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DETERMINANTS IN JORDAN MATRIX ALGEBRAS

JAN HAMHALTER, ONDŘEJ F.K. KALENDA, AND ANTONIO M. PERALTA

Abstract. We introduce a natural notion of determinant in matrix JB∗-
algebras, i.e., for hermitian matrices of biquaternions and for hermitian 3× 3
matrices of complex octonions. We establish several properties of these deter-
minants which are useful to understand the structure of the Cartan factor of
type 6. As a tool we provide an explicit description of minimal projections in
the Cartan factor of type 6 and a variety of its automorphisms.

1. Introduction

Exceptional Cartan factors are still enigmatic mathematical models for which
several aspects of their sets of tripotents remain open. The so-called Cartan factor
of type 6 is an example of JB∗-algebra, formed by hermitian 3 × 3 matrices with
entries in the algebra of complex octonions, which cannot be represented as a Jordan
∗-subalgebra of any C∗-algebra. Despite the exceptional algebraic and analytic
studies by Loos [22], more concrete descriptions of the tripotents and the natural
relations among them are aspects which still admit certain margin of improvement.

A Jordan algebra is a (real or complex) possibly non-associative algebra B whose
product (denoted usually by ◦) satisfies two axioms:

(i) ∀x, y ∈ B : x ◦ y = y ◦ x (commutativity);
(ii) ∀x, y ∈ B : x2 ◦ (y ◦ x) = (x2 ◦ y) ◦ x (the Jordan axiom).

A canonical example is provided by any associative algebra A equipped with the
special Jordan product

(1) x ◦ y =
1

2
(xy + yx), x, y ∈ A.

More generally, any linear subspace of an associative algebra which is closed under
the just defined Jordan product is a Jordan algebra. Such Jordan algebras are called
special. Jordan algebras which are not special, i.e., which cannot be embedded as
a Jordan subalgebra of an associative algebra, are called exceptional.

If a Jordan algebra B is equipped by a complete norm satisfying

∀x, y ∈ B : ‖x ◦ y‖ ≤ ‖x‖ · ‖y‖ ,

it is called a Jordan Banach algebra.
There are two closely related classes of Jordan Banach algebras – a class of real

ones called JB-algebras and a class of complex ones called JB∗-algebras.
A JB-algebra is a real Jordan Banach algebra B which additionally satisfies

∀x, y ∈ B : ‖x‖2 ≤
∥∥x2 + y2

∥∥ ;
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while a JB*-algebra is a complex Jordan Banach algebra B equipped with an invo-
lution ∗ satisfying

∀x ∈ B : ‖x‖
3
=
∥∥2(x∗ ◦ x) ◦ x− x2 ◦ x∗

∥∥ .
These two classes are interrelated – the self-adjoint part of a JB∗-algebra is a JB-
algebra and, conversely, any JB-algebra is the self-adjoint part of some JB∗-algebra
(cf. [24]).

Any C∗-algebra becomes a JB∗-algebra if we equip it by the special Jordan
product (1). More generally, any closed subspace of a C∗-algebra which is stable
under involution and the special Jordan product is a JB∗-algebra. Such algebras
are called JC∗-algebras.

An important subclass of JB-algebras are Jordan matrix algebras studied for
example in [13, Section 2.7] from the algebraic point of view, it follows from [13,
Proposition 2.9.2 and Corollary 3.1.7] that they are JB-algebras under the natural
norm. We will focus on matrix JB∗-algebras, which are the complex versions of the
mentioned algebras.

More specifically, we will deal with JB∗-algebras Hn(HC), of all n×n hermitian
matrices of biquaternions, and H3(O), of all 3× 3 hermitian matrices of (complex)
octonions. Note that H3(O) is known as the Cartan factor of type 6 (denoted by
C6). It is an exceptional JB∗-algebra and, moreover, a prototype of such algebras.
More precisely, H3(O) is a quotient of an ideal in any exceptional JB∗-algebra (cf.
[13, Lemma 7.2.2 and Theorem 7.2.3] for a real version of this result).

We introduce and investigate determinants of elements of the mentioned matrix
JB∗-algebras. These determinants have surprisingly many common properties with
the classical determinants of complex matrices even though the standard formulae
for determinants cannot be directly used. Original motivation for this research
comes from a deeper investigation of unitary elements in the Cartan factor of type
6, but we find the theory of determinants also interesting in itself.

Let us briefly describe the contents of the paper:
In Section 2 we provide some background information on JB∗-algebras and JB∗-

triples. In Section 3 we recall the Cayley-Dickson doubling process, the construction
of quaternions, biquaternions, (real and complex) octonions and of the Cartan factor
of type 6. We also collect basic properties and representations of these structures.

In Section 4 we introduce determinants of unitary elements of C6 (using their
spectral decomposition) and formulate the main structure results on unitaries. Our
main motivation was originally the statement of Theorem 4.2, which will be applied
in a forthcoming paper to investigate certain relations on tripotents. We also point
out Theorem 4.5 which enables us to reduce many problems from matrices whose
entries are octonions to matrices of biquaternions. These theorems are proved in
the later sections.

In Section 5 we introduce the determinant of hermitian matrices of biquaternions
of arbitrary order. It is done by an inductive formula. We also establish several
properties of these determinants.

Section 6 cointains some auxilliary results on automorphisms of the algebra of
octonions. These results are applied in Section 7 to get results on automorphism
of the Cartan factor of type 6.

In Section 8 we provide an explicit description of minimal projections in C6.
In Section 9 we prove the theorems formulated in Section 4 using the results of

the four preceding sections.
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Finally, in Section 10 we extend the definition of the determinant to general
elements of C6 and establish its basic properties.

2. Background

In this section we provide some background information on JB∗-algebras and
JB∗-triples which will be used throughout the paper.

A JB∗-triple is a complex Banach space E equipped with a (continuous) triple
product {., ., .} : E3 → E, which is symmetric and bilinear in the outer variables
and conjugate-linear in the middle one, and satisfies the following algebraic–analytic
axioms (where given a, b ∈ E, L(a, b) stands for the (linear) operator on E given
by L(a, b)(x) = {a, b, x}, for all x ∈ E):

(JB∗-1) L(x, y)L(a, b) = L(L(x, y)(a), b) −L(a, L(y, x)(b)) +L(a, b)L(x, y), for all
a, b, x, y ∈ E; (Jordan identity)

(JB∗-2) The operator L(a, a) is a hermitian operator with nonnegative spectrum
for each a ∈ E;

(JB∗-3) ‖{a, a, a}‖ = ‖a‖3 for a ∈ E.

Given a ∈ E, the mapping x 7→ {a, x, a} will be denoted by Q(a).
Any C∗-algebra A becomes a JB∗-triple when equipped with the triple product

(2) {x, y, z} =
1

2
(xy∗z + zy∗x) (x, y, z ∈ A).

More generally, any closed subspace of a C∗-algebra which is stable under this triple
product is a JB∗-triple (cf. [14]). These particular types of JB∗-triples are called
JC∗-triples.

Further, every JB∗-algebra B is a JB∗-triple under the triple product defined by

(3) {x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗

for all x, y, z ∈ B (see [3, Theorem 3.3] or [7, Lemma 3.1.6], [5, Theorem 4.1.45]).
For each element a in a Jordan algebra B the symbol Ua will stand for the

linear mapping on B defined by Ua(x) = 2(a ◦ x) ◦ a− a2 ◦ x. The connection with
the triple product given in (3) affirms that Ua(x

∗) = {a, x, a} = Q(a)(x) for all
a, x ∈ B. Further, if a C∗-algebra A is regarded as a JB∗-algebra with respect to
its natural Jordan product, we have Ua(x) = axa, for all a, x ∈ A.

A Jordan ∗-homomorphism between JB∗-algebras is a linear mapping preserving
Jordan products and involution. A triple homomorphism between JB∗-triples E
and F is a linear mapping Φ : E → F preserving triple products. A property
increasing the attractiveness of JB∗-triples is a thoerem by Kaup showing that a
linear bijection between two JB∗-triples is a triple isomorphism if and only if it is
an isometry (see [19, Proposition 5.5]). Let Φ : B1 → B2 be a triple homomorphism
between two unital JB∗-algebras. It is known that

(4) if Φ is unital (i.e. Φ(1) = 1), then Φ is a Jordan ∗-homomorphism.

This can be easily deduced from the fact that {a,1, b} = a ◦ b and a∗ = {1, a,1},
for all a, b ∈ Bj (cf. the expression in (3)).

A JBW∗-triple is a JB∗-triple which is also a dual Banach space. A generalization
of Sakai’s theorem, proved by T. Barton and R. Timoney in [1], asserts that each
JBW∗-triple admits a unique (isometric) predual and its triple product is separately
weak∗ continuous.
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Similarly, a JBW∗-algebra is a JB∗-algebra which is also a dual Banach space.
Again, each JBW∗-algebra admits a unique (isometric) predual, the involution is
weak∗-to-weak∗ continuous and the Jordan product is separately weak∗-to-weak∗

continuous.
In the present paper we will work only with finite-dimensional JB∗-algebras.

They are obviously dual spaces, hence the theory of JBW∗-algebras (and JBW∗-
triples) may be applied.

JBW∗-triples may be represented in a rather explicit form, see [16, 17]. An
important role in this representation is played by the so-called Cartan factors,
which are rather concrete and illustrative examples of JBW∗-triples. There are six
types of Cartan factors (see, e.g., [6, Section 7.1.1]). In this note we will work only
with Cartan factors of types 4 and 6.

A Cartan factor of type 4 (also known as a spin factor) is a JB∗-triple given
by a complex Hilbert space (with inner product 〈·, ·〉) equipped with a conjugation
x 7→ x, triple product

{x, y, z} = 〈x, y〉z + 〈z, y〉x− 〈x, z〉y,

and norm given by ‖x‖2 = 〈x, x〉+
√
〈x, x〉2 − |〈x, x〉|2.

The Cartan factor of type 6 is the 27-dimensional JB∗ algebraH3(O) of hermitian
3 × 3 matrices with entries in the eight-dimensional complex algebra O known as
the Cayley numbers or octonions (note that O is the eight-dimensional spin factor
with an additional structure, see subsections 3.3 and 3.4 for detailed presentations).

A projection in a JB∗-algebra is a self-adjoint idempotent, i.e., an element p
satisfying p∗ = p and p ◦ p = p. There is a natural partial order on projections
(p ≤ q if p ◦ q = p). In a JBW∗-algebra projections form a complete lattice.

The notion of projection makes no sense in the setting of JB∗-triples. An ap-
propriate alternative can be found in the concept of tripotent. An element e in a
JB∗-triple E is said to be a tripotent if e = {e, e, e}. Every projection in a C∗-
algebra A is a tripotent when the latter is regarded as a JB∗-triple. However the
set of tripotents in A is, in general, bigger as it coincides with the collection of all
partial isometries in A.

Different properties of tripotents can be defined in terms of the Peirce decom-
posion that each of them defines. Concretely, if we fix a tripotent e in a JB∗-triple
E, the whole space decomposes in the form

E = E2(e)⊕ E1(e)⊕ E0(e),

where, for i ∈ {0, 1, 2}, Ei(e) is the eigenspace of the operator L(e, e) corresponding
to the eigenvalue i

2 . This decomposition is known as the Peirce decomposition of E
relative to e (cf. [10], [7, Definition 1.2.37] or [5, 6, §4.2.2, §5.7]).

If A is a C∗-algebra, regarded as a JB∗-triple, and e ∈ E a tripotent (i.e., a
partial isometry) the Peirce decomposition is given by

A2(e) = ee∗Ae∗e, A1(e) = (1 − ee∗)Ae∗e⊕ ee∗A(1 − e∗e),

and A0(e) = (1 − ee∗)A(1 − e∗e).
The Peirce-2 subspace, E2(e), associated with a tripotent e in a JB∗-triple E is

a unital JB∗-algebra with unit e, Jordan product a ◦e b := {a, e, b} and involution
a∗e := {e, a, e} (cf. [7, §1.2 and Remark 3.2.2] or [5, Corollary 4.2.30]). This should
be compared with the fact that every JB∗-algebra is a JB∗-triple with respect to



DETERMINANTS IN JORDAN MATRIX ALGEBRAS 5

the product (4). By Kaup’s theorem (see [19, Proposition 5.5]) the triple product
on E2(e) is uniquely determined by the expression

(5) {a, b, c} = (a ◦e b
∗e) ◦e c+ (c ◦e b

∗e) ◦e a− (a ◦e c) ◦ b
∗e ,

for every a, b, c ∈ E2(e). Therefore, unital JB∗-algebras are in one-to-one corre-
spondence with JB∗-triples admitting a unitary element.

A tripotent e in E is called complete (respectively minimal) if E0(e) = {0}
(respectively, E2(e) = Ce 6= {0}). If E = E2(e), or equivalently, if {e, e, x} = x
for all x ∈ E, we say that e is unitary. We recall that two tripotents e, v in E
are orthogonal (denoted by e ⊥ v) if {e, e, v} = 0 (⇔ {v, v, e} = 0 ⇔ e ∈ E0(v)
⇔ v ∈ E0(e)). We shall say that e is a finite-rank tripotent if e can be written
as a finite sum of mutually orthogonal minimal tripotents in E. The relation of
orthogonality can be employed to define a partial order on the set of tripotents
given by e ≤ u if u− e is a tripotent orthogonal to e. There are several equivalent
reformulations of this partilal order (cf., for example, those gathered in [12, §6.3]),
one of then says that e ≤ u if and only if e is a projection in the JB∗-algebra E2(u).

There is a wider notion of orthogonality for general elements in a JB∗-triple E.
Namely, elements a, b in E are said to be orthogonal (written a ⊥ b) if L(a, b) = 0
(see [4, Lemma 1] for additional details). Clearly this notion of orthogonality
coincides with the usual one when it is restricted to the set of tripotents. A subset
S ⊆ E is called orthogonal if 0 /∈ S and x ⊥ y for every x 6= y in S. The rank of
E (denoted by rank(E)) is the minimal cardinal r satisfying that ♯S ≤ r for every
orthogonal subset of E. The rank of a tripotent e in E is defined as the rank of
the JB∗-triple E2(e), and it is finite precisely when e is a finite-rank tripotent. It
is shown in [2] that a JB∗-triple has finite rank if and only if it is reflexive and that
occurs if and only if it is a finite direct sum of finite rank Cartan factors.

Every family {ei}i∈Λ of mutually orthogonal tripotents in a JBW∗-triple W is
summable with respect to the weak∗-topology. Actually, the weak∗-limit of the sum
e = w∗ −

∑
i∈Λ ei ∈ W is another tripotent in W satisfying e ≥ ei for all i ∈ Λ (cf.

[15, Corollary 3.13]).
We state next the well known fact that the U -operator associated with a unitary

element in a unital JB∗-algebra is a surjective linear isometry and hence a triple
isomorphism.

Lemma 2.1. ([3, Proposition 4.3] or [5, Theorem 4.2.28(vii)]) Let B be a unital
JB∗-algebra and let u ∈ B be a unitary element. Then the mapping T : B → B
defined by

T (x) = {u, x∗, u} = Uu(x), x ∈ B

is a triple automorphism of B.

Proof. Note that

T (x) = (x∗)∗u ,

hence T is a linear isometric bijection of B. It follows from Kaup’s theorem [19,
Proposition 5.5] that it is a triple automorphism. �

The following proposition also gathers some properties which are part of the
folklore in JB∗-algebra theory.

Proposition 2.2. Let B be a finite-dimensional JB∗-algebra. Then the following
assertions are valid.
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(a) B is unital.
(b) Any unitary element u ∈ A may be expressed as

u = α1p1 + · · ·+ αnpn,

where p1, . . . , pn are mutually orthogonal projections in B with sum equal to 1
and α1, . . . , αn are distinct complex units.

Moreover, this representation is unique up to reordering.
(c) Any self-adjoint element x ∈ A may be expressed as

x = α1p1 + · · ·+ αnpn,

where p1, . . . , pn are mutually orthogonal projections in B with sum equal to 1
and α1, . . . , αn are distinct real numbers.

Moreover, this representation is unique up to reordering.

Proof. Assertion (a) follows e.g. from Lemma 4.1.7 in [13].
(b) Let N be the Jordan ∗-subalgebra of B generated by u. Then N contains

u∗ and 1 and is associative. So, it is a finite-dimensional commutative C∗-algebra.
Hence, it is ∗-isomorphic to Cn for some n ∈ N. In particular, u, being unitary, is
of the form (α1, . . . , αn), where the coordinates are complex units. This proves the
existence of a representation of the required form.

Further, assume that u is represented in this form. Let M be the Jordan
∗-subalgebra of B generated by the projections p1, . . . , pn. Then M is a finite-
dimensional commutative C∗-algebra containing N . Moreover, the spectrum of x
in M is σM (x) = {α1, . . . , αn}. It is finite, hence σN (x) = σM (x). We conclude by
the uniqueness of the spectral decomposition.

(c) The proof is completely analogous to the proof of (b), except that α1, . . . , αn

are real numbers. �

Lemma 2.3. Let B be a finite-dimensional JB∗-algebra and let u ∈ B be a unitary
element. Then there is a unitary element v ∈ B such that v2 = u.

Proof. It is enough to consider the representation from Proposition 2.2(b) and take
some square roots of the coefficients α1, . . . , αn. �

3. Construction and basic properties of the Cartan factor of type 6

In this section we recall the definition of the Cartan factor of type 6 and its basic
properties. Usually it is represented as the JB∗-algebra of hermitian 3× 3 matrices
of complex octonions. In order to present its structure we first need to recall the
Cayley-Dickson doubling process (see, e.g., [6, §6.1.30] for an abstract approach).
We will restrict ourselves to a special case and we will use the notation from [11].

3.1. Cayley-Dicskon doubling process starting from C or R. By induction
we define (in general non-associative) complex algebras An for n ≥ 0 equipped with
a product ⊡n, conjugation · and two involutions – a linear one denoted by ⋄n and
a conjugate-linear one denoted by ∗n .

A0 is the complex field, i.e., A0 = C, ⊡0 is the standard multiplication of complex
numbers, ⋄0 is the identity and ∗0 is the complex conjugation.
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Given the structure defined on An we define the corresponding product, conju-
gation and involutions on An+1 = An ×An as follows:

(x1, x2) = (x1, x2),

(x1, x2)
⋄n+1 = (x⋄n

1 ,−x2),

(x1, x2)
∗n+1 = (x∗n

1 ,−x2, )

(x1, x2)⊡n+1 (y1, y2) = (x1 ⊡n y1 − y2 ⊡n x⋄n

2 , x⋄n

1 ⊡n y2 + y1 ⊡n x2)

for (x1, x2), (y1, y2) ∈ An ×An = An+1.
It is well known that An is a (possibly) non-associative complex algebra (i.e.,

the mapping (x, y) 7→ x ⊡n y is bilinear) of dimension 2n, ∗n is a conjugate linear
involution and ⋄n is a linear involution. Moreover, An is a subalgebra of An+1 (if
a ∈ An is identified with (a, 0) ∈ An+1. These basic properties together with some
more are summarized in [11, Lemma 6.5].

We observe that the two involutions are related with the conjugation in such a
way that for any x ∈ An we have

x∗n = x⋄n = x⋄n , x⋄n = x∗n = x∗n , x = (x⋄n)∗n = (x∗n)⋄n .

There is also a real variant of this process which produces (in general non-
associative) real algebras (An)R for n ≥ 0 equipped with a product ⊡n and a linear
involution ⋄n . There are two equivalent ways to get them – either we set (A0)R = R,
the product ⊡0 is then the multiplication of real numbers and ⋄0 is the identity and
we define inductively (An+1)R = (An)R × (An)R with the operations ⊡n+1 and
⋄n+1 defined by the above formula; or we take (An)R to be R2n consider as the
canonical real-linear subspace of An with inherited operations, i.e.,

(An)R = {x ∈ An; x = x}.

In this way (An)R is a real subalgebra of An. To simplify the notation, in the
sequel we will omit the index n at the two involutions on An.

There are two natural norms on An. The first one is the Hilbertian norm coming
from the standard inner product (note that An may be canonically identified with
C

2n). The inner product will be denoted by 〈·, ·〉 and the resulting norm by ‖·‖2.
The second one is the norm of the spin factor defined by the formula

‖x‖
2
= ‖x‖

2
2 +

√
‖x‖

4
2 − |〈x, x〉|

2
.

Note that on (An)R the two norms coincide.
If An is equipped with the above-defined norm ‖·‖ and the triple product

{x, y, z} = 〈x, y〉 z + 〈z, y〉x− 〈x, z〉 y,

it becomes a JB∗-triple (called a spin factor, cf. Section 2). Moreover, the algebra
An has a unit 1 ∈ A0 ⊂ An. It is a unitary element of the above-defined JB∗-triple,
so it produces a structure of a unital JB∗-algebra on An. The interplay of these
structures is summarized in the following lemma which follows from [11, Lemma
6.6].

Lemma 3.1. Let n be a non-negative integer.

(a) 〈x, y〉 = 〈x⋄, y⋄〉 = 1
2 (x⊡n y∗ + y ⊡n x⋄) for x, y ∈ An.

(b) x∗ = {1, x, 1} for x ∈ An, hence the involution ∗ coincides with the involution
on An from its structure of JB∗-algebra.

(c) x ◦ y = {x, 1, y} = 1
2 (x⊡n y + y ⊡n x) for x, y ∈ An.
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(d) 〈x, y〉 = 〈x⋄, y⋄〉 = 1
2 (x ◦ y∗ + y ◦ x) for x, y ∈ An.

3.2. The first two steps – towards quaternions and biquaternions. Al-
though algebras An may be defined for any n ≥ 0, the most important ones are
those for n = 0, 1, 2, 3. We start by recalling their basic properties for n ≤ 2.

(1) By the very definition A0 is the commutative field of complex numbers and
(A0)R is the commutative field of real numbers.

(2) (A1)R is canonically isomorphic the the complex field – the isomorphism is
(x1, x2) 7→ x1 + ix2. The involution ⋄ then corresponds to the complex conju-
gation.

So, both A0 and (A1)R are isomorphic to the complex field, but A0 as
a complex algebra with the conjugate-linear involution given by the complex
conjugation and (A1)R as a real algebra with the linear involution given by the
complex conjugation.

(3) (cf. [11, Lemma 6.7(iv)])A1 is a commutative C∗-algebra ∗-isomorphic to C⊕C.
The witnessing isomorphism is (x1, x2) 7→ (x1 + ix2, x1 − ix2) : A1 → C ⊕ C.
In this representation the conjugation and involutions on A1 are then defined
by

(x1, x2) = (x2, x1)

(x1, x2)
⋄ = (x2, x1),

(x1, x2)
∗ = (x1, x2)

for (x1, x2) ∈ C⊕∞ C.
Moreover, we have the following identifications:

A0 = {(x, x); x ∈ C},

(A0)R = {(x, x); x ∈ R},

(A1)R = {(x, x); x ∈ C}.

(4) (A2)R is canonically isomorphic to the non-commutative fields of quaternions.
It is usually denoted by H.

(5) (cf. [11, Lemma 6.7(i), (ii)]) A2 is canonically isomorphic to the algebra of
biquaternions – quaternions with complex coefficients. We will denote it by
HC . It is a non-commutative C∗-algebra which is ∗-isomorphic to M2, the
algebra of 2× 2 complex matrices. A witnessing isomorphism is given by

(x1, x2, x3, x4) 7→

(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
.

In this identification the conjugation and the two involutions on HC are de-
scribed by (

a b
c d

)
=

(
d −c

−b a

)
,

(
a b
c d

)⋄

=

(
d −b
−c a

)
,

(
a b
c d

)∗

=

(
a c

b d

)
.

Moreover, in this identification we have:
(i) A1 corresponds to the subalgebra of M2 formed by diagonal matrices.
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(ii) (A1)R corresponds to the matrices of the form

(
a 0
0 a

)
, a ∈ C.

(iii) A0 corresponds to complex multiples of the unit matrix and (A0)R to real
multiples.

(iv) (A2)R corresponds to the matrices of the form

(
a b

−b a

)
, a, b ∈ C.

Remark 3.2. (a) It follows from the above identifications that the products ⊡n

are associative for n ≤ 2 and commutative for n ≤ 1. In the sequel we will
denote these associative products by · or simply omit them as it is usual.

(b) Note that in the above representations of A1 and A2 the conjugation does
not coincide with the coordinatewise conjugation on C⊕∞ C or the entrywise
conjugation on M2. The reason is that the conjugation depends on the choice
of a basis.

In particular, the conjugation on C⊕∞C coming from A1 is the coordinate-
wise conjugation with respect to the basis (1, 1), (i,−i) and the conjugation on
M2 coming from A2 is the coordinatewise conjugation with respect to the basis

(
1 0
0 1

)
,

(
i 0
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

)
.

3.3. Real and complex octonions. While the algebras An for n ≤ 2 are asso-
ciative, for n = 3 the situation is different. The algebra (A3)R is known under the
name Cayley numbers or (real) octonions and we will denote it by OR. Further,
the algebra A3 is known as complex Cayley numbers or (complex) octonions and
we will denote it by O or OC . Further, the product ⊡3 will be denoted simply by
⊡ in the sequel.

Let us now recall some properties of the algebra O.

Proposition 3.3.

(i) The product ⊡ on O is neither commutative nor associative, but it is alterna-
tive, i.e.,

x⊡ (x⊡ y) = (x⊡ x)⊡ y and y ⊡ (x⊡ x) = (y ⊡ x)⊡ x for x, y ∈ O.

(ii) 〈x⊡ z∗, y〉 = 〈x, y ⊡ z〉 and 〈z∗ ⊡ x, y〉 = 〈x, z ⊡ y〉 for x, y, z ∈ O.
(iii) {x, y, z} = 1

2 (x⊡ (y∗ ⊡ z) + z ⊡ (y∗ ⊡ x)) = 1
2 ((x⊡ y∗)⊡ z + (z ⊡ y∗)⊡ x) for

x, y, z ∈ O.

Proof. Assertion (i) is well known, see e.g., [11, Lemma 6.5(xii)]. Assertions (ii)
and (iii) are proved for example in [11, Lemma 6.6(d), (e)]. �

We continue by some properties of real octonions.

Proposition 3.4. (i) x⊡ x⋄ = x⋄
⊡ x = ‖x‖

2
for x ∈ OR.

(ii) x⊡ (x⋄
⊡ y) = (y ⊡ x⋄)⊡ x = ‖x‖

2
y for x, y ∈ OR.

(iii) If x, y, z ∈ OR and x 6= 0, then

y ⊡ x = z ⊡ x =⇒ y = z,

x⊡ y = x⊡ z =⇒ y = z.

(iv) OR is a division algebra, i.e., whenever x, y ∈ OR and y 6= 0, then there are
unique elements u, v ∈ OR such that x = u⊡ y = y ⊡ v.
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Proof. (i) For x ∈ OR we have x = x and x∗ = x⋄, hence the assertion follows from
Lemma 3.1(a). (Note that this is not specific for OR, the analogue holds on (An)R
for each n ≥ 0.)

(ii) If x = 0, the equalities are obvious. Assume x 6= 0. Then x
‖x‖ is a unitary

element of O (see e.g. [11, Lemma 6.1(a)]). Using Proposition 3.3(iii) we get

x⊡ (x⋄
⊡ y) = 2 {x, x, y} − (x⊡ x⋄)⊡ y = 2 ‖x‖

2
y − ‖x‖

2
⊡ y = ‖x‖

2
y,

where we also used assertion (i). The remaining equality is completely analogous.
(iii) This follows easily from (ii) – it is enough to multiply the equality by x⋄

from the right in the first case and from the left in the second case.
(iv) The uniqueness follows immediately from (iii). Further, by (ii) we may take

u = 1
‖y‖2x⊡ y⋄ and v = 1

‖y‖2
y⋄ ⊡ x. �

3.4. Matrices of octonions and the Cartan factor of type 6. We may con-
sider matrices with entries in O. The two involutions ∗ and ⋄ for such matrices and
the product of two matrices of compatible types (denoted again by ⊡) are defined
in the standard way: If A = (aij) is a matrix of type m × n, then A∗ and A⋄ are
matrices of type n ×m; on the place ij the first one has the element a∗ji and the

second one the element a⋄ji. Moreover, if A = (aij) is a matrix of type m× n and
B = (bjk) is a matrix of type n× p, then A⊡B is the matrix of type m× p which
has the element

∑n

j=1 aij ⊡ bjk on place ik.
The Cartan factor of type 6 is the JB∗-algebra of ⋄-hermitian 3 × 3 matrices of

octonions, i.e.,

C6 = H3(O) = {x ∈ M3(O); x⋄ = x},

equipped with the Jordan product

x ◦ y =
1

2
(x⊡ y + y ⊡ x),

the involution ∗ and a uniquely determined norm (cf. [24] or [6, §6.1.38]). Moreover,
as any JB∗-algebra, C6 becomes a JB∗ triple under the triple product given in
(3). Note that for x ∈ C6 we have x∗ = x, where the conjugation is considered
entrywise. A general element of C6 has the form

x =




α a b
a⋄ β c
b⋄ c⋄ γ


 ,

where α, β, γ ∈ C and a, b, c ∈ O. Since it is determined by three complex numbers
and three octonions, clearly dimC6 = 27. Further, a general element x is self-
adjoint, i.e., x∗ = x, if and only if α, β, γ ∈ R and a, b, c ∈ OR. Self-adjoint
elements form the exceptional JB-algebra H3(OR).

The JB∗-algebra C6 is unital, its unit is the unit matrix, we will denote it by 1.
Note that we even have

1⊡ x = x⊡ 1 for each x ∈ M3(O).

Further, C6 is of rank three (cf. [20, Table 1])– the unit 1 is the sum of three
mutually orthogonal minimal projections

1 =



1 0 0
0 0 0
0 0 0


+



0 0 0
0 1 0
0 0 0


+



0 0 0
0 0 0
0 0 1



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and, more generally, any unitary element is the sum of three mutually orthogonal
minimal tripotents.

A frame in a Cartan factor C is an orthogonal family {ei}i∈Λ of minimal tripo-
tents in C for which the tripotent e = w∗-

∑
i∈Λ ei is complete and satisfies that

dim(C1(e)) ≤ dim(C1(ẽ)) for any other complete tipotent ẽ ∈ C.
The situation in C6 is easier. Since C6 is a finite-dimensional JB∗-algebra, any

complete tripotent is unitary by [11, Propositions 3.3 and 3.4]. Moreover, any two
unitary elements of C6 may be exchanged by a triple automorphism (this follows
easily from Lemma 2.3 and Lemma 2.1). If we combine it with the fact that C6 has
rank three, we deduce that any triple of mutually orthogonal minimal tripotents in
C6 is a frame.

Lemma 3.5. Let u1,u2,u3 and v1,v2,v3 be two triples of mutually orthogonal
minimal tripotents in C6. Then the following assertions hold.

(a) u1 + u2 + u3 and v1 + v2 + v3 are unitary elements in C6.
(b) There is a triple automorphism T : C6 → C6 such that T (uj) = vj for j =

1, 2, 3.
(c) If u1,u2,u3,v1,v3,v3 are projections, then any of the triple automorphisms

provided by (b) are Jordan ∗-automorphisms.

Proof. As we have seen above, the unit element 1 in C6 writes as the orthogonal
sum of three mutually orthogonal minimal tripotents e1, e2, e3. By [20, Proposition
5.8](i) and (ii) each finite orthogonal family of minimal tripotents in a Cartan factor
C can be extended to a frame, and the cardinality of every frame in C coincides
with the rank of C. Furthermore, by [20, Proposition 5.8](iii) any two frames in
C can be interchanged by a triple automorphism on C. So, there exists a triple
automorphism T on C6 satisfying T1(ej) = uj for all j = 1, 2, 3. Since 1 is a unitary
in C6, the same property passes to T (1) = T (e1) + T (e2) + T (e3) = u1 +u2 +u3.
This proves (a).

Similar arguments from those given above can be applied to derive (b) from [20,
Proposition 5.8](i), (ii) and (iii) (furthermore, since we are working with a finite
dimensional Cartan factor the results in [20] can be replaced by [22, Proposition
5.2 and Theorem 5.3]).

(c) If u1,u2,u3,v1,v3,v3 are projections, the elements u = u1 + u2 + u3 and
v = v1 + v3 + v3 are projections too. Since they clearly have rank 3 and are
bounded by 1, they both coincide with 1. Then any of the triple automorphisms
given by (b) is unital and hence a Jordan ∗-isomorphism (cf. (4)). �

4. Unitaries in C6

In this section we present several results on the structure of unitary elements in
the Cartan factor of type 6. They were the original motivation of our research and
will be used in a forthcoming paper.

The proofs of some of the results will be done later using results on projections,
automorphisms and matrices of biquaternions in the following sections.

We start by the following theorem on spectral decomposition of unitary elements.
It is not really new as it easily follows from known results, but it serves as a starting
point for further results.

Theorem 4.1. Let u ∈ C6 be a unitary element.
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(i) There are complex units α1, α2, α3 and mutually orthogonal minimal projec-
tions p1,p2,p3 such that u = α1p1 + α2p2 + α3p3.

(ii) The representation from (i) is unique in the natural sense: The triple (α1, α2, α3)
is uniquely determined up to reordering. Further, for any complex unit α the
sum

∑
αj=α pj is also uniquely determined.

(iii) There is a Jordan ∗-automorphism T of C6 such that T (u) is a diagonal
matrix.

Proof. (i) By Proposition 2.2(b) we have u =
∑n

j=1 αjpj , where α1, . . . , αn are
complex units and p1, . . . ,pn are mutually orthogonal projections with sum equal
to 1. Since the rank of C6 is three, necessarily n ≤ 3. If all pj are minimal, then
n = 3. If some of the projections pj has higher rank, it may be decomposed as the
sum of minimal projections. This completes the proof of (i).

(ii) The uniqueness follows easily from Proposition 2.2(b).
(iii) This follows from (i) using Lemma 3.5. �

The previous theorem says, in particular, that to each unitary element u ∈ C6

we may canonically assign a unique triple of complex units α1, α2, α3 (it is unique
up to reordering and these three numbers need not be distinct). We define the
determinant of such u by the formula

dtu = α1α2α3.

It is clear that the triple α1, α2, α3 (and hence also the determinant) is preserved
by Jordan ∗-automorphisms of C6.

Further, if e ∈ C6 is a unitary element, we may introduce on C6 a new structure
of a JB∗-algebra in which e is the unit. The operations are defined by

x ◦e y = {x, e,y} and x∗e = {e,x, e}

for x,y ∈ C6. This JB∗-algebra is Jordan ∗-isomorphic to C6. One of the ways
to prove this is to observe that e may be expressed as the sum of three mutually
orthogonal minimal tripotents and use Lemma 3.5.

Therefore, we may apply Theorem 4.1 to this new JB∗-algebra and deduce that,
given u ∈ C6 unitary, there is a decomposition

u = α1v1 + α2v2 + α3v3,

where v1,v2,v3 are mutually orthogonal minimal tripotents satisfying vj ≤ e for
j = 1, 2, 3. Moreover, this decomposition is unique in the sense of Theorem 4.1(ii).
So, in this situation we may define

dte u = α1α2α3.

The key structure result is the following theorem which will be proved in Section 9
below.

Theorem 4.2. Let u, e ∈ C6 be two unitary elements. Then

dtu = dte u · dt e.

Next we collect two corollaries of this theorem.

Corollary 4.3. Let u, e ∈ C6 be two unitary elements. Assume that u is self-
adjoint in the JB∗-algebra C6 with unit e (i.e., u = {e,u, e}). Then

dtu = dt e or dtu = − dt e.
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Proof. A self-adjoint tripotent in a JB∗-algebra is the difference of two mutually
orthogonal projections. Hence, under our assumptions u = u1 − u2, where uj ≤ e

for j = 1, 2, and u1 + u2 = e. It follows that the numbers αj from the above-
described decomposition of u with respect to e are 1 or −1. Thus dte u = 1 or
dte u = −1. Now we may conclude using Theorem 4.2. �

Corollary 4.4. Let u ∈ C6 be a unitary element and let T : C6 → C6 be a triple
automorphism. Then

dtT (u) = dtu · dtT (1).

Proof. Let

u = α1p1 + α2p2 + α3p3

be the decomposition from Theorem 4.1. Then

T (u) = α1T (p1) + α2T (p2) + α3T (p3)

and T (pj) ≤ T (1) for j = 1, 2, 3. It follows that

dtT (1) T (u) = dtu,

hence we may conclude by Theorem 4.2. �

An important tool to prove Theorem 4.2 is the following theorem which is also
interesting in itself. It will be also proved in Section 9 below.

Theorem 4.5. Let u, e ∈ C6 be two unitary elements. Then there is a Jordan
∗-automorphism T : C6 → C6 such that

(i) T (e) is a diagonal matrix.
(ii) The entries of T (u) are biquaternions.

Let us comment a bit the meaning of this theorem. It says, in particular, that
given two unitary elements in C6, we may assume, up to applying a Jordan ∗-
automorphism, that they belong to H3(HC), a Jordan ∗-subalgebra of the C∗-
algebra M3(HC) (which is ∗-isomorphic to M6).

So, not only that the Jordan ∗-subalgebra of C6 generated by two unitary el-
ements is a JC∗-algebra (which is known – it easily follows using the functional
calculus and [24, Corollary 2.2 and subsequent comments]), but the surround-
ing C∗-algebra may be M3(HC) and the injection may be induced by a Jordan
∗-automorphism of C6, preserving hence all the structure, including the determi-
nants.

5. Hermitian matrices of biquaternions and their determinants

Recall that biquaternions (denoted by HC) are a non-commutative C∗-algebra
∗-isomorphic to the matrix algebra M2. Therefore Mn(HC) – n × n matrices of
biquaternions – is a C∗-algebra ∗-isomorphic to M2n. We will consider the subspace
formed by ⋄-hermitian matrices, i.e.,

Hn(HC) = {x ∈ Mn(HC); x
⋄ = x}.

This subspace is a Jordan ∗-subalgebra of Mn(HC). We will define and investigate
determinants of elements in Hn(HC).

Note that in Section 4 we defined determinants of unitary elements in C6 =
H3(O) using their spectral decomposition. Now we are going to define determinants
of general elements of Hn(HC) using an inductive formula inspired by the rules of
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computing determinants of complex matrices. In Section 9 below we will show that
for unitary elements in H3(HC) the two approaches give the same result.

For our original motivation it would be enough to work only with 3×3 matrices,
but we find interesting that the theory works for a general n.

We will further need some notation reflecting the correspondence between HC

and M2. If x ∈ Hc, we will denote by x̂ the corresponding 2 × 2 complex matrix.
Further, if x ∈ Mn(HC), by x̂ we will denote the corresponding 2n × 2n complex
matrix (cf. (5) in subsection 3.2).

The promised determinants are introduced by the following theorem, where we
also gather their basic properties.

Theorem 5.1. There is a unique sequence of mappings (dtn)n∈N with the following
properties.

(i) dtn : Hn(HC) → HC is a continuous mapping for each n ∈ N.
(ii) If x = (x11) ∈ H1(HC), then dt1 x = x11.
(iii) If x = (xij) ∈ Hn+1(HC) and x11 6= 0, then

dtn+1 x = x11 · dtn
(
xij − x−1

11 xi1x1j

)
2≤i,j≤n+1

.

Moreover, the following assertions hold as well.

(iv) The values of dtn are complex numbers.
(v) dtn(αx) = αn dtn x for x ∈ Hn(HC) and α ∈ C.
(vi) dtn x =

∑
σ,π∈Sn

ασ,π · xσ(1),π(1) · · ·xσ(n),π(n) for some complex coefficients

ασ,π. (Here Sn denotes the set of all permutations of {1, . . . , n}.)

(vii) det x̂ = (dtn x)
2
for x ∈ Hn(HC), here det x̂ stands for the usual determinant

of matrices x̂ ∈ M2n(C).
(viii) If x,y ∈ Hn(HC), then the function λ 7→ dtn(λy+x) is a complex polynomial

of degree at most n with coeffients dtn y at λn and dtn x at λ0.
(ix) If x ∈ Hn(HC), then each eigenvalue of x̂ has even multiplicity. Moreover,

dtn x is the product of all eigenvalues of x̂, each one counted with half a
multiplicity.

Proof. Let us start by explaining that the formula from (iii) is reasonable. Assume
that x = (xij) ∈ Hn+1(HC) and x11 6= 0. Since x = x⋄, necessarily x11 ∈ C, thus

the inverse x−1
11 exists. Moreover, the matrix on the right-hand side is ⋄-hermitian,

as

(xij − x−1
11 xi1x1j)

⋄ = x⋄
ij − x−1

11 x
⋄
1jx

⋄
i1 = xji − x−1

11 xj1x1i.

Thus the formula from (iii) is an inductive formula defining dtn+1 x in case x11 6= 0
using dtn.

We will prove by induction the existence of a sequence (dtn) satisfying conditions
(i)− (viii). The uniqueness is then easy – dt1 must be defined as in (ii). Moreover,
condition (iii) determines uniquely dtn+1 x in case x11 6= 0. Such matrices are
dense in Hn+1(HC), so the uniqueness follows by continuity. Assertion (ix) will be
deduced from (i)− (viii) at the end of the proof.

Let us start by n = 1. The mapping dt1 is defined in (ii) and it is clearly
continuous, so (i) holds. There is nothing to check in assertion (iii) as dt2 is not
defined, and assertions (iv) − (vi) and (viii) are in this case obvious. Further, if

x = (x11), then x̂ =

(
x11 0
0 x11

)
, hence assertions (vii) follows easily.
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Next assume that n ∈ N and we have mappings dt1, . . . , dtn satisfying conditions
(i) − (viii). We will show how dtn+1 may be defined and prove the respective
properties.

We start by defining dtn+1 x for x ∈ Hn+1(HC) such that x11 6= 0 using the
formula in (iii). This surely may be done. It follows from the induction hypothesis
that dtn+1 x ∈ C whenever x11 6= 0. Further,

det x̂ = det




x̂11 x̂12 ... x̂1,n+1

x̂21 x̂22 ... x̂2,n+1

...
...

. . .
...

x̂n+1,1 x̂n+1,2 ... ̂xn+1,n+1




= det




x̂11 x̂12 ... x̂1,n+1

0 x̂22−x̂21·x̂11
−1·x̂12 ... x̂2,n+1−x̂21·x̂11

−1·x̂1,n+1

...
...

. . .
...

0 x̂n+1,2−x̂n+1,1·x̂11
−1·x̂12 ... ̂xn+1,n+1−x̂n+1,1·x̂11

−1·x̂1,n+1




= det x̂11 · det




x̂22−x̂21·x̂11
−1·x̂12 ... x̂2,n+1−x̂21·x̂11

−1·x̂1,n+1

...
. . .

...
x̂n+1,2−x̂n+1,1·x̂11

−1·x̂12 ... ̂xn+1,n+1−x̂n+1,1·x̂11
−1·x̂1,n+1




= x2
11 ·
(
dtn

(
xij − x−1

11 xi1x1j

)
2≤i,j≤n+1

)2
= (dtn+1 x)

2
.

The first equality follows just from definitions – recall that each x̂ij stands for a
complex 2 × 2 matrix. The second equality follows from the rules of computing
determinants in M2n(C) using row transformations. For example, the ‘second row’
(which is formed by the third and fourth rows in the respective complex matrix) is

obtained by subtracting the ‘first row’ multiplied by x̂21 · x̂11
−1

from the left. This
means that from the third and fourth rows we subtract suitable linear combinations
of the first two rows. Such a transformation preserves the value of determinant. The
third equality follows from the rules of computing determinants of block matrices.
The fourth one follows from the induction hypothesis and the last one from the
defining formula from (iii).

This completes the proof of (vii) for x̂ ∈ Hn+1(HC) with x11 6= 0.
We further deduce that for x ∈ Hn+1(HC) with x11 6= 0 we have

dtn+1 x = x11 · dtn
(
xij − x−1

11 xi1x1j

)
2≤i,j≤n+1

= x−n+1
11 dtn (x11xij − xi1x1j)2≤i,j≤n+1

= x−n+1
11

∑

σ,π∈Sn

ασ,π

n∏

k=1

(x11xσ(k)+1,π(k)+1 − xσ(k)+1,1x1,π(k)+1).

The first equality is just the formula from (iii), next we use the induction hypothesis
(conditions (v) and (vi)).

Let us introduce the following notation. If A ⊂ {1, . . . , n}, k ∈ {1, . . . , n} and
σ, π ∈ Sn, we set

zAσ,π,k =

{
xσ(k)+1,π(k)+1 , k ∈ {1, . . . , n} \A,

xσ(k)+1,1 · x1,π(k)+1, k ∈ A.
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Then for x ∈ Hn+1(HC) with x11 6= 0 we have

dtn+1 x =

n∑

m=0

(−1)mx−m+1
11

∑

σ,π∈Sn

ασ,π

∑

A⊂{1,...,n},|A|=m

n∏

k=1

zAσ,π,k.

For m ∈ {0, . . . , n} set

Pm((xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j) =
∑

σ,π∈Sn

ασ,π

∑

A⊂{1,...,n},|A|=m

n∏

k=1

zAσ,π,k,

so

dtn+1 x =

n∑

m=0

(−1)mx−m+1
11 Pm((xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j) if x11 6= 0.

Now fix for a while x ∈ Hn+1(HC). If we apply the last equality to λ · 1 + x

with λ+ x11 6= 0 in place of x we obtain

dtn+1(λ·1+x) =
n∑

m=0

(−1)m(λ+x11)
−m+1Pm((λ+xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j),

for all λ ∈ C \ {−x11}. It follows from the definition of Pm that the function

λ 7→ Pm((λ + xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j)

is a polynomial with coefficients in HC . We observe that its values are in fact
complex numbers. Indeed, by the already proved part of (iv) we get that for each
x ∈ Hn+1(HC) and each λ ∈ C with λ 6= −x11, we have

n∑

m=0

(−1)m(λ + x11)
−m+1Pm((λ+ xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j) ∈ C.

We deduce that

∀λ, µ ∈ C : µ 6= 0 ⇒

n∑

m=0

(−1)mµ−m+1Pm((λ+xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j) ∈ C.

It follows that for each m we have

∀λ ∈ C : Pm((λ+ xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j) ∈ C,

hence
λ 7→ Pm((λ + xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j)

is a polynomial with complex coefficients. Thus

λ 7→
n∑

m=0

(−1)m(λ + x11)
−m+1Pm((λ + xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j)

is a rational function. On the other hand, by the already proved part of (vii) we
know that

det(λ1̂+ x̂) = (dtn+1(λ1+ x))
2
, λ ∈ C \ {−x11}.

But it is known that λ 7→ det(λ1̂+ x̂) is a polynomial of degree 2n. It follows that
λ 7→ dtn(λ · 1 + x) must be a polynomial of degree n (as it is a rational function
whose square is a polynomial of degree 2n). Since polynomials are continuous on
C, this allows us to define dtn+1 x in case x11 = 0 by

dtn+1 x = lim
λ→0

dtn+1(λ1+ x).



DETERMINANTS IN JORDAN MATRIX ALGEBRAS 17

Thus dtn+1 is now defined on all Hn+1(HC) and assertion (vii) holds for n+ 1.
Next we are going to prove that Pm is constant zero for m ≥ 2. Assume not. Let

m0 be the greatest number for which Pm0
is not constant zero and assume m0 ≥ 2.

We already know that

λ 7→ dtn+1(λ·1+x) =

m0∑

m=0

(−1)m(λ+x11)
−m+1Pm((λ+xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j)

is a complex polynomial of degree n. It is equal to

(λ+ x11)
−m0+1

m0∑

m=0

(−1)m(λ+ x11)
m0−mPm((λ + xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j),

so −x11 must be a root of the sum. By plugging −x11 we see that it must be also
a root of the polynomial

λ 7→ Pm0
((λ+ xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j).

But this should hold for any value of x11, so we get

Pm0
((λ + xii)2≤i≤n+1, (xij)1≤i,j≤n+1,i6=j) = 0

for all λ ∈ C. In particular by plugging λ = 0 we conclude that Pm0
is constant

zero. This contradiction completes the proof of (vi) for n+ 1.
Assertion (v) follows immediately from (vi). We also have the continuity of

dtn+1. Assertion (viii) follows also from (vi) using standard algebraic expansion.
This completes the induction argument.
Let us continue by proving assertion (ix). Let x ∈ Hn(HC). By (viii) we know

that

λ 7→ dtn(λ · 1− x)

is a polynomial of degree n with coefficient dtn 1 = 1 at λn and coefficient dtn(−x) =
(−1)n dtn x at λ0 (the last equality follows from (v)). Hence, this polynomial has
n complex roots (counted with their multiplicities) and their product is dtn x.

Moreover, by (vii) we get

det(λ · 1̂− x̂) = (dtn(λ · 1− x))
2
,

so the roots of the polynomial λ 7→ dtn(λ · 1− x) are exactly the eigenvalues of x̂
and their multiplicities as eigenvalues are exactly twice their multiplicites as roots.
This completes the proof. �

For n = 1, 2, 3 there are easy formulae for dtn similar to the classical formulae
for determinant of complex matrices. The formula for dt1 is contained already in
the above theorem. Let us explicitly show the formulae for n = 2 and n = 3

Assume that x ∈ H2(HC) such that x11 6= 0. Then

dt2 x = x11 · dt1(x22 − x−1
11 x21x12) = x11 · (x22 − x−1

11 x21x12) = x11x22 − x21x12.

The last expression is a continuous mapping defined on allH2(HC) and is completely
analogous to the classical one. Note that HC is not commutative, but the two
products in the last expression do commute as x11, x22 ∈ C and x21 = x⋄

12.
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Next assume that x ∈ H3(HC) with x11 6= 0. Then, by the just obtained formula
for n = 2 we get

dt3 x = x11 · dt2

(
x22 − x−1

11 x21x12 x23 − x−1
11 x21x13

x32 − x−1
11 x31x12 x33 − x−1

11 x31x13

)

= x11 · ((x22 − x−1
11 x21x12)(x33 − x−1

11 x31x13)

− (x32 − x−1
11 x31x12)(x23 − x−1

11 x21x13))

= x11x22x33 − x11x22x31x
−1
11 x13 − x21x12x33 + x21x12x

−1
11 x31x13

− x11x32x23 + x11x32x
−1
11 x21x13 + x31x12x23 − x31x12x

−1
11 x21x13

= x11x22x33 + x32x21x13 + x31x12x23

− x11x32x23 − x22x31x13 − x21x12x33

because x11 ∈ C and by Proposition 3.4

x31x12x21x13 = x31x12x
⋄
12x13 = x12x

⋄
12x31x13 = x⋄

12x12x31x13 = x21x12x31x13.

Hence we have an analogy of the classical Sarrus’ rule. The reader should be warned
that HC

∼= M2 is associative but not commutative, and so the order of the products
in the previous expression is decisive.

Now fix n ∈ N and a unitary element e ∈ Hn(HC). We may consider on Hn(HC)
a structure of JB∗-algebra with unit e. Recall that the operations are defined by

x ◦e y = {x, e,y} =
1

2
(xe∗y + ye∗x) and x∗e = {e,x, e} = ex∗e

for x,y ∈ Hn(HC).
Moreover, e is a unitary element also in Mn(Hc), hence we may define such a

structure of JB∗-algebra on Mn(HC) as well. We may further equip Mn(HC) with a
structure of a C∗-algebra with unit e if we consider the same involution and define
an associative multiplication by

x ·e y = xe∗y, x,y ∈ Mn(HC).

Lemma 5.2. Let e be a unitary element of Hn(HC). Then there is a mapping
T : Mn(HC) → Mn(HC) with the properties

(a) T is a ∗-isomorphism of Mn(HC) equipped with the product ·e and the involution
∗e onto Mn(HC) equipped with the standard structure of C∗-algebra.

(b) T (x⋄) = T (x)⋄ for x ∈ HC . In particular, T maps Hn(HC) onto Hn(HC).

Proof. Let v ∈ Hn(HC) be a unitary element such that v2 = e. Such v exists by
Lemma 2.3(b). It is clear that v commutes with e in Mn(HC). It is enough to set

T (x) = v∗xv∗, x ∈ Mn(HC).

It is clearly a linear bijection, Moreover,

T (x ·e y) = T (xe∗y) = v∗xe∗yv∗ = T (x)T (y)

as e∗ = (v∗)2. Further,

T (x∗e) = T (ex∗e) = v∗ex∗ev∗ = v∗vvx∗vvv∗ = vx∗v = (Tx)∗.

Finally,

T (x⋄) = v∗x⋄v∗ = (Tx)⋄.

This completes the proof. �
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Proposition 5.3. Let e be a unitary element in Hn(HC). Let T be a mapping with
the properties from Lemma 5.2. Let us define

dtn,e x = dtn(Tx), x ∈ Hn(HC).

Then the following holds:

(i) The function dtn,e does not depend on the concrete choice of T .
(ii) dtn x = dtn,e x · dtn e for x ∈ Hn(HC).

Proof. Let us fix any T satisfying the properties from Lemma 5.2. Then dtn Tx
is the product of all the roots of the polynomial λ 7→ dtn(λ1 − Tx), each one
counted with its multiplicity (this follows from Theorem 5.1(viii)). Moreover, by
Theorem 5.1(vii) we get

(dtn(λ · 1− Tx))2 = det(λ1̂− T̂ x) = det(T (λê− x̂)).

The right-hand side does not depend on the choice of T . Indeed, assume that T1 and
T2 are two possible choices of T . Then T2T

−1
1 is a ∗-automorphism of Mn(HC) =

M2n. It follows that there is a unitary matrix u ∈ M2n such that T2T
−1
1 a = u∗au

for a ∈ M2n (see, for example, [8, Corollary 5.42] or the celebrated Schur theorem
[9, Theorem 10.2.2]). In particular, T2T

−1
1 preserves the determinant, hence

det(T1a) = det(T2T
−1
1 T1a) = det(T2a)

for any a ∈ M2n.
Thus, we may assume that T is of the form from the proof of Lemma 5.2. Then

det(T (λê− x̂)) = det(v∗(λê− x̂)v∗) = (det(v∗))2 det(λê − x̂)

= (det(v∗))2(dtn(λe− x))2.

We deduce

(dtn(λ · 1− Tx))2 = (det(v∗))2(dtn(λe− x))2,

so dtn Tx is the product of all roots of the polynomial λ 7→ dtn(λe − x), each one
counted with its multiplicity.

By Theorem 5.1(viii) we know that λ 7→ dtn(λe − x) is a polynomial of degree
at most n with the coefficient dtn e at λn and coefficient dtn(−x) = (−1)n dtn x
at λ0. Note that dtn e 6= 0 (it is a complex unit as (dtn e)

2 = det ê is a complex
unit being the determinant of a unitary matrix). It follows that the product of the
roots (which equals to dtn Tx = dtn,e x) is (dtn e)

−1 dtn x. This completes the
proof. �

6. Automorphisms of O and OR

By an automorphism of O we mean a linear bijection T : O → O which preserves
the structure of O, i.e., which satisfies the following properties:

(i) T (1) = 1,
(ii) T (x∗) = T (x)∗ for x ∈ O,
(iii) T (x⋄) = T (x)⋄ for x ∈ O,
(iv) T (x⊡ y) = T (x)⊡ T (y) for x, y ∈ O.

If T is an automorphism of O, then we get

T (x) = T ((x⋄)∗) = (T (x)⋄)∗ = T (x)
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for each x ∈ O, and thus T preserves OR. Then T |OR
is an automorphism of

OR, i.e., a (real-)linear bijection of OR onto OR satisfying conditions (i)− (iv) for
x, y ∈ OR (note that in this case conditions (ii) and (iii) coincide).

Conversely, if T is an automorphism of OR, the mapping

T̃ (x + iy) = T (x) + iT (y), x, y ∈ OR

is clearly an automorphism of O.
We will need also a weaker version of automorphism. A linear bijection T : O →

O will be called an asymmetric triple isomorphism if

T ((x⊡ y∗)⊡ z) = (T (x)⊡ T (y)∗)⊡ T (z) for x, y, z ∈ O.

If it satisfies moreover T (x) = T (x) for x ∈ O, it will be called a hermitian asym-
metric triple isomorphism.

If T is a hermitian asymmetric triple isomorphism of O, then T preserves OR

and hence T |OR
is an asymmetric triple isomorphism of OR, i.e., a (real-)linear

bijection of OR satisfying

T ((x⊡ y⋄)⊡ z) = (T (x)⊡ T (y)⋄)⊡ T (z) for x, y, z ∈ OR.

Conversely, if T is an asymmetric triple isomorphism of OR, the mapping

T̃ (x + iy) = T (x) + iT (y), x, y ∈ OR

is clearly a hermitian asymmetric triple isomorphism of O.
We will later need the results on hermitian asymmetric triple isomorphism on O,

but due to the easy correspondence explained above we restrict ourselves to OR.
The following observation is easy:

Observation 6.1. Let T : OR → OR be a linear bijection. Then T is an automor-
phism if and only if it is an asymmetric triple automorphism and T (1) = 1.

We denote by e0, e1, . . . , e7 the canonical basis of OR (note that e0 = 1). We
have the following result.

Proposition 6.2. Let u ∈ OR be any nonzero element.

(a) There is an asymmetric triple isomorphism T : OR → OR such that T (u) ∈
R = span{e0};

(b) There is an automorphism T : OR → OR such that T (u) ∈ span{e0, e1};
(c) There is an automorphism T : OR → OR such that T (e1) = e1 and T (u) ∈

span{e0, e1, e2}.

To prove it we will use two lemmata:

Lemma 6.3. Let h1, h2 ∈ H be two quaternions of norm 1. Then the mapping
T : OR → OR defined by

T (x1, x2) = (x1h1, x2h2)

is an asymmetric triple isomorphism. If h1 = 1, it is even an automorphism.

Proof. We have

x⊡ y⋄ = (x1, x2)⊡ (y⋄1 ,−y2) = (x1y
⋄
1 + y2x

⋄
2,−x⋄

1y2 + y⋄1x2)

and so

(x⊡y⋄)⊡z = (x1y
⋄
1z1+y2x

⋄
2z1+z2y

⋄
2x1−z2x

⋄
2y1, y1x

⋄
1z2+x2y

⋄
2z2−z1x

⋄
1y2+z1y

⋄
1x2).
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In view of the associativity of the multiplication of quaternions and using the fact
that h1h

⋄
1 = h2h

⋄
2 = 1 it easily follows that T is an asymmetric triple isomorphism.

If h1 = 1, then clearly T (1) = 1, so T is an automorphism by Observation 6.1. �

Lemma 6.4. The linear bijections of OR defined by

P1 : e0 7→ e0, e1 7→ e1, e2 7→ e7, e3 7→ e6, e4 7→ e2, e5 7→ e3, e6 7→ e5, e7 7→ e4.

P2 : e0 7→ e0, e1 7→ e4, e2 7→ e7, e3 7→ e3, e4 7→ e6, e5 7→ e2, e6 7→ e1, e7 7→ e5

are automorphisms of OR.

Proof. Properties (i) and (iii) are easy. It is enough to prove property (iv) for the
basic vectors. This can be proved using the following description of the multiplica-
tion (see [21, p. 235]):

We have e0 ⊡ ej = ej ⊡ e0 = ej for each j ∈ {0, . . . , 7} and e2j = −e0 for

j ∈ {1, . . . , 7}. The multiplication of the remaining pairs of basic vectors is done
using the list

132, 154, 167, 264, 275, 356, 374.

For example, the first scheme, 132, means that

e1 ⊡ e3 = e2, e3 ⊡ e2 = e1, e2 ⊡ e1 = e3

and the products in the opposite order have opposite sign.
It is now easy to check that the two permutations preserve this schemes. �

Proof of Proposition 6.2. (a) Let u = (u1, u2). Find two quaternions h1, h2 of
norm one such that u1h1, u2h2 ∈ R. Let T1(x) = (x1h1, x2h2). Then T1(u) ∈
span{e0, e4}. Let P1 be the automorphism from Lemma 6.4 Then P1T1(u) ∈
span{e0, e2}. In particular, it is a quaternion. Find a quaternion h3 of norm one
such that h3P1T1(u) ∈ R. Take T2(x) = (x1h3, x2). Then we may take T = T2P1T1.

(b) Let u = (u1, u2). Find a quaternion h1 of norm one such that u2h1 ∈ R.
Set T1(x) = (x1, x2h1). Let P2 be from Lemma 6.4. Then P2T1(u) = (v1, v2),
where v1 ∈ span{e0, e3}. Find a quaternion h2 of norm one such that v2h2 is a
multiple of e3. Set T2(x) = (x1, x2h2). Then T2P2T1(u) ∈ span{e0, e3, e7}, hence
P1T2P2T1(u) ∈ span{e0, e4, e6}, i.e. P1T2P2T1(u) = (w1, w2), where w1 ∈ R and
w2 ∈ span{1, e2}. Find a quaternion h3 of norm one such that w2h3 ∈ R. Set
T3(x) = (x1, x2h3). It is now enough to set

T = P1T3P1T2P2T1.

(c) Let u = (u1, u2). Find a quaternion h1 of norm one such that u2h1 is a
multiple of e3. Set T1(x) = (x1, x2h1). Let P1 be from Lemma 6.4.Then P1T1(u) =
(v1, v2), where v1 ∈ span{e0, e1}. Find a quaternion h2 of norm one such that
v2h2 ∈ R. Set T2(x) = (x1, xh2). It is enough to take

T = P1T2P1T1.

�

Remark 6.5. It was pointed out by the referee that assertions (b) and (c) of
Proposition 6.2 follow also from [23, Corollary 1.7.5]. The quoted abstract result
deals with composition algebras over a general field, so its application requires
some explanation. Firstly, OR is a composition algebra over R in the sense of [23,
Definition 1.2.1]. The quadratic form N from the definition is just the norm on OR

(recall that it coincides with the euclidean norm ‖·‖2) and the respective bilinear
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form (denoted by 〈a, b〉 := N(a+ b)−N(a)−N(b) in [23]) equals the double of the
inner product. This follows for example from [23, Proposition 1.5.3] applied twice –
at first to C considered as a commutative and associative composition algebra over
R and then to the resulting algebra of quaternions (in both cases we take λ = −1).

Now we may see that assertion (b) of Proposition 6.2 follows from [23, Corollary
1.7.5] applied to a = u − 〈u, e0〉 e0 (where 〈·, ·〉 denotes the inner product as in
Section 3) and a′ = ‖a‖·e1 (and b = b′ = 0). To get assertion (c) we set a = a′ = e1,
b = u− 〈u, e0〉 e0 − 〈u, e1〉 e1 and b′ = ‖b‖ · e2.

7. Automorphism of C6

We start by observing that the mapping exchanging two rows and subsequently
the two corresponding columns is a Jordan ∗-isomorphism.

Lemma 7.1. Let k, l ∈ {1, 2, 3} be two distinct numbers. For x ∈ C6 let Uk,l(x)
be the matrix made from x by exchanging the k-th and l-th rows and subsequently
exchanging the k-th and l-th columns. Then Uk,l is a Jordan ∗-automorphism of
C6.

Proof. Let us prove it for k = 1 and l = 2. The remaining cases are analogous. Let

u =



0 1 0
1 0 0
0 0 1


 .

Then u is a symmetry (i.e., a self-adjoint unitary element) in C6, thus x 7→
{u,x∗,u} is a triple automorphism of C6 by Lemma 2.1. Moreover, it maps 1

to 1, so it is a Jordan ∗-automorphism.
It remains to compute that U1,2(x) = {u,x∗,u}. So, let us compute.

{u,x∗,u} = 2u ◦ (x ◦ u)− (u ◦ u) ◦ x = 2u ◦ (x ◦ u)− x

as u ◦ u = 1. Assume

x =




α a b
a⋄ β c
b⋄ c⋄ γ


 ,

where α, β, γ ∈ C and a, b, c ∈ O. Then

u ◦ x =
1

2
(u⊡ x+ x⊡ u) =

1

2





a⋄ β c
α a b
b⋄ c⋄ γ


+




a α b
β a⋄ c
c⋄ b⋄ γ






=




1
2 (a

⋄ + a) 1
2 (α + β) 1

2 (b+ c)
1
2 (α+ β) 1

2 (a+ a⋄) 1
2 (b+ c)

1
2 (b

⋄ + c⋄) 1
2 (b

⋄ + c⋄) γ


 ,
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hence
2u ◦ (u ◦ x) = u⊡ (u ◦ x) + (u ◦ x)⊡ u

=




1
2 (α+ β) 1

2 (a+ a⋄) 1
2 (b+ c)

1
2 (a

⋄ + a) 1
2 (α+ β) 1

2 (b+ c)
1
2 (b

⋄ + c⋄) 1
2 (b

⋄ + c⋄) γ




+




1
2 (α + β) 1

2 (a
⋄ + a) 1

2 (b+ c)
1
2 (a+ a⋄) 1

2 (α + β) 1
2 (b+ c)

1
2 (b

⋄ + c⋄) 1
2 (b

⋄ + c⋄) γ




=




α+ β a⋄ + a b+ c
a+ a⋄ α+ β b+ c
b⋄ + c⋄ b⋄ + c⋄ 2γ


 .

Thus

{u,x∗,u} = 2u ◦ (x ◦ u)− x =




β a⋄ c
a α b
c⋄ b⋄ γ


 = U1,2(x).

�

Proposition 7.2. Let T be a hermitian asymmetric triple isomorphism of O. De-

fine T̃ : C6 → C6 by

T̃




α a b
a⋄ β c
b⋄ c⋄ γ


 =




α T (a) T (b)⊡ T (1)⋄

T (a)⋄ β T (c⋄)⋄

T (1)⊡ T (b)⋄ T (c⋄) γ


 .

Then T̃ is a Jordan ∗-automorphism of C6.

Proof. It is clear that T̃ is a linear mapping. Further, T (1) is a non-zero element of

OR, so we may use Proposition 3.4(iii) to deduce that T̃ is one-to-one. Therefore,

T̃ is a linear bijection of C6.

Since T (1) ∈ OR and T commutes with the conjugation, we get that T̃ (x∗) =

T̃ (x)∗ for each x ∈ C6. Hence, it remains to prove that T̃ (x2) = T̃ (x)2 for x ∈ C6.
First observe that T is a unitary operator on O equipped with the underlying

Hilbert space structure (as it is a triple automorphism commuting with the conju-
gation cf. Proposition 3.3(iii)).

Let us fix

x =




α a b
a⋄ β c
b⋄ c⋄ γ


 ∈ C6.

Then

x2 =



α2 + a⊡ a⋄ + b⊡ b⋄ αa+ βa+ b⊡ c⋄ αb + a⊡ c+ γb
αa⋄ + βa⋄ + c⊡ b⋄ a⋄ ⊡ a+ β2 + c⊡ c⋄ a⋄ ⊡ b+ βc+ γc
αb⋄ + c⋄ ⊡ a⋄ + γb⋄ b⋄ ⊡ a+ βc⋄ + γc⋄ b⋄ ⊡ b+ c⋄ ⊡ c+ γ2




We are going to prove that T̃ (x2) = T̃ (x)2 entrywise. Let us first look at the

diagonal. By the definition of T̃ the diagonal of T̃ (x2) coincides with the diagonal
of x2. Hence, we have to prove that

α2 + a⊡ a⋄ + b ⊡ b⋄ = α2 + T (a)⊡ T (a)⋄ + (T (b)⊡ T (1)⋄)⊡ (T (1)⊡ T (b)⋄),

a⋄ ⊡ a+ β2 + c⊡ c⋄ = T (a)⋄ ⊡ T (a) + β2 + T (c⋄)⋄ ⊡ T (c⋄),

b⋄ ⊡ b+ c⋄ ⊡ c+ γ2 = (T (1)⊡ T (b)⋄)⊡ (T (b)⊡ T (1)⋄) + T (c⋄)⊡ T (c⋄)⋄ + γ2.
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To prove these equalities we will use the following computation:

T (a)⊡ T (a)⋄ =
〈
T (a), T (a)

〉
= 〈T (a), T (a)〉 = 〈a, a〉 = a⊡ a⋄,

The first equality follows from Lemma 3.1(a), the second one follows from the fact
that T commutes with the conjugation. In the third one we use that T is a unitary
operator. The last equality follows again from Lemma 3.1(a).

If we apply the just proved equality to c⋄ in place of a we get

T (c⋄)⊡ T (c⋄)⋄ = c⋄ ⊡ c.

Further,

(T (1)⊡ T (b)⋄)⊡ (T (b)⊡ T (1)⋄) = (T (b)⊡ T (1)⋄)⋄ ⊡ (T (b)⊡ T (1)⋄)

=
〈
T (b)⊡ T (1)⋄, T (b)⊡ T (1)⋄

〉

=
〈
T (b)⊡ T (1)⋄, T (b)⊡ T (1)⋄

〉

=
〈
T (b), (T (b)⊡ T (1)⋄)⊡ T (1)

〉
=
〈
T (b), T (b)

〉

=
〈
b, b
〉
= b⊡ b⋄

The first equality follows from the basic properties of O, the second one from
Lemma 3.1(a). In the third one we use that T commutes with the conjugation and
that T (1) ∈ OR. The fourth one follows from Proposition 3.3(ii). The fifth one
follows from Proposition 3.4(ii) (applied to the real and imaginary parts of T (b),
note that T (1) ∈ OR and ‖T (1)‖ = 1). The sixth equality holds because T is a
unitary operator. The last equality follows again from Lemma 3.1(a).

By combining the above computations we deduce that the diagonals of T̃ (x2)

and T̃ (x)2 coincide. It remains to prove the coincidence of the components of these
two elements outside the diagonal. Since they are ⋄-hermitian, it is enough to prove
they coincide above the diagonal. This reduces to proving three equalities:

T (αa+ βa+ b⊡ c⋄) = αT (a) + βT (a) + (T (b)⊡ T (1)⋄)⊡ T (c⋄),

T (αb+ a⊡ c+ γb)⊡ T (1)⋄ = αT (b)⊡ T (1)⋄ + T (a)⊡ T (c⋄)⋄ + γT (b)⊡ T (1)⋄,

T ((a⋄ ⊡ b+ βc+ γc)⋄)⋄ = T (a)⋄ ⊡ (T (b)⊡ T (1)⋄) + βT (c⋄)⋄ + γT (c⋄)⋄.

To prove them we use, in addition to linearity of T , the assumption that it is a
hermitian asymmetric triple isomorphism and so

T (b⊡ c⋄) = T ((b⊡ 1⋄)⊡ c⋄) = (T (b)⊡ T (1)⋄)⊡ T (c⋄),

T (a⊡ c)⊡ T (1)⋄ = T ((a⊡ (c⋄)⋄)⊡ 1)⊡ T (1)⋄ = ((T (a)⊡ T (c⋄)⋄)⊡ T (1))⊡ T (1)⋄

= T (a)⊡ T (c⋄)⋄,

T ((a⋄ ⊡ b)⋄)⋄ = T (b⋄ ⊡ a)⋄ = T ((1⊡ b⋄)⊡ a)⋄ = ((T (1)⊡ T (b)⋄)⊡ T (a))⋄

= T (a)⋄ ⊡ (T (b)⊡ T (1)⋄).

Note that in the last equality of the second computation we used, similarly as above,
Proposition 3.4(ii).

This completes the proof. �
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Corollary 7.3. Let T be a hermitian asymmetric triple isomorphism of O. Define

T̃j : C6 → C6 for j = 1, 2, 3 by

T̃1




α a b
a⋄ β c
b⋄ c⋄ γ


 =




α T (a) T (1)⊡ T (b⋄)
T (a)⋄ β T (c⋄)⋄

T (b⋄)⋄ ⊡ T (1)⋄ T (c⋄) γ


 ,

T̃2




α a b
a⋄ β c
b⋄ c⋄ γ


 =




α T (a⋄)⋄ T (b⋄)⋄

T (a⋄) β T (c)⊡ T (1)⋄

T (b⋄) T (1)⊡ T (c)⋄ γ


 ,

T̃3




α a b
a⋄ β c
b⋄ c⋄ γ


 =




α T (a)⊡ T (1)⋄ T (b)
T (1)⊡ T (a)⋄ β T (c)

T (b)⋄ T (c)⋄ γ


 .

Then T̃1, T̃2, T̃3 are Jordan ∗-automorphisms of C6.

Proof. Let T̃ be the automorphism from Propoisition 7.2. It is enough to observe
that

T̃1 = U1,3T̃U1,3, T̃2 = U1,2T̃U1,2T̃3 = U2,3T̃U2,3,

where we use the automorphisms Uk,l from Lemma 7.1. �

8. Minimal projection in C6

The aim of this section is to prove the following theorem which provides an
explicit description of minimal projections in C6. The result, which is interesting
by itself, provides a newfangled detailed description of these elements with potential
applications to improve our understanding of this exceptional Jordan algebra.

Theorem 8.1. Minimal projections in C6 are exactly elements of the form


0 0 0
0 0 0
0 0 1


 ,



0 0 0
0 α a

0 a⋄ 1
α
‖a‖

2


 , where α ∈ R \ {0}, a ∈ OR, α = α2 + ‖a‖2 ,




α a b

a⋄ 1
α
‖a‖

2 1
α
a⋄ ⊡ b

b⋄ 1
α
b⋄ ⊡ a 1

α
‖b‖

2


 , where α ∈ R \ {0}, a, b ∈ OR, α = α2 + ‖a‖

2
+ ‖b‖

2
.

Let us comment a bit the above formulae for minimal projections. In the second
case the third row may be obtained from the second one by multiplying with 1

α
a⋄

from the left. Similarly, in the third case the second row may be obtained from the
first one by multiplying with 1

α
a⋄ from the left and the third row may be obtained

from the first one by multiplying with 1
α
b⋄ from the left.

The rest of this section is devoted to proving this theorem. The proof will have
two parts – on one hand we need to show that any minimal projection is of the
required form and then we need to show the converse, that any matrix of the
prescribed form is a minimal projection.

Proof of the necessity. Assume that q is a minimal projection in C6. Firstly, it is
a projection, i.e., q∗ = q and q = q2 = q ⊡ q. The condition q∗ = q implies that

(6) q =




α a b
a⋄ β c
b⋄ c⋄ γ


 , where α, β, γ ∈ R and a, b, c ∈ OR.
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Further, the condition q ⊡ q = q means that

(7)

α = α2 + a⊡ a⋄ + b⊡ b⋄,

β = a⋄ ⊡ a+ β2 + c⊡ c⋄,

γ = b⋄ ⊡ b+ c⋄ ⊡ c+ γ2,

a = αa+ βa+ b⊡ c⋄,

b = αb+ a⊡ c+ γb,

c = a⋄ ⊡ b+ βc+ γc.

Recall that for any y ∈ OR we have y⊡y⋄ = ‖y‖
2
(by Proposition 3.4(i)). Hence,

if α = 0, the first equality says that a = b = 0 and thus the first row and the first
column of q are zero. Similarly, if β = 0, then the second row and second column of
q are zero and the analogous statement holds for γ as well. Since q 6= 0, necessarily
one of the numbers α, β, γ is nonzero.

To simplify the situation we will first assume that α 6= 0. This assumption may
be done without loss of generality, up to applying one of the automorphisms U1,2

or U1,3 from Lemma 7.1.
Next, q is minimal. This means that {q,x, q} is a scalar multiple of q for each

x ∈ C6. We will apply it for the canonical projection

p1 =



1 0 0
0 0 0
0 0 0




in place of x.
Let us compute

{q,p1, q} = 2q ◦ (q ◦ p1)− q ◦ p1.

We have

p1 ◦ q =




α 1
2a

1
2b

1
2a

⋄ 0 0
1
2b

⋄ 0 0




and

(p1◦q)⊡ q =


α2 + 1

2a⊡ a⋄ + 1
2b⊡ b⋄ αa+ 1

2βa+ 1
2b⊡ c⋄ αb + 1

2a⊡ c+ 1
2γb

1
2αa

⋄ 1
2a

⋄
⊡ a 1

2a
⋄
⊡ b

1
2αb

⋄ 1
2b

⋄
⊡ a 1

2b
⋄
⊡ b


 ,

so

2(p1 ◦ q) ◦ q

=




2α2 + a⊡ a⋄ + b ⊡ b⋄ 3
2αa+ 1

2βa+
1
2b⊡ c⋄ 3

2αb+
1
2a⊡ c+ 1

2γb
3
2αa

⋄ + 1
2βa

⋄ + 1
2 c⊡ b⋄ a⋄ ⊡ a a⋄ ⊡ b

3
2αb

⋄ + 1
2c

⋄
⊡ a⋄ + 1

2γb
⋄ b⋄ ⊡ a b⋄ ⊡ b




=




α+ α2 αa+ 1
2a αb+ 1

2b

αa⋄ + 1
2a

⋄ ‖a‖
2

a⋄ ⊡ b

αb⋄ + 1
2b

⋄ b⋄ ⊡ a ‖b‖
2



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where in the last equality we used (7) and Proposition 3.4(i). Hence,

{q,p1, q} = 2q ◦ (q ◦ p1)− q ◦ p1 =




α2 αa αb

αa⋄ ‖a‖
2

a⋄ ⊡ b

αb⋄ b⋄ ⊡ a ‖b‖
2




Recall that this must be a multiple of q. Since α 6= 0, it is the α-multiple. Hence,

(8)

‖a‖
2
= αβ,

‖b‖
2
= αγ,

a⋄ ⊡ b = αc,

i.e.,

q =




α a b

a⋄ 1
α
‖a‖

2 1
α
a⋄ ⊡ b

b⋄ 1
α
b⋄ ⊡ a 1

α
‖b‖

2




and α = α2 + ‖a‖
2
+ ‖b‖

2
by (7).

So, a minimal projection having a nonzero element at the place 11 must have
this form. As explained above, any minimal projection is either of this form or may
be obtained from a projection of this form by applying the automorphism U1,2 or
U1,3 from Lemma 7.1. Now the necessity easily follows. �

Proof of the sufficiency. Assume that q ∈ C6 has one of the three forms. We will
show that it is a minimal projection. Since the first and the second forms could
be transformed to the third one by applying the automorphism U1,3 or U1,2 from
Lemma 7.1 and such an automorphism preserves minimal projections, we may
restrict ourselves to the elements of the third form.

We therefore assume that

q =




α a b

a⋄ 1
α
‖a‖

2 1
α
a⋄ ⊡ b

b⋄ 1
α
b⋄ ⊡ a 1

α
‖b‖

2


 ,

where α ∈ R \ {0}, a, b ∈ OR and α = α2 + ‖a‖
2
+ ‖b‖

2
.

We first show that q is a projection. Clearly q∗ = q. To prove that q ⊡ q = q

we need to verify equalities (7). The first one follows from the very assumption of
q. The second one is

1

α
‖a‖

2
= ‖a‖

2
+

1

α2
‖a‖

4
+

1

α2
‖a⋄ ⊡ b‖

2
.

Observe that

‖a⋄ ⊡ b‖
2
= 〈a⋄ ⊡ b, a⋄ ⊡ b〉 = 〈a⊡ (a⋄ ⊡ b), b〉 = ‖a‖

2
‖b‖

2
,

where we used Proposition 3.3(ii) and Proposition 3.4(ii). Thus the second equality
is equivalent to

1

α
‖a‖2 = ‖a‖2 +

1

α2
‖a‖4 +

1

α2
‖a‖2 ‖b‖2 ,

which is the ‖a‖2

α2 -multiple of the first equality.

Similarly, the third equality is the ‖b‖2

α2 -multiple of the first one.
Let us look at the fourth equality. It reads

a = αa+
1

α
‖a‖

2
a+ b⊡

(
1

α
b⋄ ⊡ a

)
.
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Let us compute the right-hand side:

αa+
1

α
‖a‖

2
a+ b⊡

(
1

α
b⋄ ⊡ a

)
= αa+

1

α
‖a‖

2
a+

1

α
‖b‖

2
a

=
1

α
(α2 + ‖a‖2 + ‖b‖2)a = a

by the first equality. Similarly,

αb+ a⊡

(
1

α
a⋄ ⊡ b

)
+

1

α
‖b‖2 b = αb+

1

α
‖a‖2 b+

1

α
‖b‖2 b

=
1

α
(α2 + ‖a‖

2
+ ‖b‖

2
)b = b

and

a⋄ ⊡ b+
1

α
‖a‖

2
·
1

α
a⋄ ⊡ b+

1

α
‖b‖

2
·
1

α
a⋄ ⊡ b

=
1

α2
(α2 + ‖a‖2 + ‖b‖2)(a⋄ ⊡ b)

=
1

α
a⋄ ⊡ b,

so the fifth and sixth equalities hold as well, which completes the proof that q is a
projection.

Next we are going to show that q is minimal. Clearly q 6= 0. Since C6 has rank
three, to show that there is a nonzero projection r with r ⊥ q and q + r 6= 1. We
will distinguish four cases:

Case 1: a = b = 0. Then

q =



1 0 0
0 0 0
0 0 0


 ,

hence, for example, the choice of

r =



0 0 0
0 1 0
0 0 0




works.
Case 2: a 6= 0 and b = 0. Then the third row and the third column of q are zero,

hence the choice of

r =



0 0 0
0 0 0
0 0 1




works.
Case 3: a = 0 and b 6= 0. Then the second row and the second column of q are

zero, hence the choice of

r =



0 0 0
0 1 0
0 0 0




works.
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Case 4: a 6= 0 and b 6= 0. Set

r =




‖a‖2

α2+‖a‖2 − αa

α2+‖a‖2 0

− αa⋄

α2+‖a‖2

α2

α2+‖a‖2 0

0 0 0




By the above r is a projection. Indeed,
(

‖a‖2

α2 + ‖a‖
2

)2

+
α2a⊡ a⋄

(α2 + ‖a‖
2
)2

=
‖a‖2 (α2 + ‖a‖2)

(α2 + ‖a‖
2
)2

=
‖a‖2

α2 + ‖a‖
2

and the second row is made from the first row by muliplying by

α2 + ‖a‖
2

‖a‖
2 ·

(
−

αa⋄

α2 + ‖a‖
2

)
= −

αa⋄

‖a‖
2

from the left.
Moreover, q ⊥ r. Indeed,

r ⊡ q =




α‖a‖2

α2+‖a‖2
− αa⊡a⋄

α2+‖a‖2
‖a‖2a

α2+‖a‖2
− αa

α2+‖a‖2
· a

⋄⊡a
α

‖a‖2b

α2+‖a‖2
− αa

α2+‖a‖2
⊡

a⋄⊡b
α

− α2a⋄

α2+‖a‖2
+ α2a⋄

α2+‖a‖2
− αa⋄⊡a

α2+‖a‖2
+ α2

α2+‖a‖2
· 1
α
a⋄

⊡a − αa⋄⊡b

α2+‖a‖2
+ α2

α2+‖a‖2
· 1
α
a⋄

⊡b

0 0 0


 ,

which equals 0. Thus also q ⊡ r = 0, hence q ◦ r = 0, i.e., r ⊥ q. Finally, clearly
q + r 6= 1 (as b 6= 0).

This completes the proof. �

9. Proofs of the results on unitaries in C6

This section is devoted to the synthesis of the results from previous sections
which leads to proving Theorem 4.2 and Theorem 4.5. We start with the second
theorem.

Proof of Theorem 4.5. Fix two unitary elements u, e ∈ C6. We will describe how
to find a Jordan ∗-automorphism of C6 with the required properties. Note that the
composition of Jordan ∗-automorphisms is again a Jordan ∗-automorphism. So, we
will do the proof in several steps.

At first observe that by Theorem 4.1(iii) we may assume, without loss of gener-
ality, that e is a diagonal matrix.

Next we apply Theorem 4.1(i) to u and find complex units α1, α2, α3 and minimal
projections q1, q2, q3 ∈ C6 such that u = α1q1+α2q2+α3q3. Since q1+q2+q3 = 1,
we may assume (up to relabelling the projections) that q1 has a nonzero element
at the place 11. Hence, by Theorem 8.1 we have

q1 =




α a b

a⋄ 1
α
‖a‖

2 1
α
a⋄ ⊡ b

b⋄ 1
α
b⋄ ⊡ a 1

α
‖b‖

2


 ,

where α ∈ R \ {0}, a, b ∈ OR and α = α2 + ‖a‖
2
+ ‖b‖

2
.

By Proposition 6.2(a) there is an asymmetric triple isomorphism S1 of OR such
that S1(a) ∈ R. It can be extended to a hermitian asymmetric triple isomorphism

of O, let us denote it still by S1. Up to applying the automorphism S̃1 provided by
Proposition 7.2 we may now assume that a ∈ R (note that such an automorphism
preserves diagonal matrices).
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By Proposition 6.2(b) there is an automorphism S2 of OR such that S2(b) ∈
span{e0, e1}. It can be extended to an automorphism of O, let us denote it still by
S2. Note that S2(1) = 1 and S2 preserves R. Hence, up to applying the automor-

phism S̃2 provided by Proposition 7.2 we may now assume that b ∈ span{e0, e1}.
Summarizing, up to now we have reduced the general situation to the case when

e is a diagonal matrix and the entries of q1 are in span{e0, e1}.
We continue by proving that we may further assume without loss of generality

that the entries of q2 are quaternions. By Theorem 8.1 we may distinguish three
cases:

Case 1: q2 =



0 0 0
0 0 0
0 0 1


. Then no more transformation is needed as the entries

of q2 are real numbers.

Case 2: q2 =



0 0 0
0 ξ x

0 x⋄ 1
ξ
‖x‖

2


, where ξ ∈ R \ {0}, x ∈ OR and ξ = ξ2 + ‖x‖2.

By Proposition 6.2(c) there is an automorphism U of OR such that U(e1) = e1
and U(x) ∈ span{e0, e1, e2}. Then U may be extended to an automorphism of O, we

will denote it still by U . Now take the automorphism Ũ3 provided by Corollary 7.3.
This automorphism preserves diagonal matrices and also q1. So, we may assume
without loss of generality that the entries of q2 are in span{e0, e1, e2}, in particular,
they are quaternions.

Case 3: q2 =




ξ x y

x⋄ 1
ξ
‖x‖

2 1
ξ
x⋄

⊡ y

y⋄ 1
ξ
y⋄ ⊡ x 1

ξ
‖y‖

2


, where ξ ∈ R \ {0}, x, y ∈ OR and

ξ = ξ2 + ‖x‖
2
+ ‖y‖

2
.

Recall that q3 = 1− q1 − q2 is a minimal projection. We have

q3 = 1− q1 − q2 =



1− α− ξ −a− x −b− y

−a⋄ − x⋄ 1− 1
α
‖a‖

2
− 1

ξ
‖x‖

2
− 1

α
a⋄ ⊡ b− 1

ξ
x⋄

⊡ y

−b⋄ − y⋄ − 1
α
b⋄ ⊡ a− 1

ξ
y⋄ ⊡ x 1− 1

α
‖b‖

2
− 1

ξ
‖y‖

2


 .

We distinguish two subcases.
Subcase 3.1: α + ξ = 1. Then the first row and the first column of q3 are zero,

in particular x = −a and y = −b. Thus x ∈ R and y ∈ span{e0, e1}, so the entries
of q2 are in span{e0, e1}.

Subcase 3.2: α + ξ < 1. Then we deduce from Theorem 8.1 that the following
equalities hold (we use that a ∈ R):

1− α− ξ = (1− α− ξ)2 + ‖a+ x‖
2
+ ‖b+ y‖

2
,

1−
1

α
‖a‖

2
−

1

ξ
‖x‖

2
=

1

1− α− ξ
‖a+ x‖

2
,

−
1

α
ab−

1

ξ
x⋄

⊡ y =
1

1− α− ξ
(a+ x⋄)⊡ (b+ y),

1−
1

α
‖b‖

2
−

1

ξ
‖y‖

2
=

1

1− α− ξ
‖b+ y‖

2
.
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Let us look at the third equality. By standard algebraic manipulation we get

−( 1
α
− 1− ξ

α
)ab− (1

ξ
− α

ξ
− 1)x⋄

⊡ y = ab+ x⋄
⊡ b+ ay + x⋄

⊡ y,

− 1−ξ
α

ab− 1−α
ξ

x⋄
⊡ y = x⋄

⊡ b+ ay,

−a(
1− ξ

α
b+ y) = x⋄

⊡ (b+
1− α

ξ
y).

Now there are two possibilities:
Sub-subcase 3.2.1: b + 1−α

ξ
y = 0. Then y = − ξ

1−α
b (note that α < 1), hence

y ∈ span{e0, e1}. By Proposition 6.2(c) there is an automorphism U of OR pre-
serving e1 such that U(x) ∈ span{e0, e1, e2}. Then U may be extended to an

automorphism of O, denoted still by U . Up to applying the automorphism Ũ pro-
vided by Proposition 7.2 we may assume that x ∈ span{e0, e1, e2}, thus the entries
of q2 are quaternions.

Sub-subcase 3.2.2: b+ 1−α
ξ

y 6= 0. By Proposition 3.4 we then deduce that

x⋄ = −
1∥∥∥b+ 1−α
ξ

y
∥∥∥
2 a(

1− ξ

α
b + y)⊡ (b+

1− α

ξ
y)⋄.

By Proposition 6.2(c) there is an automorphism U of OR preserving e1 such that
U(y) ∈ span{e0, e1, e2}. Then U may be extended to an automorphism of O,

denoted still by U . Up to applying the automorphism Ũ provided by Proposition 7.2
we may assume that y ∈ span{e0, e1, e2}. By the above formula we deduce that x⋄

(and hence x) is a quaternion. Thus the entries of q2 are quaternions.
Summarizing, we have proved that, up to applying a Jordan ∗-automorphism of

C6 preserving diagonal matrices, we may assume that the entries of q1 and q2 are
quaternions. Thus the entries of q3 = 1−q1−q2 are quaternions as well. Since u is
a linear combination of q1, q2, q3, its entries must be biquaternions. This completes
the proof. �

We continue by establishing connections between the mappings dt and dt3.

Lemma 9.1. Let q ∈ H3(HC) be a minimal projection. Then q̂ is a matrix of rank
two.

Proof. The projection q is clearly minimal also in C6, so it has the form from
Theorem 8.1 and its entries are quaternions. Let us distinguish the three cases:

Case 1: If q =



0 0 0
0 0 0
0 0 1


, then q̂ has clearly rank two.

Case 2: Assume

q =



0 0 0
0 α a

0 a⋄ 1
α
‖a‖

2


 ,

where α ∈ R \ {0}, a ∈ H, and α = α2 + ‖a‖
2
. The third row is obtained by

multiplying the second one by 1
α
a⋄ from the left. Hence, the fifth and sixth rows of

q̂ are linear combinations of the third and fourth rows. Since the third and fourth
rows are linearly independent (as α 6= 0), q̂ is of rank two.
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Case 3: Assume

q =




α a b

a⋄ 1
α
‖a‖

2 1
α
a⋄ ⊡ b

b⋄ 1
α
b⋄ ⊡ a 1

α
‖b‖

2


 ,

where α ∈ R\{0}, a, b ∈ H, α = α2+‖a‖
2
+‖b‖

2
. Then the second row is obtained

by multiplying the first one by 1
α
a⋄ from the left and the third row is obtained

by multiplying the first one by 1
α
b⋄ from the left. So, each row of q̂ is a linear

combination of the first two. �

Lemma 9.2. Let u ∈ H3(HC) be a unitary element. Then dtu = dt3 u.

Proof. It follows from Theorem 4.1(i) that there are complex units α1, α2, α3 and
minimal projections p1,p2,p3 ∈ C6 such that u = α1p1 + α2p2 + α3p2. It follows
from the proof of Theorem 4.1(i) that in this case p1,p2,p3 ∈ H3(HC). Clearly the
expression

û = α1p̂1 + α2p̂2 + α3p̂3

coincides with the spectral decomposition of û in M6.
By Lemma 9.1 projections p̂j are of rank two. Now it easily follows that

dtu = α1α2α3 = dt3 u,

where the first equality follows from the very definition of dt and the second one
follows from Theorem 5.1(ix). �

Lemma 9.3. Let e,u ∈ H3(HC) be unitary elements. Then dte u = dt3,e u.

Proof. We have u = α1e1 + α2e2 + α3e3, where α1, α2, α3 are complex units and
e1, e2, e3 are pairwise orthogonal minimal tripotents in C6 satisfying ej ≤ e for
each j. By the very definition we have

dte u = α1α2α3.

By Lemma 2.3 there is a unitary element v ∈ H3(HC) such that v2 = e. Then

T (x) = {v∗,x∗,v∗} , x ∈ C6

is a triple automorphism ofC6 (by Lemma 2.1) which preservesH3(HC) and satisfies
T (e) = 1. Then

Tu = α1Te1 + α2Te2 + α3Te3,

and T (ej) ≤ T (e) = 1, so Tej are (parwise orthogonal minimal) projections in C6.
Thus

dte u = α1α2α3 = dtTu = dt3 Tu = dt3,e u,

where the third equality follows from Lemma 9.2, while the fourth one is a conse-
quence of the definition in Proposition 5.3. �

Now we are ready to prove the remaining theorem:

Proof of Theorem 4.2. Let e,u ∈ C6 be unitary elements. By Theorem 4.5 there is
a Jordan ∗-automorphism T of C6 such that both T (e) and T (u) belong toH3(HC).
Then

dtu = dtT (u) = dt3 T (u) = dt3,T (e) T (u) · dt3 T (e)

= dtT (e) T (u) · dtT (e) = dte u · dt e.
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The first equality is clear, the second one follows from Lemma 9.2. The third
equality follows from Proposition 5.3(ii), the fourth one follows from Lemma 9.2
and Lemma 9.3. The last equality easily follows from definitions.

This completes the proof. �

10. Determinants of general elements of C6

We have introduced determinants of unitary elements in C6 (see Section 4) and
also of general ⋄-hermitian matrices of biquaternions (in Section 5). These two no-
tions of determinant coincide provided both are defined (by Lemmata 9.2 and 9.3).
In this section we extend the definition of determinant to general elements of C6.

To this end we first observe that some of the results on unitaries hold also for
self-adjoint elements (after some natural modifications).

The following lemma is an analogue of Theorem 4.1. Its proof is essentially the
same, we only should use assertion (c) from Proposition 2.2 instead of assertion (b).

Lemma 10.1. Let a ∈ C6 be a self-adjoint element.

(i) There are real numbers α1, α2, α3 and mutually orthogonal minimal projec-
tions p1,p2,p3 such that a = α1p1 + α2p2 + α3p3.

(ii) The representation from (i) is unique in the natural sense: The triple (α1, α2, α3)
is uniquely determined up to reordering. Further, for any real number α the
sum

∑
αj=α pj is also uniquely determined.

(iii) There is a Jordan ∗-automorphism T of C6 such that T (a) is a diagonal
matrix (with real entries).

The previous lemma enables us to define determinant, dta, of a self-adjoint
element, a, of C6 as the product α1α2α3. This is compatible with the general
definition below.

There is a natural common roof of unitary and self-adjoint elements – an element
x ∈ C6 is said to be normal if it is a linear combination of mutually orthogonal
(minimal projections) or, equivalently, if the Jordan ∗-subalgebra generated by x

and x∗ is associative.
The next lemma is an analogue of Theorem 4.5 and the same proof works.

Lemma 10.2. Let a, b ∈ C6 be two normal elements. Then there is a Jordan
∗-automorphism T : C6 → C6 such that

(i) T (a) is a diagonal matrix;
(ii) The entries of T (b) are biquaternions.

We now deduce an easy consequence.

Corollary 10.3. Let x ∈ C6. Then there is a Jordan ∗-automorphism T : C6 → C6

such that the entries of T (x) are biquaternions.

Proof. Observe that x = a + ib, where a, b are self-adjoint (and hence normal)
elements of C6 and use Lemma 10.2. �

In the next theorem we introduce determinant of a general element of C6 and
collect some basic properties of this notion.

Theorem 10.4. Let x ∈ C6.

(a) There is a unitary element u ∈ C6 such that x = {u,x,u}.
(b) Let u ∈ C6 be a unitary element provided by assertion (a). Then:
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(i) There are real numbers α1, α2, α3 and mutually orthogonal minimal tripo-
tents u1,u2,u3 such that uj ≤ u for j = 1, 2, 3 and x = α1u1 + α2u2 +
α3u3.

(ii) The representation from (i) is unique in the natural sense: The triple
(α1, α2, α3) is uniquely determined up to reordering. Further, for any
real number α the sum

∑
αj=α uj is also uniquely determined.

(c) Let u ∈ C6 be a unitary element provided by (a). Let us fix the representation
of x as in (b). Set

dtu x = α1α2α3.

In case x is unitary, this quantity equals to dtu x from Section 4.
In case x and u belong to H3(HC), we have dtu x = dt3,u x.

(d) The quantity

dtx = dtu x · dtu

does not depend on the particualr choince of u ∈ C6 provided by (a).
Moreover, if x is unitary, this quantity coincides with dtx from Section 4.
If x ∈ H3(HC), then dtx = dt3 x.

(e) Jordan ∗-automorphisms of C6 preserves values of dt.

Proof. Let r(x) be the range tripotent of x (see, e.g., [4, beginning of Section 2]).
Since C6 has finite dimension, r(x) exists and belongs to the JB∗-subtriple of C6

generated by x.
Then x is a positive element in (C6)2(r(x)), in particular

x = {r(x),x, r(x)} .

Let u ∈ C6 be a unitary element such that r(x) ≤ u. It exists, for example, by [11,
Proposition 3.4 and Lemma 3.2(d)]. By Peirce arithmetic we easily deduce

x = {u,x,u} ,

which completes the proof of assertion (a).
Assertion (b) follows from Lemma 10.1 applied to the JB∗-algebra (C6)2(u)

(which is Jordan ∗-isomorphic to C6).
Let us define dtu x as in (c). Assume x is unitary. The decompositions of x

introduced before Theorem 4.2 coincides with the decomposition from (b), so the
two versions of dtu x coincide.

Next assume that both u and x belong to H3(HC). Let T : M3(HC) → M3(HC)
be a linear mapping with properties from Lemma 5.2 (with u in place of e). Then
(see Proposition 5.3)

dt3,u x = dt3(Tx).

Further,

Tx = α1Tu1 + α2Tu2 + α3Tu3.

Having in mind that T is a ∗-isomorphism ofMn(HC) equipped with the product
·u and the involution ∗u onto Mn(HC) equipped with the standard structure of a
C∗-algebra, we deduce that Tu1, Tu2 and Tu3 are minimal projections in H3(HC),
so the above formula is the spectral decomposition of the self-adjoint element Tx
in M3(HC). Now it follows from Lemma 9.1 and Theorem 5.1(ix) that

dt3(Tx) = α1α2α3 = dtu x.

This completes the proof of assertion (c).
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Let us continue by assertion (d). Fix two unitary elements u,v ∈ C6 such that

x = {u,x,u} = {v,x,v} .

We will show that

dtu x · dtu = dtv x · dtv.

To this end fix a triple automorphism S of C6 such that S(u) = 1. Clearly

dtu x = dtS(u) S(x) = dt1 S(x) and dtv x = dtS(v) S(x).

Moreover, by Corollary 4.4

dtv = dtS−1(S(v)) = dtS(v) · dtS−1(1) = dtS(v) · dtu.

It follows that we may assume without loss of generality that u = 1, i.e., it is
enough to prove that

dt1 x = dtv x · dtv

whenever x ∈ C6 is self-adjoint and v ∈ C6 is a unitary element with x = {v,x,v}.
All these properties are preserved by Jordan ∗-automorphisms. By Lemma 10.2

we may assume that both x and v belong to H3(HC). In this case assertion (c)
yields dt1 x = dt3 x and dtv x = dt3,v x, Lemma 9.2 says that dtu = dt3 u and so
we may conclude by Proposition 5.3(ii).

If x is unitary, the coincidence of the two formulae for dtx follows from (b) and
Theorem 4.2.

Further, assume x ∈ H3(HC). Then r(x) ∈ H3(HC), so we may find u in
H3(HC) as well. Then we conclude by (c), Lemma 9.2 and Proposition 5.3.

Finally, assertion (e) is obvious. �

Let us collect some further properties of the mapping dt on C6 defined by The-
orem 10.4(d).

Proposition 10.5. Let T : C6 → C6 be a triple automorphism. Then

dtT (x) = dtx · dt T (1), for all x ∈ C6.

Proof. Fix a unitary element u ∈ C6 such that x = {u,x,u}. Then T (u) is a
unitary element and T (x) = {T (u), T (x), T (u)}. Therefore

dt T (x) = dtT (u) T (x) · dtT (u) = dtu x · dtu · dtT (1) = dtx · dtT (1),

where we used Corollary 4.4. �

Proposition 10.6. Let x ∈ C6. The following assertions are equivalent.

(1) dtx 6= 0;
(2) r(x) is a unitary element;
(3) x is invertible in C6.

Proof. Recall that x is a positive element in (C6)2(r(x)) and r(x) is the small-
est tripotent with this property. Hence, the spectral decomposition theorem (cf.
Proposition 2.2) says that

(9) x =

k∑

j=1

αjuj ,

where the uj ’s are mutually orthogonal minimal tripotents with sum r(x) and
αj > 0 for each j.
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Note that k ≤ 3 and k = 3 if and only if r(x) is unitary. Now it easily follows
that (1) ⇔ (2).

(2) ⇒ (3) Assume that r(x) is unitary. Then x has the above form and k = 3.
Its inverse is

y =

3∑

j=1

α−1
j u∗

j .

Indeed,

x ◦ y =

3∑

j=1

uj ◦ u
∗
j =

3∑

j=1

{uj ,uj ,1} =

3∑

j=1

{uj , r(x),1} = {r(x), r(x),1} = 1.

Further,

x2 ◦ y = {y,1, {x,1,x}} = {{y,1,x} ,1,x} − {x, {1,y,1} ,x}+ {x,1, {y,1,x}}

= {y ◦ x,1,x} − {x,y∗,x}+ {x,1,y ◦ x}

= {1,1,x} − {x,y∗,x}+ {x,1,1} = 2x− {x,y∗,x} .

Since

{x,y∗,x} =





3∑

j=1

αjuj ,

3∑

j=1

α−1
j uj ,

3∑

j=1

αjuj



 =

3∑

j=1

αj {uj ,uj ,uj}

=

3∑

j=1

αjuj = x,

we deduce that x2 ◦ y = x. So, y is the Jordan inverse of x.
(3) ⇒ (2) Suppose that k < 3 in (9). Under this assumption there exists a

minimal tripotent w ∈ C6 which is orthogonal to x (equivalently to uj for all
1 ≤ j ≤ k). It is known that in a Jordan algebra an element x is invertible if and
only if the mapping Ux is (cf. [5, Theorem 4.1.3]). By orthogonality

Ux(w
∗) = {x,w,x} = 0,

contradicting the invertibility of Ux. Therefore k = 3, and hence r(x) =
∑3

j=1 uj

is a unitary element in C6 because the latter has rank 3.
Actually, even more is true – the range tripotent of each invertible element in

a unital JB∗-algebra, B, is a unitary element belonging to B (cf. [18, Remark
2.3]). �

Proposition 10.7. Let x ∈ C6. Then λ 7→ dt(λ · 1 − x) is a complex polynomial
of degree 3 with coefficient 1 at λ3 and coefficient − dtx at λ0.

Proof. If x ∈ H3(HC), the statement follows from Theorem 5.1(viii),(v) and The-
orem 10.4(d). The general case may be reduced to this case using Corollary 10.3
and Theorem 10.4(e). �
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