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Abstract A transfer function model with multiplicative

intervention variable is proposed in this paper in order to

forecast air pollen concentration using the temperature as

input series. The inertia process is at the same time modelled

by means of a principal component analysis (PCA) after a

suitable time rescaling. The final model is tested with cypress

pollen data recorded in Granada (Spain) along 11 years.
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1 Introduction

Since Box and Jenkins introduced transfer function models

(TFM), these have been broadly used in several fields,

mainly in Economics, Engineering and also in the Envi-

ronmental field, where this paper is focused.

Some recent contributions of the TFM in Environmet-

rics are the research of El-Din and Smith (2002), Vuorinen

et al. (2004), Al-Awadhi (2005), Chih-Chiang et al.

(2006), and Ping-Chun and Yim (2006).

It is known the existence of correlation between pollen

concentration in the air and climatic variables, such as,

temperature, hours of sun and humidity as example. The

present research is focused on the derivation of a dynamic

regression model using as climatic input the temperature.

But due to the special characteristics of the pollen time

series, whose occurrence season takes some months in a

year, we propose to introduce an intervention variable It as

follows:

y�t ¼ It½tðBÞxt þ Nt� ð1Þ

where t(B) is the transfer function and the intervention

variable takes the value zero out of the pollination interval

in the year. The inertia process is estimated from the

estimated transfer function as:

bN t ¼ Itðyt � btðBÞxtÞ

Moreover, due to the fact that the estimated time series has

several periods with zero values, we propose to model the

inertia process by means of principal components instead

of an ARIMA model as is usual by following the classic

methodology, because the dependence structure is in fact

broken. Therefore, Sect. 2 derives the multiplicative

intervention model with a principal components inertia

process, and Sect. 3 applies it to model the cypress pollen

concentration in the air of Granada (Spain) with observa-

tions measured along 11 years.

2 Derivation of the theoretical model

The pollination season of a certain plant in a geographic

area covers approximately the same interval [t0, t1] all the

years. So the intervention process associated to model Eq.

(1) that we propose is:

It ¼
1; if t 2 ½t0 þ 365k; t1 þ 365k�; k ¼ 0; 1; 2 . . .
0; otherwise

�

ð2Þ
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Because of all the values out of the interval [t0, t1] in a year

are zero, we can do a time rescaling so that the overall time

series for the inertia process defined on the interval ob-

tained by joining all the pollination intervals in only one,

has not a real dependence structure so that the use of an

ARIMA model for it does not look suitable but much more

a model based on independent sample-paths such as a

principal components model. We will recall the working

interval as short interval.

In order to perform a PCA for the inertia process we

consider the time series defined on the short interval

structured as r realisations of itself in h different times that

will be considered as equally spaces knots (Table 1).

Thus, we represent the time series in each one of its r

sample-paths, as linear combination of the eigenvectors

associated to its components:

bN tðxÞ ¼
X

h

i¼1

uiðtÞniðxÞ t ¼ 1; 2; . . . ; h ð3Þ

where ni are the principal components, and (ui(1),...,ui(h))¢
denote the eigenvectors associated to them.

The proportion of the total variability of the inertia

process explained by the i-th component ni, is the quotient

between its associated eigenvalue, and the total variance of

the process. Besides, the proportion of variance accumu-

lated by the k principal components with highest variance

is the sum of the proportions of the total variance explained

by each one of them, due to the uncorrelated character of

the ni.

Then, we can approximate the inertia process in an

optimal way, in function of the k first principal compo-

nents:

bN
�
t ðxÞ ¼

X
k

i¼1

uiðtÞbniðxÞ

So the final estimated model can be written as follows:

by�t ¼ It½bvðBÞxt þ
X

k

i¼1

uiðtÞbni� ð4Þ

We refer to it as the TF-PC model.

3 Application to pollination data

The above described model is now applied to data recorded

from 1992 to 2002 in Granada, a city located at South-East

of Spain. There, the pollination season is the interval be-

tween 15 January and 15 April. So, we consider the

intervention process Eq. (2) with t0 = 15 and t1 = 104,

being [0, 4015] the complete observation interval, that in-

cludes daily observations along 11 years, so that k = 0, 1,

2, ..., 10. In order to homogenise all the years we have

subtracted one day for the leap years so that all of them

consist of 365 days. Therefore we will work with the

estimated inertia process defined on the interval [0, 990]

obtained by joining the eleven pollination intervals in only

one. The PCA will be performed from 66 sample-paths

being each of them a vector with dimension 15.

The input process is the daily average temperature (in

centigrade) and the output process the daily average cy-

press pollen concentration in the air (grains/m3) obtained

from measurements recorded by the Centre for Aerobiol-

ogy of the Department of Botanic at University of Granada.

The transfer function has been estimated by using the

ITSM software developed by Brockwell and Davis (2000).

The following transfer function was obtained:

btðBÞxt ¼ 3:6014rxt þ 1:8051rxt�1 ð5Þ

where one regular difference is applied to yt (cypress pol-

len) and xt (average temperature) in order to get stationa-

rity. Equation (5) shows that cypress pollen has a positive

dependence on the temperature in the same day and the

temperature in the previous day.

Taking into account the length of the time series, inertia

process modelling by PCA is realised by dividing the

residual series in 66 sample-paths with length 15 (r = 66

and h = 15 in Table 1), this is to consider 6 sample-paths

in a year. Applying PCA to inertia process, the following

structure (Table 2) is obtained. In this case, the three first

principal components that explain the 72.6% of the vari-

ability of the inertia process, are included in the model. So,

Table 1 Estimated residual series tabulated for applying PCA
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the TF-PC model given in Eq. (4) has the following

expression:

by�t ¼ It½3:6014rxt þ 1:8051rxt�1 þ
X

3

i¼1

uiðtÞbni� ð6Þ

where eigenvectors, ui(t) (i = 1,2,3), are vectors with

dimension 15 · 1, and are showed in Table 3. Figure 1

shows the cypress pollen smoothing with the model Eq. (6)

for the first half in 2002.

The MSE is computed for 11 years as follows:

MSE ¼ 1

4015

X
4015

t¼1

ðyt � by�t Þ
2 ¼ 3870:5 ð7Þ

In order to compare the performance of the model Eq. (6)

with the classical Box–Jenkins methodology (1970), we

will model the inertia process by a MA(3) structure,

obtaining the Eq. (8), where at is a zero-mean white noise

with variance ra
2 = 1248.7.

bnt ¼ at � 0:3759at�1 � 0:2413at�2 � 0:1008at�3 ð8Þ

The p-values associated to the parameters of this model are

shown in Table 4. This MA(3) structure is added to the

transfer function given in Eq. (5) obtaining the following

model (TF-MA(3) model):

byt ¼ 3:6014rxt þ 1:8051rxt�1 þ bnt ð9Þ

where bnt is given from Eq. (8).

In order to forecast with the TF-PC model, we have to

estimate the p.c.’s values for this period (that is, for

x = 67). These values are obtained by fitting ARIMA

models to the three p.c.’s in the model from sample prin-

cipal components, x = 1,2,...,66. Table 5 shows the

Table 2 PCA of the inertia process for the cypress pollen

ni Eigenvalues % of variance Cum. %

1 7.2067 48.045 48.045

2 2.44071 16.271 64.316

3 1.22392 8.262 72.578

4 1.0334 6.890 79.468

5 0.7939 5.293 84.761

6 0.5604 3.736 88.497

7 0.3443 2.295 90.792

8 0.3375 2.250 93.042

9 0.3136 2.091 95.134

10 0.2498 1.665 96.799

11 0.2097 1.399 98.198

12 0.0975 0.650 98.848

13 0.0745 0.497 99.345

14 0.0556 0.371 99.716

15 0.0426 0.284 100.00

Table 3 Eigenvectors for the inertia process

u1 u2 u3

0.2666 0.2138 0.1116

0.1740 –0.1202 –0.4354

0.2496 –0.2523 0.0505

0.1917 –0.3822 0.3096

0.2014 –0.3586 –0.0736

0.2248 –0.4181 0.0376

0.2389 –0.4106 0.195

0.3104 0.2642 0.0968

0.3060 0.1974 0.1384

0.3001 0.1684 0.2439

0.2804 0.1449 0.0278

0.3014 0.1890 –0.0444

0.3041 0.1911 0.0253

0.2841 0.1226 –0.3597

0.1695 –0.1122 –0.6587
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Fig. 1 TF-PC cypress pollen smoothing

Table 4 ARIMA parameters for the inertia process of the cypress

pollen

Parameter Estimate Standard error t p-value

h1 0.3759 0.0316 11.8863 0.0000

h2 0.2413 0.0326 7.3869 0.0000

h3 0.1008 0.0316 3.1895 0.0014
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ARIMA models fitted for each principal component of the

TF-PC model, and their forecasts values for x = 67.

Forecasts with both models Eqs. (6) and (9) and cypress

pollen values in Granada the 15 days in the cypress polli-

nation interval in 2003 are shown in Table 6 and repre-

sented in Fig. 2. The TF-PC model (MSE = 1091.7723)

provides more accurate forecasts than the TF-MA(3) model

(MSE = 2567.2484).

4 Concluding remarks

Along this paper we have designed a specific model to

forecast pollen concentration in the air along the time. Be-

cause of the characteristics of this process, whose occurrence

has a seasonal cycle, our model consists of an intervention on

the transfer function model proposed by Box and Jenkins and

afterward a PCA modelling of the inertia process resulting by

time rescaling of the original time series that raises to a set of

almost independent sample-paths.

The proposed methodology can be extended in two ways.

The first one is the spatial-time modelling derived of taking

into account pollen measurements recorded in several geo-

graphic stations. A second possible expansion would be the

functional data approach by considering the continuous-time

character of the process and its sample-paths. Some previous

research on this way has been done by Valderrama et al.

(2002), and Escabias et al. (2005).
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