ω = −1 and η = −2. Monodromy is
illustrated along a path connecting three tori lying on the j = 0 axis, see Fig. 9 (a). The projections on (pθ, θ)
plane of the three tori I, II and III are closed, open on one side and open on both sides, respectively, as shown
in Fig. 9 (b). For several values of the total energy h, Fig. 9 (c) illustrates the evolution of χ(h, j) as j decreases.
It holds limj→0+ χ(h, j) = 0 for 0 < h < 1, limj→0+ χ(h, j) = −0.5 for 1 < h < 3, and limj→0+ χ(h, j) = −1 for
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h > 3. As a consequence, for a closed trajectory containing one or two monodromy points, the inequality (15)
is satisfied, and, therefore, monodromy exists.
By considering the parameters ω, η > 0, this potential V (θ) = −ω cos θ − η cos2 θ describes the interaction of

a polar rigid molecule with a static electric field and a non-resonant laser field23,24, both parallel to the Z axis,
with ω = dǫ and η = I∆α/2cǫ0, where ∆α is the polarizability anisotropy, I the laser intensity, c the speed of
light and ǫ0 the dielectric constant. For ω < 2η, the singular-point equation (5), with x = cos θ, is given by

(ω + 2ηx)(1− x2)2 − j2x = 0. (32)

For this potential, the singularities are −η−ω, −η+ω and ω2/4η; whereas Eq. (32) has one, two or three roots
for j 6= 0. Thus, the set of regular values of EM has two connected components, as illustrated in Fig. 10 (a).
For the invariant tori in Fig. 10 (a), we present in Fig. 10 (b) their projections on the (θ, pθ) plane. For ω = 1,
η = 2, and several values of h, the numerical results for χ(h, j) are presented as a function of j in Fig. 10 (c).

The limits limj→0+ χ(h > ω2

4η , j) and limj→0+ χ(h < ω − η, j), taken from the right or left side of the inner
region, respectively, are different confirming the existence of monodromy in this system.
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As a last example, we consider the general potential (28), which represents the interaction of a diatomic polar
molecule in a two-color non-resonant laser field25. The parameters are η = 1

4∆α(ǫ
2
1+ǫ

2
2), λ = 1

8∆βǫ
2
1ǫ2 cos(2δ2−

δ1), and ω = 3
8β⊥ǫ

2
1ǫ2 cos(2δ2 − δ1), with β⊥ and ∆β being the hyperpolarizability perpendicular component

and anisotropy, respectively, ǫ1,2 and δ1,2 are the field strengths and phases of the two components of the laser
field, respectively. The condition Eq. (5) reads

[
2ηx+ 3λx2 + ω

]
(1− x2)2 − j2x = 0, (33)

being x = cos θ. For j = 0, the regularization condition (33) is fulfilled for x = ±1 and x = 1
3λ

(
−η ±

√
η2 − 3λω

)
.

Thus, for 3λω > η2, we encounter the roots x = ±1, with energy values h = ∓λ−η∓ω, respectively. In addition

to these two roots, a third one, x = − η
3λ , appears for 3λω = η2, and two more, x = 1

3λ

(
−η ±

√
η2 − 3λω

)
, for

3λω < η2. Here, we are assuming that the parameters ω, η and λ satisfy the appropriate conditions so that the
roots are in the interval x ∈ [−1, 1].
Due to the complexity of the roots, we only present the results for the parameters λ = −1.1, η = −0.2 and

ω = 1.2. The roots are x = ±1, x ≈ 0.5455 and x ≈ −0.6667, having the Hamiltonian the values h = 0.1, 0.3,
−0.4165 and 0.5630, respectively. To illustrate this system, Fig. 11 shows the interaction potential for j = 0.

0.6

−0.5

−0.3

−0.1

0.1

0.3

0.5

0 π/4 π/2 3π/4 π

V
(θ

)

θ

h

0.1
0.3

0.563
−0.416

FIG. 11. Interaction potential V (θ) = 1.1 cos3 θ + 0.2 cos2 θ − 1.2 cos θ, the horizontal lines represent the energies at the
singular points at j = 0.

For h ≤ −0.4165, the system does not present orbits, since the kinetic energy cannot be larger than 0. A unique
type of orbit is found for −04165 < h < 0.1, in this case the values of θ are restricted to the left well. By
increasing the energy to 0.1 < h < 0.3, there is still one type of orbit, however, the system is able to access
θ = 0. Due to the potential barrier for 0.3 < h < 0.563, there are two regions in the phase space containing
orbits. If the energy of the system is larger than the potential maximum located around 3π/4, i. e., h > 0.563,
the orbits cover the whole space.
The corresponding EM-map is presented in Fig. 12 (a), where an irregular point and an irregular curve are

observed. An example path around these irregular point and curve is also shown in this figure. The projections
on the (θ, pθ) plane of these invariant tori are plotted in Fig. 12 (b), where we observe all kind of trajectories.
As in the previous cases, the limit limj→0+ χ(h, j), presented in Fig. 12 (c), depends on the value of h. We
obtain limj→0+ χ(h, j) = −1,−0.5 and 0, for −0.4165 < h < 0.1, 0.1 < h < 0.3 and h > 0.563, respectively,
which proves the existence of monodromy.

V. CONCLUSIONS

We have considered a particle whose motion is constrained to the unit sphere and governed by an external
potential having azimuthal symmetry. For this system, the topology and the local and global angle-action
variables are explored in detail. The monodromy in a system appears if the angle-action variables are impossible
to define globally. In this work, we have presented a monodromy test to identify and characterize numerically
the monodromy, based on the behavior of the closed orbits in the neighborhood of singular points or regions of
the EM plane. This monodromy test can be performed systematically and does not require a deep mathematical
knowledge of the equations of motion of the system. Furthermore, it can be easily implemented for different
potentials to efficiently characterize the monodromy of a wide variety of systems. The validity of this monodromy
test has been illustrated in the vecinity of the singular points in the (h, j) plane for several systems with
azymuthal symmetry.



14

−2

−1

0

1

2

−0.5 0 0.5 1 1.5

(a)

(b)

(c)

(a,0)
I

II

III
IV

(b,0)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 π/4 π/2 3π/4 π

(a)

(b)

(c)

(a,0)
I

II

III
IV

(b,0)

(a,0)
I

II

III

IV

(b,0)

-1

-0.5

0

10−4 10−3 10−2 10−1

(a)

(b)

(c)

(a,0)
I

II

III
IV

(b,0)

(a,0)
I

II

III

IV

(b,0)

j

h

p
θ

θ

χ

j

h
-0.3
-0.2

0

0.25
1

1.2

FIG. 12. For the modified spherical pendulum with ω = 1.2, η = −0.2 and λ = −1.1, (a) the energy momentum plane
EM and tori I=(0.1, 5), II=(0.2, 0), III=(0.5, 0.5) and IV=(0.75, 1) (full points) along a path connecting (a, 0) = (0, 0)
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An interesting extension of this study covers the case of integrable systems with more degrees of freedom.
It could also be of interest to extend these ideas to non-fully integrable systems. Of particular interests is the
case of an rigid rotor interacting with an external field, such as the gravitational field. This kind of system is
also interesting in molecular physics to model, for example, polyatomic molecules in combined parallel electric
and nonresonant laser fields coupled to the polarizability24,30,31 or THz laser fields coupled to the molecular
hyperpolarizability32.
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Appendix A: The symplectic structure

The space R
3 × R

3 is endowed with the 2-form

ω =

3∑

i=1

dxi ∧ dyi.

The tangent bundle of the unit sphere

M = TS2 = {(x, p) ∈ R
3 × R

3 :‖ x ‖= 1, 〈x, p〉 = 0}

is a symplectic submanifold. This is automatic since the Poisson bracket of the constraints never vanishes27.
Notice that if F1(x, y) =‖ x ‖2 −1, F2(x, y) = 〈x, y〉, then

{F1, F2} =

3∑

i=1

{
∂F1

∂xi

∂F2

∂yi
− ∂F1

∂yi

∂F2

∂xi

}
= 2.

In M we introduce the Lagrangian coordinates




x1 = sin θ cosϕ, x2 = sin θ sinϕ, x3 = cos θ

y1 = −ϕ̇ sin θ sinϕ+ θ̇ cos θ cosϕ

y2 = ϕ̇ sin θ cosϕ+ θ̇ cos θ sinϕ

y3 = −θ̇ sin θ

with θ ∈]0, π[ and ϕ ≡ ϕ+ 2π.
The tangent planes at the north and south poles (θ = 0 and θ = π) are not covered by this chart. This

will make some of our computations incomplete. The reader can easily fulfill the remaining details by using
alternatives charts including these planes. After some computations it can be seen that the form induced by ω
on M is expressed as

ωM = dϕ ∧ dpϕ + dθ ∧ dpθ

with pθ = θ̇ and pϕ = ϕ̇ sin2 θ. We will employ the symplectic coordinates

q =

(
θ

ϕ

)
, p =

(
pθ

pϕ

)
.

Appendix B: The numerical procedure

The monodromy test requires the computation of the limits limj→0± χ(h, j) in Eq. (13) involving the integral
in Eq. (14), which must be done numerically since, in general, it is not solvable analytically. This integral (13) is
improper because it is finite although the integrand diverges in the upper and lower limits, i. e.,

√
h− Vj(α±) =

0. This fact constitutes an obstacle for the numerical integration, which is bypassed following the procedure
described in Ref. 33. First, the upper and lower limits, α±, are obtained by solving the equation

√
h− Vj(α±) =

0. The integral (13) is solved using the change of variables x = cos θ. The singularities in the upper and lower
limits are treated as follows: i) if the integrand f(x) diverges as (x − b)−γ , with 0 ≤ γ < 1 and b being the

upper limit, the singularities are removed by changing the variable x = b− t
1

1−γ leading to

∫ b

a

f(x)dx =
1

1− γ

∫ b−a1−γ

0

t
γ

1−γ f
(
b− t

1
1−γ

)
; (B1)

ii) if f(x) diverges as (x− a)−γ , with 0 ≤ γ < 1 and a being the lower limit, the change of variable x = a+ t
1

1−γ

results on
∫ b

a

f(x)dx =
1

1− γ

∫ b−a1−γ

0

t
γ

1−γ f
(
a+ t

1
1−γ

)
; (B2)

and iii) if f(x) possesses singularities in both limits, as it occurs in the examples analyzed here, the integral is
split and computed in the intervals a ≤ x ≤ c and c ≤ x ≤ b, where c ∈ (a, b) and f(c) is well defined. Finally,
the integrals (B1), and (B2) are evaluated33.
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