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Bivariate Koornwinder–Sobolev Orthogonal
Polynomials
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Abstract. The so-called Koornwinder bivariate orthogonal polynomials
are generated by means of a non-trivial procedure involving two families
of univariate orthogonal polynomials and a function ρ(t) such that ρ(t)2

is a polynomial of degree less than or equal to 2. In this paper, we extend
the Koornwinder method to the case when one of the univariate families
is orthogonal with respect to a Sobolev inner product. Therefore, we
study the new Sobolev bivariate families obtaining relations between
the classical original Koornwinder polynomials and the Sobolev one,
deducing recursive methods in order to compute the coefficients. The
case when one of the univariate families is classical is analysed. Finally,
some useful examples are given.
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1. Introduction

An interesting non trivial tool for generating orthogonal polynomials in two
variables was introduced in 1965 by S. A. Agahanov ( [2]). Ten years later,
T. H. Koornwinder used that procedure for classical Jacobi polynomials and
introduced Two variable analogues of the classical orthogonal polynomials
(see [6]). In fact, given two univariate weight functions ωi(t) defined on the
intervals (ai, bi) ⊂ R, for i = 1, 2, and a function ρ(t) on (a1, b1), such that
ρ(t)2 is a polynomial of degree less than or equal to 2, orthogonal polynomials
in two variables associated with the weight function defined by

W (x, y) = ω1(x)ω2(y/ρ(x)) (1.1)

were studied. Observe that ρ(t) defined as above can be a polynomial of
degree ≤ 1, or the square root of a non-negative polynomial of degree ≤ 2.

Despite its apparent simplicity, this method provides a key to the study
of algebraic, differential, and analytical properties for a large class of bivariate
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orthogonal families of polynomials. In fact, the most usual bivariate families
correspond to this scheme. For instance, eight of the nine different cases of
Krall and Sheffer classical bivariate polynomials (see [8]) can be constructed
in this way. Two-dimensional Krall and Sheffer polynomials are analogues
of the classical orthogonal polynomials since they are eigenfunctions of sec-
ond order linear partial differential operators and, moreover, they satisfy
orthogonality conditions. In [5], Harnad et al. proved that all Krall–Sheffer
polynomials are connected with two-dimensional superintegrable systems on
spaces with constant curvature.

In [13], the authors exploited the structure of Koornwinder’s weight
function to obtain the coefficients of the three term relation satisfied by the
bivariate polynomials when both weight functions ω1 and ω2 are classical.
Moreover, in [11] differential properties for the weight function W (x, y) are
deduced. Those properties were the extension to the Koornwinder case of the
Pearson’s differential equation of univariate classical weight functions.

Recently, using a similar construction, Olver and Xu ( [14]) presented
explicit constructions of orthogonal polynomials inside quadratic bodies of
revolution, including cones, hyperboloids, and paraboloids. They also con-
structed orthogonal polynomials on the boundary of quadratic surfaces of
revolution. In such a construction, they replaced the univariate weight func-
tion ω2 with the classical weight function on the d-dimensional ball or with
the Lebesgue measure on the sphere, respectively.

In Koornwinder’s construction, a family of bivariate polynomials or-
thogonal with respect to (1.1) can be defined by means of

Pn,m(x, y) = p
(m)
n−m(x) ρm(x) qm

( y

ρ(x)

)
, n ≥ 0, m = 0, 1, . . . , n,

(1.2)

where {p
(m)
n (t)}n≥0 is an orthogonal polynomial sequence (OPS in short)

associated with the weight function ρ2m+1(t)ω1(t), m ≥ 0, and {qn(t)}n≥0

is an OPS associated with ω2(t). In this work, we consider an extension of
Koornwinder’s construction to the Sobolev realm. To this end, we modify the
family of bivariate polynomials (1.2) replacing one of the univariate OPS by
a univariate Sobolev OPS. First, we consider the case where {p

(m)
n (t)}n≥0 is a

Sobolev OPS and, next, we study the case where {qn(t)}n≥0 is a Sobolev OPS.
In both cases, we show that the bivariate polynomials in (1.2) are orthogonal
with respect to a bivariate Sobolev inner product involving first order partial
derivatives. The Sobolev inner product obtained in the second case is quite
similar to the inner product studied by Kwon and Littlejohn in [9]. Whatever,
our most interesting result is the existence of connection formulas relating
the bivariate Sobolev and standard orthogonal polynomials. Algorithms to
obtain the coefficients in those connection formulas are provided.

We refer to the survey paper [12] as the most recent presentation of the
state of the art on Sobolev orthogonal polynomials both in the univariate as
well as the bivariate case.

In the one-dimensional case, the natural framework of application of
Sobolev orthogonal polynomials seems to be the implementation of spectral
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methods for boundary value problems for elliptic differential operators. For
instance, in [15] the second- and fourth-order elliptic boundary value prob-
lems with Dirichlet or Robin boundary conditions are considered, and gener-
alized Jacobi spectral schemes are proposed. In fact, the authors construct an
orthogonal basis of Jacobi–Sobolev polynomials which allows the diagonal-
ization of the involved discrete systems. The corresponding error estimates
and numerical results illustrate the effectiveness and the spectral accuracy of
the method. In several variables, Sobolev orthogonal polynomials on the unit
ball have been considered by Xu in the numerical solution of boundary value
problems for elliptic partial differential operators. For details, we refer again
to the survey paper [12] and the references therein.

The structure of the paper is as follows: In Sect. 2, we introduce the
notation and basic results on orthogonal polynomials used throughout our
work. Section 3 contains the definition and properties of the first type of bi-
variate Sobolev orthogonal polynomials. The case where the first family in
(1.2) is a classical one is studied in Sect. 4. Section 5 contains the definition
and properties of the second type of bivariate Sobolev orthogonal polynomi-
als. In Sect. 6 we have included several explicit examples. Finally, we added
an appendix containing the technical proofs of our results.

2. Preliminaries

We need to fix the notation and recall the basic results used throughout this
work, in order to be self-contained. We will need univariate and bivariate
tools, and we start briefly with the univariate ones.

2.1. Univariate Basic Tools

Let u be a linear functional defined on Π, the linear space of real polynomials
in one variable, by means of its moments

u : Π −→ R

tn �−→ 〈u, tn〉 = μn, n ≥ 0,

and extended by linearity to Π. Hence, we say that u is a moment functional.
We will work with polynomial sequences on Π, {pn(t)}n≥0, such that

deg pn = n, for n ≥ 0, and then {pn(t)}n≥0 is always a basis of Π. In addition,
if 〈u, pn pm〉 = 0, n 	= m, and 〈u, p2

n〉 = hn 	= 0, n ≥ 0, we say that {pn(t)}n≥0

is an orthogonal polynomial sequence (OPS) associated with u.
Following [3,16], given a moment functional u defined as above, there is

not always an OPS associated with it. If an OPS associated with u exists, then
u is called quasi-definite. It is well known that if u is quasi-definite, then its
OPS is unique except for a constant factor. A moment functional u is positive
definite if 〈u, p2〉 > 0 for all non zero polynomial p ∈ Π; positive definite
moment functionals are quasi-definite, and OPS associated with u exists. In
addition, u is symmetric if all odd moments are zero, that is, 〈u, x2n+1〉 =
0, n ≥ 0.
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In this paper, classical moment functionals play a central role. To recall
this concept, we need to revise two usual operations for a moment functional
u

• the distributional derivative: 〈Du, p〉 = −〈u, p′〉,
• the left multiplication by a polynomial : 〈q u, p〉 = 〈u, q p〉,

for p, q ∈ Π. Moreover, the product rule holds, that is, D(q u) = q′ u+ q Du.
A quasi-definite moment functional u is called classical (see, for in-

stance, [10]) if there exist non-zero polynomials φ(t) and ψ(t) with deg φ ≤ 2
and deg ψ = 1, such that u satisfies the distributional Pearson equation

D(φ(t)u) = ψ(t)u. (2.1)

Orthogonality can be defined similarly by using a bilinear form (·, ·)
defined on Π. A polynomial sequence {pn(t)}n≥0 is orthogonal with respect
to (·, ·) if

(pn, pm) = hn δn,m, n,m ≥ 0,

where hn 	= 0. Quasi-definiteness and positive-definiteness are defined as
above. Moreover, given a moment functional u, we can define the bilinear
form (p, q) = 〈u, p q〉 for all p, q ∈ Π.

2.2. Bivariate Basic Tools

We turn our attention to bivariate orthogonal polynomials. Our main refer-
ence for the basic theory is [4].

As an extension of the univariate case, we denote by Π2 the linear
space of bivariate polynomials with real coefficients, and we define a bivariate
moment functional w by using its moments

〈w, xnym〉 = ωn,m, n,m ≥ 0,

and extended by linearity to Π2, where {ωn,m}n,m≥0 is a sequence of real
numbers.

A sequence of polynomials of Π2 will be represented by {Pn,m(x, y) :
n ≥ 0, 0 ≤ m ≤ n} where the set {Pn,m(x, y) : 0 ≤ m ≤ n} for a fixed n
consists of n + 1 linearly independent polynomials of total degree n, that is,
deg Pn,m = n, 0 ≤ m ≤ n. In this way, a sequence of polynomials as above is
a basis of Π2.

We will say that they are orthogonal with respect to w if

〈w, Pn,m Q〉 = 0, 0 ≤ m ≤ n,

for all polynomial Q of total degree less than or equal to n − 1. Moreover, if

〈w, Pn,m Pi,j〉 = Hn,m δn,i δm,j ,

where Hn,m 	= 0, n ≥ 0, then we say that {Pn,m(x, y) : n ≥ 0, 0 ≤ m ≤ n}
is a mutually orthogonal polynomial sequence.

Orthogonality of polynomial sequences can be defined with respect to a
bilinear form (·, ·) acting on Π2 in a similar way as for orthogonality in the
univariate case.
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2.3. Bivariate Koornwinder Orthogonal Polynomials

Bivariate Koornwinder polynomials are constructed from two univariate fam-
ilies of orthogonal polynomials associated with inner products defined by
means of weight functions [2,4,6], and an auxiliary function. This kind of
polynomials are orthogonal with respect to a new bivariate inner product
defined by a specific weight function.

We use the extension of this construction to moment functionals. This
extension, which was studied by the authors in [13], uses two univariate quasi-
definite moment functionals in order to build a quasi-definite bivariate mo-
ment functional. We recall this construction.

Consider two univariate quasi-definite moment functionals u(x) and
v(y). The superscript corresponds to the variable that each moment func-
tional acts upon. Additionally, we need a non-zero function ρ(x) such that
ρ2(x) is a real polynomial of degree less than or equal to 2. We have two cases
as follows:

Case I : ρ(x) = r1 x + r0, where |r1| + |r0| > 0,

Case II : ρ(x) =
√

�2 x2 + 2 �1 x + �0, with |�2| + |�1|
+|�0| > 0, andv(y) is symmetric.

In both cases, we also impose that the functional u(x)
m = ρ(x)2m+1 u(x),

for m ≥ 0, is quasi-definite, and let {p
(m)
n (x)}n≥0 be an OPS associated with

u(x)
m . Moreover, let {qn(y)}n≥0 be an OPS associated with v(y).

Define the bivariate polynomials

Pn,m(x, y) = p
(m)
n−m(x) ρ(x)mqm

(
y

ρ(x)

)
, 0 ≤ m ≤ n, n ≥ 0.

It was shown in [13] that the set {Pn,m(x, y) : 0 ≤ m ≤ n, n ≥ 0} is a
mutually orthogonal basis with respect to the moment functional w defined
by

〈w, Q(x, y)〉 = 〈u(x)
0 , 〈v(y), Q(x, y ρ(x)) 〉 〉, ∀Q ∈ Π2. (2.2)

3. First Type of Bivariate Sobolev Orthogonal Polynomials

Here, we extend the construction described in Sect. 2.3 to include a class of
Sobolev bivariate orthogonal polynomials generated from univariate orthog-
onal polynomials.

Hence, let u ≡ u(x) and v ≡ v(y) be univariate quasi-definite moment
functionals acting on the variables x and y, respectively. When there is no
confusion, we remove the corresponding superscript in the notation.

For m ≥ 0, let {p
(m)
n (x)}n≥0 be an orthogonal polynomial sequence

associated with the quasi-definite moment functional um = ρ(x)2m+1 u, and
let {qm(y)}m≥0 be an orthogonal polynomial sequence associated with v. In
addition, we denote
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h(m)
n = 〈um, (p(m)

n )2〉, (3.1)

h(q)
m = 〈v, q2

m〉, (3.2)

with h
(m)
n 	= 0 and h

(q)
m 	= 0, for n,m ≥ 0.

Let ρ ≡ ρ(x) be a function satisfying the conditions of either Case I or
Case II. Furthermore, we introduce the univariate bilinear form

(p, q)u = 〈u, p q + λ ρς+2 p′ q′〉, λ ∈ R,

where

ς =
{

0, Case I,
2, Case II.

For m ≥ 0, let us define the Sobolev bilinear form

(p, q)m = ( ρm p, ρm q )ρu,

in both Case I and Case II, or equivalently,

(p, q)m =

〈
um, p q + λ ρς

(
p p′)

⎛
⎝

(mρ′)2 mρρ′

mρρ′ ρ2

⎞
⎠

(
q
q′

)〉
, (3.3)

and suppose that (3.3) is quasi-definite for m ≥ 0, that is, there exists a se-
quence of polynomials {s

(m)
n }n≥0 such that deg s

(m)
n = n, for all n ≥ 0. If the

moment functional um is positive definite for m ≥ 0 and λ ≥ 0, then (3.3)
defines an inner product and there exists a sequence of orthogonal polynomi-
als associated with it. When um is quasi-definite and λ ∈ R, some additional
reasonable conditions are needed in order to guarantee the existence of such
sequence of orthogonal polynomials.

Define

(s(m)
n , s

(m)
i )m = h̃(m)

n δn,i, (3.4)

with h̃
(m)
n ≡ h̃

(m)
n (λ) 	= 0, for n, i,m ≥ 0.

Since {s
(m)
n }n≥0 is unique up to a constant factor, we choose it such

that, for n ≥ 0, s
(m)
n (x) has the same leading coefficient as p

(m)
n (x), and

therefore s
(m)
0 (x) = p

(m)
0 (x). We say that {s

(m)
n }n≥0 is a univariate Sobolev

orthogonal polynomial sequence. We remark that when λ = 0, we recover the
original univariate standard orthogonal polynomial sequence {p

(m)
n }n≥0, and

h̃
(m)
n (0) = h

(m)
n , n,m ≥ 0.

The Sobolev bilinear form (3.3) is a particular case of what is usually
known in the literature as a non diagonal Sobolev bilinear form (see, for
instance, [12] and the references therein), and the analytic and algebraic
properties of the associated orthogonal polynomials constitute an interesting
topic in itself.

Now, we present the announced extension to the Sobolev case as follows:

Theorem 3.1. Let w be a bivariate moment functional defined as in (2.2).
The two-variable polynomials defined as

Sn,m(x, y) = s
(m)
n−m(x) ρ(x)m qm

(
y

ρ(x)

)
, 0 ≤ m ≤ n, n ≥ 0, (3.5)
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form a mutually orthogonal sequence with respect to the Sobolev bivariate
bilinear form

(P,Q) =

〈
w, P Q + λ ρ(x)ς (∇P )t

⎛
⎝

ρ(x)2 y ρ′(x) ρ(x)

y ρ′(x) ρ(x) y2 ρ′(x)2

⎞
⎠ ∇Q

〉
,

(3.6)

where λ ∈ R and ∇ is the usual gradient operator ∇ = (∂x, ∂y)t.
Moreover,

Hn,m = (Sn,m, Sn,m) = h̃
(m)
n−m h(q)

m ,

where h̃
(m)
n−m and h

(q)
m were defined in (3.4) and (3.2), respectively.

Proof. Let us define the change of variables x = s and y = t ρ(s). Thus, for
any polynomial P (x, y) ∈ Π2, we get

∂sP (s, t ρ(s)) = ∂xP (s, t ρ(s)) + t ρ′(s) ∂yP (s, t ρ(s)),

∂tP (s, t ρ(s)) = ρ(s) ∂yP (s, t ρ(s)).

Then,

∂xP (x, y) = ∂sP (s, t ρ(s)) − t
ρ′(s)
ρ(s)

∂tP (s, t ρ(s)),

∂yP (x, y) =
1

ρ(s)
∂tP (s, t ρ(s)).

Using this jointly with (2.2) and (3.5), we compute

(Sn,m, Si,j) = 〈w, Sn,m Si,j + λρς(ρ ∂xSn,m + yρ′∂ySn,m)(ρ ∂xSi,j + yρ′∂ySi,j)〉
= 〈ρ(s)u(s)〈v(t), (ρm(s) s

(m)
n−m(s))(ρj(s) s

(j)
i−j(s))qm(t) qj(t)

+ λρς(s)(∂s(ρ
m(s) s

(m)
n−m(s))qm(t)(∂s(ρ

j(s) s
(j)
i−j(s))qj(t)〉〉

= 〈ρu(s), (ρm s
(m)
n−m)(ρj s

(j)
i−j) + λρς(∂s(ρ

m s
(m)
n−m)(∂s(ρ

j s
(j)
i−j)〉

× 〈v(t), qm(t)qj(t)〉
= (s

(m)
n−m, s

(j)
i−j)m 〈v, qm qj〉 = (s

(m)
n−m, s

(m)
i−m)m h(q)

m δm,j .

Since {s
(m)
n }n≥0 is orthogonal with respect to (· , ·)m, the theorem is proved.

�

Notice that the 2 × 2 matrix in (3.6) is positive semidefinite. In Case
I, the entries of this matrix are polynomials, but in Case II, this matrix has
rational functions as entries since ρ′(x) is of the following form:

ρ′(x) =
2 �2 x + 2 �1

2
√

�2 x2 + 2 �1 x + �0
=

�2 x + �1
ρ(x)

.

Then, multiplication by ρ(x)ς = ρ(x)2 cancels out the denominators in the
matrix of the bilinear form (3.6).
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4. The Classical First-Type Univariate Sobolev Orthogonal
Polynomials

In this section, we show that if the univariate moment functional u ≡ u(x)

involved in the construction presented in Sect. 2.3 is classical and ρ is related
to the polynomial coefficients of the Pearson equation (2.1) satisfied by u,
then the orthogonal sequence {s

(m)
n (x)}n≥0 associated with the bilinear form

(·, ·)m defined in (3.3) can be computed recursively.
First, we introduce some notation to be used in the sequel. We write the

three-term recurrence relation satisfied by following: {p
(m)
n (x)}n≥0 as ([3,16])

x p(m)
n (x) = a(m)

n p
(m)
n+1(x) + b(m)

n p(m)
n (x) + c(m)

n p
(m)
n−1(x), n ≥ 0,

p
(m)
−1 (x) = 0, p

(m)
0 (x) = 1, m ≥ 0,

(4.1)

and if

p(m)
n (x) = k(m)

n xn + lower degree terms,

then

a(m)
n =

k
(m)
n

k
(m)
n+1

, b(m)
n =

〈um, x (p(m)
n )2〉

h
(m)
n

, n ≥ 0,

and

c(m)
n =

k
(m)
n−1

k
(m)
n

h
(m)
n

h
(m)
n−1

= a
(m)
n−1

h
(m)
n

h
(m)
n−1

, n ≥ 1,

where h
(m)
n was defined in (3.1).

We work with classical moment functionals u, that is, moment func-
tionals satisfying Pearson equation (2.1). If ρ(x) and φ(x) are related, the
classical character is inherited by the moment functional um.

We have the following preliminary result:

Lemma 4.1. Let u be a classical univariate moment functional satisfying the
Pearson equation (2.1).

(i) In Case I, if ρ(x) = r1 x + r0 divides φ(x),
(ii) In Case II, if ρ(x)2 = �2 x2 + 2 �1 x + �0 divides φ(x),

then, for k ≥ 0, the moment functional

ûk = ρ(x)k u

is classical.

Proof. If a moment functional u is classical, then it satisfies the Pearson
equation D(φ(x)u) = ψ(x)u, with deg φ ≤ 2 and deg ψ = 1. For k ≥ 1, we
compute

D(φ(x) ûk) = D(φ(x) ρ(x)k u) = k ρ(x)k−1 ρ′(x)φ(x)u + ρ(x)k D(φ(x)u)

=
(

k
ρ′(x)φ(x)

ρ(x)
+ ψ(x)

)
ρ(x)ku = ψ̂(x) ûk,

where ψ̂(x) = k ρ′(x) φ(x)
ρ(x) + ψ(x).
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In Case I, since ρ(x) divides φ(x), then

ψ̂(x) = k r1
φ(x)
ρ(x)

+ ψ(x),

is a polynomial of degree equal to 1. In Case II, we have

ψ̂(x) = k (�2 x + �1)
φ(x)
ρ(x)2

+ ψ(x).

Again, since ρ(x)2 divides φ(x) and deg ρ(x)2 ≤ 2, deg φ ≤ 2, and deg ψ = 1,
ψ̂(x) is a polynomial of degree equal to 1.

As a consequence, in both cases ûk is classical. �

Notice that the Hermite, Laguerre, Jacobi, and Bessel are the only fam-
ilies of classical orthogonal polynomials as it was shown in [10], among oth-
ers. In these cases, the polynomial φ(x) is usually normalized as 1, x, 1 − x2,
and x2, respectively. Recall that the Hermite, Laguerre, and Jacobi poly-
nomials are associated with a positive definite moment functional, and the
Bessel polynomials are associated with a quasi-definite moment functional.
By Lemma 4.1, in Case I, ρ(x) must divide φ(x) and, in Case II, ρ(x)2 must
divide φ(x). Then, non trivial cases are obtained by taking ρ(x) = a x in
the Laguerre and Bessel cases, and ρ(x) = a (1 ± x) in the Jacobi case, for
a ∈ R. In Case II, non trivial cases are obtained by taking ρ(x)2 = a x in
the Laguerre and Bessel cases, and ρ(x)2 = a(1 − x2) in the Jacobi case. We
remark that in Case II the functional v must be symmetric.

We return to the construction presented in Sect. 2.3. Under the hy-
potheses of Lemma 4.1, um = ρ(x)2m+1u is classical for m ≥ 0. As proved
in [10], this means that {p

(m)
n (x)}n≥0 satisfies the so-called Second Structure

Relation

p(m)
n (x) = ξ(m)

n

d
dx

p
(m)
n+1(x) + σ(m)

n

d
dx

p(m)
n (x) + τ (m)

n

d
dx

p
(m)
n−1(x), n ≥ 0,

(4.2)

for some constants ξ
(m)
n , σ

(m)
n , and τ

(m)
n , with

ξ(m)
n =

k
(m)
n

(n + 1)k(m)
n+1

=
a
(m)
n

n + 1
	= 0, n,m ≥ 0.

For m ≥ 0, denote by π
(m)
n (x) the polynomial of degree n defined by

π(m)
n (x) = ξ

(m)
n−1 p(m)

n (x) + σ
(m)
n−1 p

(m)
n−1(x) + τ

(m)
n−1 p

(m)
n−2(x), n ≥ 1,

π
(m)
0 (x) = 1. (4.3)

It follows by definition that

d
dx

π
(m)
n+1(x) = p(m)

n (x), n ≥ 0. (4.4)

Now, we study Case I and Case II separately.
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4.1. Case I

In this case, ρ(x) = r1x + r0, |r1| + |r0| > 0, and the bilinear form (·, ·)m

reads

(p, q)m = (1 + λm2 r2
1)〈um, p q〉 + λmr1〈um, (r1x + r0) (p′ q + p q′)〉

+λ 〈um, (r1 x + r0)2 p′ q′〉. (4.5)

Next, we can express the polynomial π
(m)
n (x) in terms of the Sobolev

polynomials. The proof is given at the Appendix A.

Proposition 4.2. For m ≥ 0, let s
(m)
−1 (x) = 0. Then,

π(m)
n (x) = ξ

(m)
n−1 s(m)

n (x) + d
(m)
n,1 s

(m)
n−1(x) + d

(m)
n,2 s

(m)
n−2(x), n ≥ 1,

π
(m)
0 (x) = 1,

(4.6)

where

d
(m)
n,2 =

1

h̃
(m)
n−2

A(I)
n,2h

(m)
n−2, n ≥ 2, (4.7)

d
(m)
n,1 =

1

h̃
(m)
n−1

[
B(I)

n,1 h
(m)
n−1 +

[
B(I)

n,2 − A(I)
n,2 d

(m)
n−1,1

] h
(m)
n−2

ξ
(m)
n−2

]
, n ≥ 1,

(4.8)

where d
(m)
n,i = A(I)

n,i = B(I)
n,i = 0, for n < i,

A(I)
n,2 = τ

(m)
n−1 + λ r2

1 (m + n − 2)
(
mτ

(m)
n−1 + c

(m)
n−1

)
,

B(I)
n,1 = σ

(m)
n−1 + λ r1 (m + n − 1) ρ

(
mσ

(m)
n−1 + b

(m)
n−1

)
,

B(I)
n,2 = τ

(m)
n−1 σ

(m)
n−2 + λ r1

(
mτ

(m)
n−1 + c

(m)
n−1

)
ρ

(
mσ

(m)
n−2 + b

(m)
n−2

)
,

and h
(m)
n , h̃

(m)
n were defined in (3.1) and (3.4), respectively.

Therefore, from (4.2) and (4.6), we deduce a short relation between
univariate Sobolev orthogonal polynomials and the first family of orthogonal
polynomials.

Corollary 4.3. For n ≥ 1, the following relation holds:

s(m)
n (x) + d̃

(m)
n,1 s

(m)
n−1(x) + d̃

(m)
n,2 s

(m)
n−2(x) = p(m)

n (x) + σ̃
(m)
n−1 p

(m)
n−1(x)

+τ̃
(m)
n−1 p

(m)
n−2(x), (4.9)

where

d̃
(m)
n,1 =

d
(m)
n,1

ξ
(m)
n−1

, d̃
(m)
n,2 =

d
(m)
n,2

ξ
(m)
n−1

, σ̃
(m)
n−1 =

σ
(m)
n−1

ξ
(m)
n−1

, τ̃
(m)
n−1 =

τ
(m)
n−1

ξ
(m)
n−1

, (4.10)

and s
(m)
−1 (x) = p

(m)
−1 (x) = 0, s

(m)
0 (x) = p

(m)
0 (x).

The polynomials {s
(m)
n (x)}n≥0 can be deduced recursively from (4.9) if

we know how to compute h̃
(m)
n . The following result provides an effective way

to implement it:
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Proposition 4.4. Let h̃
(m)
−1 = 0, then h̃

(m)
0 = (1+λm2 r2

1)h
(m)
0 and, for n ≥ 1,

h̃(m)
n = C(I)

n h(m)
n + D(I)

n h
(m)
n−1 + E(I)

n h
(m)
n−2 − (d̃(m)

n,1 )2 h̃
(m)
n−1 − (d̃(m)

n,2 )2 h̃
(m)
n−2,

(4.11)

where

C(I)
n = 1 + λ r2

1(m + n)2,

D(I)
n =

(σ(m)
n−1)

2 + λ ρ(mσ
(m)
n−1 + b

(m)
n−1)

2

(ξ(m)
n−1)2

,

E(I)
n =

(τ (m)
n−1)

2 + λ r2
1(mτ

(m)
n−1 + c

(m)
n−1)

2

(ξ(m)
n−1)2

.

Proof. On the one hand, using (4.6), we get

(π(m)
n , π(m)

n )m = (ξ(m)
n−1)

2 h̃(m)
n + (d(m)

n,1 )2 h̃
(m)
n−1 + (d(m)

n,2 )2 h̃
(m)
n−2.

On the other hand, using (4.1), (4.3), (4.4), and the explicit expression of the
Sobolev bilinear form (4.5), we obtain

(π(m)
n , π(m)

n )m = C(I)
n h(m)

n + D(I)
n h

(m)
n−1 + E(I)

n h
(m)
n−2.

Moreover, using directly (4.5), we get h̃
(m)
0 = (s(m)

0 , s
(m)
0 )m = (p(m)

0 , p
(m)
0 )m =

(1 + λm2 r2
1)h

(m)
0 . �

Now, we want to analyse how to compute explicitly the Sobolev orthog-
onal polynomials s

(m)
n (x), its norms

h̃(m)
n = (s(m)

n , s(m)
n )m,

as well as the real numbers d̃
(m)
n,1 , for n ≥ 1, and d̃

(m)
n,2 , for n ≥ 2, assuming

that we know all the coefficients for the standard polynomials {p
(m)
n (x)}n≥0

involved in relations (4.1) and (4.2).
First of all, we know that

h̃
(m)
0 = (1 + λm2 r2

1)h
(m)
0 ,

and we can compute d̃
(m)
2,2 and d̃

(m)
1,1 by using (4.7) and (4.8), respectively,

and (4.10). Then, we use (4.11) for n = 1, and we deduce h̃
(m)
1 . Next, we can

compute d̃
(m)
3,2 and d̃

(m)
2,1 , and from (4.11) for n = 2 using d̃

(m)
2,2 and d̃

(m)
2,1 we

obtain h̃
(m)
2 , and so on. In Fig. 1 we can see how the algorithm generates all

the tilde constants.
Finally, using expression (3.5), relation (4.9) can be extended to the

bivariate case multiplying by ρ(x)mqm

(
y

ρ(x)

)
. Therefore, bivariate Sobolev

orthogonal polynomials are related to the standard bivariate orthogonal poly-
nomials, and we can compute them recursively.
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Figure 1. Relation between norms and coefficients for n ≥ 0
in Case I. Color code for the arrows: blue arrows: we use
(4.7); green arrows: we use (4.8); red arrows: we use (4.11)

Theorem 4.5. For n ≥ 1 and 0 ≤ m ≤ n, the following relation holds:

Sn,m(x, y) + d̃
(m)
n−m,1Sn−1,m(x, y) + d̃

(m)
n−m,2Sn−2,m(x, y)

= Pn,m(x, y) + σ̃
(m)
n−m−1Pn−1,m(x, y) + τ̃

(m)
n−m−1Pn−2,m(x, y),

and S0,0(x, y) = P0,0(x, y).

4.2. Case II

In this case, ρ(x) =
√

�2 x2 + 2 �1 x + �0, with |�2| + |�1| + |�0| > 0, and the
bilinear form (3.3) reads

(p, q)m = 〈um, p q〉 + λm2 〈um, (�2 x + �1)2 p q〉
+λm 〈um, (�2 x + �1) ρ2(x) (p′ q + p q′)〉 + λ 〈um, ρ4(x) p′ q′〉

= 〈um, p q〉 + λm2 〈um, (�2 x + �1)2 p q〉
+λm 〈um, (�2 x + �1) (�2 x2 + 2 �1 x + �0) (p′ q + p q′)〉
+λ 〈um, (�2 x2 + 2 �1 x + �0)2 p′ q′〉. (4.12)

Recall that v must be a symmetric moment functional.
A similar reasoning as in Proposition 4.2 allows us to prove the next

result, taking into account the explicit expression of the bilinear form in this
case (4.12). The explicit expressions of the coefficients are showed in the
Appendix.

Proposition 4.6. For m ≥ 0, let s
(m)
−1 (x) = s

(m)
−2 = s

(m)
−3 = 0 and s

(m)
0 (x) =

p
(m)
0 (x). Then, for n ≥ 1, the polynomials π

(m)
n (x) defined in (4.3) satisfy

π(m)
n (x) = ξ

(m)
n−1s

(m)
n (x) + e

(m)
n,1 s

(m)
n−1(x) + e

(m)
n,2 s

(m)
n−2(x)

+e
(m)
n,3 s

(m)
n−3(x) + e

(m)
n,4 s

(m)
n−4(x), (4.13)
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where e
(m)
n,i = 0 for n < i, and

e
(m)
n,4 h̃

(m)
n−4 = A(II)

n,1 h
(m)
n−4,

e
(m)
n,3 h̃

(m)
n−3 = B(II)

n,1 h
(m)
n−3 + B(II)

n,2

h
(m)
n−4

ξ
(m)
n−4

− [e(m)
n,4 h̃

(m)
n−4]

ξ
(m)
n−4

e
(m)
n−3,1, (4.14)

e
(m)
n,2 h̃

(m)
n−2 = C(II)

n,1 h
(m)
n−2 + C(II)

n,2

h
(m)
n−3

ξ
(m)
n−3

+ C(m)
n,3

h
(m)
n−4

ξ
(m)
n−3

− [e(m)
n,3 h̃

(m)
n−3]

ξ
(m)
n−3

e
(m)
n−2,1 − [e(m)

n,4 h̃
(m)
n−4]

ξ
(m)
n−3

e
(m)
n−2,2, (4.15)

e
(m)
n,1 h̃

(m)
n−1 = D(II)

n,1 h
(m)
n−1 + D(II)

n,2

h
(m)
n−2

ξ
(m)
n−2

+ D(II)
n,3

h
(m)
n−3

ξ
(m)
n−2

− [e(m)
n,2 h̃

(m)
n−2]

ξ
(m)
n−2

e
(m)
n−1,1 − [e(m)

n,3 h̃
(m)
n−3]

ξ
(m)
n−2

e
(m)
n−1,2 − [e(m)

n,4 h̃
(m)
n−4]

ξ
(m)
n−2

e
(m)
n−1,3.

(4.16)

As in Case I, we can establish a finite relation between Sobolev orthog-
onal polynomials and the first family of orthogonal polynomials joining (4.2)
and (4.13).

Corollary 4.7. For n ≥ 1, the following relation holds:

s(m)
n (x) + ẽ

(m)
n,1 s

(m)
n−1(x) + ẽ

(m)
n,2 s

(m)
n−2(x) + ẽ

(m)
n,3 s

(m)
n−3(x) + ẽ

(m)
n,4 s

(m)
n−4(x)

= p(m)
n (x) + σ̃

(m)
n−1 p

(m)
n−1(x) + τ̃

(m)
n−1 p

(m)
n−2(x),

(4.17)

where

ẽ
(m)
n,i =

e
(m)
n,i

ξ
(m)
n−1

, i = 1, 2, 3, 4,

and s
(m)
0 (x) = p

(m)
0 (x).

Relation (4.17) and the explicit expressions of the coefficients e
(m)
n,i , for

i = 1, 2, 3, 4, given in Proposition 4.6, can be used to compute {s
(m)
n (x)}n≥0.

The norms h̃
(m)
n are computed recursively as follows (Fig. 2):

Proposition 4.8. Let h̃
(m)
−1 = 0. Then,

h̃
(m)
0 =

[
1 + λm2

(
(�2 b

(m)
0 + �1)2 + �22 a

(m)
0 c

(m)
1

)]
h

(m)
0 ,

and, for n ≥ 1,

h̃(m)
n = E(II)

n h(m)
n + F (II)

n h
(m)
n−1 + G(II)

n h
(m)
n−2 −

4∑
i=1

(ẽ(m)
n,i )2 h̃

(m)
n−i, (4.18)

where the explicit expressions of the coefficients E(II)
n , F (II)

n and G(II)
n are

given in the Appendix.
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(A) (B)

(C) (D)

Figure 2. In each diagram, the coefficients and norms in-
dicated across the same row are multiplied. The resulting
products are terms appearing in the referenced equations

Finally, relation (4.17) can be translated to the bivariate case by multi-
plying by ρ(x)mqm

(
y

ρ(x)

)
.

Theorem 4.9. We get S0,0(x, y) = P0,0(x, y), and for n ≥ 1 and 0 ≤ m ≤ n,
the following relation holds:

Sn,m(x, y) + ẽ
(m)
n−m,1Sn−1,m(x, y) + ẽ

(m)
n−m,2Sn−2,m(x, y)

+ ẽ
(m)
n−m,3Sn−3,m(x, y) + ẽ

(m)
n−m,4Sn−4,m(x, y)

= Pn,m(x, y) + σ̃
(m)
n−m−1Pn−1,m(x, y) + τ̃

(m)
n−m−1Pn−2,m(x, y).

An interesting case appears when ρ(x)2 = φ(x). In this case, not only
um is classical for m ≥ 0 (Lemma 4.1), and {p

(m)
n (x)}n≥0 satisfies (4.2), but

also {p
(m)
n (x)}n≥0 satisfies the structure relation (see, for instance, [10]) as

follows:

ρ(x)2
d
dx

p(m)
n (x) = ϑ(m)

n p
(m)
n+1(x) + ν(m)

n p(m)
n (x) + �(m)

n p
(m)
n−1(x), n ≥ 1,

(4.19)

where ρ(x)2 = �2 x2 + 2 �1 x + �0, and ϑ
(m)
n = �2 na

(m)
n .



MJOM Bivariate Koornwinder–Sobolev Orthogonal Polynomials Page 15 of 36 234

In such a situation, the relation between standard and Sobolev polyno-
mials is shorter than (4.17).

Proposition 4.10. For m ≥ 0, let s
(m)
−1 (x) = 0. Then,

p(m)
n (x) = s(m)

n (x) + f
(m)
n,1 s

(m)
n−1(x) + f

(m)
n,2 s

(m)
n−2(x), n ≥ 1,

s
(m)
0 (x) = p

(m)
0 (x),

(4.20)

where f
(m)
n,i = Â(II)

n,i = B̂(II)
n,i = 0, for n < i,

f
(m)
n,2 =

1

h̃
(m)
n−2

Â(II)
n,2 h

(m)
n−1, n ≥ 2, (4.21)

f
(m)
n,1 =

1

h̃
(m)
n−1

[
B̂(II)

n,1 h(m)
n + [B̂(II)

n,2 − Â(II)
n,2 f

(m)
n−1,1]h

(m)
n−1

]
, n ≥ 1,

(4.22)

and, if we denote ρ̂(x) = �2 x + �1, then

Â(II)
n,2 = λ �2 a

(m)
n−2 (m + n − 2)(m�2 c(m)

n + �(m)
n ),

B̂(II)
n,1 = λ �2 a

(m)
n−1 (m + n − 1) (mρ̂(b(m)

n ) + ν(m)
n ),

B̂(II)
n,2 = λ(mρ̂(b(m)

n−1) + ν
(m)
n−1)(m�2 c(m)

n + �(m)
n ).

Proof. Observe that

p(m)
n (x) = s(m)

n (x) +
n−1∑
i=0

f
(m)
n,n−i s

(m)
i (x),

where

f
(m)
n,n−i =

(p(m)
n , s

(m)
i )m

h̃
(m)
i

, 0 ≤ i ≤ n − 1.

Using the explicit expression of the Sobolev bilinear form (4.12) and the
structure relation (4.19), we deduce that f

(m)
n,n−i = 0, for 0 ≤ i ≤ n − 3. The

explicit expressions for the coefficients f
(m)
n,1 and f

(m)
n,2 are deduced after a

straightforward computation similar to the proof of Proposition 4.2. �

Finally, the norms can be computed in a simpler way.

Proposition 4.11. Let h̃
(m)
−1 = 0. If we denote ρ̂(x) = �2 x + �1, then

h̃
(m)
0 = [1 + λm2(ρ̂(b(m)

0 ))2]h(m)
0 + λm2�22(a

(m)
0 )2h(m)

1 ,

and, for n ≥ 1 (Fig. 3),

h̃(m)
n = Ĉ(II)

n h
(m)
n+1 + D̂(II)

n h(m)
n + Ê(II)

n h
(m)
n−1 − (f (m)

n,1 )2 h̃
(m)
n−1 − (f (m)

n,2 )2 h̃
(m)
n−2,

(4.23)
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Figure 3. Relation between norms and coefficients for n ≥ 0.
Color code: blue–(4.21), green–(4.22), red–(4.23)

where

Ĉ(II)
n = λ�22(a

(m)
n )2(m + n)2,

D̂(II)
n = 1 + λ(mρ̂(b(m)

n ) + ν(m)
n )2,

Ê(II)
n = λ(m�2 c(m)

n + �(m)
n )2.

As in Case I, relation (4.20) can be translated to the bivariate case by
multiplying by ρ(x)mqm

(
y

ρ(x)

)
. In this case, we deduce an expression of a

standard bivariate polynomial as a linear combination of three consecutive
first-type bivariate Sobolev orthogonal polynomials.

Corollary 4.12. For n ≥ 1 and 0 ≤ m ≤ n, the following relation holds:

Pn,m(x, y) = Sn,m(x, y)+f
(m)
n−m,1 Sn−1,m(x, y) + f

(m)
n−m,2 Sn−2,m(x, y),

with S0,0(x, y) = P0,0(x, y), and Si,j(x, y) = 0 for i < j.

5. Second Type of Bivariate Sobolev Orthogonal Polynomials

Now, we replace the univariate linear functional acting on the second vari-
able y in the construction described in Sect. 2.3 by a univarite quasi-definite
Sobolev bilinear form and study its associated sequence of orthogonal poly-
nomials.

Again, let u ≡ u(x) and v ≡ v(y) be univariate quasi-definite moment
functionals acting on the variables x and y, respectively, and let ρ(x) be a
function satisfying the conditions of either Case I or Case II above.

Define the univariate Sobolev bilinear form

(p, q)v = 〈v, p q + λ p′ q′〉, (5.1)

where λ is a real number such that (·, ·)v is quasi-definite. Observe that when
v is positive definite and λ ≥ 0, then (5.1) defines an inner product.
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Let {sm(y)}m≥0 be the corresponding univariate orthogonal polynomial
sequence, standardized in such a way the leading coefficient of sm(y) is the
same as the leading coefficient of qm(y), for m ≥ 0. Therefore, s0(y) = q0(y).
In addition, let

ĥ(s)
m = ĥ(s)

m (λ) = (sm, sm)v 	= 0, m ≥ 0. (5.2)

Note that ĥ
(s)
m (0) ≡ h

(q)
m .

Observe that in Case II the moment functional v is symmetric, and
then, the bilinear form (·, ·)v is also symmetric. Moreover, if v is classical,
then the only possibilities are Hermite and Gegenbauer moment functionals.

Therefore, we can construct bivariate polynomials as follows:

Theorem 5.1. Let w be a bivariate moment functional defined as in (2.2).
The polynomials defined as

Ŝn,m(x, y) = p
(m)
n−m(x) ρ(x)m sm

(
y

ρ(x)

)
, n ≥ 0, 0 ≤ m ≤ n (5.3)

constitute a mutually orthogonal basis with respect to the bivariate Sobolev
bilinear form

(P,Q)S =
〈
w, P Q + λ ρ2 ∂yP ∂yQ

〉
, (5.4)

where λ ∈ R. Moreover,

Ĥn,m = (Ŝn,m, Ŝn,m)S = h
(m)
n−m ĥ(s)

m ,

where h
(m)
n−m and ĥ

(s)
m were defined in (3.1) and (5.2).

Proof. We compute

(Ŝn,m, Ŝi,j)S = 〈w, Ŝn,m Ŝi,j〉 + λ〈w, ρ2 ∂yŜn,m ∂yŜi,j〉.
Using (2.2) and (5.3) in the first term of the right side, we get

(Ŝn,m, Ŝi,j)S = 〈ρm+j+1 u, p
(m)
n−m p

(j)
i−j〉〈v, sm sj + λ s ′

m s ′
j〉.

Therefore, (Ŝn,m, Ŝi,j)S = h
(m)
n−mĥ

(s)
m δn,i δm,j . �

Since {qm(y)}m≥0 is a standard OPS associated with the functional v,
it satisfies a three-term recurrence relation

y qm(y) = am qm+1(y) + bm qm(y) + cm qm−1(y), m ≥ 0,

q−1(y) = 0, q0(y) = 1,

and if qm(y) = km ym + lower degree terms, then

am =
km

km+1
, bm =

〈v, y q2
m〉

h
(q)
m

, cm+1 =
km

km+1

h
(q)
m+1

h
(q)
m

= am

h
(q)
m+1

h
(q)
m

,

for m ≥ 0, and h
(q)
m defined in (3.2). In Case II, since v is symmetric, then

bm = 0, m ≥ 0, and therefore, polynomials qm(y) are symmetric, that is,

qm(−y) = (−1)m qm(y), m ≥ 0.

As in Sect. 4, if v is a classical linear functional, then orthogonal poly-
nomials {qm(y)}n≥0 satisfy a Second Structure Relation ( [10]) as (4.2), that
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is, a polynomial can be written in terms of three consecutive derivatives in
the form

qm(y) = ξm
d
dy

qm+1(y) + σm
d
dy

qm(y) + τm
d
dy

qm−1(y), m ≥ 0, (5.5)

for some constants ξn, σm, and τm, with

ξm =
km

(m + 1)km+1
=

am

m + 1
	= 0, m ≥ 0.

In Case II, from the symmetry, we get σm = 0, for m ≥ 0.
As in the above section, we define the polynomial

πm(y) = ξm−1 qm(y) + σm−1 qm−1(y) + τm−1 qm−2(y), m ≥ 0,

π0(y) = 1.
(5.6)

Then,

d
dy

πm+1(y) = qm(y), m ≥ 0.

Proposition 5.2. Suppose that v is a classical linear functional. Then,

πm(y) = ξm−1 sm(y) + dm,1 sm−1(y) + dm,2 sm−2(y), m ≥ 0,

π0(y) = 1,
(5.7)

where

dm,2 =
τm−1 h

(q)
m−2

ĥ
(s)
m−2

, m ≥ 2,

dm,1 =
1

ĥ
(s)
m−1

[
σm−1 h

(q)
m−1 +

τm−1 h
(q)
m−2

ξm−2
(σm−2 − dm−1,1)

]
, m ≥ 1.

In Case II, dm,1 = 0, m ≥ 0, and Sobolev orthogonal polynomials {sm(y)}m≥0

are also symmetric polynomials.

Using (5.5) and (5.7) we can deduce a finite relation between the Sobolev
orthogonal polynomials and the second family of orthogonal polynomials.

Corollary 5.3. For m ≥ 1, the following relation holds:

sm(y) + d̂m,1 sm−1(y) + d̂m,2 sm−2(y) = qm(y) + σ̂m−1 qm−1(y)
+τ̂m−1 qm−2(y), (5.8)

where

d̂m,i =
dm,i

ξm−1
, i = 1, 2, σ̂m−1 =

σm−1

ξm−1
, τ̂m−1 =

τm−1

ξm−1
,

and s0(y) = q0(y).
In Case II we get d̂m,1 = σ̂m−1 = 0, for m ≥ 1.

The polynomials {sm(y)}n≥0 can be deduced recursively from (5.7) if
we know how to compute ĥ

(s)
n . We can do so effectively as follows:
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Proposition 5.4. Let ĥ
(s)
−1 = 0 and ĥ

(s)
0 = h0. Then, for m ≥ 1,

ĥ(s)
m = h(q)

m + (σ̂2
m−1 + λ ξ−2

m−1)h
(q)
m−1 + τ̂ 2

m−1 h
(q)
m−2 − d̂ 2

m,1 ĥ
(s)
m−1 − d̂ 2

m,2 ĥ
(s)
m−2.

Finally, we translate relation (5.8) to the bivariate case, relating Sobolev
orthogonal polynomials to standard bivariate polynomials.

Theorem 5.5. For n ≥ 1 and 0 ≤ m ≤ n, there exist real numbers such that
the following relation holds:

4∑
i=0

[
η̂
(m)
n−iŜn+2−i,m + d̂m,1θ̂

(m)
n−iŜn+2−i,m−1 + d̂m,2ϑ̂

(m)
n−iŜn+2−i,m−2

]

=
4∑

i=0

[
η̂
(m)
n−iPn+2−i,m + σ̂m−1θ̂

(m)
n−iPn+2−i,m−1 + τ̂m−1ϑ̂

(m)
n−iPn+2−i,m−2

]
,

with S0,0(x, y) = P0,0(x, y), and Si,j(x, y) = 0 for i < j.

Proof. First, for m ≥ 1, let {p
(m−1)
n (x)}n≥0 and {p

(m)
n (x)}n≥0 be univari-

ate sequences of orthogonal polynomials associated with the quasi-definite
moment functionals um−1 and um. Then both sequences can be related by
means of expression (4.4) in [13],

p(m−1)
n (x) = δ(m)

n p(m)
n (x) + ε(m)

n p
(m)
n−1(x) + ζ(m)

n p
(m)
n−2(x), (5.9)

where δ
(m)
n 	= 0.

Let us multiply (5.8) times p
(m−2)
n−m+2(x) ρ(x)m, and we study each term

of the sum. First, using (5.9) twice, we obtain

p
(m−2)
n−m+2(x)ρ(x)msm

(
y

ρ(x)

)
=

[
4∑

i=0

η̂
(m)
n−ip

(m)
n−m+2−i(x)

]
ρ(x)m sm

(
y

ρ(x)

)

=
4∑

i=0

η̂
(m)
n−iŜn+2−i,m(x, y),

where η̂
(m)
n−i are real numbers. A similar reasoning shows that

p
(m−2)
n−m+2(x)ρ(x)mqm

(
y

ρ(x)

)
=

4∑
i=0

η̂
(m)
n−iPn+2−i,m(x, y).

Now, we consider the second term in both sides of (5.8). If ρ(x) is the square
root of a polynomial of degree no greater than 2, then v is a symmetric
moment functional, and therefore, d̂m,1 = σ̂m−1 = 0 for every nonnegative
integer number m.
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Suppose that ρ(x) is a polynomial of degree ≤ 1, that is, ρ(x) = r1 x+r0,
with |r1| + |r0| > 0. In this case, using (5.9) and (4.1), we get

ρ(x) p
(m−2)
n−m+2(x) ρ(x)m−1sm−1

(
y

ρ(x)

)

=
{
(r1 x + r0)

[
δ
(m−1)
n−m+2 p

(m−1)
n−m+2(x) + ε

(m−1)
n−m+2 p

(m−1)
n−m+1(x) + ζ

(m−1)
n−m+2 p

(m−1)
n−m (x)

]

× ρ(x)m−1sm−1

(
y

ρ(x)

)

=

[
4∑

i=0

θ̂
(m)
n−i p

(m−1)
n−m+3−i(x)

]
ρ(x)m−1 sm−1

(
y

ρ(x)

)

=

4∑
i=0

θ̂
(m)
n−iŜn+2−i,m−1(x, y),

with θ̂
(m)
n−i constants depending on r1 and r0, among other factors. In the

same way,

ρ(x) p
(m−2)
n−m+2(x) ρ(x)m−1qm−1

(
y

ρ(x)

)
=

4∑
i=0

θ̂
(m)
n−i Pn+2−i,m−1(x, y).

Next, for m ≥ 2, we compute the third term of the sum in (5.8). Observe
that, in both Cases I and II, ρ(x)2 is a polynomial of degree less than or
equal to 2, and we can denote ρ(x)2 = s2x

2 + s1x+ s0 its explicit expression,
with s2, s1, s0 ∈ R, and |s2| + |s1| + |s0| > 0 (in Case I we have s2 = r2

1,
s1 = 2r1r0, and s0 = r2

0). Then, applying twice the three term relation (4.1)
for polynomials {p

(m−2)
n (x)}n≥0, we deduce

ρ(x)2 p
(m−2)
n−m+2(x) ρ(x)m−2 sm−2

(
y

ρ(x)

)

=

[
4∑

i=0

ϑ̂
(m)
n−i p

(m−2)
n−m+4−i(x)

]
ρ(x)m−2 sm−2

(
y

ρ(x)

)

=
4∑

i=0

ϑ̂
(m)
n−iŜn+2−i,m−2(x, y),

as well as

ρ(x)2 p
(m−2)
n−m+2(x) ρ(x)m−2 qm−2

(
y

ρ(x)

)
=

4∑
i=0

ϑ̂
(m)
n−iPn+2−i,m−2(x, y).

Finally, from the above expressions we get the desired result. �

6. Examples

Here we present examples of bivariate Sobolev orthogonal polynomials and
study the involved univariate Sobolev orthogonal polynomials.
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The first two examples deal with two families of Sobolev orthogonal
polynomials on the unit disk obtained by using our construction and Gegen-
bauer polynomials. Next two examples are devoted to construct Sobolev or-
thogonal polynomials on the biangle and the simplex, respectively. Then, we
present an example defined on an unbounded domain which is based on La-
guerre and Hermite classical orthogonal polynomials. In the last two examples
we analyse quasi-definite families of first and second-type Sobolev orthogonal
polynomials constructed with Bessel and Gegenbauer polynomials.

We will use the standard representation and properties for classical Ja-
cobi and Gegenbauer polynomials considered in the literature (see for instance
[1,3,16]).

6.1. First-Type Sobolev Orthogonal Polynomials on the Unit Disk

For μ > −1/2, orthogonal polynomials on the unit disk can be defined as
([4, p. 31])

P (μ)
n,m(x, y) = C

(μm)
n−m(x) (1 − x2)m/2 C(μ)

m

(
y√

1 − x2

)
, 0 ≤ m ≤ n, n ≥ 0,

(6.1)

where {C
(μ)
n }n≥0 denotes the sequence of classical Gegenbauer polynomials,

and μm = μ + m + 1/2. These polynomials constitute a mutually orthogonal
sequence with respect to the moment functional wμ defined by

〈wμ, P 〉 =
∫ ∫

B2
P (x, y) (1 − x2 − y2)μ−1/2 dxdy, ∀P ∈ Π2,

where B2 = {(x, y) ∈ R
2 : x2 + y2 ≤ 1} (see [11,13] as well as [4,6]). This

moment functional is constructed using the method described in Sect. 2.3 by
taking ρ(x) =

√
1 − x2, and u = v = uμ the univariate Gegenbauer moment

functional

〈uμ, p〉 =
∫ 1

−1

p(t)(1 − t2)μ−1/2dt, μ > −1/2. (6.2)

We are in Case II with �2 = −1, �1 = 0, �0 = 1, and ρ̂(x) = −x.
Here, the bilinear form (3.6) reads

(P,Q)μ =

〈
wμ, P Q + λ (∇P )t

⎛
⎝

(1 − x2)2 −x y (1 − x2)

−x y (1 − x2) x2 y2

⎞
⎠ ∇Q

〉
.

(6.3)

From Theorem 3.1, we have that the bivariate polynomials

S(μ)
n,m(x, y) = s

(m)
n−m(x) (1 − x2)m/2 C(μ)

m

(
y√

1 − x2

)
, n ≥ 0, 0 ≤ m ≤ n,
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are a mutually orthogonal basis with respect to (6.3). Here, {s
(m)
n (x)}n≥0 are

univariate Sobolev orthogonal polynomials associated with the bilinear form

(p, q)m =

〈
u(x)

m , p q + λ
(
p p′)

⎛
⎝

m2 x2 −mx (1 − x2)

−mx (1 − x2) (1 − x2)2

⎞
⎠

(
q
q′

)〉
,

where u(x)
m = (1 − x2)m+1/2u(x) is the moment functional associated with

the Gegenbauer weight function ρ(x)2m+1 w(x) = (1 − x2)m+1/2 w(x) = (1 −
x2)μ+m.

Since u(x) satisfies the Pearson equation for the Gegenbauer moment
functional

D (φ(x)uμ) = −(2μ + 1)xuμ,

with φ(x) = ρ(x)2 = 1 − x2, we can use Proposition 4.10. To this end, we
need the three-term recurrence relation for Gegenbauer polynomials (4.7.17)
in [16, p. 81], and the structure relation (4.19) given in (4.7.27) in [16, p.
83]). Therefore, by Proposition 4.10 and the symmetry of Gegenbauer poly-
nomials, we deduce a relation between classical Gegenbauer polynomials and
univariate Sobolev orthogonal polynomials

C(μm)
n (x) = s(m)

n (x) + f
(m)
n,2 s

(m)
n−2(x), n ≥ 1,

s
(m)
−1 = 0, s

(m)
0 (x) = 1,

where

f
(m)
n,2 = −λ

(n − 1) (n + m − 2) (n + 2μm − 1) (n − m + 2μm)
4 (n + μm − 2) (n + μm)

h
(μm)
n−1

h̃
(m)
n−2

, n ≥ 2,

and h
(μm)
n−1 denotes the square of the norms of Gegenbauer polynomials given

in [16, p. 81].
Furthermore, by Proposition 4.11, the norms h̃

(m)
n = (s(m)

n , s
(m)
n )m sat-

isfy the recurrence relation (4.23) with

Ĉ(II)
n =

λ

4
(n + 1)2 (n + m)2

(n + μm)2
,

D̂(II)
n = 1,

Ê(II)
n =

λ

4
(n + 2μm − 1)2 (n − m + 2μm)2

(n + μm)2
.

and

h̃
(m)
0 =

(
1 +

λm2

2μm

)
h

(μm)
0 .

6.2. Second-Type Sobolev Orthogonal Polynomials on the Unit Disk

Again, we consider the bivariate orthogonal polynomials on the disk {P
(μ)
n,m

(x, y) : 0 ≤ m ≤ n, n ≥ 0}, defined in (6.1), and the bivariate functional wμ
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defined in the previous example. Let {sm(y)}m≥0 be a family of univariate
orthogonal polynomials with respect to the Sobolev bilinear form

(p, q)uµ
= 〈uμ, p q + λ p′ q′〉 , λ ∈ R,

where uμ is the Gegenbauer moment functional (6.2). Then, by Theorem 5.1,
the bivariate polynomials defined by

Ŝn,m(x, y) = C
(μm)
n−m(x) (1 − x2)m/2 sm

(
y√

1 − x2

)
,

for 0 ≤ m ≤ n, where μm = μ + m + 1/2, are mutually orthogonal with
respect to the bivariate bilinear form (5.4)

(P,Q)S =
〈
wμ, P Q + λ (1 − x2) ∂yP ∂yQ

〉
.

Since uμ is classical, the sequence of univariate Sobolev polynomials
{sm(y)}m≥0 and the Gegenbauer polynomials satisfy relation (5.8). In or-
der to find the coefficients, we need the second structure relation (5.5) for
Gegenbauer polynomials that can be found in (4.7.29) in [16, p. 83], and, by
the symmetry of the Gegenbauer and the Sobolev polynomials, relation (5.8)
reads

sm(y) + d̂m,2 sm−2(y) = C(μ)
m (y) − C

(μ)
m−2(y), m ≥ 1,

s−1(y) = 0, s0(y) = 1,

with h
(μ)
m given in [16, p. 81], and

d̂m,2 = −h
(μ)
m−2

ĥ
(s)
m−2

, m ≥ 2.

Furthermore, by Proposition 5.4, the norms ĥ
(s)
m = (sm, sm)uµ

satisfy the
recurrence relation

ĥ(s)
m = h(μ)

m + 4λ (m + μ − 1)2 h
(μ)
m−1 + h

(μ)
m−2 − d̂ 2

m,2 ĥ
(s)
m−2,

ĥ
(s)
−1 = 0, ĥ

(s)
0 = h

(μ)
0 .

6.3. Sobolev Orthogonal Polynomials on the Biangle

In this case we consider the Jacobi and Gegenbauer univariate moment func-
tionals

u(x) = uα,β , v(y) = uβ+1/2, α, β > −1,

where

〈uα,β , p〉 =
∫ 1

0

p(t) (1 − t)αtβdt,

and uβ+1/2 is the Gegenbauer moment functional (6.2). If we take the func-
tion ρ(x) =

√
x (�2 = �0 = 0, �1 = 1/2), we obtain the bivariate moment

functional wα,β defined as

〈wα,β , P 〉 =
∫ ∫

Ω

P (x, y) (1 − x)α (x − y2)β dxdy, ∀P ∈ Π2,
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where Ω = {(x, y) ∈ R
2 : y2 ≤ x ≤ 1} is called the biangle on R

2. Define the
polynomials {P

(α,β)
n,m (x, y) : 0 ≤ m ≤ n, n ≥ 0} by

P (α,β)
n,m (x, y) = P

(α,βm)

n−m (x)
(√

x
)m

C(β+1/2)
m

(
y√
x

)
,

where βm = β+m+1/2, and {P
(α,βm)

n }n≥0 are the Jacobi univariate orthog-
onal polynomials associated with uα,βm

. Then, they are mutually orthogonal
with respect to wα,β (see [11,13] as well as [4,6]).

For m ≥ 0, let {s
(m)
n (x)}n≥0 be a sequence of univariate orthogonal

polynomials with respect to the bilinear form

(p, q)m =

〈
uα,βm

, p q + λ
(
p p′)

⎛
⎝

m2 1
2mx

1
2mx x2

⎞
⎠

(
q
q′

)〉
, λ > 0,

where uα,βm
= xm+1/2uα,β . Then, by Theorem 3.1, the polynomials defined

by

S(α,β)
n,m (x, y) = s

(m)
n−m(x)

(√
x
)m

C(β+1/2)
m

(
y√
x

)
, n ≥ 0, 0 ≤ m ≤ n,

are mutually orthogonal with respect to the bivariate bilinear form

(P,Q) =

〈
wα,β , P Q + λ(∇P )t

⎛
⎝

x2 1
2x y

1
2x y 1

4y2

⎞
⎠ ∇Q

〉
, ∀p, q ∈ Π2.

Observe that uα,β satisfies the Pearson equation

D(φ(x)uα,β) = ψ(x)uα,β , (6.4)

with φ(x) = (1−x)x, ψ(x) = β +1− (α+β +2)x, and ρ(x)2 = x divides the
polynomial φ(x). Using the three-term recurrence relation as well as the sec-
ond structure relation for Jacobi polynomials on [0, 1], relation (4.17) allows
to connect classical Jacobi polynomials to Sobolev polynomials {s

(m)
n (x)}n≥0

with e
(m)
n,4 = 0, n ≥ 4, e

(m)
n,3 = 0, n ≥ 3, and

e
(m)
n,2 =

1

h̃
(m)
n−2

[
C(II)

n,1 h
(α,βm)

n−2 + C(II)
n,2

h
(α,βm)

n−3

ξ
(α,βm)

n−3

]
,

e
(m)
n,1 =

1

h̃
(m)
n−1

[
D(II)

n,1 h
(α,βm)

n−1 + D(II)
n,2

h
(α,βm)

n−2

ξ
(α,βm)

n−2

− [e(m)
n,2 h̃

(m)
n−2]

ξ
(α,βm)
n−2

e
(m)
n−1,1

]
,
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for n ≥ 1, and en,i = 0, for n < i, where

C(II)
n,1 = τ

(α,βm)
n−1 +

λ

4
(m + n − 2)

(
mτ

(α,βm)
n−1 + 2 c

(α,βm)
n−1

)
,

C(II)
n,2 =

λ

4
c
(α,βm)
n−2

(
mτ

(α,βm)
n−1 + 2 c

(α,βm)
n−1

)
,

D(II)
n,1 = σ

(α,βm)
n−1 +

λ

4
(m + n − 1)

(
mσ

(α,βm)
n−1 + 2 b

(α,βm)

n−1

)
,

D(II)
n,2 = σ

(α,βm)
n−2 τ

(α,βm)
n−1 +

λ

2

(
mσ

(α,βm)
n−2 + b

(α,βm)

n−2

) (
mτ

(α,βm)
n−1 + c

(α,βm)
n−1

)

+
λ

4
b
(α,βm)

n−2

(
mτ

(α,βm)
n−1 + 2 c

(α,βm)
n−1

)

+
λ

4

(
mσ

(α,βm)
n−1 + b

(α,βm)

n−1

)
c
(α,βm)
n−1 .

Furthermore, by Proposition 4.8, the norms h̃
(m)
n = (s(m)

n , s
(m)
n )m satisfy

the recurrence relation (4.18) with h̃
(m)
0 = (1 + λ

4 m2)h(m)
0 and

E(II)
n = 1 +

λ

2
(m + n) (m + 2n),

F (II)
n =

[
σ

(α,βm)
n−1

]2

+ λ
4

[
mσ

(α,βm)
n−1 + 2 b

(α,βm)

n−1

]2

[
ξ
(α,βm)

n−1

]2 ,

G(II)
n =

[
τ

(α,βm)
n−1

]2

+ λ
2

(
mτ

(α,βm)
n−1 + c

(α,βm)
n−1

)(
mτ

(α,βm)
n−1 + 2 c

(α,βm)
n−1

)

[
ξ
(α,βm)

n−1

]2 .

6.4. Orthogonal Polynomials on the Simplex

For α, β, γ > −1, the polynomials defined as

P (α,β,γ)
n,m (x, y) = P

(α,βm)

n−m (x) (1 − x)m P
(β,γ)

m

(
y

1 − x

)
, 0 ≤ m ≤ n, n ≥ 0,

where βm = β + γ + 2m + 1, and P
(a,b)

n denotes the n-th Jacobi polynomial
orthogonal on the interval [0, 1], are mutually orthogonal with respect to the
moment functional w defined as

〈w, P 〉 =
∫ ∫

T

P (x, y)xαyβ(1 − x − y)γ dydx,

where T = {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0, 1 − x − y ≥ 0}. This functional is

constructed by taking the univariate Jacobi functionals u(x) = uα,β+γ and
v(y) = uβ,γ , and the function ρ(x) = 1 − x.

For λ > 0, consider the bivariate Sobolev inner product

(P,Q) =

〈
w, P Q + λ(∇P )t

⎛
⎝

(1 − x)2 −y(1 − x)

−y(1 − x) y2

⎞
⎠ ∇Q

〉
, (6.5)
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and, for m ≥ 0, let {s
(m)
n (x)}n≥0 be the sequence of orthogonal polynomials

associated with the univariate Sobolev inner product

(p, q)m =

〈
u(x)

m , p q + λ
(
p p′)

⎛
⎝

m2 −m(1 − x)

−m(1 − x) (1 − x)2

⎞
⎠

(
q
q′

)〉
,

where u(x)
m = uα,βm

= (1 − x)2m+1uα,β+γ . By Theorem 3.1, the polynomials
defined as

Pn,m(x, y) = s
(m)
n−m(x) (1 − x)m P

(β,γ)

m

(
y

1 − x

)
, 0 ≤ m ≤ n, n ≥ 0,

are mutually orthogonal with respect to (6.5).
Observe that u(x) satisfies (6.4) and that ρ(x) = 1 − x divides φ(x) =

(1 − x)x. Using the three-term relation and the structure relation for Jacobi
polynomials on [0, 1], from Proposition 4.2, we have that the polynomials
{s

(m)
n (x)}n≥0 satisfy (4.6) with

A(I)
n,2 = τ

(α,βm)
n−1 − λ (m + n − 2)

(
mτ

(α,βm)
n−1 + c

(α,βm)
n−1

)
,

B(I)
n,1 = σ

(α,βm)
n−1 − λ (m + n − 1)

(
1 − m τ

(α,βm)
n−1 − c

(α,βm)
n−1

)
,

B(I)
n,2 = τ

(α,βm)
n−1 σ

(α,βm)
n−2 − λ

(
mτ

(α,βm)
n−1 + c

(α,βm)
n−1

) (
1 − mσ

(α,βm)
n−2 − b

(α,βm)

n−2

)
.

Furthermore, by Proposition 4.4, the norms h̃
(m)
n = (s(m)

n , s
(m)
n )m satisfy

the recurrence relation (4.11) with h̃
(m)
0 = (1 + λm2)h(m)

0 and

C(I)
n = 1 + λ (m + n)2,

D(I)
n =

(
σ

(α,βm)
n−1

)2

+ λ
(
1 − mσ

(α,βm)
n−1 − b

(α,βm)

n−1

)2

(
ξ
(α,βm)

n−1

)2 ,

E(I)
n =

(
τ

(α,βm)
n−1

)2

+ λ
(
mτ

(α,βm)
n−1 + c

(α,βm)
n−1

)2

(
ξ
(α,βm)

n−1

)2 .

6.5. Sobolev Orthogonal Polynomials on an Unbounded Domain

Let α > −1. We define the bivariate Laguerre–Hermite Sobolev polynomials
as

P (α)
n,m(x, y) = L

(α+2 m+1)
n−m (x)xm Hm

(y

x

)
, n ≥ 0, 0 ≤ m ≤ n, (6.6)

where {L
(α)
n (x)}n≥0 and {Hn(x)}n≥0 denote the sequence of univariate La-

guerre and Hermite classical polynomials, respectively. Here, ρ(x) = x and,
therefore, we are in Case I of the Koornwinder construction.

The Laguerre–Hermite polynomials (6.6) are mutually orthogonal with
respect to the linear functional

〈w, P 〉 =
∫ +∞

0

∫ +∞

−∞
P (x, y)xα e−x e−y2/x2

dy dx, P ∈ Π2.
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For λ > 0, consider the bivariate Sobolev inner product defined as

(P,Q) =
〈
w, P Q + λ (∇P )t

(
x2 x y
x y y2

)
∇Q

〉
, P,Q ∈ Π2, (6.7)

and, for m ≥ 0, let {s
(m)
n (x)}n≥0 denote the sequence of univariate orthogonal

polynomials associated with the univariate Sobolev inner product

(p, q)m =
∫ +∞

0

(
p q + λ

(
p p′)

(
m2 mx
mx x2

) (
q
q′

))
xα+2 m+1e−x dx.

By Theorem 3.1, the bivariate polynomials defined as

S(α)
n,m(x, y) = s

(m)
n−m(x)xm Hm

(y

x

)
, n ≥ 0, 0 ≤ m ≤ n,

are mutually orthogonal with respect to (6.7).
The classical Laguerre polynomials are orthogonal with respect to the

moment functional

〈uα, p〉 =
∫ +∞

0

p(x)xα e−x dx,

which satisfies the Pearson equation

D(φ(x)uα) = ψ(x)uα,

with φ(x) = x and ψ(x) = α + 1 − x. Since ρ(x) = x divides the coeffi-
cient φ(x) in the Pearson equation, we can use Proposition 4.2 to deduce
the relation between the Laguerre polynomials and the univariate Sobolev
orthogonal polynomials. To this end, using the explicit expression of the La-
guerre polynomials ( [16])

L(α)
n (x) =

n∑
k=0

(−1)k

(
n + α

n − k

)
xk

k!
,

we get the three-term recurrence relation

xL(α)
n (x) = a(α)

n L
(α)
n+1(x) + b(α)

n L(α)
n (x) + c(α)

n L
(α)
n−1(x),

where

a(α)
n = −(n + 1), b(α)

n = 2n + α + 1, c(α)
n = −(n + α),

and the structure relation

L(α)
n (x) = ξ(α)

n (L(α)
n+1(x))′ + σ(α)

n (L(α)
n (x))′ + τ (α)

n (L(α)
n−1(x))′,

where

ξ(α)
n = −1, σ(α)

n = 1, τ (α)
n = 0.

From Proposition 4.2, we have that the Laguerre polynomials and the uni-
variate Sobolev polynomials satisfy (4.6) with

A(I)
n,2 = −λ (m + n − 2) (n + α + 2m),

B(I)
n,1 = 1 + λ (m + n − 1) (2n + α + 3m) ,

B(I)
n,2 = −λ (n + α + 2m) (2n + α + 3m − 2) ,
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and, from Proposition 4.4, we have that the norms h̃
(m)
n = (s(m)

n , s
(m)
n )m

satisfy (4.11) with

C(I)
n = 1 + λ (m + n)2,

D(I)
n = 1 + λ (2n + α + 3m)2,

E(I)
n = λ (n + α + 2m)2,

and h̃
(m)
0 = (1 + λ m2)h

(α+2 m+1)
0 , where ( [16])

h(α)
n =

∫ +∞

0

(L(α)
n (x))2 xα e−x dx = Γ(α + 1)

(
n + α

n

)
.

Notice that the second type Sobolev orthogonal polynomials as dis-
cussed in Sect. 5 based on the Laguerre–Hermite polynomials (6.6) is a
straightforward situation taking into account that the Hermite polynomials
are orthogonal with respect to both the moment functional

〈v, p〉 =
∫ +∞

−∞
p(t) e−t2 dt,

and the Sobolev bilinear form in (5.1) associated with v. That is, for λ > 0,
the Laguerre–Hermite polynomials are bivariate Sobolev polynomials orthog-
onal with respect to the Sobolev inner product

(P,Q) =
∫ +∞

0

∫ +∞

−∞
(P Q + λx2 ∂yP ∂yQ)xα e−x e−y2/x2

dy dx, P,Q ∈ Π2.

6.6. A Quasi-Definite Family of First-Type Sobolev Orthogonal Polynomials

Let μ > −1/2, a ∈ R, such that a 	= 0,−1,−2, . . ., and b 	= 0. We define the
bivariate Bessel–Gegenbauer polynomials as

P (μ,a,b)
n,m (x, y) = B

(a+2m+1,b)
n−m (x)xm C(μ)

m

(y

x

)
, 0 ≤ m ≤ n, n ≥ 0, (6.8)

considering ρ(x) = x, and, therefore, we are in Case I of the Koornwinder
construction.

Here {C
(μ)
m }m≥0 denotes the univariate classical Gegenbauer polyno-

mials orthogonal with respect to the positive definite Gegenbauer moment
functional defined in (6.2), and {B

(a,b)
n }n≥0 denote the univariate classical

Bessel polynomials orthogonal with respect to the bilinear form

〈f, g〉a,b =
∫

T

f(z) g(z)w(a,b)(z) dz

with w(a,b)(z) = (2π i)−1za−2 e−b/z, a 	= 0,−1,−2, . . ., b 	= 0, and T is the
unit circle oriented in the counter-clockwise direction, standardized by the
condition B

(a,b)
n (0) = 1 (see [7]). Note that the Bessel polynomials are asso-

ciated with the quasi-definite linear functional defined as 〈ua,b, p〉 = 〈1, p〉a,b,
which satisfies the Pearson equation

D
(
x2 ua,b

)
= (a x + b)ua,b. (6.9)
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Bivariate Bessel–Gegenbauer polynomials (6.8) are orthogonal with re-
spect to the quasi-definite bilinear form

(P,Q) =
∫

T

∫ 1

−1

P (z, y)Q(z, y)Wμ,a,b(z, y) dy dz,

where Wμ,a,b(x, y) = (2π i)−1 xa−2μ−1 e−b/x (x2 − y2)μ−1/2.
For m ≥ 0, let {s

(m)
n (x)}n≥0 denote the sequence of univariate Bessel–

Sobolev orthogonal polynomials with respect to the quasi-definite bilinear
form

(p, q)m =
∫

T

(
p q + λ

(
p p′)

(
m2 mz
mz z2

) (
q
q′

))
w(am,b)(z) dz, λ > 0,

where am = a + 2m + 1. By Theorem 3.1, the bivariate polynomials defined
as

S(μ,a,b)
n,m (x, y) = s

(m)
n−m(x)xm C(μ)

m

(y

x

)
, 0 ≤ m ≤ n, n ≥ 0,

are orthogonal with respect to the quasi-definite Sobolev bilinear form

(P,Q) =
∫

T

∫ 1

−1

(
P Q + λ (∇P )t

(
x2 x y
x y y2

)
∇Q

)
Wμ,a,b(z, y) dy dz.

The explicit expression for the Bessel polynomials ( [7, (34), p. 108]) is

B(a,b)
n (x) =

n∑
k=0

(
n

k

)
(n + a − 1)k

(x

b

)k

. (6.10)

Moreover, we have ( [7, (58), p. 113])

h(a,b)
n =

∫

T

(
B(a,b)

n (z)
)2

w(a,b)(z) dz =
(−1)n+1 n! b

(2n + a − 1) (a)n−1
. (6.11)

The classical Bessel polynomials satisfy the three-term recurrence relation
([7, (51), p. 111])

xB(a,b)
n (x) = a(a,b)

n B
(a,b)
n+1 (x) + b(a,b)

n B(a,b)
n (x) + c(a,b)

n B
(a,b)
n−1 (x),

(6.12)

where

a(a,b)
n =

(n + a − 1) b

(2n + a − 1) (2n + a)
,

b(a,b)
n = − (a − 2) b

(2n + a − 2) (2n + a)
,

c(a,b)
n = − n b

(2n + a − 2) (2n + a − 1)
.

Using (6.10) and (6.11), we can deduce the structure relation

B(a,b)
n (x) = ξ(a,b)

n

d
dx

B
(a,b)
n+1 (x) + σ(a,b)

n

d
dx

B(a,b)
n (x)

+τ (a,b)
n

d
dx

B
(a,b)
n−1 (x), n ≥ 0,
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where

ξ(a,b)
n =

b (n + a − a)
(n + 1) (2n + a − 1)2

,

σ(a,b)
n =

2 b

(2n + a − 2) (2n + a)
,

τ (a,b)
n =

n b3

(a)2 (n + a − 2) (2n + a − 2)2
.

Since ua,b satisfies the Pearson equation (6.9) with φ(x) = x2 and
ρ(x) = x divides φ(x), we can use Proposition 4.2 to deduce the relation
between the classical Bessel polynomials and the univariate Sobolev orthog-
onal polynomials. Indeed, these two sequences of polynomials satisfy (4.6)
with

A(I)
n,2 = τ

(am,b)
n−1 + λ (m + n − 2)

(
mτ

(am,b)
n−1 + c

(am,b)
n−1

)
,

B(I)
n,1 = σ

(am,b)
n−1 + λ (m + n − 1)

(
mσ

(am,b)
n−1 + b

(am,b)
n−1

)
,

B(I)
n,2 = τ

(am,b)
n−1 σ

(am,b)
n−2 + λ

(
mτ

(am,b)
n−1 + c

(am,b)
n−1

) (
mσ

(am,b)
n−2 + b

(am,b)
n−2

)
.

Furthermore, by Proposition 4.4, the numbers h̃
(m)
n = (s(m)

n , s
(m)
n )m

satisfy the recurrence relation (4.11) with

C(I)
n = 1 + λ (m + n)2,

D(I)
n =

(σ(am,b)
n−1 )2 + λ (mσ

(am,b)
n−1 + b

(am,b)
n−1 )2

(ξ(am,b)
n−1 )2

,

E(I)
n =

(τ (am,b)
n−1 )2 + λ (mτ

(am,b)
n−1 + c

(am,b)
n−1 )2

(ξ(am,b)
n−1 )2

,

and h̃
(m)
0 = (1 + λ m2)h

(am,b)
0 .

6.7. A Quasi-Definite Family of Second-Type Sobolev Orthogonal Polynomi-
als

Consider again the bivariate Bessel–Gegenbauer polynomials {P
(μ,a,b)
n,m (x, y) :

n ≥ 0, 0 ≤ m ≤ n} defined in (6.8).
As in Example 6.2, let {sm(y)}m≥0 be the sequence of Gegenbauer–

Sobolev orthogonal with respect to

(p, q)uµ
= 〈uμ, p q + λ p′ q′〉 , λ ∈ R,

where uμ is the Gegenbauer moment functional (6.2). Using Theorem 5.1,
the bivariate polynomials defined by

Ŝn,m(x, y) = B
(a+2m+1,b)
n−m (x)xm sm

(y

x

)
, 0 ≤ m ≤ n, (6.13)

are mutually orthogonal with respect to the bivariate bilinear form (5.4)

(P,Q)S =
〈
wμ, P Q + λx2 ∂yP ∂yQ

〉
.
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Since uμ is a symmetric classical moment functional, we have that the uni-
variate Sobolev polynomials {sm(y)}m≥0 and the Gegenbauer polynomials
satisfy relation (5.8), that reads

sm(y) + d̂m,2 sm−2(y) = C(μ)
m (y) − C

(μ)
m−2(y), m ≥ 1,

s−1(y) = 0, s0(y) = 1,

as in Example 6.2. Finally, Theorem 5.5 provides the relation between bi-
variate Sobolev orthogonal polynomials (6.13) and Bessel–Gegenbauer poly-
nomials (6.8)

4∑
i=0

[
η̂
(m)
n−i Ŝn+2−i,m(x, y) + d̂m,2 ϑ̂

(m)
n−i Ŝn+2−i,m−2(x, y)

]

=
4∑

i=0

[
η̂
(m)
n−i P

(μ,a,b)
n+2−i,m(x, y) + τ̂m−1 ϑ̂

(m)
n−i P

(μ,a,b)
n+2−i,m−2(x, y)

]
.
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Appendix A

A.1. Proof of Proposition 4.2

Proof. By orthogonality of {s
(m)
n }n≥0, we can express

π(m)
n (x) =

n∑
j=0

d
(m)
n,n−j s

(m)
j (x),

where

d
(m)
n,n−j =

(π(m)
n , s

(m)
j )m

h̃
(m)
j

, 0 ≤ j ≤ n.

Since s
(m)
n (x) has the same coefficient as p

(m)
n (x), we have that d

(m)
n,0 = ξ

(m)
n−1.

Using (4.3) and (4.4) in (4.5), we obtain

(π(m)
n , s

(m)
j )m = (1 + λm2 r2

1)〈um, (ξ(m)
n−1 p(m)

n + σ
(m)
n−1 p

(m)
n−1 + τ

(m)
n−1 p

(m)
n−2)s

(m)
j 〉

+λmr1〈um, (r1x + r0) p
(m)
n−1 s

(m)
j 〉

+λmr1〈um, (r1x + r0)(ξ
(m)
n−1 p(m)

n

+σ
(m)
n−1 p

(m)
n−1 + τ

(m)
n−1 p

(m)
n−2)(s

(m)
j )′〉

+λ〈um, (r1 x + r0)2 p
(m)
n−1 (s(m)

j )′〉. (A.1)

Therefore, d
(m)
n,n−j = 0, for 3 ≤ j ≤ n, and (4.6) holds.

We compute d
(m)
n,2 by taking j = n − 2 in (A.1), and we study term by

term. For the first term, by using the orthogonality, immediately we obtain

T 1
n−2 = (1 + λm2 r2

1)τ
(m)
n−1 h

(m)
n−2.

For the second term, from (4.1), we get

T 2
n−2 = λmr2

1〈um, (a(m)
n−1 p(m)

n + b
(m)
n−1p

(m)
n−1 + c

(m)
n−1 p

(m)
n−2)s

(m)
n−2〉

= λmr2
1 c

(m)
n−1 h

(m)
n−2.

Third term is computed taking into account that (s(m)
n−2)

′ is a polynomial of
degree n − 3, obtaining

T 3
n−2 = λmr2

1τ
(m)
n−1〈um, x p

(m)
n−2(s

(m)
n−2)

′〉 = λmr2
1τ

(m)
n−1(n − 2)h(m)

n−2,

and finally, the fourth term is computed applying twice the three term relation
and the fact that (s(m)

n−2)
′ is a polynomial of degree n − 3

T 4
n−2 =λ

〈
um, (r1 x + r0)2 p

(m)
n−1 (s(m)

n−2)
′
〉

= λr2
1

〈
um, x2p

(m)
n−1 (s(m)

n−2)
′
〉

=λ r2
1(n − 2) c

(m)
n−1 h

(m)
n−2.

Therefore, summing all terms, we get (4.7).
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Now, we compute the numerator of d
(m)
n,1 term by term using (A.1) for

j = n − 1. Observe that, using (4.6) for n − 1

s
(m)
n−1(x) =

1

ξ
(m)
n−2

[
π

(m)
n−1(x) − d

(m)
n−1,1 s

(m)
n−2(x) − d

(m)
n−1,2 s

(m)
n−3(x)

]
,

and (4.3), as a consequence,

〈um, p
(m)
n−2s

(m)
n−1〉 =

1

ξ
(m)
n−2

[
σ

(m)
n−2 − d

(m)
n−1,1

]
h

(m)
n−2,

〈um, x p
(m)
n−2(s

(m)
n−1)

′〉 =
1

ξ
(m)
n−2

[
b
(m)
n−2 − (n − 2)d(m)

n−1,1

]
h

(m)
n−2.

Again, we compute (π(m)
n , s

(m)
n−1)m term by term, and we deduce

(π(m)
n , s

(m)
n−1)m = B(m)

n,1 h
(m)
n−1 + B(m)

n,2

h
(m)
n−2

ξ
(m)
n−2

− A(I)
n,2

h
(m)
n−2

ξ
(m)
n−2

d
(m)
n−1,1

= B(m)
n,1 h

(m)
n−1 +

[
B(m)

n,2 − A(I)
n,2 d

(m)
n−1,1

] h
(m)
n−2

ξ
(m)
n−2

,

because

(n − 1)h(m)
n−1 =

a
(m)
n−2

ξ
(m)
n−2

h
(m)
n−1 =

c
(m)
n−1

ξ
(m)
n−2

h
(m)
n−2.

Observe that since s
(m)
n (x) has the same leading coefficient as p

(m)
n (x), we

have that s
(m)
0 (x) = p

(m)
0 (x), and h̃

(m)
0 = (1 + λm2 r2

1)h
(m)
0 . Moreover, by

(A.1), we get

(π(m)
1 , s

(m)
0 )m = (1 + λm2 r2

1)〈um, (ξ(m)
0 p

(m)
1 + σ

(m)
0 p

(m)
0 )s(m)

0 〉
+ λmr1〈um, (r1x + r0) p

(m)
0 s

(m)
0 〉

= [(1 + λm2 r2
1)σ

(m)
0 + λmr1ρ(b0)]h

(m)
0 .

�

A.2. Explicit Expressions of the Coefficients of Proposition 4.6.

In order to simplify the expressions, let us denote

â(m)
n = a(m)

n + mξ(m)
n , b̂(m)

n = b(m)
n + mσ(m)

n , ĉ(m)
n = c(m)

n + mτ (m)
n ,

and ρ̂(x) = �2 x + �1.
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Then, the explicit expressions of the coefficients of Proposition 4.6 are

A(II)
n,1 =λ 	22 (m + n − 4) c

(m)
n−3 c

(m)
n−2 ĉ

(m)
n−1,

B(II)
n,1 = λ 	2 (m + n − 3) c

(m)
n−2

[(
ρ̂(b

(m)
n−3) + ρ̂(b

(m)
n−2)

)
ĉ
(m)
n−1 + ρ̂(b̂

(m)
n−1) c

(m)
n−1

]
,

B(II)
n,2 =λ 	2 c

(m)
n−3 c

(m)
n−2 ĉ

(m)
n−1 ρ̂(b̂

(m)
n−4),

C(II)
n,1 = τ

(m)
n−1 + λ 	22 (m + n − 2) ĉ

(m)
n−1

[
a
(m)
n−3 c

(m)
n−2 + a

(m)
n−2 c

(m)
n−1

]

+ λ 	22 (m + n − 2) â
(m)
n−1 c

(m)
n−1 c(m)

n + λ 	2 (m + n − 2) c
(m)
n−1

(
	1 b

(m)
n−1 + 	0

)

+ λ 	2 (m + n − 2) b̂
(m)
n−1 c

(m)
n−1

(
ρ̂(b

(m)
n−2) + ρ̂(b

(m)
n−1

)

+ λ 	1 (m + n − 2) c
(m)
n−1 ρ̂(b

(m)
n−2) + λ (m + n − 2) ĉ

(m)
n−1 ρ̂(bn−2)

2,

C(II)
n,2 =λ 	2 b̂

(m)
n−3 c

(m)
n−1

[
ρ̂(b

(m)
n−3) + ρ̂(b

(m)
n−2)

]
+ λ 	2 c

(m)
n−2 ĉ

(m)
n−1

(
	1 b

(m)
n−2 + 	0

)

+ λ 	1 c
(m)
n−2 ĉ

(m)
n−1 ρ̂(b

(m)
n−3) + λ c

(m)
n−2 c

(m)
n−1 ρ̂(b̂

(m)
n−3) ρ̂(b̂

(m)
n−1),

C(II)
n,3 =λ 	22 c

(m)
n−3 ĉ

(m)
n−3 c

(m)
n−2 ĉ

(m)
n−1,

D(II)
n,1 = σ

(m)
n−1 + λ 	2 (m + n − 1) â

(m)
n−1 c(m)

n

[
ρ̂(b

(m)
n−1) + ρ̂(b(m)

n )
]

+ λ 	2 (m + n − 1) ρ̂(b̂
(m)
n−1)

[
a
(m)
n−2 c

(m)
n−1 + a

(m)
n−1 c(m)

n

]

+ λ 	2 (m + n − 1) a
(m)
n−2 ĉ

(m)
n−1

[
ρ̂(b

(m)
n−2) + ρ̂(b

(m)
n−1)

]

+ λ (m + n − 1) ρ̂(b
(m)
n−1)

(
	1 b

(m)
n−1 + 	0

)
+ λ (m + n − 1) b̂

(m)
n−1 ρ̂(b

(m)
n−1)

2,

D(II)
n,2 =σ

(m)
n−2 τ

(m)
n−1 + λ 	1 	0 c

(m)
n−1 + λ 	2 b̂

(m)
n−2 b̂

(m)
n−1 c

(m)
n−1

[
ρ̂(b

(m
n−2) + ρ̂(b

(m)
n−1)

]

+ λ 	2 ĉ
(m)
n−1 ρ̂(b̂

(m)
n−2)

[
a
(m)
n−3 c

(m)
n−2 + a

(m)
n−2 c

(m)
n−1

]
+ λ 	2 â

(m)
n−1 c

(m)
n−1 c(m)

n ρ̂(b̂
(m)
n−2)

+ λ 	1 b̂
(m)
n−2 ĉ

(m)
n−1 ρ̂(b

(m)
n−1) + λ 	1 c

(m)
n−1

[
b
(m)
n−2 ρ̂(b̂

(m)
n−2) + ρ̂(b

(m
n−2) b̂

(m)
n−1

]

+ λ ĉ
(m)
n−1 ρ̂(b

(m)
n−2)

(
	1 b

(m)
n−2 + 	0

)
+ λ c

(m)
n−1 ρ̂(b̂

(m)
n−1)

(
	1 b

(m)
n−1 + 	0

)

+ λ b̂
(m)
n−2 ĉ

(m)
n−1 ρ̂(b

(m)
n−2)

2,

D(II)
n,3 =λ 	2 c

(m)
n−2 ĉ

(m)
n−2 ĉ

(m)
n−1

[
ρ̂(b

(m)
n−3) + ρ̂(b

(m)
n−2)

]
+ λ 	2 c

(m)
n−2ĉ

(m)
n−2 c

(m)
n−1 ρ̂(b̂

(m)
n−1).

A.3. Explicit Expressions of the Coefficients of Proposition 4.8.

E(II)
n = 1 + λ (m + n)2 ρ̂(b(m)

n )2 + λ �21 (m + n)2

+ λ �22 (m + n)2
[
a
(m)
n−1 c(m)

n + a(m)
n c

(m)
n+1

]

+ 2λ �22 (m + n)na
(m)
n−2 ĉ

(m)
n−1

+ 2λ �2 (m + n)n b̂
(m)
n−1

[
ρ̂(b(m)

n−1) + ρ̂(b(m)
n )

]

+ 2λ �2 (m + n)n
(
�1 b(m)

n + �0

)
+ 2λ �1 (m + n)n ρ̂(b(m)

n−1),

F (II)
n =

1

[ξ(m)
n−1]2

[(
σ

(m)
n−1

)2

+ 2λ �2 a
(m)
n−2 b̂

(m)
n−1 ĉ

(m)
n−1

(
ρ̂(b(m)

n−2) + ρ̂(b(m)
n−1)

)
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+ λ �2 b̂
(m)
n−1

(
a
(m)
n−2 c

(m)
n−1 + a

(m)
n−1 c(m)

n

)(
ρ̂(̂b(m)

n−1) + �1

)

+λ
(
b̂
(m)
n−1 ρ̂(b(m)

n−1) + �1 b
(m)
n−1 + �0

)2
]

,

G(II)
n =

1

[ξ(m)
n−1]2

[(
τ

(m)
n−1

)2

+ λ
(
ĉ
(m)
n−1

)2

ρ̂(b(m)
n−2)

2 + λ �21

(
ĉ
(m)
n−1

)2

+ λ �22

(
ĉ
(m)
n−1

)2 (
a
(m)
n−3 c

(m)
n−2 + a

(m)
n−2 c

(m)
n−1

)

+ 2λ �2 ĉ
(m)
n−1 c

(m)
n−1

(
�1 b

(m)
n−1 + �0

)
+ 2λ �1 ĉ

(m)
n−1 c

(m)
n−1 ρ̂(b(m)

n−2)
]

.
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