European Journal of Sport Science

European Journal of Sport Science

A new model of performance classification to standardize the research results in swimming

Jesús J. Ruiz-Navarro, Óscar López-Belmonte, Ana Gay, Francisco CuencaFernandez \& Raúl Arellano

To cite this article: Jesús J. Ruiz-Navarro, Óscar López-Belmonte, Ana Gay, Francisco Cuenca-Fernandez \& Raúl Arellano (2022): A new model of performance classification to standardize the research results in swimming, European Journal of Sport Science, DOI: 10.1080/17461391.2022.2046174

To link to this article: https://doi.org/10.1080/17461391.2022.2046174

Accepted author version posted online: 23
Feb 2022.

Submit your article to this journal

Article views: 56

View related articles

View Crossmark data \nearrow

Publisher: Taylor \& Francis \& European College of Sport Science Journal: European Journal of Sport Science DOI: 10.1080/17461391.2022.2046174

Check for updates
A new model of performance classification to standardize the research results in swimming

Jesús J. Ruiz-Navarro ${ }^{1}$, Óscar López-Belmonte ${ }^{1}$, Ana Gay ${ }^{1}$, Francisco Cuenca-Fernandez ${ }^{1}$, and Raúl Arellano ${ }^{1}$.
${ }^{1}$ Aquatics lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.

Corresponding author: Arellano, Raúl. Email: r.arellano@ugr.es

Funding information

This study was supported by the Ministry of Economy, Industry and Competitiveness (Spanish Agency of Research) and the European Regional Development Fund (ERDF); PGC2018-102116-B-I00 'SWIM II: Specific Water Innovative Measurements: Applied to the performance improvement' and the Spanish Ministry of Education, Culture and Sport: FPU17/02761, FPU16/02629, and FPU19/02477 grant. This article is a part of an international thesis belonging to the Program of PhD in Biomedicine (B11.56.1), from the University of Granada, Granada (Spain).

Abstract

The level of expertise must be defined for the sample studied when report research in sport. Concretely in swimming, apart from the participants' background, the competitive status is based on the level that swimmers participate. Thus, the International Swimming Federation (FINA) points are added to improve the sample level characterization. The aim of this study was two-fold: 1) to assess whether national and regional swimmers from different countries differ in their performance level (based on FINA points), and 2) to propose a model that allows standardizing the research results in swimming. The FINA points of 5876
participants $($ males $=2962$ and females $=2914)$ in 100 m butterfly, backstroke, breaststroke, and freestyle were retrieved from nationals $(\mathrm{n}=21)$ and regionals $(\mathrm{n}=44)$ swimming competitions. One-way analysis of variance was conducted to test the difference in FINA points between swimmers of different countries. Significant disparities (100 to 350 FINA points; $p<0.001$) were observed in national and regional competitions for male and female swimmers among the different countries analyzed. This could lead to misleading conclusions when comparing studies with national or regional swimmers from different countries. In this regard, a new model of performance classification based on national and regional worldwide competition is proposed. This might be used to standardized the swimming research results.

Keywords: Experience, expertise, FINA points,

Highlights

- The current classification of swimmers' status could lead to misleading conclusion when comparing studies from different countries using national or regional swimmers.
- The proposed model will allow to better standardize the research results in swimming, aiding to draw more accurate conclusion when comparing results from different studies.

Keywords: Experience, expertise, FINA points, comparison.

Introduction

Swimming, as an Olympic sport from the beginning of the modern Olympic Games in 1896, is one of the most popular sports worldwide due to its effect on health and wellbeing (Howells \& Jarman, 2016; Swim England's Swimming and Health, 2017); however, the aquatic environment complicates its research. One of the first attempts to explain the swimming techniques and training procedures based on empirical data was the textbook "The science of swimming", first released in 1968 (Counsilman \& Counsilman, 1968). From that moment on, a solid and large scientific community has emerged to investigate competitive swimming (Barbosa, Costa, \& Marinho, 2013).

As a result of that work, it may be concluded that the success in swimming performance depends on several aspects such as biomechanical, physiological, or anthropometrical factors (Barbosa et al., 2013). Hence, researchers have tried to understand which are the ones that make top swimmers to excel over the rest of the swimmers (Barbosa et al., 2010). This fact is indeed observed in the amount of studies comparing elite
with non-elite swimmers (Arellano, Pardillo, \& Gavilan, 2003; Arellano, Pardillo, \& Gavilán, 2002; Jones, Pyne, Haff, \& Newton, 2017), or among the aspects that differentiate the finalists from the non-finalists (Sánchez, Arellano, \& Cuenca-Fernández, 2021)

Contrary to other sports, such as cycling, where guidelines to classify the research subjects have been established (De Pauw et al., 2013; Decroix, De Pauw, Foster, \& Meeusen, 2016), the criteria used to define the level of the sample in swimming studies are not clearly described. When reporting the research results, the skill level of the swimmers is important; however, there is an inconsistency among researchers that makes it difficult to draw conclusions when comparing the results from different studies (Swann, Moran, \& Piggott, 2015). For instance, the term "elite" or "expert" have been used from the "ten years rule" or to describe athletes with two years of accumulated practice (Hayes, Chipman, Segal, \& Glaser, 1985). Whereas, the level of participants in swimming research has also been reported as a function of the level of competition that swimmers reach (Morais, Barbosa, et al., 2020), such as: international (Arellano et al., 2002), national (Connaboy et al., 2016), regional (Ruiz-Navarro, Morouço, \& Arellano, 2020) or age group swimmers (Ruiz-Navarro et al., 2021). Hence, it is possible that national swimmers from different countries might differ significantly in their skill level due to the size and popularity of the sport within the country (Swann et al., 2015) or the qualification criteria established by the corresponding swimming federation.

Together with these terms, the swimmer's personal best time (Costa et al., 2009), the percentage to the world record (Ruiz-Navarro et al., 2020), or the most commonly observed in the literature, the International Swimming Federation (FINA) points (i.e., a value of the swimmer's best mark relative to the world best mark) (Morais, Forte, Nevill, Barbosa, \& Marinho, 2020), are often also reported. These terms are indeed easy to understand and aid to objectively compare results between studies. However, it seems to be no other standards to classify swimmers' status rather than the level of competition that swimmers participate. Therefore, the aim of this study was two-fold: 1) to assess whether national and regional swimmers from different countries differ in their performance level, and 2) to propose a new model that allows standardizing the research results based on FINA points.

Material and methods

Participants

A total of 8320 competitor records (65 competitions $\times 16$ swimmers [finalists and semifinalists] $\times 2$ sexes $\times 4$ events [100 m butterfly, backstroke, breaststroke, and freestyle]), were retrieved from $(\mathrm{n}=21)$ nationals and $(\mathrm{n}=44)$ regionals swimming events in long course (i.e., 50 m swimming pool) celebrated during 2019. The number of swimmers analyzed was 5876 (2962 males and 2914 females), as some of them participated in more than one race (e.g., butterfly and freestyle) or event (e.g., national and regional competition). Since it is not the aim of the current study to compare which country have higher or lower swimming performance level, the anonymity of the results will be kept throughout the rest of the manuscript.

Data collection

All the FINA points were retrieved from publicly accessible database 'swimrankings.net'. The database lists are the results of registered races which are in accordance with the official FINA rules (FINA, 2019c), including electronical time keeping and limits to in-pool current (Born et al., 2020). The data were retrieved by two of the authors, entered manually into an Excel spread sheet file, and double-checked by a third author. The FINA points, which are calculated as $1000 \times$ (World Record time (s) / swim time (s) $)^{3}$) are assigned every year based on the World Record time for eacheyent (FINA, 2011). In this study, the 2019 FINA points reference values were used.

It was intended to include a representation of countries with some international success, thus only those that had achieved at least a medal in one of the last four main international competition were included ($\mathrm{n}=$ 30) (i.e., London 2012 and Rio 2016 Olympic Games; Budapest 2017 and Gwangju 2019 Long Course World Championships). There was no available information regarding any national or regional competition for some of the countries previously determined to inclusion, leading to a total of 21 countries analyzed. One national championship and different regional championships were analyzed in the 21 countries.

The regional events were competition of at least two days' duration that were qualifiers for national events. When possible, at least three different regionals competitions were analyzed and averaged to use a representation of different regions within the country. In Table S1, the competitions analyzed are shown. From the 21 national and 44 regional competitions analyzed, the FINA points obtained by the 16 best national swimmers (finalists and semifinalists) in 100 m butterfly, backstroke, breaststroke, and freestyle events for both male and female swimmers were obtained. To ensure the representation of swimmers from the countries analyzed, only national swimmers of the country where the championship was held were assessed, and therefore foreign swimmers were not included.

The FINA points for the A and B standard qualification time, of the events analyzed, for the Tokyo Olympic Games (FINA, 2019d) and Gwangju World Championships (FINA, 2018) were obtained. These FINA points were computed using the FINA point scoring 2019 for either males and females (FINA, 2019b, 2019a) and the mean of the FINA points of these two major championships was calculated and used as international events.

Statistical analysis

Shapiro-wilk test and visual inspection of histogram was used to test the normality of the sample, Although some variables did not exhibit a normal distribution, for analytical purposes these variables were not transformed. One-way analyses of variance (ANOVA) was used to test differences in FINA points between countries for national and regional competitions. Analyses were replicated with the non-parametric Kruskal-Wallis test. Since the results were similar between the parametric and non-parametric test, only one-way ANOVA results are reported. Bonferroni corrections were used for post-hoc comparisons. To accomplish the second aim of this study, the mean of the lowest FINA points obtained in each event were also calculated. The significance level was set at 0.05 and the analyses were conducted using the Statistical Package for Social Sciences (SPSS, v. 24.0, IBM SPSS Statistics, IBM Corporation, Chicago, IL, USA).

Results

The mean \pm standard deviation (SD) values of the FINA points obtained in the national and regional competitions analyzed and the lowest FINA points obtained in each competition are presented in Table 1 and 2, respectively. The A standard qualification time for the international events showed a mean of $875 \pm$ 14 (males: 881 ± 12, females: 868 ± 13) and the B standard qualification time for the international events showed a mean of 795 ± 16 (males: 800 ± 14, females: 789 ± 17).

One-way ANOVA revealed differences for 100 m butterfly (males, F: 12.70, p<0.001; females, F: 24.65, $\mathrm{p}<0.001$), backstroke (males, $\mathrm{F}: 14.49, \mathrm{p}<0.001$; females, $\mathrm{F}: 25.08, \mathrm{p}<0.001$), breaststroke (males, $\mathrm{F}: 13.18$, $\mathrm{p}<0.001$; females, F: 16.71, $\mathrm{p}<0.001$), and freestyle events (males, F: 11.73, p<0.001; females, F: 28.60, $\mathrm{p}<0.001$) in national championships. Also, differences were found for 100 m butterfly (males, F: 12.30, $\mathrm{p}<0.001$; females, $\mathrm{F}: 17.02, \mathrm{p}<0.001$), backstroke (males, $\mathrm{F}: 13.12$, $\mathrm{p}<0.001$; females, $\mathrm{F}: 11.52, \mathrm{p}<0.001$), breaststroke (males, $\mathrm{F}: 8.42, \mathrm{p}<0.001$; females, $\mathrm{F}: 9.36, \mathrm{p}<0.001$), and freestyle (males, $\mathrm{F}: 10.61, \mathrm{p}<0.001$; females, $\mathrm{F}: 10.32, \mathrm{p}<0.001$) events in regional competitions.

When comparing national competitions, significant differences were observed between countries after posthoc Bonferroni corrections in every event, for male (Figure 1) and female swimmers (Figure 2). Those disparities ranged between 100 to 350 FINA points (Table 1). In regional competitions, significant differences were also observed after post-hoc Bonferroni corrections in every event, for male (Figure 3) and female swimmers (Figure 4). The disparities between countries ranged between 100 to 225 FINA points (Table 2).

Five swimming performance levels were proposed based on the FINA point results obtained (Figure 5) using the following criteria:
i) The first level is based on the A qualifying standards set to participate at the international events, which correspond to ≥ 875 FINA points.
ii) The second level is based on the B qualifying standards set to participate at the international events, which correspond to 800 FINA points (Note that the mean was 794 , but to facilitate its uses 800 is proposed).
iii) The third threshold is established at 650 FINA points, since it is the mean of the lowest FINA points obtained in national championship (Table 1) (Note that the mean was 654, but to facilitate its uses 650 is proposed).
iv) The fourth threshold is set at 450 FINA points, as the mean of the lowest FINA points obtained in regional competitions (Table 1)(Note that the mean was 467, but to facilitate its uses 450 is proposed).
v) The fifth threshold would involve all the performances below 449 FINA points.

Discussion

The aim of this study was two-fold: 1) to assess whether national and regional swimmers from different countries differ in their performance level, and 2) to propose a new model that allows standardizing the research results based on FINA points. The results demonstrated that the best 16 national swimmers are
significantly different in FINA points, and therefore in skill level in 100 m butterfly, backstroke, breaststroke, and freestyle events among countries. This also happened with the regionals. Therefore, we proposed a five-level system of classification to standardize the research results in swimming (Figure 5).

In sport research is very important to define the level of expertise of the sample studied (Hodges, Starkes, \& MacMahon, 2006). This definition must be based on the athletes' highest standard of performance (Swann et al., 2015); however, the standards around the world are different between each other. For example, two swimmers achieving international participation could still be differentiated by a mere participation (around ~ 800 FINA points), or by a participation with options to achieve a medal or a new world record (> 950 FINA points). For national and regional swimmers of different countries, our results showed differences in performance level in the four strokes in males (Figure 1 and 3) and females (Figure 2 and 4). These differences in performance level are related to biomechanical, physiological, or anthropometric differences (Arellano et al., 2002; Leblanc, Seifert, Baudry, \& Chollet, 2005; Takagi, Sugimoto, \& Wilson, 2004; Wells, Schneiderman-walker, \& Plyley, 2006). For instance, in female 100 m backstroke there was a difference of more than 200 FINA points between countries, and still, both could be considered as national (Figure 2). On the other hand, the regional level of one country could be even higher than the national level of other country (e.g., see country 14). Therefore, this could not only lead readers to draw misleading conclusions when comparing national swimmers from different studies, but also confuse the researchers themselves in explaining and making sense of their own results.

The FINA points have been criticized, because some of the scores used are still based on the polyurethane swimsuit era (Bernhardt, 2014). Therefore, the athletes' competitive experience in years or the training time and/or frequency are often reported instead. Although these facts provide valuable information of the athletes investment in swimming, they do not provide any indication of performance level (Swann et al., 2015). Hence, two samples with the same training experience might be considered similar if the FINA points were not complementarily reported.

It is worth noting that the mean performance of some countries (Table 1), were above the B standard qualification times for 2021 Tokyo Olympic Games (i.e., around 800 FINA points). However, as only two swimmers are allowed to compete in the Olympic Games per event and country (FINA, 2019d), the rest of the swimmers would be considered as nationals swimmers, while in other countries they might be considered as internationals. As an extreme illustration, swimmers performing one minute over the World Record would be considered as international level if taken part in the Olympic Games (Nauright \&

Magdalinski, 2003). Hence, although the swimmers' status should be based on their skill level, it is perceived a current way of reporting the swimmers' status highly influenced by the popularity of the sport within the country and the size of the country (Swann et al., 2015).

Previously, national and regional swimmers were defined as those reaching between 700-900 and between 500-700 FINA points, respectively (Veiga, Cala, Frutos, \& Navarro, 2014). However, this categorization was highly influenced by the popularity of the sport within the country and the size of the country (Swann et al., 2015). In fact, the mean of the national swimmers in some countries did not reach those standards in spite of swimmers participated in national and regional competitions (see Table 1 and 2). More recently, swimmers performance level was divided in four groups: top-elite, elite, sub-elite and high-competitive, and this differentiation was based on swimmers' best season time relative to the world record (Post, Koning, Visscher, \& Elferink-Gemser, 2020). Although the differentiation is well argued and clearly defined, the study was focused on those who reached top-elite, without mentioning lower-level swimmers. Indeed, the model proposed in the current study differentiated five groups, and this categorization also included swimmers with a lower performance level than those presented by Post et al. (2020).

We acknowledge a potential limitation, individual medley as well as middle and longer-distance events, were not analyzed. Nevertheless, scientific literature usually reports the performance level based on 100 m events and therefore we thought that the inclusion of middle and longer-distance events would not add relevant information to the aim of this manuscript. Future studies could benefit from the easy method of categorizing competitive level reported in this study.

Conclusion

The current classification of swimmers' status could lead to misleading conclusion when comparing studies from different countries using national or regional swimmers. Together with the background status, FINA points should be always included, since athletes' competitive experience in years or the training time/frequency do not provide indication of performance level. Based on national and regional competition of all over the world, we have proposed a new model of performance classification that might be used to standardize the swimming research results. The proposed model is neither influenced by the popularity of the sport within the country nor the size of the country and this will allow to draw more accurate conclusion when comparing results from different studies.

References

Arellano, Raul., Pardillo, S., \& Gavilan, A. (2003). Usefulness of Strouhal Number in Evaluating Human Under-water Undulatory Swimming. In IX International Symposium on Biomechanics and Medicine in Swimming (pp. 33-38). Saint-Etienne.

Arellano, Raúl, Pardillo, S., \& Gavilán, A. (2002). Underwater Undulatory Swimming: Kinematic Characteristics, Vortex Generation and Application During the Start, Turn and Swimming Strokes. In Proceedings of the XXth International Symposium on Biomechanics in Sports (pp. 29-41). Caceres, Spain.

Barbosa, T. M., Bragada, J. A., Reis, V. M., Marinho, D. A., Carvalho, C., \& Silva, A. J. (2010). Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art. Journal of Science and Medicine in Sport, 13(2), 262-269. https://doi.org/10.1016/j.jsams.2009.01.003

Barbosa, T. M., Costa, M. J., \& Marinho, D. A. (2013). Proposal of a deterministic model to explain swimming performance. International Journal of Swimming Kinetics, 2(1), 1-54.

Bernhardt, R. (2014). FINA points: illogical and impractical. Swimswam.

Born, D.-P., Lomax, I., Horvath, S., Meisser, E., Seidenschwarz, P., Burkhardt, D., \& Romann, M. (2020). Competition-Based Suceess Factors During the Talent Pathway of Elite Male Swimmers. Frontiers in Sports and Active Living, 2 (November), 1-9. https://doi.org/10.3389/fspor.2020.589938

Connaboy, C., Naemi, R., Brown, S., Psycharakis, S., McCabe, C., Coleman, S., \& Sanders, R. (2016). The key kinematic determinants of undulatory underwater swimming at maximal velocity. Journal of Sports Sciences, 34(11), 1036-1043. https://doi.org/10.1080/02640414.2015.1088162

Costa, A. M., Sílva, A. J., Louro, H., Reis, V. M., Garrido, N. D., Marques, M. C., \& Marinho, D. A. (2009). Can the curriculum be used to estimate critical velocity in young competitive swimmers? Journal of Sports Science and Medicine, 8(1), 17-23. https://doi.org/Article

Counsilman, J. E., \& Counsilman, B. E. (1968). The science of swimming.

De Pauw, K., Roelands, B., Cheung, S. S., de Geus, B., Rietjens, G., \& Meeusen, R. (2013). Guidelines to classify subject groups in sport-science research. International Journal of Sports Physiology and Performance, 8, 111-122.

Decroix, L., De Pauw, K., Foster, C., \& Meeusen, R. (2016). Guidelines to classify female subject groups in sport-science research. International Journal of Sports Physiology and Performance, 11(2), 204213. https://doi.org/https://doi.org/10.1123/ijspp.2015-0153

FINA. (2011). Fina Points Table, 1.

FINA. (2018). Swimming qualifying procedure for the 18th FINA world championships-Gwangju 2019.

FINA. (2019a). FINA point scoring 2019 men individual - long course (50 m).

FINA. (2019b). FINA Point Scoring 2019 women individual - long course (50 m).

FINA. FINA Swimming Rules 2017-2021 (2019). Retrieved from http://www.springerlink.com/index/10.1007/978-1-60761-977-2

FINA. (2019d). Qualification system - Games of the XXXII Olympiad - Tokio 2020.

Hayes, J. R., Chipman, S. F., Segal, J. W., \& Glaser, R. (1985). Three problems in teaching general skills. In Thinking and learning skills 2 (pp. 391-405).

Hodges, N. J., Starkes, J. L., \& MacMahon, C. (2006). Expert performance in sport: A cognitive perspective. In A. K. Ericsson, N. Charness, R. R. Hoffman, \& P. J. Feltovich (Eds.), The cambridge handbook of expertise and expert performance (pp. 471-488).

Howells, K., \& Jarman, D. (2016). Benefits of swimming for young children. Physical Education Matters, 11(13), 20-21.

Jones, J., Pyne, D. B., Haff, G., \& Newton, R. (2017). Comparison between elite and subelite swimmers on dry land and tumble turn leg extensor force-time characterisitics. Journal of Strength and Conditioning Research, 32(6), 1762-1769.

Leblanc, H., Seifert, L., Baudry, L., \& Chollet, D. (2005). Arm-leg coordination in flat breaststroke: A Comparative study between elite and non-elite swimmers. International Journal of Sports Medicine, 26(9), 787-797. https://doi.org/10.1055/s-2004-830492

Morais, J. E., Barbosa, T. M., Forte, P., Bragada, J. A., Castro, F. A. d. S., \& Marinho, D. A. (2020). Stability analysis and prediction of pacing in elite 1500 m freestyle male swimmers. Sports Biomechanics, OO(00), 1-18. https://doi.org/10.1080/14763141.2020.1810749

Morais, J. E., Forte, P., Nevill, A. M., Barbosa, T. M., \& Marinho, D. A. (2020). Upper-limb kinematics
and kinetics imbalances in the determinants of front-crawl swimming at maximal speed in young international level swimmers. Scientific Reports, 10(1), 1-8. https://doi.org/10.1038/s41598-020-68581-3

Post, A. K., Koning, R. H., Visscher, C., \& Elferink-Gemser, M. T. (2020). Multigenerational performance development of male and female top-elite swimmers-A global study of the 100 m freestyle event. Scandinavian Journal of Medicine and Science in Sports, 30(3), 564-571. https://doi.org/10.1111/sms. 13599

Ruiz-Navarro, J. J., Cano-Adamuz, M., Andersen, J. T., Cuenca-Fernández, F., López-Contreras, G., Vanrenterghem, J., \& Arellano, R. (2021). Understanding the effects of training on underyater undulatory swimming performance and kinematics. Sports Biomechanics, 00(00), 1-16. https://doi.org/10.1080/14763141.2021.1891276

Ruiz-Navarro, J. J., Morouço, P. G., \& Arellano, R. (2020). Relationship Between Tethered Swimming in a Flume and Swimming Performance. International Journal of Sports Physiology and Performance, 15(8), 1087-1094. https://doi.org/https://doi.org/10.1123/iijspp.2019-0466

Sánchez, L., Arellano, R., \& Cuenca-Fernández, F. (2021). Analysis and influence of the underwater phase of breaststroke on short- course 50 and 100 m performance. International Journal of Performance Analysis in Sport.https://doi.org/10.1080/24748668.2021.1885838

Swann, C., Moran, A., \& Piggott, D. (2015). Defining elite athletes: Issues in the study of expert performance in sport psychology. Psychology of Sport and Exercise, 16(P1), 3-14. https://doi,org/10.1016/j.psychsport.2014.07.004

Swim England's Swimming and Health, C. (2017). The health benefits of swimming.

Takagi, H., Sugimoto, S., \& Wilson, B. D. (2004). Differences in Stroke Phases, Arm-Leg Coordination and Velocity Fluctuation due to Event, Gender and Performance Level in Breaststroke. Sports Biomechanics, (1), 15-27.

Veiga, S., Cala, A., Frutos, P. G., \& Navarro, E. (2014). Comparison of starts and turns of national and regional level swimmers by individualized-distance measurements. Sports Biomechanics, 13(3), 285-295. https://doi.org/10.1080/14763141.2014.910265

Wells, G. D., Schneiderman-walker, J., \& Plyley, M. (2006). Normal physiological characteristics of elite
swimmers. Pediatric Exercise Science, 18, 30-52.

Table 1. The mean \pm standard deviation (SD) values of the International Swimming Federation (FINA) points obtained in the national competitions analyzed and the lowest FINA points obtained in each competition.

	Male				Female				
	Butterf ly	Backstro ke	Breaststro ke	Freesty le	Butterf ly	Backstro ke	Breaststro ke	Frees	$\begin{gathered} \mathrm{LE} \\ \mathrm{P} \end{gathered}$
Count ry 1	$\begin{gathered} 819 \pm \\ 32 \end{gathered}$	788 ± 42	793 ± 60	$\begin{gathered} 839 \pm \\ 50 \end{gathered}$	$\begin{gathered} 831 \pm \\ 56 \end{gathered}$	870 ± 50	$812=$	$833 \pm$	$\begin{gathered} \hline 75 \\ 9 \\ \pm 3 \\ 8 \end{gathered}$
Count ry 2	$\begin{gathered} 779 \pm \\ 59 \end{gathered}$	752 ± 79	705 ± 49	$\begin{gathered} 795 \pm \\ 67 \end{gathered}$	$\begin{gathered} 740 \pm \\ 58 \end{gathered}$	742 ± 62	704 ± 52	$\begin{gathered} 737 \pm \\ 48 \end{gathered}$	$\begin{gathered} 66 \\ 8 \pm \\ 22 \end{gathered}$
Count ry 3	$\begin{gathered} 773 \pm \\ 64 \end{gathered}$	799 ± 62	750 ± 85	$\begin{gathered} 819 \pm \\ 59 \end{gathered}$	$\begin{gathered} 770 \pm \\ 65 \end{gathered}$	788 ± 65	747 ± 75	$\begin{gathered} 832 \pm \\ 72 \end{gathered}$	$\begin{gathered} 68 \\ 9 \pm \\ 35 \end{gathered}$
Count ry 4	$\begin{gathered} 781 \pm \\ 58 \end{gathered}$	808 ± 36	799 ± 73	$\begin{array}{r} 822 \pm \\ 43 \end{array}$	$\begin{gathered} 786 \pm \\ 49 \end{gathered}$	819 ± 32	798 ± 45	$\begin{gathered} 781 \pm \\ 48 \end{gathered}$	$\begin{array}{\|c\|} \hline 73 \\ 7 \pm \\ 27 \\ \hline \end{array}$
Count ry 5	$\begin{gathered} 770 \pm \\ 40 \end{gathered}$	766 ± 52	746 ± 45	40	$\begin{gathered} 734 \pm \\ 51 \end{gathered}$	734 ± 64	743 ± 57	$\begin{gathered} 738 \pm \\ 30 \end{gathered}$	$\begin{gathered} 69 \\ 2 \pm \\ 33 \end{gathered}$
Count ry 6	$\begin{gathered} 797 \pm \\ 69 \end{gathered}$	831 ± 63	780 ± 7	$\begin{gathered} 836 \pm \\ 76 \end{gathered}$	$\begin{gathered} 752 \pm \\ 54 \end{gathered}$	790 ± 69	768 ± 84	$\begin{gathered} 795 \pm \\ 39 \end{gathered}$	$\begin{gathered} 68 \\ 9 \pm \\ 33 \end{gathered}$
Count ry 7	$\begin{gathered} 786 \pm \\ 58 \end{gathered}$	2 ± 3	756 ± 36	$\begin{gathered} 832 \pm \\ 44 \end{gathered}$	$\begin{gathered} 747 \pm \\ 62 \end{gathered}$	766 ± 53	723 ± 39	$\begin{gathered} 811 \pm \\ 49 \end{gathered}$	$\begin{gathered} 72 \\ 4 \pm \\ 32 \end{gathered}$
Count ry 8	$\begin{gathered} 703 \pm \\ 45 \end{gathered}$	662 ± 52	671 ± 39	$\begin{array}{r} 747 \\ \pm 37 \end{array}$	$\begin{gathered} 680 \pm \\ 80 \end{gathered}$	676 ± 60	697 ± 56	$\begin{gathered} 696 \pm \\ 34 \end{gathered}$	$\begin{gathered} 61 \\ 9 \pm \\ 39 \\ \hline \end{gathered}$
Count $\text { ry } 9$	$667 \pm$	661 ± 66	690 ± 47	$\begin{gathered} 728 \pm \\ 42 \end{gathered}$	$665 \pm$	697 ± 76	659 ± 57	$\begin{gathered} 711 \pm \\ 47 \end{gathered}$	59 $4 \pm$ 35
Count ry 10	$\begin{gathered} 768 \pm \\ 43 \end{gathered}$	787 ± 47	738 ± 43	$\begin{gathered} 810 \pm \\ 42 \end{gathered}$	$\begin{gathered} 787 \pm \\ 57 \end{gathered}$	842 ± 67	778 ± 53	$\begin{gathered} 816 \pm \\ 45 \end{gathered}$	$\begin{gathered} 73 \\ 3 \pm \\ 28 \end{gathered}$
Count ry 11	$\begin{gathered} 742 \pm \\ 31 \end{gathered}$	735 ± 38	720 ± 36	$\begin{gathered} 778 \pm \\ 33 \end{gathered}$	$\begin{gathered} 703 \pm \\ 41 \end{gathered}$	751 ± 33	688 ± 46	$\begin{gathered} 729 \pm \\ 30 \end{gathered}$	68 $3 \pm$ 34
Count ry 12	$\begin{gathered} 765 \pm \\ 45 \end{gathered}$	763 ± 47	763 ± 52	$\begin{gathered} 778 \pm \\ 43 \end{gathered}$	$\begin{gathered} 728 \\ 55 \end{gathered}$	765 ± 57	736 ± 46	$\begin{gathered} 765 \pm \\ 40 \end{gathered}$	70 $1 \pm$ 22
Count ry 13	$\begin{gathered} 715 \pm \\ 35 \end{gathered}$	687 ± 41	680 ± 68	$\begin{gathered} 755 \pm \\ 41 \end{gathered}$	$\begin{gathered} 715 \pm \\ 63 \end{gathered}$	714 ± 59	702 ± 53	$\begin{gathered} 745 \pm \\ 55 \end{gathered}$	65 $5 \pm$ 27

Count ry 14	$\begin{gathered} 657 \pm \\ 80 \end{gathered}$	627 ± 80	594 ± 105	$\begin{gathered} 707 \pm \\ 58 \end{gathered}$	$\begin{gathered} 469 \pm \\ 74 \end{gathered}$	512 ± 69	556 ± 116	$\begin{gathered} 574 \pm \\ 34 \end{gathered}$	$\begin{aligned} & 49 \\ & 6 \pm \\ & 90 \end{aligned}$
Count ry 15	$\begin{gathered} 725 \pm \\ 71 \end{gathered}$	687 ± 80	654 ± 84	$\begin{gathered} 758 \pm \\ 49 \end{gathered}$	$\begin{gathered} 637 \pm \\ 107 \end{gathered}$	662 ± 83	604 ± 82	$\begin{gathered} 686 \pm \\ 57 \end{gathered}$	$\begin{gathered} 59 \\ 1 \pm \\ 54 \end{gathered}$
Count ry 16	$\begin{gathered} 725 \pm \\ 64 \end{gathered}$	707 ± 50	685 ± 53	$\begin{gathered} 764 \pm \\ 42 \end{gathered}$	$\begin{gathered} 635 \pm \\ 58 \end{gathered}$	664 ± 70	630 ± 54	$\begin{gathered} 672 \pm \\ 57 \end{gathered}$	$\begin{gathered} 60 \\ 7 \pm \\ 49 \end{gathered}$
$\begin{aligned} & \text { Count } \\ & \text { ry } 17 \end{aligned}$	$\begin{gathered} 709 \pm \\ 51 \end{gathered}$	726 ± 78	667 ± 49	$\begin{gathered} 766 \pm \\ 52 \end{gathered}$	$\begin{gathered} 663 \pm \\ 74 \end{gathered}$	657 ± 73	658 ± 58	$\begin{gathered} 700 \pm \\ 42 \end{gathered}$	$\begin{array}{r} 61 \\ 2 \pm \\ 40 \\ \hline \end{array}$
Count ry 18	$\begin{gathered} 654 \pm \\ 47 \end{gathered}$	628 ± 63	617 ± 64	$\begin{gathered} 694 \pm \\ 49 \end{gathered}$	$\begin{gathered} 654 \pm \\ 54 \end{gathered}$	630 ± 82	657 ± 61	673	$\begin{gathered} 58 \\ 1 \pm \\ 38 \end{gathered}$
Count ry 19	$\begin{gathered} 665 \pm \\ 60 \end{gathered}$	680 ± 70	676 ± 68	$\begin{gathered} 733 \pm \\ 41 \end{gathered}$	$\begin{gathered} 642 \pm \\ 50 \end{gathered}$	705 ± 70	653 ± 66	$\begin{array}{r} 700 \pm \\ 57 \end{array}$	$\begin{gathered} 60 \\ 5 \pm \\ 38 \end{gathered}$
$\begin{aligned} & \text { Count } \\ & \text { ry } 20 \end{aligned}$	$\begin{gathered} 775 \pm \\ 58 \end{gathered}$	768 ± 55	738 ± 32	$\begin{gathered} 800 \pm \\ 40 \end{gathered}$	$\begin{gathered} 714 \pm \\ 46 \end{gathered}$	749 ± 57	711 ± 53	$\begin{gathered} 748 \pm \\ 46 \end{gathered}$	$\begin{gathered} 69 \\ 2 \pm \\ 29 \end{gathered}$
$\begin{aligned} & \text { Count } \\ & \text { ry } 21 \end{aligned}$	$\begin{gathered} 720 \pm \\ 35 \end{gathered}$	741 ± 76	661 ± 71	$\begin{gathered} 753 \pm \\ 50 \end{gathered}$	$\begin{gathered} 655 \pm \\ 57 \end{gathered}$	34 ± 6	648 ± 60	$\begin{gathered} 694 \pm \\ 54 \end{gathered}$	$\begin{gathered} 62 \\ 0 \pm \\ 54 \end{gathered}$
Total	$\begin{array}{r} 738 \pm \\ 71 \end{array}$	700 ± 96	733 ± 83	$\begin{gathered} 727 \pm \\ 99 \end{gathered}$	$\begin{array}{r} 709 \\ 81 \end{array}$	99 ± 88	777 ± 63	$\begin{gathered} 735 \pm \\ 77 \end{gathered}$	$\begin{gathered} 65 \\ 4 \pm \\ 64 \end{gathered}$

LFP: lowest FINA points.

Table 2. The mean \pm standard deviation (SD) values of the International Swimming Federation (FINA) points obtained in the regional competitions analyzed and lowest FINA points obtained in each competition.

	Male				Female				
	Butterf 1y	Backstro ke	Breaststro ke	Freesty le	Butterf ly	Backstro ke	Breaststro ke	Freesty le	$\begin{gathered} \text { LF } \\ \text { P } \end{gathered}$
Count ry 1	46	614 ± 59	601 ± 47	$\begin{gathered} 661 \pm \\ 45 \end{gathered}$	$\begin{gathered} 638 \pm \\ 49 \end{gathered}$	648 ± 57	591 ± 39	$\begin{gathered} 658 \pm \\ 44 \end{gathered}$	55 $7 \pm$ 85
Count ry 2	$\begin{gathered} 575 \pm \\ 79 \end{gathered}$	514 ± 68	535 ± 100	$\begin{gathered} 650 \pm \\ 62 \end{gathered}$	$\begin{gathered} 584 \pm \\ 53 \end{gathered}$	579 ± 70	545 ± 70	$\begin{gathered} 612 \pm \\ 50 \end{gathered}$	$\begin{aligned} & 48 \\ & 6 \pm \\ & 74 \end{aligned}$
$\begin{gathered} \text { Count } \\ \text { ry } 3 \end{gathered}$	-	-	-	-	-	-	-	-	-
Count ry 4	$\begin{gathered} 554 \pm \\ 74 \end{gathered}$	493 ± 96	473 ± 90	$\begin{gathered} 598 \pm \\ 50 \end{gathered}$	$\begin{gathered} 532 \pm \\ 69 \end{gathered}$	562 ± 71	497 ± 97	$\begin{gathered} 588 \pm \\ 46 \end{gathered}$	42 $4 \pm$ 76
Count ry 5	$\begin{gathered} 532 \pm \\ 63 \end{gathered}$	515 ± 51	501 ± 42	$\begin{gathered} 583 \pm \\ 37 \end{gathered}$	$\begin{gathered} 552 \pm \\ 47 \end{gathered}$	576 ± 51	494 ± 50	$\begin{gathered} 602 \pm \\ 47 \end{gathered}$	48 $3 \pm$ 56

$\begin{gathered} \text { Count } \\ \text { ry } 6 \end{gathered}$	-	-	-	-	-	-	-	-	-
Count ry 7	$\begin{gathered} 575 \pm \\ 55 \end{gathered}$	573 ± 79	534 ± 60	$\begin{gathered} 647 \pm \\ 47 \end{gathered}$	$\begin{gathered} 559 \pm \\ 69 \end{gathered}$	529 ± 61	537 ± 65	$\begin{gathered} 625 \pm \\ 58 \end{gathered}$	$\begin{gathered} 50 \\ 0 \pm \\ 56 \end{gathered}$
Count ry 8	$\begin{gathered} 569 \pm \\ 36 \end{gathered}$	$\begin{gathered} 524 \pm \\ 56 \end{gathered}$	512 ± 47	$\begin{array}{r} 615 \pm \\ 59 \end{array}$	$\begin{gathered} 564 \pm \\ 51 \end{gathered}$	$\begin{gathered} 564 \pm \\ 50 \end{gathered}$	573 ± 41	$\begin{gathered} 602 \pm \\ 36 \end{gathered}$	50 $0 \pm$ 46
$\begin{gathered} \text { Count } \\ \text { ry } 9 \end{gathered}$	$\begin{gathered} 457 \pm \\ 65 \end{gathered}$	422 ± 48	469 ± 79	$\begin{gathered} 540 \pm \\ 66 \end{gathered}$	$\begin{gathered} 399 \pm \\ 82 \end{gathered}$	467 ± 56	395 ± 92	$\begin{gathered} 536 \pm \\ 52 \end{gathered}$	$\begin{array}{r} 37 \\ 7 \pm \\ 58 \end{array}$
Count ry 10	$\begin{gathered} 571 \pm \\ 45 \end{gathered}$	$\begin{gathered} 564 \pm \\ 32 \end{gathered}$	520 ± 38	$\begin{gathered} 610 \pm \\ 40 \end{gathered}$	$\begin{gathered} 588 \pm \\ 43 \end{gathered}$	615 ± 51	560 ± 42	$\begin{gathered} 629 \pm \\ 44 \end{gathered}$	$\begin{gathered} 52 \\ 6 \pm \\ 63 \end{gathered}$
Count ry 11	$\begin{gathered} 592 \pm \\ 44 \end{gathered}$	579 ± 31	557 ± 36	$\begin{gathered} 642 \pm \\ 40 \end{gathered}$	$551 \pm$	585 ± 51	539 ± 4	$\left.\begin{array}{c} 610 \pm \\ 39 \end{array}\right)$	$\begin{gathered} 51 \\ 5 \pm \\ 51 \end{gathered}$
Count ry 12	$\begin{gathered} 500 \pm \\ 25 \end{gathered}$	499 ± 45	361 ± 74	$\begin{gathered} 547 \pm \\ 32 \end{gathered}$	$\begin{gathered} 503 \pm \\ 38 \end{gathered}$	366 ± 52	522 ± 33	$\begin{gathered} 501 \pm \\ 38 \end{gathered}$	$\begin{gathered} 43 \\ 8 \pm \\ 68 \\ \hline \end{gathered}$
Count ry 13	$\begin{gathered} 526 \pm \\ 47 \end{gathered}$	480 ± 49	471 ± 59	$\begin{gathered} 589 \pm \\ 40 \end{gathered}$	$\begin{gathered} 532 \pm \\ 65 \end{gathered}$	521 ± 45	521 ± 45	$\begin{gathered} 590 \pm \\ 45 \end{gathered}$	$\begin{gathered} 44 \\ 4 \pm \\ 63 \end{gathered}$
Count ry 14	$530 \pm$	567 ± 70	521 ± 73	$\begin{gathered} 628 \pm \\ 39 \end{gathered}$	$\begin{gathered} 393 \pm \\ 125 \end{gathered}$	473 ± 73	505 ± 87	$\begin{gathered} 544 \pm \\ 41 \end{gathered}$	$\begin{gathered} \hline 42 \\ 4 \pm \\ 11 \\ 5 \end{gathered}$
Count ry 15	-	-	-	J		-	-	-	-
Count ry 16	-	-		\rangle	-	-	-	-	-
Count ry 17	$629 \pm$	600 ± 58	603 ± 52	$\begin{gathered} 655 \pm \\ 36 \end{gathered}$	$\begin{gathered} 592 \pm \\ 49 \end{gathered}$	577 ± 43	580 ± 46	$\begin{gathered} 618 \pm \\ 43 \end{gathered}$	$\begin{gathered} \hline 54 \\ 9 \pm \\ 64 \\ \hline \end{gathered}$
Count ry 18	$\begin{gathered} 490 \pm \\ 59 \end{gathered}$	445 ± 64	460 ± 60	$\begin{gathered} 558 \pm \\ 37 \end{gathered}$	$\begin{gathered} 527 \pm \\ 69 \end{gathered}$	500 ± 55	508 ± 51	$\begin{gathered} 562 \pm \\ 35 \end{gathered}$	$\begin{array}{r} 43 \\ 5 \pm \\ 96 \\ \hline \end{array}$
Count ry 19	$478 \pm$ 71	447 ± 70	444 ± 68	$\begin{gathered} 548 \pm \\ 46 \end{gathered}$	$\begin{gathered} 458 \\ 54 \end{gathered}$	485 ± 48	457 ± 56	$\begin{gathered} 529 \pm \\ 38 \end{gathered}$	38 $1 \pm$ 71
Count ry 20	$\begin{array}{r} 608 \pm \\ 42 \end{array}$	586 ± 77	552 ± 54	$\begin{gathered} 654 \pm \\ 52 \end{gathered}$	$\begin{gathered} 579 \pm \\ 50 \end{gathered}$	598 ± 61	534 ± 51	$\begin{gathered} 618 \pm \\ 45 \end{gathered}$	49 $2 \pm$ 86
Count ry 21	$\begin{gathered} 511 \pm \\ 72 \end{gathered}$	513 ± 74	505 ± 66	$\begin{gathered} 579 \pm \\ 64 \end{gathered}$	$\begin{gathered} 543 \pm \\ 49 \end{gathered}$	540 ± 92	529 ± 55	$\begin{gathered} 578 \pm \\ 35 \end{gathered}$	42 $5 \pm$ 87
Total	$\begin{gathered} 548 \pm \\ 74 \end{gathered}$	526 ± 82	507 ± 84	$\begin{gathered} 606 \pm \\ 62 \end{gathered}$	$\begin{gathered} 535 \pm \\ 88 \end{gathered}$	540 ± 88	523 ± 74	$\begin{gathered} 591 \pm \\ 55 \end{gathered}$	46 $7 \pm$ 54

LFP, lowest FINA points; -, no information found

Figure 1. The male national swimmers' differences in the FINA points between countries. Post hoc significant differences are represented by numbers written in white. The number included in each square shows the difference in the FINA points between the countries, being the darker the square the higher the difference. Panel A) 100 m butterfly, Panel B) 100 m backstroke, Panel C) 100 m breaststroke, Panel D) 100 m freestyle.

Figure 2. The female national swimmers' differences in the FINA points. Post hoc significant differences are represented by numbers written in white. The number included in each square shows the difference in
the FINA points between the countries, being the darker the square the higher the difference. Panel A) 100
m butterfly, Panel B) 100 m backstroke, Panel C) 100 m breaststroke, Panel D) 100 m freestyle.

B)

C)

D)

Figure 3. The male regional swimmers' differences in the FINA points. Post hoc significant differences are represented by numbers written in white. The number included in each square shows the difference in the FINA points between the countries, being the darker the square the higher the difference. Panel A) 100 m butterfly, Panel B) 100 m backstroke, Panel C) 100 m breaststroke, Panel D) 100 m freestyle.

Figure 4. The female regional swimmers' differences in the FINA points. Post hoc significant differences are represented by numbers written in white. The number included in each square shows the difference in
the FINA points between the countries, being the darker the square the higher the difference. Panel A) 100 m butterfly, Panel B) 100 m backstroke, Panel C) 100 m breaststroke, Panel D) 100 m freestyle.

C)

D)

Figure 5. New model of swimmers' performance level classification in swimming. FINA: International
Swimming Federation

	National		Regional		Regional		Regional	
Country	Competition	$\begin{aligned} & \mathrm{Da} \\ & \text { te } \\ & \hline \end{aligned}$	Competition	$\begin{aligned} & \mathrm{Da} \\ & \text { te } \\ & \hline \end{aligned}$	Competition	$\begin{array}{\|c\|} \hline \mathrm{Da} \\ \text { te } \\ \hline \end{array}$	$\begin{gathered} \text { Competit } \\ \text { ion } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Da} \\ & \text { te } \end{aligned}$
Australi a	Australian Championshi ps	$\begin{gathered} 7- \\ 12 \\ \mathrm{Ap} \\ \mathrm{r} \end{gathered}$	-	-		-	-	-
Belarus	$\begin{gathered} \text { Belarus } \\ \text { Championshi } \\ \text { ps } \end{gathered}$	$\begin{gathered} \hline 17- \\ 20 \\ \mathrm{Ap} \\ \mathrm{r} \\ \hline \end{gathered}$	${ }^{-}$	<		-	-	-
Canada	Canadian Swimming Trials	$\begin{gathered} 3-7 \\ \mathrm{Ab} \\ \mathrm{r} \end{gathered}$	Eastern Ontario Regional Championships	$\begin{gathered} 1-3 \\ \mathrm{Fe} \\ \mathrm{~b} \end{gathered}$	Grand Prix	$\begin{gathered} 18- \\ 19 \\ \text { Jan } \end{gathered}$	MAC Winter Invitation al	$\begin{aligned} & 10- \\ & 13 \\ & \text { Jan } \end{aligned}$
$\begin{aligned} & \text { Denmar } \\ & \text { k } \end{aligned}$	Danish Open og DMJ-L	$\begin{gathered} 5-9 \\ \mathrm{Ap} \\ 1 \end{gathered}$	VAT Copenhagen Open	$\begin{gathered} \hline 10- \\ 12 \\ \mathrm{Ma} \\ \mathrm{y} \end{gathered}$	Arena Lyngby Open 2019 Stadion	$\begin{aligned} & 18- \\ & 20 \\ & \text { Jan } \end{aligned}$	Kronborg Open	$\begin{gathered} 1-3 \\ \mathrm{Ma} \\ \mathrm{r} \end{gathered}$
France	Championnat s de France Elite	$\begin{aligned} & 16 \\ & 21 \\ & \text { Ap } \end{aligned}$	Championnats Regionaux Ete	$\begin{gathered} 29- \\ 1 \\ \text { Jul } \end{gathered}$	10e Meeting National des Hortillons	$\begin{aligned} & 18- \\ & 20 \\ & \text { Jan } \end{aligned}$	Champio nnat Regional Hiver	$\begin{gathered} 22- \\ 24 \\ \mathrm{Fe} \\ \mathrm{~b} \end{gathered}$
GB	British Championshi ps	$16-$ 21 Ap r	Leander Spring Reg Qu	$\begin{gathered} \hline 30- \\ 31 \\ \mathrm{Ma} \\ \mathrm{r} \\ \hline \end{gathered}$	-	-	-	-
German y	German Championshi ps	$\begin{gathered} 1-4 \\ \mathrm{Ag} \\ \mathrm{o} \end{gathered}$	Sparkassen Pokalschwimmen	$\begin{array}{\|c} 6-7 \\ \mathrm{Ap} \\ \mathrm{r} \end{array}$	Swim Meeting	$10-$ 12 Ma y	Cup	$\begin{gathered} 23- \\ 24 \\ \mathrm{Ma} \\ \mathrm{y} \end{gathered}$
Greece	Greek Championshi ps	$\begin{gathered} 2-5 \\ \mathrm{Au} \\ \mathrm{~g} \end{gathered}$	Tropaio Nirea Agonistika	$\begin{aligned} & 25- \\ & 27 \\ & \text { Jan } \end{aligned}$	Heimerinoi Agones E-N P-K	$\begin{gathered} 22- \\ 24 \\ \mathrm{Fe} \\ \mathrm{~b} \end{gathered}$	Panellini oi Heimerin oi Agones Andron Gynaiko n	$1-3$ Ma r
Hungar y	CXXI. Hungarian swimming championship	$\begin{gathered} \hline 27- \\ 30 \\ \mathrm{Ma} \\ \mathrm{r} \end{gathered}$	Championship open	$\begin{gathered} 26- \\ 29 \\ \mathrm{Ju} \\ \mathrm{n} \end{gathered}$	JAKED-HOD International Swimming	$\begin{gathered} 23- \\ 24 \\ \mathrm{Fe} \\ \mathrm{~b} \end{gathered}$	50. Csik Ferenc Memoria 1	11- 12 Ma y

Italy	Italian Championshi ps	$\begin{gathered} 1-4 \\ \mathrm{Au} \\ \mathrm{~g} \end{gathered}$	II prova qualificazione Campionato Regionale vasca lunga	$\begin{gathered} 12- \\ 13 \\ \mathrm{Ju} \\ \mathrm{n} \end{gathered}$	Trofeo Citta Longobarda	$\begin{gathered} 15- \\ 16 \\ \mathrm{Ju} \\ \mathrm{n} \end{gathered}$	$\begin{array}{\|c} \text { Prova } \\ \text { ASSOLU } \\ \text { TI } \end{array}$	$\begin{gathered} 27- \\ 28 \\ \text { Ap } \\ \text { r } \end{gathered}$
$\begin{gathered} \text { Lithuani } \\ \mathrm{a} \end{gathered}$	Atviras Lietuvos plaukimo cempionatas	$\begin{gathered} 25- \\ 27 \\ \text { Ap } \\ \text { r } \end{gathered}$	Atviras Kauno miesto plaukimo cempionatas	$\begin{gathered} \hline 15- \\ 16 \\ \mathrm{Ma} \\ \mathrm{r} \end{gathered}$	Lithuanian winter championships	$\begin{gathered} 1-2 \\ \mathrm{Ma} \\ \mathrm{r} \end{gathered}$	Dzukija Cup	$\begin{gathered} 5-6 \\ \mathrm{Ap} \\ \mathrm{r} \end{gathered}$
Netherla nds	Open Nederlandse Kampioensch appen lange baan	$\begin{gathered} 21- \\ 23 \\ \mathrm{Ju} \\ \mathrm{n} \end{gathered}$	Voorjaarslimietw edstrijd	$\begin{gathered} 23- \\ 24 \\ \mathrm{Fe} \\ \mathrm{~b} \end{gathered}$	-	-		
New Zealand	New Zealand Open Championshi ps	$\begin{gathered} \hline 17- \\ 21 \\ \mathrm{Ju} \\ \mathrm{n} \\ \hline \end{gathered}$	-	-	${ }^{-}$			
Norway	Norwegian Championshi ps	$\begin{gathered} 4-7 \\ \mathrm{Jul} \end{gathered}$	Marienlyst Open	$\begin{gathered} 3-5 \\ \mathrm{Ma} \\ \mathrm{y} \end{gathered}$	Skagerrak Swiom	$\begin{aligned} & 25- \\ & 27 \\ & \text { Jan } \end{aligned}$	SSK Kvaliken	$\begin{gathered} 27- \\ 29 \\ \mathrm{Se} \\ \mathrm{p} \\ \hline \end{gathered}$
Poland	Mistrzostwa Polski W Plywaniu Seniorow I Mlodziezowc ow	$\begin{gathered} 15- \\ 19 \\ \mathrm{Ma} \\ \text { y } \end{gathered}$	Arena Grand Prix Puchar Polski	$\begin{gathered} 23- \\ 24 \\ \mathrm{Ma} \\ \mathrm{r} \end{gathered}$	Arena Grand Prix Puchar Polski	$\begin{gathered} 27- \\ 28 \\ \text { Ap } \\ \text { r } \end{gathered}$	Arena Grand Prix Puchar Polski	$\begin{gathered} 6-7 \\ \mathrm{Ap} \\ \mathrm{r} \end{gathered}$
Russia	Russian Championshi ps	$\begin{gathered} 8- \\ 12 \\ \mathrm{Ap} \\ \mathrm{r} \end{gathered}$		$-$	-	-	-	-
Spain	Cto. España Absoluto Y Junior De Verano	$3-7$ Au g	Cto Andalucia Absoluto Junior Verano	$\begin{aligned} & 12- \\ & 14 \\ & \text { Jul } \end{aligned}$	Autonomico Junior y Absoluto de Verano	$\begin{gathered} 13- \\ 14 \\ \text { Jul } \end{gathered}$	Cto. Galego Natacion Absoluto Júnior Infantil Ver	$\begin{gathered} 4-7 \\ \text { Jul } \end{gathered}$
Sweden	SM/ParaSM/JSM	$\begin{gathered} 28- \\ 2 \\ \text { Jul } \end{gathered}$	Ullbergstrofen	$\begin{gathered} \hline 26- \\ 28 \\ \text { Ap } \\ \text { r } \end{gathered}$	Arena Sprint Meet	$\begin{gathered} 2-3 \\ \mathrm{Fe} \\ \mathrm{~b} \end{gathered}$	Meet Vaesteras	$\begin{gathered} \hline 30- \\ 31 \\ \mathrm{Ma} \\ \mathrm{r} \end{gathered}$
Switzerl and	Swiss Long Course Championshi p	$\begin{gathered} 20- \\ 24 \\ \mathrm{Ma} \\ \mathrm{r} \\ \hline \end{gathered}$	16e Meeting Lemanique	$\begin{gathered} 9- \\ 10 \\ \mathrm{Ma} \\ \mathrm{r} \\ \hline \end{gathered}$	RZO: Regionale Sommermeisters chaften	C 22 23 Ju n	48eme Meeting Renens- Jeunesse	$\begin{array}{c\|} \hline 25- \\ 26 \\ \mathrm{Ma} \\ \mathrm{y} \\ \hline \end{array}$
Ukraine	Ukrainian Championshi ps	$\begin{gathered} 23- \\ 26 \\ \text { Ap } \\ \text { r } \end{gathered}$	-	-	-	-	-	-
USA	US National Championshi p	$\begin{gathered} 4-7 \\ \mathrm{De} \\ \mathrm{c} \end{gathered}$	CA SCS Senior Challenge	$\begin{gathered} 15- \\ 17 \\ \mathrm{Fe} \\ \mathrm{~b} \\ \hline \end{gathered}$	Southern Zone South Sectional	$\begin{gathered} 7- \\ 10 \\ \mathrm{Ma} \\ \mathrm{r} \end{gathered}$	Speedo Grand Challeng e	$\begin{gathered} 24- \\ 26 \\ \mathrm{Ma} \\ \mathrm{y} \end{gathered}$

GB, Great Britain; USA, United States of America

