
Analysis and Mathematical Physics           (2022) 12:37 
https://doi.org/10.1007/s13324-021-00644-8

Representation of symmetry transformations on the sets of
tripotents of spin and Cartan factors

Yaakov Friedman1 · Antonio M. Peralta2

Received: 18 February 2021 / Revised: 28 October 2021 / Accepted: 21 December 2021
© The Author(s) 2022

Abstract
There are six different mathematical formulations of the symmetry group in quantum
mechanics, among them the set of pure states P—i.e., the set of one-dimensional
projections on a complex Hilbert space H– and the orthomodular lattice L of closed
subspaces of H . These six groups are isomorphic when the dimension of H is ≥
3. The latter hypothesis is absolutely necessary in this identification. For example,
the automorphisms group of all bijections preserving orthogonality and the order
on L identifies with the bijections on P preserving transition probabilities only if
dim(H) ≥ 3. Despite of the difficulties caused by M2(C), rank two algebras are used
for quantum mechanics description of the spin state of spin- 12 particles. However,
there is a counterexample for Uhlhorn’s version of Wigner’s theorem for such state
space. In this note we prove that in order that the description of the spin will be
relativistic, it is not enough to preserve the projection lattice equipped with its natural
partial order and orthogonality, but we also need to preserve the partial order set of
all tripotents and orthogonality among them (a set which strictly enlarges the lattice
of projections). Concretely, let M and N be two atomic JBW∗-triples not containing
rank–one Cartan factors, and let U(M) and U(N ) denote the set of all tripotents in M
and N , respectively. We show that each bijection � : U(M)→ U(N ), preserving the
partial ordering in both directions, orthogonality in one direction and satisfying some
mild continuity hypothesis can be extended to a real linear triple automorphism. This,
in particular, extends a result of Molnár to the wider setting of atomic JBW∗-triples
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not containing rank–one Cartan factors, and provides new models to present quantum
behavior.
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1 Introduction

Together with H. Weyl, E.P. Wigner introduced group theory into physics and formal-
ized the theory of symmetry. A symmetry is a transformation of a quantum structure
that preserves a certain quantity or relation. A Wigner symmetry is a mapping on the
set P of rank–one projections of B(H) preserving the transition probability between
any two of these projections. The result known as Wigner’s theorem, which has been
labeled as a cornerstone of themathematical formulation of quantummechanics, plays
a fundamental role in this theory. It was firstly enunciated in [1], and it can be simply
stated by saying that every bijective Wigner symmetry is induced by a unitary or an
antiunitary operator. Given two projections p = ξ ⊗ ξ, q = η⊗ η ∈ P, the transition
probability between p and q is given by tr(pq) = tr(pq∗) = tr(qp∗) = |〈ξ, η〉|2,
where tr(·) stands for the trace on B(H).

Given a complexHilbert space H , the followingmathematical objects are employed
in the Hilbert space formulation of quantum mechanics:

(1) The C∗-algebra B(H) of bounded operators;
(2) The Jordan algebra B(H)sa of bounded self-adjoint operators;
(3) The set P of pure states on H , that is, the extreme points of the set of positive

functionals of the unit ball of B(H)∗ = C1(H), the space of trace class operators
regarded as the predual of B(H), which by trace duality corresponds to the rank–
one projections ξ ⊗ ξ (ξ ∈ H , ‖ξ‖ = 1) in B(H)∗ = C1(H);

(4) The convex set of normal states of B(H), that is, the set of positive trace class
operators of trace one;

(5) The orthomodular lattice L of closed subspaces of H ;
(6) The partial algebra of positive operators bounded by the unit operator on H .

The natural automorphisms of these mathematical models (i.e., the bijections f
on these sets preserving the corresponding relevant structure: associative product and
involution, Jordan product, transition probability, convex combinations, orthogonality
and order between subspaces, and the partially defined sum: E + F ≤ I if and only if
f (E)+ f (F) ≤ I , and in this case f (E+F) = f (E)+ f (F), respectively) represent
the symmetry groups of quantum mechanics and are endowed with natural topologies
induced by the probabilistic structure of quantummechanics. It is shown, for example,
in [2] that these six symmetry groups are all isomorphic when dim(H) ≥ 3. The last
restriction excludes the rank two B(H), where there are no more than two orthogonal
projections.
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The reader is referred to [1,3–5] for the original and pioneering results and to [6–14]
and [15] for more recent proofs and variants of this influencing result. The references
[16,17] contain a detailed exposition on the origins and history of Wigner theorem.
Special credit must be paid to the contributions due to L. Molnár and his group.

Let P1(H) denote the set of all rank–one projections on H . The set P1(H) can be
regarded as the collection of minimal projections in B(H) as well as the set P of all
pure states in B(H)∗ = C1(H).

Based on the fundamental theorem of projective geometry, U. Uhlhorn established a
version ofWigner’s famous theoremon the structure of quantummechanical symmetry
transformations which reads as follows:

Theorem 1.1 (Uhlhorn’s theorem [18]) Let H be a complex Hilbert space with
dim(H) ≥ 3. Then every bijective map � : P1(H) → P1(H) which preserves
orthogonality between tripotents in both directions, that is,

pq = 0 in P1(H) if and only if �(p)�(q) = 0,

is induced by a unitary or antiunitary operator on the underlying Hilbert space.

There is a more recent contribution by L. Molnár which introduces a new point of
view and another version ofWigner’s theorem.Let us first introduce some terminology.
Henceforth the set of all partial isometries or tripotents on H will be denoted by
P I (H) = U(B(H)). The symbol P I1(H) = Umin(B(H)) will stand for the set of
all rank–1 or minimal partial isometries on H . We shall consider the standard partial
ordering on P I (H) = U(B(H)) given by e ≤ u if and only if u − e is a partial
isometry orthogonal to e (i.e., (ee∗)(u − e)(u − e)∗ = 0 = (e∗e)(u − e)∗(u − e)).

Theorem 1.2 [15, Theorem 1] Let H be a complex Hilbert space with dim(H) ≥
3. Suppose that � : U(B(H)) → U(B(H)) is a bijective transformation which
preserves the partial ordering and the orthogonality between partial isometries in both
directions. If � is continuous (in the operator norm) at a single element of U(B(H))

different from 0, then � extends to a real linear triple isomorphism. Moreover � can
be written in one of the following forms:

(1) There exist unitaries U , V on H such that �(R) = U RV (R ∈ U(B(H)));
(2) There exist antiunitaries U , V on H such that �(R) = U RV (R ∈ U(B(H)));
(3) There exist unitaries U , V on H such that �(R) = U R∗V (R ∈ U(B(H)));
(4) There exist antiunitaries U , V on H such that �(R) = U R∗V (R ∈ U(B(H))).

As observed in [15], the analogue result of Theorem 1.2 when the mapping � is
restricted to the lattice of projections of B(H) is usually known as the fundamental
theorem of projective geometry. Another related tool is the so-calledMackey–Gleason
problem. Let W be a von Neumann algebra without type I2 direct summand, and let
P(W ) stand for the lattice of all projections in W . Suppose thatμ is a bounded finitely
additive measure on P(W ). The Mackey–Gleason problem asks whether μ extends
to a linear functional on the whole W . A positive answer for nonnegative measures on
B(H) with H separable was given by Gleason in [19]. It is known that the problem
admits no solution for the von Neumann algebra M2(C) of all 2×2 complex matrices.
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In [20], Bunce and Wright gave a complete positive solution to the question posed
by Mackey. A Jordan version employed in our arguments was published by the just
quoted authors in [21].

Quantum mechanic’s model stimulated the study of non-commutative geometry.
The model which motivated the study of C∗-algebras is the space B(H) of all bounded
linear operators on a complex Hilbert space H . A natural question is what are the
subspaces of B(H) which are the range of a contractive projection? It was shown in
[22] that such subspaces can be classified and they are closed under a certain triple
product. Left and right weak∗ closed ideals of B(H) are precisely subspaces of the
form B(H)p and pB(H), respectively, where p is a projection in B(H). The latter
are identified with subspaces of operators of the form B(p(H), H) and B(H , p(H)).
However, given two complex Hilbert spaces H and K (where we can always assume
that K is a closed subspace of H ), the Banach space B(H , K ), of all bounded linear
operators from H to K is not, in general, a C∗-subalgebra of some B(H̃). Despite of
this handicap, B(H , K ) is stable under products of the form

{x, y, z} = 1

2

(
xy∗z + zy∗x

)
(x, y, z ∈ B(H , K )). (1)

Closed complex-linear subspaces of B(H , K ) which are closed for the triple product
defined in (1) were called J∗-algebras by L. Harris in [23,24]. J∗-algebras include,
in particular, all C∗-algebras, all JC∗-algebras and all ternary algebras of operators.
Harris also proved that the open unit ball of every J∗-algebra enjoys a interesting
holomorphic property, namely, it is a bounded symmetric domain (see [23, Corollary
2]). In [25], Braun, Kaup and Upmeier extended Harris’ result by showing that the
open unit ball of every (unital) JB∗-algebra satisfies the same property.

When the holomorphic-property “being a bounded symmetric domain” is employed
to classify complex Banach spaces, the definitive result is due to W. Kaup, who, in his
own words, “introduced the concept of a JB∗-triple and showed that every bounded
symmetric domain in a complex Banach space is biholomorphically equivalent to the
open unit ball of a JB∗-triple and in this way, the category of all bounded symmetric
domains with base point is equivalent to the category of JB∗-triples” (see [26] and
Subsect. 1.1 for the detailed definitions).

The first examples of JB∗-triples include C∗-algebras and B(H , K ) spaces with
respect to the triple product given in (1), the latter are known as Cartan factors of type
1.

There are six different types of Cartan factors whose open unit balls are associated
to classic Cartan domains; the first one has been introduced in the previous paragraph.
In order to define the next two types, let j be a conjugation (i.e., a conjugate-linear
isometry of period 2) on a complex Hilbert space H . We consider a linear involution
on B(H) defined by x �→ xt := j x∗ j . Cartan factors of type 2 and 3 are the JB∗-
subtriples of B(H) of all t-skew-symmetric and t-symmetric operators, respectively.

A Cartan factor of type 4, also called a spin factor, is a complex Hilbert space M
provided with a conjugation (i.e., a conjugate-linear isometry of period-2) x �→ x,
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triple product and norm given by

{x, y, z} = 〈x, y〉z + 〈z, y〉x − 〈x, z〉y, (2)

and

‖x‖2 = 〈x, x〉 +
√
〈x, x〉2 − |〈x, x〉|2, (3)

respectively (see also [27, Chapter 3]). The Cartan factors of types 5 and 6 (also called
exceptional Cartan factors) are spaces of matrices over the eight dimensional complex
algebra of Cayley numbers; the type 6 consists of all 3× 3 self-adjoint matrices and
has a natural Jordan algebra structure, and the type 5 is the subtriple consisting of all
1× 2 matrices (see [28] for more details). A JB∗-triple is called atomic if it coincides
with an �∞-sum of Cartan factors.

It should be recalled that an element e in a JB∗-triple E is called a tripotent if it
is a fixed point for the triple product, that is, {e, e, e} = e. The set of all tripotents
in E will be denoted by U(E). Two tripotents e and v in U(E) are called orthogonal
(e ⊥ v) if the triple product {e, e, v} vanishes. A partial order is defined on U(E) by
the relation e ≤ u if u − e is a tripotent which is orthogonal to e (see Subsect. 1.1 for
more details).

Let � : U(E) → U(F) be a bijection between the sets of tripotents in two JB∗-
triples E and F . We shall say that � preserves the partial ordering or preserves the
partial ordering in one direction (respectively, preserves orthogonality or preserves
orthogonality in one direction) if e ≤ u (respectively, e ⊥ u) in U(E) implies �(e) ≤
�(u) (respectively, �(e) ⊥ �(u)) in U(F). The mapping � preserves the partial
ordering in both directions (respectively, orthogonality in both directions) when the
equivalence e ≤ u ⇔ �(e) ≤ �(u) (respectively, e ⊥ u ⇔ �(e) ⊥ �(u)) holds for
all e, u ∈ U(E).

From a pure mathematical point of view a very natural question motivated by
Theorem 1.2 can be posed in the following terms: Let M be a Cartan factor or an
atomic JBW∗-triple. Suppose that � : U(M) → U(M) is a bijective transformation
which preserves the partial ordering and orthogonality between tripotents in both
directions. Assume, additionally, that � is continuous at a single element of U(M)

whose components in the different factors are non-zero. Can we extend � to a real
linear triple isomorphism? We shall see later that some of the hypotheses can and will
be relaxed.

However, our motivation is not merely mathematical. In Sect. 2 we consider the
quantum state space of the spin of a spin- 12 particle. We show that the spin domain
represents the geometry of this state space. By embedding the Minkowski space–
time into this domain we find the physical meaning of the pure states and the partial
ordering among them. We shall later show that if we use Lorentz’s transformation to
transform the spin of a moving particle from the co-moving frame to the lab frame, the
pure states should be replaced with pure atoms and projections with tripotents. Thus,
for a relativistic description the lattice of projections with its natural ordering is not
enough to deduce a Wigner’s type theorem for such domain (which was also known
from several counter–examples, compare [2, Proposition 4.9 and Example 4.1] or [7,
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comments in page 449]), but we need to consider bijections on the set of tripotents
preserving the partial order and orthogonality among them.

By employing a literary device of analepsis or flashback, we begin with a look
at our main conclusion, established in Theorem 6.1, where we prove that given two

atomic JBW∗-triples M =
⊕�∞

i∈I
Ci and N =

⊕�∞
j∈J

C̃ j , where Ci and C j are

Cartan factors with rank ≥ 2, each bijective transformation � : U(M) → U(N ),

which is continuous at a tripotent u = (ui )i in M with ui �= 0 for all i , and preserves
the partial ordering in both directions and orthogonality between tripotents in one
direction, admits an extension to a real linear triple isomorphism T : M → N .
Furthermore, M decomposes as the direct sum of two orthogonal weak∗-closed ideals
M1 and M2 such that T |M1 is complex-linear and T |M2 is conjugate-linear. Since triple
automorphisms on B(H) preserve any triple transition probability defined in terms
of the triple product, our result, in particular, implies that orthogonality and bi-order
preserving bijections also preserve transition probabilities.

The main result is obtained after a series of technical results and studies on particu-
lar cases. In Sect. 3 we explore the general properties of those bijections on tripotents
preserving the partial ordering in both directions and orthogonality between tripo-
tents in one direction. Proposition 3.1 proves that every bijection between the sets
of tripotents of two JB∗-triples preserving the partial ordering in both directions and
orthogonality between tripotents in one direction must also preserve orthogonality in
both directions. We show next that every such bijection under study maps zero to
zero, preserves order minimal and maximal tripotents, and is additive on finite sums
of mutually orthogonal tripotents (see Lemma 3.2). Assuming that the bijection �

acts between the set of tripotents of two JBW∗-triples, we prove that it must preserve
infima and suprema of families of tripotents and the weak∗ limits of series given by
families of mutually orthogonal tripotents (see Lemma 3.3).

After showing that a bijection preserving the partial ordering in both directions
and orthogonality between the sets of tripotents of two atomic JBW∗-triples maps
(bijectively) the tripotents in each factor in the domain JBW∗-triple to the tripotents
in a single factor of the codomain (cf. Lemma 3.5), we can restrict our study to those
bijections preserving the partial ordering in both directions and orthogonality between
the sets of tripotents of two Cartan factors. One of the key advances is in Sect. 4, where
we show the following: each bijection from the set of tripotents of a spin factor onto
the set of tripotents of any other Cartan factor which preserves the partial ordering in
both directions and orthogonality between tripotents, and satisfying a mild continuity
property, can be extended to a complex-linear or conjugate-linear triple isomorphism
(see Theorem 4.5). As a first consequence of this result, we extend Molnár’s Theorem
1.2 by showing that for any complexHilbert space H with dim(H) ≥ 2 and any Cartan
factor C̃ , every bijection� : U(B(H))→ U(C̃) preserving the partial ordering in both
directions and orthogonality between tripotents, which is continuous at a single non-
zero element in U(B(H)), extends to a real linear triple isomorphism (see Theorem
4.6).

The result for the spin factor is extended to other Cartan factors in Sect. 5. Those
Cartan factors of rank ≥ 2 admitting a unitary tripotent –i.e., those Cartan factors of
rank ≥ 2 which are JBW∗-algebras– are jointly treated in Theorem 5.5. The proof
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in the case of Cartan factors with rank ≥ 3 uses the Jordan version of the Bunce–
Wright–Mackey–Gleason theorem in [21]. The conclusion of Theorem 5.5 covers all
type 1 Cartan factors of the form B(H) with dim(H) ≥ 2, Cartan factors of type
2 with dim(H) ≥ 6 even, or infinite, all type 3 Cartan factors with dim(H) ≥ 3,
and the exceptional Cartan factor of type 6. The remaining Cartan factors, namely,
the rectangular type 1 Cartan factors with rank larger than or equal to two, the type
2 Cartan factors non-admitting a unitary element, and the exceptional type 5 Cartan
factor are treated in Theorems 5.6, 5.9, and 5.10, respectively.

After the conclusions in this note, it seems very natural to ask whether every bijec-
tion between the sets of tripotents of two Cartan factors with rank ≥ 2 preserving
the partial ordering in both directions must preserve orthogonality (in both directions)
automatically.

1.1 Notation and background

A complex Banach space E is called a JB∗-triple if it admits a continuous triple
product {·, ·, ·} : E × E × E → E, which is symmetric and bilinear in the first and
third variables, conjugate-linear in the middle one, and satisfies the following axioms:

(a) (Jordan identity)

L(a, b)L(x, y) = L(x, y)L(a, b)+ L(L(a, b)x, y)− L(x, L(b, a)y)

for a, b, x, y in E , where L(a, b) is the operator on E given by x �→ {a, b, x} ;
(b) L(a, a) is a hermitian operator with non-negative spectrum for all a ∈ E ;
(c) ‖{a, a, a}‖ = ‖a‖3 for each a ∈ E .

Let E be a JB∗-triple. An element e ∈ E is a tripotent if {e, e, e} = e. If we fix a
tripotent e in E , we can find a decomposition of the space in terms of the eigenspaces
of the operator L(e, e) given in the following terms:

E = E0(e)⊕ E1(e)⊕ E2(e), (4)

where Ek(e) := {x ∈ E : L(e, e)x = k
2 x} is a subtriple of E called the Peirce-k

subspace (k = 0, 1, 2). Peirce-k projection is the name given to the natural projec-
tion of E onto Ek(e), and it is usually denoted by Pk(e). Triple products among
elements in different Peirce subspaces obey certain laws known as Peirce arith-
metic. Concretely, the inclusion {Ek(e), El(e), Em(e)}⊆ Ek−l+m(e), and the identity
{E0(e), E2(e), E} = {E2(e), E0(e), E} = {0}, hold for all k, l, m ∈ {0, 1, 2}, where
Ek−l+m(e) = {0} whenever k − l + m is not in {0, 1, 2}. The Peirce-2 subspace
E2(e) is a unital JB∗-algebra with respect to the product and involution given by
x ◦e y = {x, e, y} and x∗e = {e, x, e} , respectively.

A tripotent e in E is called algebraically minimal (respectively, complete or alge-
braically maximal) if E2(e) = Ce �= {0} (respectively, E0(e) = {0}).We shall say that
e is a unitary tripotent if E2(e) = E . The symbols U(E), Umin(E), and Umax (E) will
stand for the sets of all tripotents, all minimal tripotents, and all complete tripotents
in E , respectively.
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A JB∗-triple might contain no non-trivial tripotents, that is the case of the JB∗-triple
C0[0, 1] of all complex-valued continuous functions on [0, 1] vanishing at 0. In a JB∗-
triple E the extreme points of its closed unit ball are precisely the complete tripotents
in E (cf. [25, Lemma 4.1], [29, Proposition 3.5] or [30, Corollary 4.8]). Thus, every
JB∗-triple which is also a dual Banach space contains an abundant set of tripotents.
JB∗-triples which are additionally dual Banach spaces are called JBW∗-triples. Each
JBW∗-triple admits a unique (isometric) predual and its triple product is separately
weak∗ continuous (cf. [31]).

A JBW∗-triple is called atomic if it coincides with the w∗-closure of the linear
span of its minimal tripotents. A very natural example is given by B(H), where
each minimal tripotent is of the form η ⊗ ξ with ξ and η in the unit sphere of H .
Furthermore, every Cartan factor is an atomic JBW∗-triple. It is known that building
upon these exampleswe can exhaust all possible cases, since every atomic JBW∗-triple
is an �∞-sum of Cartan factors (cf. [32, Proposition 2 and Theorem E]).

The notion of orthogonality between tripotents is an important concept in the theory
of JB∗-triples. Suppose e and v are two tripotents in a JB∗-triple E . According to the
standard notation (see, for example [33,34]) we say that e is orthogonal to u (e ⊥ u in
short) if {e, e, u} = 0. It is known that e ⊥ u if and only if {u, u, e} = 0 (and the latter
is equivalent to any of the next statements: L(e, u) = 0, L(u, e) = 0, e ∈ E0(u),

u ∈ E0(e) cf. [33, Lemma 3.9]). It is worth to remark that two projections p and q in
a C∗-algebra A, regarded as a JB∗-triple, are orthogonal if and only if pq = 0 (that is,
they are orthogonal in the usual sense).

We can also speak about orthogonality for pairs of general elements in a JB∗-triple
E . We shall say that x and y in E are orthogonal (x ⊥ y in short) if L(x, y) = 0
(equivalently L(y, x) = 0, compare [35, Lemma 1.1] for several reformulations).
Any two orthogonal elements a and b in E are M-orthogonal, that is, ‖a + b‖ =
max{‖a‖, ‖b‖} (see [36, Lemma 1.3(a)]).

Building upon the relation “being orthogonal” we can define a canonical order ≤
on tripotents in E given by e ≤ u if and only if u − e is a tripotent and u − e ⊥ e.
This partial order is precisely the order considered by L. Molnár in Theorem 1.2 and it
provides an important tool in JB∗-triples (see, for example, the recent papers [37–39]
where it plays an important role). This relation enjoys several interesting properties,
for example, e ≤ u if and only if e is a projection in the JB∗-algebra E2(u) (cf. [34,
Lemma 3.2] or [36, Corollary 1.7] or [39, Proposition 2.4]). In particular, if e and p
are tripotents (i.e., partial isometries) in a C∗-algebra A regarded as a JB∗-triple with
the triple product in (1) and p is a projection, the condition e ≤ p implies that e is a
projection in A with e ≤ p in the usual order on projections (i.e., pe = e).

Anon-zero tripotent e in E is called (order)minimal (respectively, (order)maximal)
if 0 ≤ u ≤ e for a tripotent u in E implies that u = e (respectively, e ≤ u for a tripotent
u in E implies that u = e). Clearly, every algebraically minimal tripotent is (order)
minimal but the reciprocal implication does not necessarily hold, for example, the
unit element in C[0, 1] is order minimal but not algebraically minimal. In the C∗-
algebra C0[0, 1] of all continuous functions on [0, 1] vanishing at 0, the zero tripotent
is order maximal but it is not algebraically maximal. In the setting of JBW∗-triples
these pathologies do not happen, that is, in a JBW∗-triple order and algebraic maximal
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(respectively, minimal) tripotents coincide (cf. [30, Corollary 4.8] and [34, Lemma
4.7]).

We shall say that a tripotent e in a JB∗-triple E has rank–n (denoted by r(e) = n)
if it can be written as the sum of n orthogonal minimal tripotents in E . The rank of a
JB∗-triple is a more technical notion. A subset S of E is called orthogonal if 0 /∈ S and
x ⊥ y for every x �= y in S. The minimal cardinal number r satisfying card(S) ≤ r
for every orthogonal subset S ⊆ E is called the rank of E (cf. [28], [40] and [41]
for basic results on the rank of a Cartan factor and a JBW∗-triple and its relation
with reflexivity). It is known that for each tripotent e in a Cartan factor C we have
r(e) = r(C2(e)) (see, for example, [28, page 200]).

A triple homomorphism between JB∗-triples E and F is a linear map T : E → F
such that T {a, b, c} = {T (a), T (b), T (c)} for all a, b, c ∈ E . A triple isomorphism
is a bijective triple homomorphism. Clearly, the inclusion T (U(E)) ⊆ U(F) holds
for each triple homomorphism T , while the equality T (U(E)) = U(F) is true for
every triple isomorphism T . Every injective triple homomorphism is an isometry (see
[42, Lemma 1]). Actually a deep result established by Kaup in [26, Proposition 5.5]
proves that a linear bijection between JB∗-triples is a triple isomorphism if and only if
it is an isometry. Therefore, each triple isomorphism T : E → F induces a surjective
isometry T |U(E) : U(E) → U(F) which preserves orthogonality and partial order in
both directions.

2 Physical motivation for bijections preserving the order between
sets of tripotents

We show that the four-dimensional complex spin domain can be used to describe the
spin of an electron. However, if we want the model to be Lorentz invariant, the order
structure of the projection lattice is not enough. The spin state in a co-moving frame
of an electron is described by a projection. Transformation of the spin state from the
co-moving frame of a moving electron to the lab frame transforms projections into
projections only underGalilean transformations, but ifweuseLorentz transformations,
the projections are mapped into tripotents. Thus, a relativistic theory of the spin of an
electron should preserve partial ordering of tripotents in a spin factor.

Let M be a complex spin factor as defined in the introduction. Let 〈·, ·〉 and x �→ x
denote, respectively, the inner product and the conjugation on M for which the triple
product is given by

{a, b, c} = 〈a, b〉c + 〈c, b〉a − 〈a, c̄〉b̄.

The real subspace M
R
= {a ∈ M : a = ā}, called the real part of M , is a real

Hilbert space with respect to the inner product (a, b) = �e〈a, b〉 (a, b ∈ M
R
), and

M = M
R
⊕ i M

R
. We shall denote by S

R
the unit sphere of M

R
. It is known (see

[43, Theorem in page 196] or [27, Sect. 3.1.3]) that for any triple automorphism T of
M , there is a complex number λ ∈ T = {λ ∈ C : |λ| = 1} and a unitary operator
U ∈ B(M

R
) such that T (a + ib) = λ(U (a)+ iU (b)) for all a, b ∈ M

R
. Conversely,
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for any λ ∈ T and each unitary U ∈ B(M
R
), the map T (a + ib) = λ(U (a)+ iU (b))

(a, b ∈ M
R
) is a triple automorphism on M .

The set of tripotents U(M) consists of two types, minimal and maximal, the latter
being of rank 2. By using the partial order on the tripotents, for any non-zero tripotent
u, we can define an order interval (0, u] = {v : v ≤ u} ⊂ U(M) as the set of tripotents
which are less or equal to u. If u is a minimal tripotent, (0, u] = {u}. An element u in
M is a maximal tripotent if and only if

there is a λ ∈ T and an element a ∈ S
R
such that u = λa, (5)

(see [27, Sect. 3.1.4] or [39, Lemma 6.1] or [44, Sect. 3]). Thus, the set Umax (M) of
maximal tripotents can be identified with T× S

R
.

Suppose x, y ∈ S
R
, with 〈x, y〉 = 0. It is known (and easy to check) that the

element v = 1
2 (x + iy) is a minimal tripotent in M . Actually, every minimal tripotent

in M is of the form

v = λ

2
(x + iy) = (αx − β y)+ (βx + αy)

2
= 1

2
(a + ib), (6)

where λ = α + iβ ∈ T, a = αx − β y and b = βx + αy are in S
R
, with 〈x, y〉 =

〈a, b〉 = 0 (see, for example, [39, Lemma 6.1]).
Any minimal tripotent decomposes into its real and imaginary parts in the form

v = 1

2
(a + ib), (7)

where a, b in S
R
and 〈a, b〉 = 0. The minimal tripotent v is the average of a maximal

tripotent from S
R
and a maximal tripotent from i S

R
(cf. [27, Sect. 3.1.4], see Fig. 1).

Fig. 1 Decomposition of a
minimal tripotent v = 1

2 (a + ib)

into its real and imaginary parts.
The tripotent v̄ = 1

2 (a − ib) is
orthogonal to v, with v + v̄ = a
and v − v̄ = ib. The tripotent v
is the intersection (0, a] ∩ (0, ib]
of the intervals (0, a] and (0, ib]
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Fig. 2 Decomposition (6) of a
minimal tripotent

v = 1
2 (a + ib) = e−iϕ

2 (x + iy).
The maximal tripotents x, y are
rotations by an angle ϕ of a, b in
the plane a, b

Furthermore, for each minimal tripotent v = λ
2 (x+ iy), the element ṽ = λ

2 (x− iy)

is also a minimal tripotent which is orthogonal to v. Since v + ṽ = λx, we have
v ≤ λx and v ∈ (0, λx]. Also, −ṽ is a minimal tripotent, and v − ṽ = iλy, implying
that v ≤ λiy and v ∈ (0, iλy]. Thus, the tripotent v is also the unique element in
the intersection (0, λx] ∩ (0, iλy] of the intervals generated by the maximal tripotents
λx, and iλy. For the geometric connections between x, y and a, b for a tripotent
v = λ

2 (x + iy), the reader is referred to Fig. 2.
A seminal version of our next result is contained in [39, Proposition 6.3(1)]. Here

we provide some additional details.

Lemma 2.1 Let u = λa be a maximal tripotent in M, with a ∈ S
R

and λ ∈ T. If v

is a minimal tripotent in M such that v ≤ u, then there is an element b ∈ S
R

with
〈a, b〉 = 0 such that v = λ 1

2 (a+ ib) and v is the average of a maximal tripotent from

λS
R

and a maximal tripotent from iλS
R

. Moreover, ṽ = λ 1
2 (a − ib) = λ 1

2 (a + ib) is
a minimal tripotent orthogonal to v and u = v + ṽ = λa.

Proof Since multiplication by λ̄ is a triple automorphism, it is enough to prove the
result for λ = 1. According to (6), we can write v = 1

2 (x + ib) for x, b ∈ S
R
,

where 〈x, b〉 = 0. The assumption v ≤ u implies that there is a minimal tripotent ṽ

orthogonal to v such that u = v + ṽ. But any minimal tripotent ṽ orthogonal to v is
of the form ṽ = μv̄ for some μ ∈ T. We therefore have

u = a = 1

2
(x + ib)+ μ

1

2
(x − ib) = 1+ μ

2
x + i

1− μ

2
b

=
(
1+ α

2
x + β

2
b

)
+ i

(
β

2
x + 1− α

2
b

)
,

whereμ = α+ iβ ∈ T. Having in mind that a ∈ S
R
, we deduce thatμ = 1 and a = x

as desired. ��
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If M is a spin domain, any non-zero and non-minimal tripotent u is maximal and of
the form given in (5), that is, u = λa, λ ∈ T, a ∈ S

R
, and our Lemma 2.1 implies that

any tripotent in the interval (0, u] is defined by a vector b ∈ S
R
satisfying 〈a, b〉 = 0.

Thus (0, u] is a sphere of dimension dim(M
R
)− 1, with center at 1

2u.
For the description of the spin of an electron,we use the four-dimensional spin factor

which we identify with the space C
4. Denote the natural basis by e0, e1, e2, e3. Any

element is represented in the form x =∑
xμeμ for some xμ ∈ C. We assume that the

conjugation is given by x =
∑

xμeμ, and the inner product is 〈x, y〉 =∑3
μ=0 xμyμ.

We use a matrix representation (see [27, Sect. 3.3.6]) of this spin factor by associ-
ating with each basis element eμ a 2× 2 complex matrix êμ defined by

ê0 =
(
1 0
0 1

)
, ê1 =

(
0 −i
−i 0

)
, ê2 =

(
0 −1
1 0

)
, ê3 =

(−i 0
0 i

)
.

The matrices êμ can be identified with Pauli matrices σμ

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

as ê j = −iσ j , for j = 1, 2, 3, and ê0 = I = σ0. The matrix representation of an
arbitrary element x is

x̂ =
3∑

μ=0
xμêμ =

(
x0 − i x3 −x2 − i x1
x2 − i x1 x0 + i x3

)
. (8)

This leads to a simple formula for the determinant of any element x as

det(x) = det(x̂) =
3∑

μ=0
(xμ)2 = 〈x, x̄〉 . (9)

The usual QuantumMechanics description of the spin or angular momentum of an
electron (see [45, page 972]) can be given as follows. We denote by |z+ >= |+ >

the state of the spin of an electron moving up after passing a Stern–Gerlach apparatus
in the z-direction and by |z− >= |− > the state of the spin of an electron moving
down after passing the same apparatus. The general spin state is described as a linear
combination |χ >= c+|+ > +c−|− >= (c+, c−), where c+ and c− are complex
numbers satisfying |c+|2 + |c−|2 = 1.

It is customary (see [46, page 171]) to write the spin angular momentum operator
S = (S1, S2, S3) as S j = 1

2�σ j , for j = 1, 2, 3,, where σ j are the Pauli matrices,
mentioned above. The states of the spin of an electron after passing a Stern–Gerlach
apparatus in the x-direction are the eigenvectors of S1, |x+ >= 1√

2
(1, 1) correspond-

ing to the eigenvalue �/2 and |x− >= 1√
2
(1,−1) corresponding to the eigenvalue
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−�/2. Similarly, the states of the spin passing a Stern–Gerlach apparatus in the y-
direction are the eigenvectors of S2, |y+ >= 1√

2
(1, i) corresponding to the eigenvalue

�/2 and |y− >= 1√
2
(1,−i) corresponding to the eigenvalue −�/2.

In the algebraic representation, these basic states | j± > are identified with the
projection Pj± on them as

Px+ = 1

2

(
1 1
1 1

)
, Px− = 1

2

(
1 −1
−1 1

)
, Py+ = 1

2

(
1 i
−i 1

)
,

Py− = 1

2

(
1 −i
i 1

)
, Pz+ =

(
1 0
0 0

)
, Pz− =

(
0 0
0 1

)
.

Note that all these Pj± are projections of rank 1, and thus are minimal in the
projection lattice ordering. For each j , we have Pj± = 1

2 (ê0 ± i ê j ) = 1
2 (σ0 ± σ j ).

They all belong to the interval [0, I ] = [0, ê0], which consists of all projections in the
space of 2× 2 complex matrices.

For any unit vector b in R
3, the general spin state operator � in the direction b is

defined as

� = 1

2

⎛

⎝I +
3∑

j=1
b jσ j

⎞

⎠ = 1

2

⎛

⎝ê0 + i
3∑

j=1
b j ê j

⎞

⎠ (cf. [3, page172]). (10)

By using Lemma 2.1, this formula reveals that a general spin state operator is a
general minimal tripotent (in this case also a projection) in the interval [0, I ] = [0, ê0]
of the four-dimensional spin domain.

To understand the physical meaning of this observation, we define a representa-
tion of Minkowski spacetime in the four-dimensional spin domain. We identify the
Minkowski norm of a spacetime vector x with the det(x) defined by (9). The deter-
minant of the vector ê0 = σ0 is 1, so we can identify it with the unit vector in the time
direction. For any j = 1, 2, 3, the determinant of i ê j = σ j is −1, the norm of a unit
space-like vector in Minkowski space. Thus, we can embed any spacetime vector a

with coordinates aμ ∈ R into the spin domain as φ(a) =
∑3

μ=0 aμσμ. Under this

embedding, it follows from (9) that det(φ(a)) is precisely the Minkowski norm of a.
What is the meaning of formula (10) for a general spin operator �? The condition

� ∈ (0, ê0] and the fact that ê0 = σ0 is the time direction show that the state � is
stationary, and if it will not be disturbed, on a repeated measurement on time the result
will not change. From Lemma 2.1, we also see that � ∈ (0, i

∑
b j ê j ] = (0,

∑
b jσ j ].

This condition expresses the fact that � is an eigenvector of the spin measurement in
the b direction. Since the spin is a pseudo-vector, it is reasonable to multiply b by the
pseudo-scalar i , while decomposing it with respect to ê j . Note that the last ordering
is not an ordering on the projection lattice.

This description of the spin is valid for an electron at rest or moving with a low
velocity with respect to the speed of light. On the other hand, if its velocity is large, we
shall need to use spacetime transformations from a frame co-moving with the electron
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to our lab frame. It is known [27, Chapter 1] that any spacetime transformation satisfy-
ing the Principle of Relativity must be either Galilean or Lorentzian. Only for Galilean
transformations the time remains invariant under the transformation, implying that a
spin state � will remain a projection also in our lab frame. But if the transformations
are Lorentzian, it is known, for example see [47] and [27], that the Lorentz group
acts on the four-dimensional spin domain by determinant-preserving transformations.
For such transformations, the time unit vector is not preserved if the relative velocity
between the systems is not zero. In this case, the identity matrix I will not be the iden-
tity after the transformation, but will be a maximal tripotent. Since a partial isometry
v is a projection only if v < I , the Lorentz transformation in general will not preserve
projections but will preserve only the order among tripotents.

It is known that a bijection preserving the order on the projection lattice of M2(C)

does not necessarily preserve transition probabilities (see [2, Example 4.1]), which
should be observer-independent. As we shall show later, if a transformation preserves
the partial ordering and orthogonality between tripotents, which is physical, as we
have shown above, the transformations are triple automorphisms and thus preserve
any physical phenomena which can be expressed by the triple product.

The connection of the spin triple product to a new description of the relativistic
spin of an electron and the state space of two-state systems, introduced here, has
been further explored in [48]. The transition probabilities coincide with the quan-
tum mechanics predictions and agree with the experimental results testing quantum
mechanics predictions based on Bell’s inequality.

Why can we associate a triple product structure with the states of a quantum system
in the first place? The measuring process defines some geometric properties on the
state space. It was shown in [49] and [50] that a state space satisfying some physically
significant properties implied by themeasuring process is the predual of a JBW∗-triple.

3 Order preserving bijections between sets of tripotents in
JBW∗-triples

This section is devoted to study the properties of those bijections between the set of
tripotents of two general JB∗-triples preserving the partial ordering in both directions
and orthogonality between elements. The first results will be focused on families
of tripotents which are close to commute, that is, families of mutually orthogonal
tripotents, or families of tripotents which are ordered by the natural partial order, or
tripotents e and u satisfying that u ∈ Te.

3.1 Order preserving bijections and orthogonality

In our first result we shall adapt, and extend, an argument taken from [51, Lemma
2.3].

Proposition 3.1 Let M, N be JB∗-triples. Suppose that � : U(M)→ U(N ) is a bijec-
tive transformation which preserves the partial ordering between tripotents in both
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directions. Suppose additionally that � preserves orthogonality. Then � preserves
orthogonality between tripotents in both directions.

Proof The argument is valid for general JB∗-triples, even if in this general case we
might have U(M),U(N ) = {0}. To obtain the desired conclusion it suffices to prove
that �−1 : U(N )→ U(M) preserves orthogonality.

Let us take ẽ ⊥ ṽ in U(N ). Since ẽ, ṽ ≤ ẽ + ṽ, it follows from the assumptions
that �−1(ẽ),�−1(ṽ) ≤ �−1(ẽ + ṽ) –observe that �−1 is a bijection preserving the
partial ordering–. It follows from the definition of the partial order that there exists a
tripotent w ∈ U(M) which is orthogonal to �−1(ṽ) and �−1(ẽ+ ṽ) = �−1(ṽ)+w.
By the surjectivity of �−1, there exists a tripotent w̃ ∈ U(N ) such that w = �−1(w̃).

Having in mind that � preserves orthogonality, we deduce that w̃ = �(w) ⊥
��−1(ṽ) = ṽ. In particular, ṽ + w̃ is a tripotent in N .

Since �−1 preserves the partial order in both directions and

�−1(ṽ + w̃) ≥ �−1(ṽ)+�−1(w̃) = �−1(ẽ + ṽ),

we deduce that ṽ+ w̃ ≥ ẽ+ ṽ, or equivalently, w̃− ẽ = (ṽ+ w̃)−(ẽ+ ṽ) is a tripotent
orthogonal to ẽ + ṽ. Now, by applying that ẽ + ṽ ≥ ẽ, we conclude that w̃ − ẽ is a
tripotent orthogonal to ẽ, and hence w̃ ≥ ẽ. A new application of the fact that �−1
preserves the partial order shows that w = �−1(w̃) ≥ �−1(ẽ). We also know that
�−1(ṽ) ⊥ w. The last two statements together prove that�−1(ṽ) ⊥ �−1(ẽ), yielding
that �−1 preserves orthogonality between tripotents. ��

Proposition 3.1 implies that we can relax the hypothesis concerning the preservation
of orthogonality in both directions in Theorem 1.2.

We continue this section with some general results on bijections between sets of
tripotents which preserve the partial ordering in both directions and orthogonality
between elements.

Lemma 3.2 Let M, N be JB∗-triples. Suppose that � : U(M)→ U(N ) is a bijective
transformation which preserves the partial ordering in both directions and orthogo-
nality between tripotents. Then the following statements hold:

(a) �(0) = 0;
(b) A tripotent e ∈ M is order minimal (respectively, order maximal) if and only if

�(e) is order minimal (respectively, order maximal) in N;
(c) For each tripotent e ∈ M the set M0(e)∩U(M) is mapped onto N0(�(e))∩U(N )

by �;
(d) Suppose e1, . . . , em are mutually orthogonal tripotents in M. Then

�(e1)+ · · · +�(em) = �(e1 + · · · + em); (11)

(e) A tripotent e ∈ M has rank–n if and only if �(e) has rank–n in N.

Proof (a) Since 0 ⊥ 0, the hypotheses imply that �(0) ⊥ �(0), and thus �(0) = 0.
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(b) The conclusion is clear from the hypotheses, while (c) is a consequence of the
fact that � preserves orthogonality between tripotents in both directions (cf. Proposi-
tion 3.1), because the tripotents in M0(e) ∩ U(M) are precisely the tripotents which
are ortogonal to e.

(d)We shall first prove the case m = 2. By applying that� preserves orthogonality
between tripotents in one direction we get �(e1) ⊥ �(e2) and �(e1),�(e2) ≤
�(e1 + e2). Therefore �(e1)+�(e2) ≤ �(e1 + e2).

Similarly, having inmind that�−1 preserves orthogonality (cf. Proposition 3.1), we
have �−1(�(e1)+�(e2)) ≥ �−1(�(e1))+�−1(�(e2)) = e1 + e2. Now, applying
� to this inequality leads to �(e1)+�(e2) ≥ �(e1+ e2), and thus to the equality of
both expressions. An easy induction argument gives the desired statement.

Finally (e) follows from (b) and (d). ��
Our next result reveals how a bijection preserving the partial ordering in both

directions and orthogonality between the sets of tripotents in two JBW∗-triples enjoys
certain continuity properties with respect to the weak∗ topologies.

Let {ei }i∈� be an arbitrary family ofmutually orthogonal tripotents in a JBW∗-triple
M . We know from [52, Corollary 3.13] or [34, Proposition 3.8] that the family {ei }i is
summable with respect to the weak∗ topology of M , that is, if F denotes the directed

set of all non-empty finite subsets of � ordered by inclusion, the net
(∑

i∈F
ei

)

F∈F
converges in the weak∗ topology of M and its limit is denoted by

∑

i∈�
ei = w∗ −

∑

i∈�
ei . It is further known that

∑

i∈�
ei is precisely the supremum of the family

{ei }i∈�. Since a bijection preserving the partial order in both directions between the
sets of tripotents of two JBW∗-triples must preserve infima and suprema of families,
the next lemma is a consequence of the above comments Proposition 3.1 and Lemma
3.2 (see also [34, Theorem 3.6]).

Lemma 3.3 Let M, N be JBW∗-triples. Suppose that � : U(M)→ U(N ) is a bijective
transformation which preserves the partial ordering in both directions and orthogo-
nality between tripotents. Then the following statements hold:

(a) Let {ui : i ∈ �} be a family of tripotents in M with infimum ∧i∈�ui . Then
�(∧i∈�ui ) is the infimum of the set {�(ui ) : i ∈ �} ⊂ U(N );

(b) Let {ui : i ∈ �} be a family of tripotents in M. If the supremum ∨i∈�ui exists in
U(M), then the supremum of {�(ui ) : i ∈ �} ⊂ U(N ) also exists in U(N ) and
coincides with �(∨i∈�ui );

(c) Let {ui : i ∈ �} be a family of mutually orthogonal tripotents in M. Then
{�(ui ) : i ∈ �} is a family of mutually tripotents in N and

�
(∑

i∈�
ui

)
=

∑

i∈�
�(ui );

(d) Assuming that M is an atomic JBW∗-triple, if T : M → N is a weak∗ continuous
linear map such that T (v) = �(v) for all minimal tripotent v ∈ M, the maps T
and � coincide on U(M).
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Proof The statements (a), (b) and (c) have been already justified. For the last statement
we simply observe that every tripotent u in an atomic JBW∗-triple is the supremum
of a family of mutually orthogonal minimal tripotents and any such family is weak∗
summable with limit u. ��

For each subset B of a JB∗-triple E, we shall write B⊥ for the (orthogonal) anni-
hilator of B given by B⊥ = B⊥

E
:= {z ∈ E : z ⊥ x,∀x ∈ B}. It is known that

{e}⊥ = E0(e) and the inclusions

E2(e)⊕ E1(e) ⊇ {e}⊥⊥E
= E0(e)

⊥ ⊇ E2(e)

hold for every tripotent e in E (see [53, Proposition 3.3]). Contrary to what seems
intuitive, the identity {e}⊥⊥

E
= E2(e) need not be true (cf. [53, Remark 3.4]). However,

if e is a non-complete tripotent in a Cartan factor C, the identity {e}⊥⊥ = E0(e)⊥ =
E2(e) always holds (see [28, Lemma 5.6]). Furthermore, suppose that M =

⊕

i∈I
Ci

is an atomic JBW∗-triple. A tripotent e in M will be called fully non-complete if πi (e)
is a non-complete tripotent in Ci for each i ∈ I , where πi stands for the natural
projection of M onto Ci . If M reduces to a single Cartan factor, a tripotent e ∈ M
is fully non-complete if and only if it is non-complete. The arguments in the proof
of [54, Lemma 2.3] show that {e}⊥⊥ = M2(e) for each fully non-complete tripotent
e ∈ M .

A subspace I of a JB∗-triple E is said to be an ideal if {I , E, E} ⊂ I and {E, I , E} ⊂
I (see [52, Sect. 4]). Two subsets A, B ⊂ E are called orthogonal (A ⊥ B in short)
if A ⊂ B⊥. Two ideals I and J are orthogonal if and only if I ∩ J = {0}. If a JBW∗-
triple M decomposes in the form M = I ⊕ J , where I and J are ideals, these two
ideals must be weak∗closed [52, Lemma 4.3], moreover if a JB∗-triple E admits two
closed subtriples I and J satisfying E = I ⊕ J , it is known that E = I ⊕�∞ J if and
only if I and J are ideals [52, Lemma 4.4]. That is, the weak∗ closed M-ideals in a
JBW∗-triple are precisely its weak∗ closed ideals. A JBW∗-triple M is a factor if it
is indecomposable, that is, M cannot be decomposed as the direct (�∞-)sum of two
orthogonal ideals (cf [52, Definition 4.8]).

In the next lemma we state a characterization needed in subsequent results.

Lemma 3.4 Let M be a JBW∗-triple. Then M is not a factor if and only if there exist
A, B ⊆ U(M)\{0} with A ⊥ B and A ⊕ B = U(M)\{0}.
Proof If M is not a factor we can find two orthogonal non-zero weak∗ closed triple
ideals I and J of M such that M = I ⊕ J . The ideals I and J are non-zero JBW∗-
subtriples and thus the sets A = U(I )\{0} and B = U(J )\{0} are contained in
U(M)\{0}, A ⊥ B and U(M)\{0} = A ⊕ B, because each tripotent in M writes
uniquely as the sum of a tripotent in I and tripotent in J . So, the “only if” implication
holds.

Suppose now that there exist A, B ⊆ U(M)\{0} with A ⊥ B and A ⊕ B =
U(M)\{0}. We set I = A⊥ and J = B⊥. Clearly B ⊂ I , A ⊂ J , and thus I and
J are non-zero. It can be deduced from the separate weak∗ continuity of the triple
product of M that I and J are weak∗ closed. We shall next prove that I and J are
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ideals. We claim that I (respectively, J ) coincides with the norm closure of the linear
span of all elements in B (respectively, in A). Namely, fix a ∈ I . Since tripotents in M
are norm-total (cf. [52, Lemma 3.11]) and A ⊕ B = U(M)\{0}, for each ε > 0 there
are λ1, μ1, . . . , λn, μn ∈ C and mutually orthogonal tripotents u1, v1 . . . , un, vn with

u j ∈ A and v j ∈ B for all j, such that
∥∥∥a −

(∑n

j=1 λ j u j + μ jv j

)∥∥∥ < ε. By recall-

ing that orthogonal elements are M-orthogonal, and applying that a−
∑n

j=1 μ jv j ⊥
∑n

j=1 λ j u j we arrive at
∥∥∥a −

(∑n

j=1 μ jv j

)∥∥∥ < ε, which gives the desired con-

clusion for I . The statement for J follows by similar arguments. The norm-totality of
the set of tripotents in M together with the fact that A ⊕ B = U(M)\{0} prove that
M = I ⊕ J and the rest is clear. ��

We next consider bijections between sets of tripotents in two atomic JBW∗-triples
(i.e., �∞-sums of Cartan factors). The next lemma shows that we can restrict ourself
to the case of a single Cartan factor.

Lemma 3.5 Let M =
⊕�∞

i∈I
Ci and N =

⊕�∞
j∈J

C̃ j be JBW∗-triples, where Ci and

C̃ j are JBW∗-triple factors. Suppose that � : U(M) → U(N ) is a bijective trans-
formation which preserves the partial ordering in both directions and orthogonality
between tripotents. Then we have:

(a) For each i0 ∈ I there exists a unique σ(i0) ∈ J such that �(U(Ci0)) = U(C̃σ(i0));

Assuming that M and N are atomic JBW∗-triples –i.e., Ci and C j are Cartan factors
for all i, j– the following statements also hold:

(b) � maps fully non-complete tripotents in M to fully non-complete tripotents in N;
(c) For each fully non-complete tripotent e in M, � maps the set M2(e)∩U(M) onto

the set N2(�(e)) ∩ U(N ).

Proof We can assume, thanks to Proposition 3.1, that � preserves orthogonality in
both directions.

(a) Every tripotent in N writes in the form (ẽ j ) j∈J , where each e j is a tripotent
in C̃ j , and similarly for every tripotent in M . Fix i0 ∈ I . Suppose we can find e, v ∈
U(Ci0) such that �(e) has non-zero component in some C̃ j1 and �(v) has non-zero
component in some C̃ j2 with j1 �= j2. Set

A = �−1(U(C̃ j1)\{0}) ∩ (U(Ci0)\{0}), and

B = �−1({ẽ ∈ N : the component of ẽ in U(C̃ j1) is zero}) ∩ (U(Ci0)\{0}).

Clearly, A, B ⊂ U(Ci0)\{0}with A ⊥ B and A⊕B = U(Ci0)\{0} by the assumptions
on �. Lemma 3.4 implies that Ci0 is not a factor, which contradicts our hypotheses.
Therefore there exists a unique σ(i0) ∈ J such that �(U(Ci0)) ⊆ U(C̃σ(i0)), the
equality follows from the same argument applied to �−1.
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(b) Let e = (ei )i∈I be a fully non-complete tripotent in M , that is, for each i ∈ I
there exists at least aminimal tripotent vi ∈ Ci such that ei ⊥ vi . By (a), the fact that�
preserves orthogonality, and Lemma 3.2(b), we deduce that�(ei ) ⊥ �(vi ) in C̃ ji and

�(vi ) is a minimal tripotent in C̃ ji . Lemma 3.3 assures that �(e) = w∗ −
∑

i
�(ei )

with �(ei ) ⊥ �(vi ), for all i ∈ I , which proves that �(e) is fully non-complete.
(c) Suppose e is a fully non-complete tripotent in M . Let u be a tripotent in M2(e) =

{e}⊥⊥ = M0(e)⊥ (cf. [54, proof of Lemma 2.3]). By Lemma 3.2 we have

�(M0(e) ∩ U(M)) = N0(�(e)) ∩ U(N ).

Thus, each tripotent ṽ = �(v) ∈ N0(�(e)) ∩ U(N ) (v ∈ M0(e) ∩ U(M)) must be
orthogonal to �(e). Therefore ṽ = �(v) must be orthogonal to �(u).

The Peirce 0-subspace N0(�(e)) is a JBW∗-triple, and hence every element there
can be approximated in norm by a finite linear combination of mutually orthogonal
tripotents in N0(�(e)) (cf. [52, Lemma 3.11]).We have seen above that every tripotent
ṽ in N0(�(e))∩U(N ) is orthogonal to �(u). We can therefore conclude that �(u) ∈
N0(�(e))⊥ = {�(e)}⊥⊥ = N2(�(e)),where in the last equality we applied that�(e)
is fully non-complete (cf. [54, Lemma 2.3]). ��

Up to this point we did not need to distinguish between Cartan factors of rank–one
from those of rank bigger than or equal to 2. As we shall see in the next remark, the set
of tripotents in a rank–one Cartan factor is too small to guarantee that a bijective trans-
formation on this set preserving the partial order and orthogonality between tripotents
in both directions admits an extension to a surjective real linear mapping.

Remark 3.6 Let H be a complex Hilbert space regarded as a type 1 Cartan factor of
the form B(H , C), that is, we consider its Hilbert norm and the triple product

{a, b, c} = 1

2
(〈a, b〉c + 〈c, b〉a), (a, b, c ∈ H).

It is easy to see that U(H) := S(H) ∪ {0}, where S(H) stands for the unit sphere of
H . Let � : U(C) = T ∪ {0} → U(C) = T ∪ {0} be the bijection defined by

�(eit ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ei(π−t), If 0 < t < π

−1, If t = 0

1, If t = π

eit , If − π < t < 0

, and �(0) = 0.

Clearly, � preserves the partial order and orthogonality between tripotents in both
directions because the unique possible relation is p = 0 ≤ e, where e is a non-zero
(minimal and maximal) tripotent in C (i.e., and element in T), and clearly 0 ≤ �(e).
If T : C → C is a real linear mapping satisfying T |T∪{0} = �. The conditions T (1) =
−1, T (i) = i , and T

(
1√
2
− i 1√

2

)
= 1√

2
−i 1√

2
are incompatible with the real linearity

of T .
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Let M be a JBW∗-triple of rank–1, which can be identified with a complex Hilbert
space. Let � : U(M) → U(M) be a bijective transformation which preserves the
partial ordering and orthogonality between tripotents in both directions. A non-zero
element u in M is a tripotent if and only if it has norm one. Thus, the set of non-
zero tripotents can be identified with the unit sphere S in M . Since any tripotent
in M is minimal, the preservation of the partial ordering and orthogonality relation
does not impose any restriction on the map �. Thus, the collection of all bijective
transformations preserving the partial ordering and orthogonality between tripotents
in both directions coincide with the set of all bijections on S ∪ {0}.

3.2 Order preserving bijections acting on the circular orbit of a tripotent

Our next goal is to consider tripotents which are obtained as scalar multiples of a given
tripotent by an element in the unit sphere of the complex field.

We begin by recalling some terminology. Let u, v be two tripotents in a JB∗-triple E .
We shall say that u and v are collinear (written u v) if u ∈ E1(v) and v ∈ E1(u). The
tripotent u governs the tripotent v (u ! v in short) whenever v ∈ E2(u) and u ∈ E1(v).
Following the standard sources –see, for example, [55,56]—an ordered quadruple
(u1, u2, u3, u4) ofminimal tripotents in a JB∗-triple E is called a quadrangle if u1⊥u3,
u2⊥u4, u1 u2  u3 u4  u1 and u4 = 2{u1, u2, u3} (the latter equality also holds
if the indices are permutated cyclically, e.g. u2 = 2{u3, u4, u1}). A prequadrangle is
an ordered set (u1, u2, u3) of three tripotents such that u1 u2 u3 and u1 ⊥ u3. An
ordered triplet (v, u, ṽ) of minimal tripotents in E , is called a trangle if v⊥ṽ, u ! v,
u ! ṽ and v = Q(u)ṽ.

In the proof of [15, Theorem 1] (see page 45), L. Molnár stated the following
property: for a finite dimensional complex Hilbert space Hn , a partial isometry a ∈
B(Hn) is equal to the identity multiplied by a scalar from T if and only if for every
rank–one projection p ∈ B(Hn) we have that λp ≤ a for some λ ∈ T depending on
p. Our next result is an extension of this result to the setting of Cartan factors.

Lemma 3.7 Let u and v be non-zero tripotents in a Cartan factor C. Then the following
statements are equivalent:

(a) There exists μ ∈ T such that μv ≤ u;
(b) There exists γ ∈ C such that u = γ v + P0(v)(u)

(c) For each minimal tripotent e ≤ v there exists λ ∈ T, depending on e, such that
λe ≤ u.

Proof The implication (a)⇒ (b) is clear from the definition of the partial order ≤; it
is explicitly proved in [36, Corollary 1.7]. The implication (b) ⇒ (c) is clear.

We shall finally prove (c) ⇒ (a). Let us distinguish several cases. If v is minimal
the conclusion trivially holds. We can therefore assume that v has rank at least two.
Let us find, via Zorn’s lemma, a (possibly finite) maximal family {ei : i ∈ I } of
mutually orthogonalminimal tripotentswith ei ≤ v (i.e., mutually orthogonalminimal
projections in the JB∗-algebraC2(v))–just have inmind thatC equals thew∗-closure of
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the linear span of its minimal tripotents [36, Theorem 2] and [32, Sect. 2]. It follows
from the maximality of the family {ei : i ∈ I } that v =

∑

i∈I
ei , where the sum

converges with respect to the weak∗ topology.
By hypothesis, for each i ∈ I , there exists λi ∈ T such that λi ei ≤ u. Since

{λi ei : i ∈ I } is a family of mutually orthogonal minimal tripotents the sum
∑

i
λi ei

converges in the weak∗-topology to a tripotent in C . We claim that

∑

i∈I
λi ei ≤ u. (12)

By [34, Proposition 3.8(i i i)] it suffices to prove that λi ei ≤ u for all i ∈ I , which
holds by hypotheses. It follows from (12) that

u =
∑

i∈I
λi ei + P0(v)(u). (13)

We shall finally show that λi = λ j for all i, j ∈ I . Fix i �= j in I . Lemma 3.10 in
[57] assures that one of the following statements holds:

(i) There exist minimal tripotents v2, v4 in C and γ ∈ T such that (ei , v2, γ e j , v4)

is a quadrangle;
(ii) There exists a rank two tripotent w ∈ C and γ ∈ T such that (ei , w, γ e j ) is a

trangle.

In case (i), by consideringw = v2+v4, we get a trangle of the form (ei , w, γ e j ), so

it suffices to consider the second case. It is known that the element e = ei + w + γ e j

2
is a minimal tripotent in C (see, for example, [58, Lemma 2.3 and Remark 2.6] or
more indirectly [36, Proposition 5]). It follows from the assumptions on u that there
exists λ ∈ T such that λe ≤ u, and hence {e, e, u} = e. By applying (13), the fact
that the elements in the family {ei : i ∈ I } ∪ {P0(v)(u)} are mutually collinear,
Peirce arithmetic and the properties of trangles we get {ei , w, ei } = {e j , w, e j } = 0,
{ei , ei , w} = 1

2w = {e j , e j , w}, {ei , w, e j } = 1
2w, {w,w, e j } = e j , {w,w, ei } = ei ,

and

λe = λ
ei + w + γ e j

2
= {e, e, u} =

{
ei + w + γ e j

2
,

ei + w + γ e j

2
, u

}

=
{

ei + w + γ e j

2
,

ei + w + γ e j

2
, λi ei + λ j e j

}

= 1

4

{
ei + w + γ e j , ei + w + γ e j , λi ei + λ j e j

}

= 1

4

({
ei , ei , λi ei + λ j e j

}+ {
ei , w, λi ei + λ j e j

}+ {
ei , γ e j , λi ei + λ j e j

}

+ {
w, ei , λi ei + λ j e j

}+ {
w,w, λi ei + λ j e j

}+ {
w, γ e j , λi ei + λ j e j

}

+ {
γ e j , ei , λi ei + λ j e j

}+ {
γ e j , w, λi ei + λ j e j

}+ {
γ e j , γ e j , λi ei + λ j e j

})

= 1

4

(
2λi ei + 2λ j e j + λiw + γ λi + γ λ j

2
w

)
,
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which implies that λ = λi = λ j and γ = 1. In such a case u = λv + P0(v)(u) (with
λ = λi for i arbitrary in I ). This finishes the proof. ��

Given a subset A in a JB∗-triple E , the symbol A⊥E will stand for the set of all
elements in E which are orthogonal to every element in A.

Lemma 3.8 Let � : U(C)→ U(C̃) be a bijective transformation which preserves the
partial ordering in both directions and orthogonality between tripotents, where C and
C̃ are Cartan factors with rank bigger than or equal to 2. Then if u is a tripotent in C
and λ ∈ T, the element �(λu) lies in T�(u). Actually, �(Tu) = T�(u).

Proof We can clearly assume that u is non-zero (cf. Lemma 3.2(a)).
Let us first assume that u is a minimal tripotent. Since a minimal tripotent in a

Cartan factor of rank ≥ 2 is never complete, it follows from Lemma 3.5(c) that
�(Tu) ∪ {0} = �(C2(u) ∩ U(C)) = C̃2(�(u)) ∩ U(C̃) = T�(u) ∪ {0} (see also
Lemma 3.2(b)).

Suppose now that u is a non-zero tripotent in C̃ . Fix λ ∈ T. Let ẽ be any minimal
tripotent in C̃ with ẽ ≤ �(u). Applying that � is surjective and Lemma 3.2(b) we
can deduce the existence of a minimal tripotent e ∈ C such that �(e) = ẽ with
e ≤ u. Clearly, λe ≤ λu, and by the hypotheses on � and what we proved in the first
paragraph, we have

μẽ = μ�(e) = �(λe) ≤ �(λu),

for some μ ∈ T. It follows from Lemma 3.7 that there exists γ ∈ T such that

�(λu) = γ�(u)+ P0(�(u))(�(λu)).

If u is maximal or complete, �(u) satisfies the same property (cf. Lemma 3.2), and
thus �(λu) = γ�(u).

Suppose next that u (equivalently, �(u)) is non-complete. For each minimal tripo-
tent ṽ ∈ C̃ with �(v) = ṽ ⊥ �(u), the hypotheses on � and Proposition 3.1 assure
that v ⊥ u ⇔ v ⊥ λu ⇔ ṽ = �(v) ⊥ �(λu). We have therefore shown that
{�(u)}⊥

C̃
= {�(λu)}⊥

C̃
(just apply that every element in {�(u)}⊥

C̃
or in {�(λu)}⊥

C̃
can be approximated in norm by finite linear combinations of mutually orthogonal
minimal tripotents in the corresponding set), and hence �(λu) = γ�(u). ��

We can now define a key notion for our purposes. Let � : U(C) → U(C̃) be a
bijective transformation which preserves the partial ordering in both directions and
orthogonality between tripotents, where C and C̃ are Cartan factors with rank bigger
than or equal to 2. Suppose that u is a non-zero tripotent in C . By Lemma 3.8, for
each λ ∈ T, there exists a unique fu(λ) ∈ T such that �(λu) = fu(λ)�(u). Clearly,
the mapping fu : T → T is a bijection and fu(1) = 1. We have therefore proved that

{
for each non-zero tripotent u ∈ C there exists a bijection
fu : T → T satisfying �(λu) = fu(λ)�(u), for all λ ∈ T.

(14)

The next proposition is devoted to analyze the first properties of the maps fu .
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Proposition 3.9 Let � : U(C)→ U(C̃) be a bijective transformation which preserves
the partial ordering in both directions and orthogonality between tripotents, where
C and C̃ are Cartan factors with rank bigger than or equal to 2. Then the following
statements hold:

(a) If e1 and e2 are two orthogonal non-zero tripotents in C, the maps fe1 and fe2
coincide;

(b) If e and u are two non-zero tripotents in C with e ≤ u, the maps fe and fu

coincide;
(c) If e is a non-zero and non-complete tripotent in C and λ ∈ T, the mappings fe

and fλe coincide;
(d) If u is a non-zero tripotent in C and λ ∈ T, the mappings fu and fλu coincide;
(e) If u is a non-zero tripotent in C, the mapping fu : T → T is multiplicative.

In particular fu(−1) = −1, and �(−v) = −�(v) for every tripotent v ∈ C.
Furthermore, fu

(
λ
) = fu(λ), for all λ ∈ T, fu(i) ∈ {±i} and �(iv) ∈ {±i�(v)}

for every tripotent v ∈ C.

Proof (a) and (b) The tripotent u = e1 + e2 has rank–2. We consider the maps
fe1, fe2 , fu : T → T. By Lemma 3.2(d) and the definition of these maps (cf. Lemma
3.8 and (14)) we have

fu(λ)(�(e1)+�(e2)) = fu(λ)�(e1 + e2) = fu(λ)�(u)

= �(λu) = �(λe1)+�(λe2)

= fe1(λ)�(e1)+ fe2(λ)�(e2),

with �(e1) ⊥ �(e2), yielding that fe1(λ) = fe2(λ) = fu(λ) for all λ ∈ T.
(c) Suppose e is a non-zero and non-complete tripotent in C and λ ∈ T. Since C

has rank ≥ 2, we can find a non-zero tripotent u such that e ⊥ u. Since λe ⊥ u, it
follows from (a) that fe = fu = fλe.

(d) If u is non-complete the desired conclusion follows from (c). We assume that
u is complete. In this case there exists a non-zero tripotent e ∈ C with e ≤ u. By
applying (b) and (c) we get fu = fe = fλe = fλu .

(e) Pick a non-zero tripotent u, λ,μ ∈ T. We deduce from (d) and (14) that

fu(λμ)�(u) = �(λμu) = fμu(λ)�(μu) = fu(λ) fu(μ)�(u),

therefore fu(λμ) = fu(λ) fu(μ) for all λ,μ as above. Since 1 = fu(1) =
fu(−1) fu(−1) and fu : T → T is a bijection with fu(1) = 1, we get fu(−1) = −1
as desired.

Moreover, the equality 1 = fu(1) = fu(λλ) = fu(λ) fu(λ) gives fu
(
λ
) = fu(λ).

Finally −1 = fu(−1) = fu(i i) = fu(i) fu(i), which implies that fu(i) = ±i . ��
Let M be a complex spin factor as defined in the introduction. Let 〈·, ·〉 and x �→ x

denote the inner product and the conjugation on M for which the triple product is
given by

{a, b, c} = 〈a, b〉c + 〈c, b〉a − 〈a, c̄〉b̄.
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The real subspace M
R
= {a ∈ M : a = ā}, called the real part of M , is a real

Hilbert space with respect to the inner product (a, b) = �e〈a, b〉 (a, b ∈ M
R
), and

M = M
R
⊕ i M

R
. We shall denote by S

R
the unit sphere of M

R
. It is known (see

[43, Theorem in page 196] or [27, Sect. 3.1.3]) that for any triple automorphism T
of M there is a complex number λ ∈ T and a unitary operator U ∈ B(M

R
) such that

T (a + ib) = λ(U (a) + iU (b)) for all a + ib ∈ M . Conversely, for any λ ∈ T and
each unitary U ∈ B(M

R
) the map T (a + ib) = λ(U (a)+ iU (b)) (a + ib ∈ M) is a

triple automorphism on M .
The one-dimensional spin factor coincides with C. The term “factor” is not appro-

priate in the case in which dim(M) = 2, because in this case M is precisely C⊕∞ C,

which is not a factor. For this reason, spin factors are always assumed to have dimension
at least three. Particular examples of spin factors, worth to be recalled here, include
the 3-dimensional spin factor S2(C) of all symmetric 2 by 2 complex matrices, and the
von Neumann factor M2(C) of all 2 by 2 complex matrices which is a 4-dimensional
spin factor (cf. [59, Sect. 7], [60, Sect. 6], [36, page 82], [39, Sect. 6] or [44, Sect. 3]).

We can improve now the conclusion in the previous Proposition 3.9 by using the
basic structure of spin factors.

Proposition 3.10 Let � : U(C) → U(C̃) be a bijective transformation which pre-
serves the partial ordering in both directions and orthogonality between tripotents,
where C and C̃ are Cartan factors with rank bigger than or equal to 2. Then the maps
fe and fu, defined in (14), coincide whenever e and u are two non-zero tripotents in
C. Therefore

⎧
⎨

⎩

there exists a bijective group homomorphism f : T → T

satisfying f (−1) = −1, f
(
λ
) = f (λ), for allλ ∈ T,

f (i) ∈ {±i}, and �(λu) = f (λ)�(u) for all u ∈ U(C) and λ ∈ T.

(15)

Proof Let us first assume that e and u are minimal tripotents. In this case, applying
Lemma 3.10 in [57] we conclude that one of the following statements holds:

(i) There exist minimal tripotents e2, e3, e4 in C such that (e, e2, e3, e4) is a quad-
rangle and u is a linear combination of e, e2, e3, and e4;

(ii) There exist a minimal tripotent ẽ ∈ C and a rank two tripotent w ∈ C such that
(e, w, ẽ) is a trangle and u is a linear combination of e, w, and ẽ.

We shall deal with both cases in parallel. The tripotent e+e3 (respectively, e+ẽ) has
rank–2. Lemma3.8 in [44] affirms that the JB∗-subtriple M = C2(e+e3) (respectively,
C2(e + ẽ)) is a spin factor. Clearly, M = C2(e + e3) contains e and u. We therefore
focus on the spin factor M (which clearly has rank–2) with the structure recalled at
the beginning of this section.

The element e+ e3 (respectively, e+ ẽ) has rank–2 in M , and thus it is a complete
and unitary tripotent in M . We can assume that e+e3 = λx (respectively, e+ ẽ = λx)
for some λ ∈ T and x ∈ S

R
. Any other complete tripotent in M is of the form μy for

some μ ∈ T and y ∈ S
R
. Let us find z ∈ S

R
such that 〈x, z〉 = 0 and y = t x + sz for

unique real numbers s, t with s2 + t2 = 1.
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We shall first show that

the mappings fx , fz, fy, fλx , fμy and fe coincide. (16)

The minimal tripotents v = x+i z
2 and ±v = ± x−i z

2 are orthogonal in M with
v + v = x and v − v = i z. Since v ≤ x and v ≤ i z, it follows from Proposition
3.9(b) that fv = fx and fv = fi z . Since Proposition 3.9(c) assures that fi z = fz , we
conclude that fx = fz .

Take the element γ = t − is ∈ T. The minimal tripotents γ v = γ x+i z
2 and

±γ v = ±γ x−i z
2 are orthogonal in M with γ v + γ v = t x + sz = y, and thus

γ v ≤ y. Therefore Proposition 3.9((b) and (c)) proves that fy = fγ v = fv = fx .
A new application of Proposition 3.9((c) and (b)) implies that fx = fλx = fe+e3 =

fe (respectively, fx = fλx = fe+ẽ = fe) because e ≤ e+e3 (respectively, e ≤ e+ ẽ).
The just quoted result also implies that fy = fμy .

Since u is a minimal tripotent in the spin factor M , we can always find a unitary
(i.e., rank–2 tripotent), say μy (with μ ∈ T and y ∈ S

R
) such that u ≤ μy, and hence

fu = fμy (cf. Proposition 3.9(b)). An application of our conclusion in (16) implies
that fe = fu .

We have therefore shown that fe = fu whenever u and e are minimal tripotents in
C .

Finally if u and e are two non-zero tripotents in C , we can find two minimal
tripotents v1, v2 ∈ C with v1 ≤ e and v2 ≤ u. By combining Proposition 3.9(b) with
our conclusion for minimal tripotents we conclude that fe = fv1 = fv2 = fu . ��
Remark 3.11 If we combine Lemma 3.5 with the previous Proposition 3.10 it follows
that the conclusion of the latter result also holds when C and C̃ are replaced with two
atomic JBW∗-triples not containing Cartan factors of rank–one.

Remark 3.12 Let � : U(C) → U(C̃) be a bijective transformation which preserves
the partial ordering in both directions and orthogonality between tripotents, where C
and C̃ are Cartan factors with rank bigger than or equal to 2. Let f : T → T be the
bijection given by Proposition 3.10. Let us consider the following statements:

(a) � is continuous at every non-zero tripotent;
(b) � is continuous at a non-zero tripotent;
(c) For each non-zero tripotent u ∈ C the mapping�|Tu : Tu → U(C̃) is continuous

at u;
(d) There exists a non-zero tripotent u ∈ C such that themapping�|Tu : Tu → U(C̃)

is continuous at u;
(e) The mapping f is continuous at 1;
(f) The mapping f is continuous.

Then the implications (a) ⇒ (b) ⇒ (c) ⇔ (d) ⇔ (e) ⇔ ( f ) hold. Furthermore,
if any of the previous statements holds then the mapping f is the identity or the
conjugation on T.

The implications (a) ⇒ (b) ⇒ (d) ⇐ (c) and ( f ) ⇒ (e) are clear. For each
non-zero tripotent u in C , the identity �(λu) = f (λ)�(u) holds for all λ ∈ T and
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each non-zero tripotent u ∈ C (cf. (15)), and thus the implications (d) ⇒ (e) ⇒ (c)
hold. Finally if f : T → T is continuous at 1, it must be continuous at every point
because it is a group homomorphism, hence (e) ⇒ ( f ).

It is well known that every continuous group homomorphism on T must be of
form f (λ) = λn for some n ∈ Z (cf. [61, Sect. 4.2.1]), but being f a bijection the
possibilities reduce to the identity or the conjugation on T.

We state next an identity principle which will be applied in different subsequent
arguments.

Proposition 3.13 Let � : U(M) → U(N ) be a bijective transformation which pre-
serves the partial ordering in both directions and orthogonality between tripotents,
where M and N are atomic JBW∗-triples not containing Cartan factors of rank–
one. Suppose T : M → N is a weak∗ continuous complex-linear operator such
that T (e) = �(e) for all minimal tripotent e ∈ M. Then �(λu) = λ�(u) and
T (u) = �(u), for all λ ∈ T, u ∈ U(M). Consequently, T is an isometric triple
isomorphism.

Proof Let f : T → T be the bijection given by Proposition 3.10 and Remark 3.11.
Fix a minimal tripotent e ∈ M and λ ∈ T. Applying the linearity of T , the hypotheses,
and the fact that e and λe are minimal tripotents we get

f (λ)�(e) = �(λe) = T (λe) = λT (e) = λT (e) = λ�(e),

yielding that f is the identity on T, and hence �(λu) = λ�(u) for all λ ∈ T,
u ∈ U(M) by the just quoted proposition.

In an atomic JBW∗-triple M , every non-zero tripotent u can be written as the
supremum of a family {ei : i ∈ I } of mutually orthogonal minimal tripotents in M ,
which is precisely the limit of the series

∑

i∈I
ei in the weak∗ topology. By Lemma

3.3(c) and the hypotheses we have

�(u) = �
(∑

i∈I
ei

)
=

∑

i∈I
�(ei ) =

∑

i∈I
T (ei ) = T

(∑

i∈I
ei

)
= T (u).

It is part of the theory of JB∗-triples that the set of all tripotents in a JBW∗-triple
M is norm-total, that is, every element in M can be approximated in norm by a finite
linear combination of mutually orthogonal tripotents in M (cf. [52, Lemma 3.11]),
and hence our mapping T must preserve the cube of every element in M , that is,
T {x, x, x} = {T (x), T (x), T (x)} for all x ∈ M . Therefore, a standard polarization
identity implies that T is a triple homomorphism.

A triple version of the celebrated Kaplansky–Cleveland theorem, established in
[62], asserts that a non-necessarily continuous triple homomorphism from a JB∗-triple
to a normed Jordan triple has closed range whenever it is continuous [62, Corollary
18]. As a consequence of this result, the triple homomorphism has closed range.
Furthermore, since T coincide with � at every tripotent of M and � is bijective, it
follows from the norm-totality of the set of tripotents in M that T is surjective.
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Finally, since ker(T ) is a weak∗ closed triple ideal of M , if it is non-zero we can find
a non-trivial tripotent u ∈ ker(T ) ∩ U(M), what would imply that 0 = T (u) = �(u)

contradicting the injectivity of �. ��

4 Order preserving bijections on complex spin factors

We continue with our study on bijections between the sets of tripotents of two spin
factors preserving the partial ordering in both directions and orthogonality between
tripotents.

Lemma 4.1 Let M and M̃ be complex spin factors with dimension at least three.
Let � : U(M) → U(M̃) be a bijective transformation which preserves the partial
ordering in both directions and orthogonality between tripotents. Suppose a, b ∈ S

R

with 〈a, b〉 = 0 satisfy �(a) ∈ S
R

. Let v = 1
2 (a + ib) be a minimal tripotent in M.

Then �(ib) ∈ i S
R

, 〈�(a),�(ib)〉 = 0 and

�(v) = 1

2
(�(a)+�(ib)), �(v̄) = 1

2
(�(a)−�(ib)). (17)

Proof Since v is a minimal tripotent and v ≤ a in M , by the hypothesis on �, �(v) is
a minimal tripotent in M̃ with �(v) ≤ �(a) ∈ S̃

R
. By Lemma 2.1 there exists b̃ ∈ S̃

R

with 〈�(a), b̃〉 = 0 such that �(v) = 1
2 (�(a) + i b̃), ṽ = 1

2 (�(a) − i b̃) is another
minimal tripotent orthogonal to �(v) and �(a) = �(v)+ ṽ.

Now, Lemma 3.2(d) affirms that

�(v)+�(v) = �(a) = �(v)+ ṽ,

yielding that �(v) = ṽ = 1
2 (�(a) − i b̃). By combining Proposition 3.9(e) and the

just quoted corollary we get

�(ib) = �(v − v) = �(v)−�(v) = i b̃ ∈ i S
R
,

and clearly 〈�(a),�(ib)〉 = 0, as claimed. By substituting the latter identity for
�(ib) in the formulae for �(v) and �(v̄) we get (17). ��

Similar techniques to those employed in the proof of Proposition 3.10 can be applied
to get the following improved version of Lemma 3.5.

Lemma 4.2 Let � : U(C)→ U(C̃) be a bijective transformation which preserves the
partial ordering in both directions and orthogonality between tripotents, where C and
C̃ are Cartan factors with rank bigger than or equal to 2. Let e be a rank–2 tripotent
in C. Then � maps the set C2(e) ∩ U(C) onto the set C̃2(�(e)) ∩ U(C̃).

Proof We observe that if C has rank–3 the conclusion is a consequence of Lemma
3.5(c).

In any case, the Peirce-2 subspace M = C2(e) is a spin factor (cf. [44, Lemma 3.8]),
and we keep the notation employed in this section. Let us fix a complete (equivalently,
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rank–2 or unitary) tripotentw in M . We can assume that e = λx andw = μy for some
λ,μ ∈ T, x, y ∈ S

R
. The minimal tripotents v = x+iy

2 and v = x−iy
2 are orthogonal

with v + v = x and v − v = iy. By Lemma 3.2(d) and Proposition 3.9(e) we get

�(x) = �(v)+�(v), and �(iy) = �(v)−�(v).

The first identity guarantees that �(v) and �(v) lie in C̃2(�(e)), and thus the second
one proves that �(iy) lies in C̃2(�(e)). The previous Proposition 3.10 affirms that
�(iy) = f (i)�(y), and consequently �(w) = �(iy) ∈ C̃2(�(e)).

We have proved that for each complete or unitary tripotentw ∈ M = C2(e)we have
�(w) ∈ C̃2(�(e)). The set U(M) reduces to rank–2 or complete tripotents, minimal
tripotents and zero. Given a minimal tripotent v ∈ M , the tripotents v±v have rank–2,
and hence, by the previous conclusion, �(v ± v) ∈ C̃2(�(e)). A new combination
of Lemma 3.2(d) and Proposition 3.9(e) proves that �(v),�(v) ∈ C̃2(�(e)), which
concludes the proof. ��

The key result of this section is the following theorem.

Theorem 4.3 Let M and M̃ be complex spin factors of dimension n ≥ 3. Let � :
U(M)→ U(M̃) be a bijective transformation which preserves the partial ordering in
both directions and orthogonality between tripotents. Suppose there exists a non-zero
tripotent u ∈ M such that �|Tu is continuous at u. Then there exists a complex-linear
or conjugate-linear triple isomorphism T : M → M̃ such that �(e) = T (e) for all
e ∈ U(M). More concretely, there exist λ0 ∈ T and a surjective real linear isometry
U ∈ B(M

R
, M̃

R
) such that � = λ0Ũ or �̄ = λ0Ũ , where Ũ is the (isometric) triple

isomorphism from M onto M̃ defined by Ũ (a+ib) = U (a)+iU (b) for all a+ib ∈ M.

Proof Let us pick x1 ∈ S
R
. Since x1 is a maximal tripotent, also �(x1) must be a

maximal tripotent (cf. Lemma 3.2(b)), and by (5) there is λ0 ∈ T and ẽ1 ∈ S̃
R
such

that �(x1) = λ0ẽ1. The mapping �1 = λ0� : U(M) → U(M̃) is a bijection which
preserves the partial ordering and orthogonality between tripotents in both directions
(cf. Proposition 3.1) and�1(x1) = ẽ1 ∈ S

R
. To prove the desired conclusion it suffices

to show that�1|S
R
, or its conjugate, admits an extension to a linear surjective isometry

in B(M
R
, M̃

R
).

By combining Lemma 4.1 (i.e., �1(ib) ∈ i S̃
R
for all b ∈ S

R
) with the conclusion

in Proposition 3.9(e) (i.e., �1(b) = �1(i(−i)b) ∈ {±i�1(ib)} for all b ∈ S
R
) we

obtain:

Suppose b ∈ S
R
satisfies 〈x1, b〉 = 0. Then�1(b) ∈ S

R
. (18)

We claim next that the following property also holds:

�1(S
R
) = S̃

R
. (19)

In order to prove the claim we pick an arbitrary c ∈ S
R
. Since M

R
(equivalently M)

has dimension ≥ 3, there exists b ∈ S
R
with 〈a, b〉 = 〈c, b〉 = 0. We deduce from
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(18) that �1(b) ∈ S̃
R
, and a new application of (18) to the pair b, c gives �1(c) ∈ S̃

R
,

which concludes the proof of the claim–the equality follows from the same argument
applied to �−11 .

We also have �1(0) = 0 (cf. Lemma 3.2(a)). We shall next show that

〈a, b〉 = 0 in S
R
⇐⇒ 〈�1(a),�1(b)〉 = 0 in S̃

R
. (20)

(⇒) As in the first paragraph of this proof, the elements a and v = a+ib
2 are tripo-

tents with a complete, v minimal, and v ≤ a. Lemma 4.1 implies that �1
( a±ib

2

) =
�1(a)±�1(ib)

2 , with 〈�1(a),�1(ib)〉 = 0. An application of Proposition 3.9(e) implies
that

�1(b) ∈ {±i�(ib)},

and hence 〈�1(a),�1(b)〉 = 0, as we wanted.
(⇐) This implication can be obtained by simply applying the previous argument

to �−11 .
Only two steps separate us from the final conclusion. The next one is a straight

consequence of Proposition 3.10. We recall that, by the just quoted result, there exists
a bijective mapping f : T → T which is a group homomorphism satisfying the
properties stated in (15). Therefore the next statements hold:

(1) If �1(ia) = i�1(a) for some a ∈ S
R
(this proves that f (λ) = λ for all λ), it

follows that �1(ib) = f (i)�1(b) = i�1(b) for all b ∈ S
R
;

(2) If �1(ia) = −i�1(a) for some a ∈ S
R
(this proves that f (λ) = λ for all λ), it

follows that �1(ib) = f (i)�1(b) = −i�1(b) for all b ∈ S
R
.

Assume that we can find a ∈ S
R
with �1(ia) = i�1(a), and hence �1(ib) =

i�1(b) for all b ∈ S
R
. Let {ei : i ∈ I } be an orthonormal basis of M

R
. We deduce

from (20) and (19) that {�1(ei ) : i ∈ I } is an orthonormal basis of M̃
R
. The linear

mapping U : M
R
→ M̃

R
, defined by U

(∑

i∈I
αi ei

)
=

∑

i∈I
αi�1 (ei ) , is a

surjective isometry, and hence a surjective isometry in B(M
R
, M̃

R
). Set Ũ : M → M ,

Ũ (a + ib) = U (a)+ iU (b). Clearly Ũ is a linear bijection from M onto M̃ .
We shall next prove that

U (x) = �1(x) and U (
x + iy

2
) = �1

(
x + iy

2

)
for all x, y ∈ S

R
with 〈x, y〉 = 0.

(21)

In order to get the first statement we shall first establish the following property:

Given a, b ∈ S
R
with 〈a, b〉 = 0 and s, t ∈ R with s2 + t2 = 1

we have �1(sa + tb) = s�1(a)+ t�1(b).
(22)

By hypothesis there exists a non-zero tripotent u ∈ C such that � is continuous at
u (or simply that �|Tu is continuous at u). The mapping �1 = λ0� enjoys the same
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continuity properties. As we have seen in Remark 3.12, in this case the mapping f
associated with �1 must be the identity or the conjugation, and according to what we
have assumed f (λ) = λ, for all λ ∈ T.

Let v denote the minimal tripotent in M given by v = a+ib
2 and set γ = s− i t ∈ T.

By applying Lemma 4.1(17) we arrive at

�1(v) = �1(a)+�1(ib)

2
= �1(a)+ f (i)�1(b)

2
= �1(a)+ i�1(b)

2

and

�1(v) = �1(a)−�1(ib)

2
= �1(a)− i�1(b)

2
.

Since γ v and γ v are orthogonal minimal tripotents with γ v + γ v = (sa + tb) and,
as in many cases before, by Lemma 3.2(d) and Proposition 3.10 we have

�1(sa + tb) = �1(γ v + γ v) = �1(γ v)+�1(γ v) = f (γ )�1(v)+ f (γ )�1(v)

= γ
�1(a)+ i�1(b)

2
+ γ

�1(a)+ i�1(b)

2
= s�1(a)+ t�1(b).

This finishes the proof of (22).
Back to (21), let x =

∑

i∈I
ti ei be an arbitrary element in S

R
. Fix i0 ∈ I . The

elementsa = ei0 and b =
∑

i∈I\{i0}
ti

(∑

j �=i0
t2j

)− 1
2

ei belong to S
R
with 〈a, b〉 = 0

and x = ti0a +
(∑

j �=i0
t2j

) 1
2

b. The conclusion in (22) shows that

�1(x) = �1

⎛

⎜
⎝ti0a +

⎛

⎝
∑

j �=i0

t2j

⎞

⎠

1
2

b

⎞

⎟
⎠ = ti0�1(a)+

⎛

⎝
∑

j �=i0

t2j

⎞

⎠

1
2

�1(b)

= ti0�1(ei0)+
⎛

⎝
∑

j �=i0

t2j

⎞

⎠

1
2

�1(b).

Since 〈�1(ei0),�1(b)〉 = 0 (cf. (20)), it follows that 〈�1(x),�1(ei0)〉 = ti0 , and the
arbitrariness of i0 implies that

�1(x) =
∑

i∈I
ti�1(ei ) =

∑

i∈I
tiU (ei ) = U (x), (23)

yielding that the first part of (21) is true. For the second statement in (21), fix x, y ∈ S
R

with 〈x, y〉 = 0 and apply, once again, Lemma 4.1(17) and the previous conclusion
to get

�1

(
x + iy

2

)
= �1(x)+ i�1(y)

2
= U (x)+ iU (y)

2
= U

(
x + iy

2

)
.
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The remaining tripotents in M not covered in (21) are of the form γ a with a ∈ S
R

and γ ∈ T (cf. (6)). However, in this case�1(γ a) = f (γ )�1(a) = γU (a) = U (γ a).
To conclude the proof we note that assuming�1(ib) = −i�1(b) for all b ∈ S

R
, the

mapping�1 satisfies that�1(ib) = i�1(b) for all b ∈ S
R
. By applying the conclusion

in the previous paragraphs to �1, we deduce the existence of a triple isomorphism U
from M onto M̃ such that �1 = U |U(M). ��

Remark 4.4 Let us observe that the hypothesis concerning the continuity of the bijec-
tion � in Theorem 4.3 is only employed to guarantee that the mapping f given by
Proposition 3.10 satisfies f (λ) = λ or f (λ) = λ for all λ ∈ T.

We shall see next that Theorem 4.3 admits a stronger, almost equivalent, statement.

Theorem 4.5 Let � : U(M) → U(C̃) be a bijective transformation which preserves
the partial ordering in both directions and orthogonality between tripotents, where M
is complex spin factors of dimension n ≥ 3 and C̃ is a Cartan factor. Then C̃ also is
a complex spin factor.

Suppose additionally that there exists a non-zero tripotent u ∈ M such that �|Tu

is continuous at u. Then there exists a complex-linear or conjugate-linear triple iso-
morphism T : M → C̃ such that �(e) = T (e) for all e ∈ U(M). More concretely,
there exist λ0 ∈ T and a surjective real linear isometry U ∈ B(M

R
, C̃

R
) such that

� = λ0Ũ or �̄ = λ0Ũ , where Ũ is the (isometric) triple isomorphism from M onto
C̃ defined by Ũ (a + ib) = U (a)+ iU (b), for all a + ib ∈ M.

Proof It is well known that M admits a unitary (rank–2) tripotent u. Clearly U(M) =
M2(u) ∩ U(M). Lemma 4.2 and the surjectivity of � prove that

U(C̃) = �(U(M)) = �(M2(u) ∩ U(M)) = C̃2(�(u)) ∩ U(C̃).

It then follows that �(u) is a unitary tripotent in C̃ . Lemma 3.2(11) affirms that �(u)

has rank–2, and thus Lemma 3.8 in [44] implies that C̃ = C̃2(�(e)) is a spin factor.
The rest is clear from Theorem 4.3. ��

We can now rediscover and extend Molnár’s Theorem 1.2 even to the case of 2-
dimensional complex Hilbert spaces and mappings satisfying a weaker hypothesis.

Theorem 4.6 Let H be a complex Hilbert space with dim(H) ≥ 2. Suppose that
� : U(B(H)) → U(C̃) is a bijective transformation which preserves the partial
ordering in both directions and orthogonality between tripotents, where C̃ is a Cartan
factor. If � is continuous (in the operator norm) at a single element of U(B(H))

different from 0, then � extends to a real linear triple isomorphism.

Proof If dim(H) ≥ 3 and C̃ = B(H) the conclusion follows from Theorem 1.2 and
Proposition 3.1. If dim(H) = 2 the Cartan factor B(H) is a 4-dimensional spin factor
and then the desired result is a consequence of our Theorem 4.5. ��
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5 Order preserving bijections between arbitrary Cartan factors

In this section we shall study how to produce a complex-linear or conjugate-linear
extension of every bijection preserving the partial ordering in both directions and
orthogonality between the posets of tripotents in two arbitrary Cartan factors.

Our first goal in this section is to prove that every bijective transformation between
the sets of tripotents in two Cartan factors with rank bigger than or equal to 2 which
preserves the partial ordering in both directions and orthogonality between tripotents,
must preserve quadrangles and trangles.

Proposition 5.1 Let � : U(C)→ U(C̃) be a bijective transformation which preserves
the partial ordering in both directions and orthogonality between tripotents, where
C and C̃ are Cartan factors with rank bigger than or equal to 2. Suppose that there
exists a non-zero tripotent u ∈ C such that �|Tu is continuous at u. Then the following
statements hold:

(a) � maps quadrangles in C to quadrangles in C̃;
(b) � maps trangles in C to trangles in C̃.

Proof Let (u1, u2, u3, u4) (respectively, (v, u, ṽ)) be a quadrangle (respectively, a
trangle) in C . The tripotent e = u1+u3 (respectively, e = v+ ṽ) is a rank–2 tripotent
in M . Lemma 3.2(11) implies that �(e) is a rank–2 tripotent. By [44, Lemma 3.8] the
JB∗-subtriples C2(e) and C̃2(�(e)) are spin factors. Lemma 4.2 and the hypotheses
prove that �|U(C2(e)) : U(C2(e)) → U(C̃2(�(e))) is a bijection preserving the local
order in both directions. The hypothesis concerning the continuity of � implies that
the mapping f given by Proposition 3.10 is the identity or the conjugation on T. An
application of Theorem4.5 shows the existence of a complex-linear or conjugate-linear
isometric triple isomorphism Ũ : C2(e) → C̃2(�(e)) whose restriction to U(C2(e))
coincides with�|U(C2(e)). Finally, the desired conclusion follows from the fact that the
quadrangle (u1, u2, u3, u4) (respectively, the trangle (v, u, ṽ)) is contained in C2(e).

��

5.1 Cartan factors of rank bigger than or equal to three

The result established by L. Molnár in Theorem 1.2 deals with the subset of tripotents
in type 1 Cartan factors of the form B(H) with dim(H) ≥ 3. Let us observe that this
condition on the dimension of H is equivalent to assume that B(H) has rank greater
than or equal to three. We shall see next that this is not an exclusive advantage of this
kind of Cartan factors.

We recall that a JB∗-triple E is called abelian if L(a, b)L(c, d) = L(c, d)L(a, b)

for all a, b, c, d ∈ E (see, for example, [52, (1.4)], [34, page 131]). Each single-
generated JB∗-subtriple of E is always abelian.A tripotent e in E is called abelian if the
Peirce-2 subspace E2(e) is an abelian JB∗-triple, equivalently, E2(e) is a commutative
unital C∗-algebra. Clearly every minimal tripotent is abelian.

In this section we shall employ some new results on finite tripotents established
in [39]. Let e be a tripotent in a JBW∗-triple M . According to [39, Sect. 3], we shall
say that e is finite if any tripotent u ∈ M2(e) which is complete in M2(e) is already
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unitary in M2(e). For example, every abelian (and hence every minimal) tripotent in
M is finite (see [39, Lemma 3.2(e)]).

Proposition 5.2 Let � : U(C)→ U(C̃) be a bijective transformation which preserves
the partial ordering in both directions and orthogonality between tripotents, where
C and C̃ are Cartan factors. Let us additionally assume that there exists a non-zero
tripotent u ∈ C such that �|Tu is continuous at u. Suppose e is a tripotent in C with
rank ≥ 3. Then there exists a complex-linear or conjugate-linear (isometric) triple
isomorphism T : C2(e) → C̃2(�(e)) satisfying �(v) = T (v) for every tripotent
v ∈ C2(e). In particular,

�(C2(u) ∩ U(C)) = C̃2(�(u)) ∩ U(C̃).

We can actually assume that T is a complex-linear or a conjugate-linear Jordan
∗-isomorphism between the JBW∗-algebras C2(e) and C̃2(�(e)).

Proof Let e be a tripotent satisfying the assumptions of the proposition. We know that
�(e) is a tripotent in C̃ with rank ≥ 3 (cf. Lemma 3.2(11)). The Peirce-2 subspace
C2(e) is an atomic factor JBW∗-algebra with unit e and has rank at least three, in
particular C2(e) does not contain a type I2 part. The projections in C2(e) are precisely
the tripotents v in C with v ≤ e (cf. [34, Lemma 3.5(i)]). Let P(C2(e)) denote
the lattice of projections in C2(e). It follows from the hypotheses and the previous
comments that �|P(C2(e)) : P(C2(e)) → P(C̃2(�(e))) is a bijection preserving the
partial ordering (and orthogonality) in both directions.

Let e1, . . . , em be a finite collection of mutually orthogonal projections in C2(e).
It follows from Lemma 3.2(d) that �(e1 + · · · + em) = �(e1) + · · · + �(em).
Since clearly ‖�(p)‖ ≤ 1 for every projection p ∈ C2(e), we can conclude that
�|P(C2(e)) : P(C2(e)) → P(C̃2(�(e))) is a vector-valued finitely additive quantum
measure on C2(e) in the terminology of [21,63]. The arguments to obtain a vector-
valued version of the Bunce–Wright–Mackey–Gleason theorem for von Neumann
algebras from the scalar-valued version (see [63, Theorem B implies Theorem A]) are
also valid to deduce a vector-valued Jordan version from the scalar-valued Jordan ver-
sion of this Bunce–Wright–Mackey–Gleason theorem for JBW-algebras established
in [21, Theorem 2.1]. Therefore, by the just commented vector-valued Bunce–Wright–
Mackey–Gleason theorem, there exists a complex-linear bijection (and hence a Jordan
∗-isomorphism between these two JBW∗-algebras) T : C2(e) → C̃2(�(e)) satisfying

T (p) = �(p) for every projection p in C2(e). (24)

Let f be the mapping given by Proposition 3.10 (see also (14)). Now, by applying
the hypothesis concerning the continuity of �, we can deduce, as in the proof of
Theorem 4.3 (see also Remark 4.4), that f (λ) = λ or f (λ) = λ for all λ ∈ T.

Unitaries in the JBW∗-algebra C2(e) are precisely the unitary tripotents in C2(e)
(cf. [25, Proposition 4.3]). Let u be a unitary tripotent in C2(e). Since the JBW∗-
subalgebra of C2(e) generated by u is a commutative von Neumann algebra and
C2(e) is atomic, we can always find a spectral resolution of u in terms of a family
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of mutually orthogonal minimal projections in C2(e), that is, there exist mutually
orthogonal minimal projections {p j : j ∈ J } in C2(e) (which are minimal tripotents

in C) and {λ j : j ∈ J } ⊂ T such that u = w∗ −
∑

j∈J
λ j p j . Clearly u is the

supremum of the family {λ j p j : j ∈ J } and hence �(u) must coincide with the
supremum of the family {�(λ j p j ) : j ∈ J } (cf. Lemma 3.3(b)) and similarly, T (u)

must coincide with the supremum of the family {T (λ j p j ) : j ∈ J }. For each j ∈ J
we have

T (λ j p j ) = λ j T (p j ), and �(λ j p j ) = f (λ j )�(p j ). (25)

We shall distinguish two cases:

(1) f (λ) = λ, for all λ ∈ T,
(2) f (λ) = λ, for all λ ∈ T.

We deal first with case (1). Under this assumption, (25) particularizes in the form

T (λ j p j ) = λ j T (p j ), and �(λ j p j ) = λ j�(p j ).

It then follows from (24) that T (λ j p j ) = �(λ j p j ) for all j . Since �(u) is the
supremum of {�(λ j p j ) : j ∈ J }, and T (u) is the supremum of {T (λ j p j ) : j ∈ J },
it follows that �(u) = T (u). We have therefore proved that

T (u) = �(u), for all unitary u ∈ C2(e). (26)

Let ei be aminimal tripotent inC2(e). Since ei is a finite tripotent in the latter JBW∗-
algebra (cf. [39, Lemma 3.2(e)]), by applying Proposition 7.5 in [39] we deduce the
existence of a unitary u ∈ C2(e) such that ei ≤ u. Clearly, the elements±ei + (u−ei )

are unitaries in C2(e), and thus (26) guarantees that

T (±ei + (u − ei )) = �(±ei + (u − ei )).

Having in mind that ±ei ⊥ (u − ei ), Lemma 3.2(d) and Proposition 3.9(e) give

±T (ei )+ T (u − ei ) = T (±ei+(u − ei ))=�(±ei + (u − ei ))

= ±�(ei )+�(u − ei ),

which proves that T (ei ) = �(ei ). The arbitrariness of ei implies that

T (w) = �(w), for all minimal tripotent w ∈ C2(e). (27)

Having inmind that every tripotent inC2(e) is the supremumof a family ofmutually
orthogonal minimal tripotents in C2(e), we deduce from (27) and Lemma 3.3(b) that
T (v) = �(v) for all tripotent v ∈ C2(e) (this can be also deduced from Proposition
3.13).
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Suppose finally that (2) holds, that is, f (λ) = λ, for all λ ∈ T. Let ∗e and ∗�(e)

denote the involutions on the JBW∗-algebras C2(e) and C̃2(�(e)), respectively. We
know by construction that T (x∗e ) = T (x)∗�(e) for all x ∈ C2(e). The mapping
R : C2(e) → C̃2(�(e)), R(x) = T (x∗e ) is a conjugate-linear Jordan ∗-isomorphism
between these two JBW∗-algebras. By repeating the arguments given in case (1) we
arrive to the conclusion that R(v) = �(v) for all tripotent v ∈ C2(e). ��

The next results are straightforward consequences of the result we have just proved.
The first one is direct from Lemmata 4.2, 3.8 and the previous proposition.

Corollary 5.3 Let � : U(C) → U(C̃) be a bijective transformation which preserves
the partial ordering in both directions and orthogonality between tripotents, where C
and C̃ are Cartan factors with rank bigger than or equal to 2. Suppose that there exists
a non-zero tripotent u ∈ C such that �|Tu is continuous at u. Let e be a tripotent in
C. Then � maps the set C2(e) ∩ U(C) onto the set C̃2(�(e)) ∩ U(C̃).

Proof If e has rank one or two the result follows from Lemmata 3.8 and 4.2, respec-
tively. The remaining cases are given by Proposition 5.2. ��

We shall next prove that the hypothesis concerning the rank of the tripotent e in
Proposition 5.2 can be somehow relaxed.

Corollary 5.4 Let � : U(C) → U(C̃) be a bijective transformation which preserves
the partial ordering in both directions and orthogonality between tripotents, where C
and C̃ are Cartan factors with rank ≥ 3. Let us additionally assume that there exists
a non-zero tripotent u ∈ C such that �|Tu is continuous at u. Suppose e is a tripotent
in C. Then there exists a complex-linear or a conjugate-linear Jordan ∗-isomorphism
T : C2(e) → C̃2(�(e)) satisfying �(v) = T (v) for every tripotent v ∈ C2(e).

Proof If e has rank ≥ 3 the conclusion follows from Proposition 5.2. Otherwise there
exists a tripotent ẽ with rank ≥ 3 such that e ≤ ẽ. Applying the previous Proposition
5.2 to ẽ we deduce the existence of a complex-linear or a conjugate-linear Jordan
∗-isomorphism T : C2(ẽ) → C̃2(�(ẽ)) satisfying �(v) = T (v) for every tripotent
v ∈ C2(ẽ). Since C2(e) is a JBW∗-subalgebra of C2(ẽ) with T (C2(e)) = C̃2(�(e)),
the mapping T |C2(e) : C2(e) → C̃2(�(e)) satisfies the desired property. ��

Next we have another generalization, in a new direction, of the result established
by Molnár in Theorem 1.2.

Theorem 5.5 Let � : U(C) → U(C̃) be a bijective transformation which preserves
the partial ordering in both directions and orthogonality between tripotents, where C
and C̃ are Cartan factors with rank ≥ 2. Suppose C admits a unitary tripotent. Let
us additionally assume that there exists a non-zero tripotent w ∈ C such that �|Tw

is continuous at w. Then there exists a complex-linear or a conjugate-linear triple
isomorphism T : C → C̃ satisfying �(v) = T (v) for every tripotent v ∈ C.

Proof Since C admits a unitary tripotent u, we conclude that C = C2(u) and U(C) =
U(C2(u)). If u has rank–2, it follows from [44, Lemma 3.8] that U(C) = U(C2(u))

is a spin factor, and thus the desired statement follows from Theorem 4.5.
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Assume next that u has rank ≥ 3. By Corollary 5.4 there exists a complex-linear
or a conjugate-linear Jordan ∗-isomorphism T : C = C2(u) → C̃2(�(u)) satisfying
�(v) = T (v) for every tripotent v ∈ C2(e). The surjectivity of � proves that

U(C̃) = �(U(C)) = T (U(C)) = U(C̃2(�(u))),

yielding that �(u) is a unitary tripotent in C̃ which concludes the proof. ��
Type 1 Cartan factors of the form B(H) with dim(H) ≥ 2, Cartan factors of type

2 with dim(H) ≥ 6 even, or infinite, all type 3 Cartan factors with dim(H) ≥ 3, and
the exceptional Cartan factor of type 6 admit a unitary tripotent and have rank≥ 3 (cf.
[64, Proposition 2] and [28, Table 1 in page 210]). The type 3 Cartan factor of rank–2
is precisely the 3-dimensional spin factor S2(C).

5.2 Rectangular type 1 Cartan factors

In this section we shall study the case of rectangular type 1 Cartan factors with rank
bigger than or equal to two. Along this section we shall focus on rectangular Cartan
factors of the form B(H , K ), where H and K are two complex Hilbert spaces with
dim(H) �= dim(K ) and both of them are≥ 2.We can assume that K is a proper closed
subspace of H .

Following the notation from the influencing paper [40], given a Cartan factor C of
type j ∈ {1, . . . , 6}, the elementary JB∗-triple K j of type j (also called a nuclear
JB∗-triple of type j in [55]) is defined in the following terms: K1 = K (H1, H2);
Ki = C ∩ K (H) when C is of type i = 2, 3, and Ki = C if the latter is of type 4, 5,
or 6. Here K (H1, H2) stands for the space of compact linear operators from H1 to
H2 and K (H) = K (H , H). Obviously, if K is an elementary JB∗-triple of type j , its
bidual is precisely a Cartan factor of type j .

At this stage we need to recall some coordinatization theorems for Jordan triple
systems “covered” by a “grid” developed in papers byMcCrimmon, andMeyberg [65],
Dang and Friedman [55], Neher [56] and Horn [66,67] (see also the monograph [27,
§6]). A grid in a JB∗-triple E is a family formed by minimal and rank two tripotents in
E built up of quadrangles of minimal tripotents or trangles of the form (v, u, ṽ) with
v and ṽ minimal, where all the non-vanishing triple products among the elements of
the grid are those associated to these types of trangles and quadrangles.

The results in [55,56,65] and [66] show that every Cartan factor C admits a (rect-
angular, symplectic, hermitian, spin, or exceptional) grid G such that the elementary
JB∗-triple K associated with C is precisely the norm closed linear span of the grid G,
and C being the weak∗-closure of K is nothing but the weak∗-closure of the linear
span of G (compare, for example, [56, Structure Theorem IV.3.14] or [55, Sect. 2]).

Let us describe one of these famous grids with more detail. Let � and � be two
index sets. A family of minimal tripotents {ui j : i ∈ �, j ∈ �} is called a rectangular
grid if the following properties hold:

(i) u jk , uil are collinear if they share a common row index ( j = i) or a column
index (k = l), and are orthogonal otherwise;
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(ii) (u jk, u jl , uil , uik) is a quadrangle for all j �= i , k �= l;
(iii) All other types of triple products (i.e., those which are not of the form L(x, x)(y)

or {x, y, z}, where (x, y, z) is a prequadrangle) vanish.

Given two complex Hilbert spaces H and K and two norm-one elements ξ ∈ K ,
η ∈ H the symbol ξ⊗η will stand for the tripotent in B(H , K ) defined by ξ⊗η(ζ ) =
〈ζ, η〉ξ. Let {ξi : i ∈ �} and {η j : j ∈ �} be orthonormal bases of K and H ,
respectively. It is not hard to check that the set {ui j = ξi ⊗ η j : i ∈ �, j ∈ �} is
a rectangular grid in B(H , K ) whose linear span is weak∗ dense (see for example
[55, pages 313-317]). Furthermore, every Cartan factor admitting a rectangular grid
whose linear span in weak∗-dense is isometrically isomorphic to some B(H , K ) [55,
Proposition in page 314].

Theorem 5.6 Let K be a proper subspace of a complex Hilbert space H with dim(K ) ≥
2, let C = B(H , K ), and let C̃ be another Cartan factor. Suppose � : U(C)→ U(C̃)

is a bijective transformation which preserves the partial ordering in both directions
and orthogonality between tripotents. Assume that there exists a non-zero tripotent
u ∈ C such that �|Tu is continuous at u. Then there exists a complex-linear or
conjugate-linear triple isomorphism T : C → C̃ such that �(e) = T (e) for all
e ∈ U(C).

Proof To simplify the arguments we shall distinguish two cases: dim(H) = ∞ and
dim(H) < ∞. Although both results are deeply technical, the infinite-dimensional
case admits a simpler solution.

Case I . We shall first assume that dim(H) = ∞. Let {ηi : i ∈ �} and {ξ j : j ∈ �}
be orthonormal basis of K and H , respectively. Since dim(K ) ≤dim(H) and the latter
is infinite, we can find a family {�k : k ∈ J } of mutually disjoint subsets of � such
that |�k | = |�| ≥ 2 for all k ∈ J (for the last inequality we applied that dim(K ) ≥ 2),
and � = ⋃

k∈J �k . The set {ui j = ηi ⊗ ξ j : i ∈ �, j ∈ �} is a rectangular grid in
B(H , K ), and Proposition 5.1 assures that {�(ui j ) = �(ηi ⊗ ξ j ) : i ∈ �, j ∈ �} is a
rectangular grid contained in C̃ . Let K (C) and K (C̃) denote the elementary or nuclear
JB∗-subtriples of C and C̃ generated by the grids {ui j = ηi ⊗ ξ j : i ∈ �, j ∈ �} and
{�(ui j ) = �(ηi ⊗ ξ j ) : i ∈ �, j ∈ �}, respectively, and let T : K (C)→ K (C̃) be a
triple isomorphism defined by T (ui j ) = �(ui j ) for all i ∈ �, j ∈ �. Let us observe
that the weak∗-closure of K (C) is the whole C . It is known that the mapping T admits
an extension to a weak∗-continuous triple isomorphism, denoted by the same symbol

T , from B(H , K ) onto the weak∗ closure, K (C̃)
w∗

, of K (C̃) in C̃ (cf. [55, Lemma
1.14], [66, Sect. 3] or [56, Extension Theorem 3.17 and the arguments in the proof of
the Isomorphism Theorem 3.18]). By construction

T (ui j ) = �(ui j ) for all i ∈ �, j ∈ �. (28)

In order to simplify the arguments, for each k ∈ J , let Hk stand for the closed
subspace of H generated by the orthonormal system {ξ j : k ∈ �k}. Since dim(Hk) =
dim(K ) for all j , the subtriple B(Hk, K ) is isometrically isomorphic to B(K ), and
hence it admits a unitary element denoted by uk .We observe thatC2(uk) = B(Hk, K ).
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If dim(K ) = 2 we apply Theorem 4.5 and Lemma 4.2, while if dim(K ) ≥ 3 we
employ Corollary 5.4, to deduce that � : U(C2(uk)) → U(C̃2(�(uk))) is a bijection
preserving the partial order in both directions and orthogonality in one direction, and
hence there exists a complex-linear or a conjugate-linear triple isomorphism Tk :
C2(uk) → C̃2(�(uk)) such that

Tk(w) = �(w), for all w ∈ U(C2(uk)), (k ∈ J ). (29)

Furthermore, the set {ui j = ξi ⊗ η j : i ∈ �, j ∈ �k} is a rectangular grid in
C2(uk), and by (28), Tk(ui j ) = �(ui j ) = T (ui j ), for all i ∈ �, j ∈ � j . Clearly,
the mappings f given by Proposition 3.10 for � and for �|U(C2(uk )) coincide for all
k ∈ J . Consequently, the maps Tk are all complex-linear or conjugate-linear at the
same time.

Case I .a. Let us assume that the mapping f is the identity on T, and thus all Tk are
complex-linear and

Tk = T |C2(uk ) for all k ∈ J . (30)

In order to finish the proof in this case we shall prove that T is a triple isomorphism
whose restriction to U(C) coincides with �. It suffices to show that T (e) = �(e) for
all minimal tripotent e ∈ C (cf. Proposition 3.13 and have in mind that the surjectivity
of T on the whole C̃ is automatic if we recall that after this conclusion the image of
T contains all minimal tripotents in C̃). We shall split the arguments in several steps.

Let e1 and e2 be two collinear minimal tripotents in C and suppose that α1, α2 are
two complex numbers such that |α1|2+|α2|2 = 1. The elements e1 and e2 (respectively,
�(e1) and �(e2), which are mutually collinear minimal tripotents by Theorem 4.5 or
Proposition 5.1) generate a JB∗-subtriple of C̃ which is isometrically isomorphic to
a 2-dimensional complex Hilbert space (see [55, Lemma in page 306]). Actually, by
combining [57, Lemma 3.10] and Theorem 4.5 or Proposition 5.1, and the fact that f
is the identity mapping we have

�(α1e1 + α2e2) = α1�(e1)+ α2�(e2). (31)

Now, let {e j : j ∈ I } be a family of mutually collinear minimal tripotents in C . We

claim that for each family {α j : j ∈ I } ⊂ C with
∑

j∈I
|α j |2 = 1 we have

�

⎛

⎝
∑

j∈I

α j e j

⎞

⎠ =
∑

j∈I

α j�(e j ). (32)

Namely, by the arguments above {�(e j ) : j ∈ I } is a family ofmutually collinearmin-
imal tripotents in C̃ and it generates a JB∗-subtriple which is isometrically isomorphic
to a complex Hilbert space (see [55, Lemma in page 306]). Since

∑

j∈I
|α j |2 < ∞,

and hence { j ∈ I : |α j | �= 0} is countable, an induction argument based on (31),
like the one employed in the proof of Theorem 4.3, gives the statement in (32). It
should be remarked here that the formula established in (32) does not really depend
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on the dimension of the Hilbert space H . It is worth to notice that in the particular set-
ting of type 1 Cartan factors, for each family of mutually collinear minimal tripotents
{e j : j ∈ I } and each family {α j : j ∈ I } ⊂ C with

∑

j∈I
|α j |2 = 1, the element

∑

j∈I
α j e j is a minimal tripotent too.

A minimal tripotent in C is of the form e = η⊗ ξ with η and ξ in the unit spheres
of K and H , respectively. Since {ξ j : j ∈ �} is an orthonormal basis of H we can
write e in the form

e =
∑

j∈�

α jη ⊗ ξ j , where
∑

j∈�

|α j |2 = 1.

The minimal tripotents in the family {η ⊗ ξ j : j ∈ �} are mutually collinear, and for
each j ∈ �k (k ∈ J ), the minimal tripotent η ⊗ ξ j belongs to C2(uk) = B(Hk, K ).

Thus, by applying (32), (29) and (30) we get

�(e) =
∑

j∈�

α j�(η ⊗ ξ j ) =
∑

k∈J

∑

j∈�k

α j�(η ⊗ ξ j )

=
∑

k∈J

∑

j∈�k

α j Tk(η ⊗ ξ j ) =
∑

k∈J

∑

j∈�k

α j T (η ⊗ ξ j ) = T (e),

which concludes the proof in this Case I .
Case I .b. Assume next that f is the conjugation on T. Let us take two conjugations

on H and K , both denoted by the same symbol ·. We define a conjugation (conjugate
linear isometry) on B(H , K ) given by

B(H , K ) → B(H , K ), a �→ ac where ac(ξ) := a(ξ), ∀ξ ∈ H .

It is easy to check that (ab)c = acbc and (ac)∗ = (a∗)c for all a, b ∈ B(H , K ),

and thus the mapping a �→ ac is a conjugate-linear triple automorphism on B(H , K ).
It is easy to see that the mapping �1 : U(B(H , K )) → U(C̃), �1(u) = �(uc) is
a bijection preserving the partial order in both directions and orthogonality between
tripotents. Furthermore, the corresponding map f given by Proposition 3.10 for �1
must be the identity on T. By applying the Case I to �1 we deduce the existence
of a complex-linear triple isomorphism T : B(H , K ) → C̃ whose restriction to
U(B(H , K )) coincides with �1. The mapping R : B(H , K ) → C̃ , R(x) = T (xc)

is a conjugate-linear triple isomorphism whose restriction to U(B(H , K )) coincides
with �. This finishes the proof of Case I I .

Case I I The second part of this proof will be devoted to study the case in which
dim(H) <∞.The argument is very similar to the one given in the infinite dimensional
case. Let {ηi : i ∈ � = {1, . . . , d1}} and {ξ j : j ∈ � = {1, . . . , d2}} be orthonormal
basis of K and H , respectively, where 2 ≤ d1 < d2 ∈ N. Let us write d2 = c1d1 + r1
with c1, r1 ∈ N ∪ {0} and r1 < d1. Let us find mutually disjoint subsets �1, . . . �c1
of � and another set �c1+1 not disjoint with some of the previous ones such that
|�k | = |�| = d1 ≥ 2 for all k ∈ {1, . . . , c1 + 1} and � = ⋃c1+1

k=1 �k . If r1 = 0 we
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simply take �c1+1 = ∅ and the counter k moves in {1, . . . , c1} –this case is even easier
or identical to Case I , so we shall focus only in the case in which r1 �= 0, where the
set �c1+1 is precisely the set formed by the last d1 elements in �.

The set {ui j = ηi ⊗ ξ j : i ∈ �, j ∈ �} is a rectangular grid in B(H , K ), and
Proposition 5.1 assures that {�(ui j ) = �(ηi ⊗ ξ j ) : i ∈ �, j ∈ �} is a rectangular
grid contained in C̃ . As in the previous case, or even easier because we do not need to
consider weak∗-closures, there exists a triple isomorphism T : C → K (C̃) defined by
T (ui j ) = �(ui j ) for all i ∈ �, j ∈ �, where K (C̃) stands for the (finite dimensional)
JBW∗-subtriple of C̃ generated by the rectangular grid {�(ui j ) = �(ηi ⊗ ξ j ) : i ∈
�, j ∈ �}. That is

T (ui j ) = �(ui j ) for all i ∈ �, j ∈ �. (33)

As in the case in which dim(H) = ∞, for each k ∈ {1, . . . , c1+1}, Hk will denote
the closed subspace of H generated by the orthonormal system {ξ j : j ∈ �k}. Since
dim(Hk) = dim(K ) for all j , the subtriple B(Hk, K ) is isometrically isomorphic
to B(K ), and thus we can pick a unitary element denoted by uk . We observe that
C2(uk) = B(Hk, K ).

Here we find the dichotomy dim(K ) = 2 and dim(K ) ≥ 3. In the first case we
apply Theorem 4.5 and Lemma 4.2, while in the second one we use Corollary 5.4,
to deduce that � : U(C2(uk)) → U(C̃2(�(uk))) is a bijection preserving the partial
order in both directions and orthogonality between tripotents, and hence there exists
a complex-linear or a conjugate-linear triple isomorphism Tk : C2(uk)→ C̃2(�(uk))

such that

Tk(w) = �(w), for all w ∈ U(C2(uk))(k ∈ {1, . . . , c1 + 1}). (34)

The arguments given in the case dim(H) = ∞ can be literally followed to conclude
that the maps Tk are all complex-linear or conjugate-linear at the same time, and this
property is determined by the mapping f given by Proposition 3.10 which is the same
for all Tk and T .

Case I I .a. By assuming that f is the identity on T, we actually deduce, as in the
case in which dim(H) = ∞, that

Tk = T |C2(uk ) for all k ∈ {1, . . . , c1 + 1}, (35)

and for each (finite) family of mutually collinear minimal tripotents {e j : j ∈ I } in C

and each finite collection {α j : j ∈ I } ⊂ C with
∑

j∈I
|α j |2 = 1 we have

�

⎛

⎝
∑

j∈I

α j e j

⎞

⎠ =
∑

j∈I

α j�(e j ) (36)

(the validity of the latter formula in the finite dimensional case has been already
justified). In order to finish, we observe that any minimal tripotent e = η ⊗ ξ in C
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(with η and ξ in the unit spheres of K and H , respectively) writes as a finite sum of
the form

e =
d2∑

j=1
α jη ⊗ ξ j , where

d2∑

j=1
|α j |2 = 1.

The minimal tripotents in the set {η ⊗ ξ j : j ∈ �} are mutually collinear, and for
each j ∈ �k (k ∈ {1, . . . , c1 + 1}), the minimal tripotent η⊗ ξ j belongs to C2(uk) =
B(Hk, K ). Thus, by applying (36), (35) and (34) we get

�(e) =
∑

j∈�

α j�(η ⊗ ξ j ) =
c1∑

k=1

∑

j∈�k

α j�(η ⊗ ξ j )+
d2∑

j=c1+1
α j�(η ⊗ ξ j )

=
c1∑

k=1

∑

j∈�k

α j Tk(η ⊗ ξ j )+
d2∑

j=c1+1
α j Tc1+1(η ⊗ ξ j )

=
c1∑

k=1

∑

j∈�k

α j T (η ⊗ ξ j )+
d2∑

j=c1+1
α j T (η ⊗ ξ j ) = T (e),

which concludes the proof in this Case I .a.
Case I I .b. Finally, if the mapping f is the conjugation on T, an identical argument

to that given in the Case I .b works here too. ��

5.3 Type 2 Cartan factors not admitting a unitary element

After the results in the previous section, the Cartan factors which are not covered by
our conclusions reduce to the exceptional type 5 Cartan factor and those Cartan factor
of type 2 which do not admit a unitary element. This section is devoted to present
the results in the latter type. We recall first the basic notions, associated with each
conjugation j on a complex Hilbert space H we can consider the linear involution on
B(H) defined by x �→ xt := j x∗ j . A Cartan factor of type 2 is the JB∗-subtriple
B(H)a of B(H) of all t-skew-symmetric operators. As we recalled before, B(H)a

admits a unitary element when dim(H) is even or infinite (cf. [64, Proposition 2]), so
the result is covered by our conclusion in Theorem 5.5. We therefore reduce our study
to type 2 Cartan factors B(H)a with dim(H) odd.

The next lemma has been borrowed from the proof of [57, Theorem 4.5].

Lemma 5.7 [57, proof of Theorem 4.5] Let C = B(H)a be a type 2 Cartan factor.
Suppose u is a minimal tripotent in B(H)sa. Then the Peirce-1 subspace C1(u) is
isometrically triple isomorphic to a rectangular type 1 Cartan factor of rank–2, it
is actually triple isomorphic to B(K1, K2), where K1 and K2 are complex Hilbert
spaces with dim(K1) = 2 and dim(K2) =dim(H)− 2.

Proof For the explicit argument see the third paragraph in the proof of [57, Theorem
4.5]. ��
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We have avoided, up to this point, to study the behavior of a bijection preserving
the partial ordering in both directions and orthogonality on tripotents belonging to a
Peirce-1 subspace associatedwith a fixed tripotent, like we did for those in the Peirce-0
and Peirce-2 subspaces in Lemma 3.2, Lemma 4.2 and Proposition 5.2, respectively.

Lemma 5.8 Let � : U(C)→ U(C̃) be a bijective transformation which preserves the
partial ordering in both directions and orthogonality between tripotents, where C and
C̃ are Cartan factors with rank bigger than or equal to 2. Assume that there exists
a non-zero tripotent u ∈ C such that �|Tu is continuous at u. Let e be a minimal
tripotent in C. Then � maps the set C1(e) ∩ U(C) onto the set C̃1(�(e)) ∩ U(C̃).

Proof We observe that C1(e) need not be a Hilbert space–i.e., a rank–1 factor– (com-
pare the previous Lemma 5.7). Let v be any minimal tripotent in C1(e). By a new
application of [57, Lemma 3.10] we deduce that one of the following statements
holds:

(i) There exist minimal tripotents e2, e3, e4 in C such that (e, e2, e3, e4) is a quad-
rangle and v is a linear combination of e, e2, e3, and e4;

(ii) There exist a minimal tripotent ẽ ∈ C and a rank two tripotent u ∈ C such that
(e, u, ẽ) is a trangle and v is a linear combination of e, u, and ẽ.

In the case (i) (respectively, (i i)) we set w = e + e3 (respectively, w = e + ẽ).
In any of the cases, w is a ran-2 tripotent and e, v ∈ C2(w). Lemma 4.2 asserts that
�|U(C2(w)) : U(C2(w)) → U(C̃2(�(w))) is a bijection preserving the local order in
both directions and orthogonality between tripotents. The continuity of � forces the
mapping f given by Proposition 3.10 for � to be the identity or the conjugation on
T. Theorem 4.5 proves the existence of a complex-linear or conjugate-linear triple
isomorphism Ũ : C2(w)→ C̃2(�(w))whose restriction to U(C2(w)) coincides with
�|U(C2(w)), the rest is clear because Ũ is a triple isomorphism and e, v ∈ C2(w). ��

We are now in a position to describe the bijections preserving the partial ordering
in both directions and orthogonality between tripotents from the set of tripotents of
a type 2 Cartan factor not admitting a unitary element onto the set of tripotents of
any other Cartan factors. As a novelty in the proof of this result, we do not employ
the linear extension provided by a grid and its image. Instead of that we shall define
a complex-linear or a conjugate-linear extension based on our new understanding of
the bijection on the the tripotents belonging to the Peirce subspaces associated with a
minimal tripotent.

Theorem 5.9 Let C = B(H)a be a type 2 Cartan factor, where H is a finite dimen-
sional complex Hilbert space with odd dimension, and let C̃ be another Cartan factor.
Suppose � : U(C)→ U(C̃) is a bijective transformation which preserves the partial
ordering in both directions and orthogonality between tripotents. Assume addition-
ally that there exists a non-zero tripotent u ∈ C such that �|Tu is continuous at u.
Then there exists a complex-linear or conjugate-linear (isometric) triple isomorphism
T : C → C̃ such that �(e) = T (e) for all e ∈ U(C).

Proof We can clearly assume that dim(H) ≥ 5, as it is well known that otherwise
B(H)a is isometrically isomorphic to a complex Hilbert space (it has rank one). Let
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us begin with a simple observation, the hypothesis concerning the continuity of �

assures that the mapping f given by Proposition 3.10 for � is the identity or the
conjugation on T. In the second case, we can argue as in the final step of the proof
Theorem 5.6 and composing � is a conjugate-linear triple automorphism on C to lead
ourself to te first case. So, we assume that the mapping f is the identity on T and we
shall find a complex-linear extension.

Let us fix a minimal tripotent u in C and the Peirce decomposition

C = C2(u)⊕ C1(u)⊕ C0(u) = Cu ⊕ C1(u)⊕ C0(u). (37)

There is no loos of generality in assuming that u = ξ0⊗η0−η0⊗ξ0, where ξ0, η0 are
two orthonormal vectors in H with j(η0) = η0, j(ξ0) = ξ0, where j is the involution
on H employed for the definition of B(H)a = {a ∈ B(H) : at = ja∗ j = −a}. Let
p0 denote the minimal projection ξ0⊗ξ0 in B(H), and let H0 := (1− p0)(H). Clearly
dim(H0) =dim(H) − 1 is even. Since pt

0 = j p∗0 j = jξ0 ⊗ ξ0 j = j(ξ0) ⊗ j(ξ0) =
ξ0⊗ξ0 = p0 and (1−p0)t = 1−p0. In particular, H0 is afixed subspace for j andhence
ĵ = j |H0 is a conjugation on H0. The subspace D = {a ∈ C : a = (1− p0)a(1− p0)}
is a JB∗-subtriple of C which is isometrically triple isomorphic to the type 2 Cartan
factor

B(H0)
ĵ
a = {a ∈ B(H0) : at̂ = ĵa∗ĵ = −a}.

Furthermore, the Peirce-0 subspace C0(u) is a JB∗-subtriple of D ∼= B(H0)
ĵ
a .

Now, we apply Lemma 5.8 to deduce that �|U(C1(u)) : U(C1(u))→ U(C̃1(�(u)))

is a bijection preserving the partial ordering in both directions and orthogonality
between tripotents. We observe that the mapping f given by Proposition 3.10 for
�|U(C1(u)) coincides with the one given for �, and hence it is the identity on T. Since,
by Lemma 5.7, C1(u) is a rank–2 rectangular type 1 Cartan factor, it follows from
Theorem 5.6 that there exists a complex-linear triple isomorphism

T1 : C1(u) → C̃1(�(u)), such thatT1|U(C1(u)) coincides with�|U(C1(u)). (38)

On the other hand, since dim(H0) is even and D ∼= B(H0)
ĵ
a , we can find a unitary

tripotent u2 ∈ D (cf. [64, Proposition 2]). In this case D = C2(u2), and hence a combi-
nation of Lemma 4.2 and Proposition 5.2 guarantees that �|U(C2(u2)) : U(C2(u2)) →
U(C̃2(�(u2))) is a bijection preserving the partial ordering in both directions and
orthogonality between tripotents (and the mapping f associated with it by Proposi-
tion 3.10 is the identity onT). SinceC2(u2) admits a unitary element and has rank≥ 2,
Theorem 5.5 implies the existence of a complex-linear (isometric) triple isomorphism

T2 : C2(u2)→ C̃2(�(u2)) satisfying �(w) = T2(w)for all w ∈ U(C2(u2)). (39)

Since, by (37), every element x in C decomposes uniquely in the form x = λu +
P1(u)(x) + P0(u)(x) and P0(u)(x) ∈ C0(u) ⊆ D = C2(u2) ∼= B(H0)

ĵ
a, we can



   37 Page 44 of 52 Y. Friedman, A.M. Peralta

define a linear mapping T : C → C̃ given by

T (x) = T (λu + P1(u)(x)+ P0(u)(x)) = λ�(u)+ T1(P1(u)(x))+ T2(P0(u)(x)).

(40)

Clearly, T is weak∗ continuous, and in order to show that T (w) = �(w) for all
w ∈ U(C) it suffices to prove that T (e) = �(e) for every minimal tripotent e in C
(cf. Proposition 3.13).

Let us take a minimal tripotent e ∈ C . Lemma 3.10 in [57] assures that one of the
following properties holds:

(i) There exist minimal tripotents u2, u3, u4 in C such that (u, u2, u3, u4) is a
quadrangle and e is a linear combination of u, u2, u3, and u4, that is, e =
αu + βu2 + γ u3 + δu4;

(ii) There exist a minimal tripotent ũ ∈ C and a rank two tripotent v ∈ C such
that (u, v, ũ) is a trangle and e is a linear combination of u, v, and ũ, that is
e = αu + βv + γ ũ.

Each case must be treated independently. In (i) we consider the rank–2 tripotent
u + u3 and the Peirce-2 subspace C2(u + u3), which contains u and e. We deduce
from Theorem 5.5 the existence of a complex-linear isometric triple isomorphism
R : C2(u+u3) → C̃2(�(u+u3)) whose restriction to U(C2(u+u3)) coincides with
�|U(C2(u+u3)) (recall that the mapping f given by Proposition 3.10 for the mapping
�|U(C2(u+u3)) must coincide with the corresponding mapping for �, and thus it is
the identity). Therefore, having in mind that e ∈ C2(u + u3), u2, u4 ∈ C1(u) and
u3 ∈ C0(u) ⊆ D = C2(u2), we deduce from the linearity of R that

�(e) = R(e) = αR(u)+ β R(u2)+ γ R(u3)+ δR(u4)

= α�(u)+ β�(u2)+ γ�(u3)+ δ�(u4)

= α�(u)+ βT1(u2)+ γ T2(u3)+ δT1(u4)

= αT (u)+ βT (u2)+ γ T (u3)+ δT (u4) = T (e),

where at the antepenultimate equality we applied (38) and (39), and at the penultimate
and last equalities the definition of T .

In (i i)we consider the rank–2 tripotent u+ ũ and the Peirce-2 subspace C2(u+ ũ),
which containsu and e. Theorem5.5 proves the existence of a complex-linear isometric
triple isomorphism R : C2(u+ ũ) → C̃2(�(u+ ũ))whose restriction toU(C2(u+ ũ))

coincides with �|U(C2(u+ũ)) (recall that the mapping f given by Proposition 3.10 for
the mapping �|U(C2(u+ũ)) coincides with the corresponding mapping for �, and thus
it is the identity). Since e ∈ C2(u + ũ), v ∈ C1(u) and ũ ∈ C0(u) ⊆ D = C2(u2), it
follows from the linearity of R that

�(e) = R(e) = αR(u)+ β R(v)+ γ R(ũ) = α�(u)+ β�(v)+ γ�(ũ)

= α�(u)+ βT1(v)+ γ T2(ũ) = αT (u)+ βT (v)+ γ T (ũ) = T (e),

where, as before, we applied (38), (39) and (40), and the definition of T . This concludes
the proof. ��
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5.4 Exceptional type 5 Cartan factors

TheuniqueCartan factor not covered by the results in previous sections and subsections
is the exceptional Cartan factor of type 5.We shall see how the proof given in Theorem
5.9 can be adapted after an appropriate modification and amore sophisticated structure
results of the Peirce-1 subspace associated with a minimal tripotent in a type 5 Cartan
factor taken from [27].

Theorem 5.10 Let C be a type 5 Cartan factor, and let C̃ be another Cartan factor.
Suppose � : U(C)→ U(C̃) is a bijective transformation which preserves the partial
ordering in both directions and orthogonality between tripotents. Assume additionally
that there exists a non-zero tripotent u ∈ C such that �|Tu is continuous at u. Then
there exists a complex-linear or conjugate-linear (isometric) triple isomorphism T :
C → C̃ such that �(e) = T (e) for all e ∈ U(C).

Proof As in previous cases (see Theorems 5.6 and 5.9), the hypothesis concerning
the continuity of � assures that the mapping f given by Proposition 3.10 for � is
the identity or the conjugation on T. We can always reduce to the first case by just
composing � with a conjugate-linear triple automorphism on C whose existence
is well known, for example, from [28] and [33]. We can therefore assume that the
mapping f is the identity on T, and it suffices to find a complex-linear extension.

Let us fix a minimal tripotent u in C . By the structure results in [27, Section
6.3.7, page 264], the Peirce-1 subspace C1(u) is isometrically triple isomorphic to the
type 2 Cartan factor of all 5 × 5 antisymmetric matrices (which is a type 2 Cartan
factor of rank 2 that is not a spin factor). We deduce from Lemma 5.8 that � maps
C1(u) ∩ U(C) onto the set C̃1(�(u)) ∩ U(C̃), and hence Theorem 5.9 applied to the
bijection �|C1(u)∩U(C) : C1(u) ∩ U(C) → C̃1(�(u)) ∩ U(C̃) proves the existence
of a complex-linear triple isomorphism T1 : C1(u)→ C̃1(�(u)) whose restriction to
C1(u) ∩ U(C) is precisely �|C1(u)∩U(C), that is

�(w) = T1(w), for all w ∈ C1(u) ∩ U(C). (41)

The Peirce-0 subspace is treated next. It is well known thatC has rank–2 (cf. [33] or
[28, Table 1 in page 210]). It follows from this fact that the JBW∗-subtripleC0(u)must
have rank–1, and thus it is isometrically triple isomorphic to a complex Hilbert space.
The same argument shows that every norm-one element in in the Hilbert space C0(u)

is a minimal tripotent in C . Furthermore, since C2(u) = Cu and dim(C1(u)) = 10,
we can actually affirm that C0(u) is a triple isomorphic to a 5-dimensional complex
Hilbert space. By Lemma 3.2(c),�mapsC0(u)∩U(C) onto the set C̃0(�(u))∩U(C̃),
however since the involved JBW∗-triples have rank–1 we do not have intrinsic tools
to work with the mapping �|C0(u)∩U(C) (cf. Remark 3.6). We shall see how to avoid
this difficulty. Let us fix two orthogonal (in the Hilbert sense), norm-one elements e, v
in the Hilbert space C0(u). We claim that

�(αe + βv) = α�(e)+ β�(v), for all α, β ∈ C with |α|2 + |β|2 = 1. (42)
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Clearly, e, v and αe + βv are minimal tripotents in C . By [57, Lemma 3.10] one
of the following statements holds:

(i) There exist minimal tripotents e2, e3, e4 in C such that (e, e2, e3, e4) is a quad-
rangle and v is a linear combination of e, e2, e3, and e4;

(ii) There exist a minimal tripotent ẽ ∈ C and a rank two tripotent w ∈ C such that
(e, w, ẽ) is a trangle and v is a linear combination of e, w, and ẽ.

We shall deal with both cases in parallel. If (i) (respectively, (i i)) holds we set
ê = e + e3 (respectively, ê = e + ẽ). In any of the cases, ê is a ran-2 tripotent
and e, v ∈ C2(ê). Lemma 4.2 asserts that �|U(C2(ê)) : U(C2(ê)) → U(C̃2(�(ê)))
is a bijection preserving the local order in both directions and orthogonality between
tripotents. The continuity of � forces the mapping f given by Proposition 3.10 for
� to be the identity or the conjugation on T. Theorem 4.5 proves the existence of a
complex-linear or conjugate-linear triple isomorphism Ũ : C2(ê)→ C̃2(�(ê))whose
restriction to U(C2(ê)) coincides with �|U(C2(ê)). The mapping Ũ must be complex-
linear because the mapping f asociated with � has been assumed to be the identity
on T. Since e, v, αe + βv ∈ C2(ê), we deduce that

�(αe + βv) = Ũ (αe + βv) = αŨ (e)+ βŨ (v) = α�(e)+ β�(v),

which proves the claim in (42).
Now let {e1, e2, e3, e4, e5} be an orthonormal basis of the Hilbert space C0(u). By

applying (42), we can deduce in a finite number of steps, like in the proofs of Theorem
4.3(23) or Theorem 5.6(32), that

�

⎛

⎝
5∑

j=1
α j e j

⎞

⎠ =
5∑

j=1
α j�(e j ), (43)

whenever α1, . . . , α5 ∈ C with
∑5

j=1 |α j |2 = 1. We consider the linear mapping

T0 : C0(u)→ C̃0(�(u)) define on the orthonormal basis {e1, e2, e3, e4, e5} by

T0

⎛

⎝
5∑

j=1
β j e j

⎞

⎠ =
5∑

j=1
β j�(e j ).

Since non-zero tripotents in the Hilbert space are precisely the elements in its sphere,
the conclusion in (43) is equivalent to say that

�(w) = T0(w), for all tripotent w ∈ C0(u). (44)

We are in a position to employ a similar argument to that in the final paragraphs of
the proof of Theorem 5.9. The mapping T : C → C̃ given by
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T (x) = T (λu + P1(u)(x)+ P0(u)(x)) = λ�(u)+ T1(P1(u)(x))+ T0(P0(u)(x)).

(45)

is linear and well defined because C = Cu ⊕C1(u)⊕C0(u). We shall finish as soon
as we prove that T (w) = �(w) for all w ∈ U(C). By Proposition 3.13, it suffices to
prove that T (e) = �(e) for every minimal tripotent e in C . This can be done by a new
application of [57, Lemma 3.10] and repeating exactly the same arguments given at
the end of the proof of Theorem 5.9 with (41), (44) and (45) in the roles of (38), (39)
and (40). ��

6 Main conclusions

This section is thought to reorganize the material obtained in previous results with
the aim of presenting the main conclusion of this note which is the next description
of the bijections preserving the partial ordering in both directions and orthogonality
between tripotents of two atomic JBW∗-triples.

Theorem 6.1 Let M =
⊕�∞

i∈I
Ci and N =

⊕�∞
j∈J

C̃ j be atomic JBW∗-triples, where

Ci and C j are Cartan factors with rank ≥ 2. Suppose that � : U(M) → U(N ) is a
bijective transformation which preserves the partial ordering in both directions and
orthogonality between tripotents. We shall additionally assume that � is continuous at
a tripotent u = (ui )i in M with ui �= 0 for all i (or we shall simply assume that �|Tu
is continuous at a tripotent (ui )i in M with ui �= 0 for all i). Then there exists a real
linear triple isomorphism T : M → N such that T (w) = �(w) for all w ∈ U(M).
Furthermore, M decomposes as the direct sum of two orthogonal weak∗-closed ideals
M1 and M2 such that T |M1 is complex-linear and T |M2 is conjugate-linear.

Proof Let us begin with an observation U(M) = {(ui )i : ui ∈ U(Ci )}. By Lemma
3.5(a), for each i ∈ I there exists a unique σ(i) ∈ J such that �(U(Ci )) = U(C̃σ i ).
Applying the same argument to �−1 it can be deduced that σ : I → J is bijection.
Clearly,�|U(Ci ) : U(Ci ) → U(C̃σ(i)) is a bijection preserving the partial order in both
directions and orthogonality between tripotents. Since Ci and C̃σ(i) are Cartan factors
we can apply the conclusions in Theorems 4.5, 5.5, 5.6, 5.9 and 5.10 to deduce the
existence of a complex-linear or conjugate-linear triple isomorphism Ti : Ci → C̃σ(i)

whose restriction to U(Ci ) is precisely �|U(Ci ). It is easy to see that the mapping T :
M → N , T ((xi )i ) = (Ti (xi ))i is a real-linear triple isomorphism whose restriction
to U(M) is �.

Finally taking I1 := {i ∈ I : Ti is complex-linear}, I2 = I\I1 and M j :=⊕�∞
i∈I j

Ci ( j = 1, 2), it is clear that M1 and M2 are orthogonal weak∗ closed ideals

with M = M1 ⊕ M2, T |M1 is complex-linear and T |M2 is conjugate-linear. ��
The next corollary is a straight consequence of our main result, however, it could be

also derived from Theorem 5.5. The result is interesting by itself for those researchers
working on JB∗-algebras.



   37 Page 48 of 52 Y. Friedman, A.M. Peralta

Corollary 6.2 Let M and N be atomic JBW∗-algebras. Suppose that � : U(M) →
U(N ) is a bijective transformation which preserves the partial ordering in both direc-
tions and orthogonality between tripotents. We shall additionally assume that � is
continuous at a tripotent u = (ui )i in M with ui �= 0 for all i (or we shall simply
assume that �|Tu is continuous at a tripotent (ui )i in M with ui �= 0 for all i). Then
there exists a real linear triple isomorphism T : M → N such that T (w) = �(w)

for all w ∈ U(M). Furthermore, M decomposes as the direct sum of two orthogo-
nal weak∗-closed ideals M1 and M2 such that T |M1 is complex-linear and T |M2 is
conjugate-linear.

Wigner and Uhlhorn theorems, as well as the Bunce–Wright–Mackey–Gleason
theorem, are milestone and influencing results with mathematics and physics. We
would like to conclude this paper by contrasting our results with a generalizations
of the Mackey–Gleason theorem for rectangular JBW∗-triples established by C.M.
Edwards and G.T. Rüttimann in [68].

As it is well known, W∗-algebras are commonly used as a mathematical model
for a statistical quantum-mechanical system, the bounded observables of which are
representedby self-adjoint elements of a vonNeumannalgebraW , and the propositions
are represented by elements of the complete orthomodular latticeP(W ) of projections
inW . In thismore traditional approach, states of the systemare represented by bounded
finitely ortho-additive measures on P(W ). The commented Bunce–Wright–Mackey–
Gleason theorem affirms that, provided that W does not contain M2(C) as a weak∗-
closed ideal, the states of the system are the restrictions of bounded linear functionals
on W .

In an alternative approach, proposedbyGell-MannandHartle, states are represented
by measures on the lattice CP(W ) of centrally equivalent pairs of projections in a von
Neumann algebra W ([69–72]). A function d : P(W ) × P(W ) → C is called a
decoherence functional if it satisfies the following axioms:

(i) d(p1 + p2, q) = d(p1, q)+ d(p2, q) whenever p1 is orthogonal to p2;
(ii) d(p, q) = d(q, p), for every p and q;
(iii) d(p, p) ≥ 0, for each p;
(iv) d(1, 1) = 1.

Adetailed study of decoherence functionals for B(H) for a finite-dimensional complex
Hilbert space H with dim(H) ≥ 3, was conducted by Isham, Linden and Schrecken-
berg [69–71]. Wright proved in [72] that when d is a bounded decoherence functional
associated with a von Neumann algebra W , then, provided W has no direct summand
of type I2, d can be represented as the difference between semi-innerproducts on
W . Edwards and Rüttimann established in [73, Sect. 6] that the bounded measures on
CP(W ) are the restrictions of bounded sesquilinear forms, or decoherence functionals,
on W ×W , unless W has a central projection e such that eW is isomorphic to M2(C).
When W is a type I factor with dim(H) ≥ 3, the second approach subsumes the first.
For a system represented by a rectangular JBW∗-triple M (i.e., a JBW∗-triple forwhich
there exists a von Neumann algebra W and a pair p, q of projections in A such that M
is isomorphic to the JBW∗-triple pWq), and we assume that M ∼= pWq, where p and
q are not equal, the first approach is not available. However, it is possible to appeal to
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the second approach. The properties of the complete lattice CP(W )(p,q) of centrally
equivalent pairs of projections in theW∗-algebra W dominated by (p, q) are examined
in [73], and in [68] it is raised the question of determining those bounded measures m
on CP(W )(p,q) which have the property that, for each pair (e1, f1), (e2, f2) of either
centrally orthogonal or rigidly collinear elements of CP(W )(p,q) we have

m((e1, f1) ∨ (e2, f2)) = m(e1, f1)+ m(e2, f2).

The main result in [68] proves that, provided that neither of the von Neumann algebras
pW p or qWq has a direct summand of type I2, such measures are the restrictions of
a particular class of bounded sesquilinear functionals on pW p× qWq. In the case in
which p and q coincide, these are the decoherence functionals, mentioned above (cf.
[68, Lemma 5.1 and Theorems 5.2 and 5.3]).

In contrast to the result by Edwards and Ruttimann, in our Theorem 6.1 we work
with the poset of all tripotents in a Cartan factor or in an atomic JBW∗-triple equipped
with its intrinsic partial order and orthogonality without alluding to an external super-
structure or vonNeumann algebra containing it. Our result is then closer to the original
aim in Wigner’s and Uhlhorn’s theorems.
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