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Abstract. Riemann zero mean curvature examples in the Lorentz-Minkowski space
are surfaces with zero mean curvature foliated by circles contained in parallel planes.
In contrast to the Euclidean case, this family of surfaces presents new and rich features
because of the variety of types of circles. In this paper, we give a geometric description
of these examples when the circles are contained in spacelike planes and timelike planes.

1. Introduction and motivation

In 1867 Riemann constructed a family of non-rotational minimal surfaces in Euclidean
space foliated by circles contained in parallel planes ([17]). In the literature, they are
known as Riemann minimal examples and play a remarkable role in the theory of minimal
surfaces ([4, 13]).

When we extend this type of surfaces in Lorentz-Minkowski space L3, we find two main
differences regarding to the Euclidean space. First, the mean curvature is defined only in
those surfaces where the induced metric from L3 is non-degenerated, that is, for spacelike
surfaces (Riemannian metric) and for timelike surfaces (Lorentzian metric). Both types
of surfaces have different behaviors. For example, the Weingarten endomorphism is real
diagonalizable for spacelike surfaces but it is not for timelike surfaces. On the other hand,
spacelike surfaces with zero mean curvature share similar properties with the minimal
surfaces of Euclidean space, for example, they have a variational characterization in terms
of its area, being locally a maximum for the area. For this reason, spacelike zero mean
curvature surfaces are called maximal surfaces. By contrast, it does not make sense to
define the area of a timelike surface.

A second difference comparing with the Euclidean context is the notion of a circle. In
Euclidean space, a circle is a planar curve whose points are equidistant from a given point
called the center of the circle. Such a definition can not extend to L3 because of the
existence of planes whose metric is degenerated. For this reason, it is more convenient to
define a circle as a planar non-degenerate curve with nonzero constant curvature ([7, 12]).
Since there are three types of planes according to its metric, there are three types of circles
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in L3: see Section 2 for details. Definitively, the family of zero mean curvature surfaces
in L3 foliated by circles contained in parallel planes is richer than the Euclidean case and
this makes the interest to its study.

To precise our terminology, we give the next definition.

Definition 1.1. A Riemann zero mean curvature example (shortly a Riemann ZMC
example) is a non-rotational surface in L3 with zero mean curvature and foliated by pieces
of circles contained in parallel planes.

In this paper, we exclude the rotational surface which are well known: see [3, 6, 11].
The first example of a spacelike Riemann ZMC example was discovered by the second
author in [8] where, following ideas of Jagy ([5]), were described all spacelike Riemann
ZMC examples foliated by circles contained in spacelike planes. Later, and for any causal
character of the circles, spacelike Riemann ZMC examples were studied in [7] from the
point of view of complex analysis obtaining the Weierstrass representation. More recently,
Akamine has studied the Riemann ZMC examples in terms of their causal characters ([1])
and he observed the existence of timelike Riemann ZMC examples foliated by circles with
constant radii.

The Riemann ZMC examples also share a property with Riemann minimal examples ([2]).
If a zero mean curvature surface in L3 is foliated by circles, then these circles are contained
in parallel planes and, consequently, the surface is rotational or it is a Riemann ZMC
example ([9, 11, 7]).

The aim of the present paper is to give a new approach of the Riemann ZMC examples
when the circles of the foliation are included in spacelike planes or in timelike planes. In
contrast to [7], where the investigation was made only for spacelike surfaces in terms of the
Weierstrass representation, we see the Riemann ZMC examples as the zeroes of a regular
function. Here we follow similar ideas of Nitsche ([15, pp.85-90]), and more recently, of
Meeks and Pérez ([14]). In particular, we obtain parametrizations of the Riemann ZMC
examples without the use of complex notation and, consequently, we will derive some of
their geometric properties. Although the precise statements will appear in the subsequent
sections, our main results are the following.

(1) The parametrizations of the Riemann ZMC examples are given in terms of elliptic
integrals: see Theorems 3.5, 4.2 and 5.2.

(2) We find the existence of particular examples where these integrals can be solved
by quadratures, finding explicit parametrizations of Riemann ZMC examples in
terms of elementary functions: see Theorems 3.3 and 3.4 and Propositions 4.4, 4.6
and 5.5.

(3) In contrast to the Euclidean case, we will find all Riemann ZMC examples where
the radii of the circles of the foliation are constant: see Propositions 3.2, 4.1 and
5.1.

We organize this paper as follows. In Section 2, we will obtain the expression of the mean
curvature of a surface in given as the zeroes of a smooth function. In Section 3, we study
the Riemann ZMC examples foliated by circles contained in spacelike planes. We will
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establish properties of the symmetries of these surfaces in Corollaries 3.7, 3.8, 3.9 and
3.10. If the circles are included in timelike planes, its study is separated in two sections,
depending if the circles are spacelike (Section 4) or timelike (Section 5).

2. Preliminaries

The Lorentz-Minkowski space L3 is the vector space R3 with canonical coordinates (x1, x2, x3)
and endowed with the metric 〈, 〉 = dx2

1 +dx2
2−dx2

3. A vector ~v ∈ R3 is spacelike, timelike

or lightlike if 〈~v,~v〉 is positive, negative or zero, respectively. The norm of ~v is |~v| =
√
〈~v,~v〉

if ~v is spacelike and |~v| =
√
−〈~v,~v〉 if ~v is timelike. A curve or a surface A ⊂ L3 is called

spacelike, timelike or lightlike if the induced metric on A is Riemannian, Lorentzian or
degenerated, respectively. This property of A is called the causal character of A. We refer
the reader to [12] for some basics of L3. In R3, as affine space, we shall utilize the ter-
minology horizontal and vertical as usual, where the x3-coordinate indicates the vertical
direction and a horizontal direction is a direction parallel to the plane of equation x3 = 0.

A circle in L3 is defined as a non-degenerate planar curve with nonzero constant curvature
([7, 12]). After a rigid motion of L3, we assume that the plane P containing the circle is
the plane of equation x3 = 0, x1 = 0 or x2− x3 = 0, if P is spacelike, timelike or lightlike,
respectively. Consequently, a circle C ⊂ L3 can be described as follows:

(1) If P ≡ {x3 = 0}, then C is an Euclidean circle α(s) = p+ r(cos(s), sin(s), 0), with
center p ∈ P and radius r > 0.

(2) If P ≡ {x1 = 0}, then C is a hyperbola α(s) = p + r(0, sinh(s), cosh(s)) if α is
spacelike or α(s) = p + r(0, cosh(s), sinh(s)) if α is timelike. Here p ∈ P is the
center and r > 0 is the radius.

(3) If P ≡ {x2 − x3 = 0}, then C is a parabola α(s) = p + (s, rs2, rs2), p ∈ P and
r > 0.

We say that a surface is foliated by (pieces of) circles if it is constructed by a smooth
one-parameter family of (pieces of) circles. In the case of the Riemann ZMC examples,
the planes containing the circles are parallel.

Let M be an orientable surface in L3 whose induced metric 〈, 〉 is non-degenerated. If
X = X(u, v) is a local parametrization of M , let g11 = 〈Xu, Xu〉, g12 = 〈Xu, Xv〉 and
g22 = 〈Xv, Xv〉 be the coefficients of the first fundamental form with respect to X and
W = g11g22 − g2

12. Then M is spacelike (resp. timelike) if W > 0 (resp. W < 0). In both
types of surfaces, the mean curvature H is defined as the trace of the second fundamental
form. If H = 0 everywhere, we say that M has zero mean curvature (ZMC in short).

We now consider a surface given as an implicit equation and we calculate the expression
of its mean curvature H. Let F : O ⊂ R3 → R be a smooth function defined in an open
set O of R3 and let M = F−1({0}) be a surface defined as the preimage of a regular value
of F . Suppose that M endowed with the induced metric of L3 is a non-degenerate surface.
Then the Lorentzian gradient ∇LF of F

∇LF = (Fx1 , Fx2 ,−Fx3)
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defines a normal vector field on M where the subscript xi indicates the partial derivative
with respect to the xi-variable. Then ∇LF/|∇LF | is a unit normal vector field on M and

divL
(
∇LF
|∇LF |

)
=

(
Fx1
|∇LF |

)
x1

+

(
Fx2
|∇LF |

)
x2

−
(

Fx3
|∇LF |

)
x3

= H,

where divL is the Lorentzian divergence operator. As a consequence, the equation H = 0
is equivalent to

∆LF

|∇LF |
+

ε

|∇LF |3
(∇LF )t ·HessF · ∇LF = 0,

where ε = 1 if M is spacelike and ε = −1 if M is timelike, ∆LF = Fx1x1 + Fx2x2 − Fx3x3
and

HessF =

 Fx1x1 Fx1x2 Fx1x3
Fx2x1 Fx2x2 Fx2x3
Fx3x1 Fx3x2 Fx3x3

 .

Proposition 2.1. If M = F−1({0}) is a non-degenerate surface in L3, then M is a ZMC
surface if and only if

(1) −〈∇LF,∇LF 〉∆LF + (∇LF )t ·HessF · ∇LF = 0.

3. Riemann ZMC examples foliated by circles contained in spacelike
planes

In this section, we study ZMC surfaces in L3 foliated by circles contained in parallel
spacelike planes. After a rigid motion of L3, we suppose that the foliating circles are
contained in parallel planes to the plane of equation x3 = 0, hence the circles are Euclidean
circles. Let M be a such surface and consider the x3-coordinate as a parameter of the
foliation. Let z = x3 and write (α(z), z) = (α1(z), α2(z), z) the center of the circle M ∩
{x3 = z} and by r(z) > 0 its radius. Here α and r are smooth functions defined in an
interval (a, b) ⊂ R. If F : R2 × (a, b)→ R is the function

F (x, z) = (x1 − α1(z))2 + (x2 − α2(z))2 − r(z)2,

where x = (x1, x2), then M ⊂ F−1({0}). We observe that if ~a = (0, 0), then α is the
x3-axis, which corresponds with the case that the surface is rotational.

Let α′ = dα/dz. Here we identify the factor R2 of the domain of F with R2×{0} endowed
with the induced metric 〈, 〉 = dx2

1 +dx2
2. The computation of each one of the terms of (1)

yields

∇LF = (2(x− α(z)),−Fz)
∆LF = 4− Fzz
(∇LF )t ·HessF · ∇LF = 8r2 + 8Fz〈x− α, α′〉+ F 2

z Fzz.

Then equation (1) writes as

(2) F 2
z + r2(Fzz − 2) + 2Fz〈x− α, α′〉 = 0.
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By using the definition of F ,

(3) Fz = −2〈x− α, α′〉 − (r2)′,

and (2) simplifies into −2r2 + r2Fzz − (r2)′Fz = 0. We divide by r4, obtaining easily

− 2

r2
+

(
Fz
r2

)
z

= 0.

Hence we integrate with respect to z,

(4) −2

∫ z 1

r(u)2
du+

Fz
r2

= c(x)

for some function c = c(x) depending on x. The definition of F leads to(
Fz
r2

)
xi

= −2α′i
r2
, i = 1, 2,

and thus
Fz
r2

= − 2

r2
〈x, α′〉+ h(z)

for some function h = h(z). If we insert this in (4), it follows that

−2

∫ z 1

r(u)2
du− 2

r2
〈x, α′〉+ h(z) = c(x).

Differentiating with respect to the variables x1 and x2,

cxi = −2α′i(z)

r(z)2
, i = 1, 2.

Therefore there is a vector ~a = (a1, a2) such that

(cx1 , cx2) = − 2

r(z)2
α′(z) = ~a,

that is,
α′(z) = −r(z)2~a.

Hence integrating with respect to z,

α(z) = −m(z)~a, m(z) =

∫ z

r(u)2du.

As immediate consequence of the expression of α, the curve α is a horizontal straight-line
and thus the curve of the centers of the circles is contained in the plane containing the
x3-axis.

Proposition 3.1. The curve formed by the centers of the foliation circles of a Riemann
ZMC example foliated by circles contained in spacelike planes is planar.

We express the radius of the circle M ∩ {x3 = z} as a function of z. We will identify ~a
with the vector (~a, 0) ∈ L3 in the x1x2-plane. Moreover, 〈~a,~a〉 = |~a|2. It follows from (3)
that

Fz = 2〈x+m~a, r2~a〉 − (r2)′

Fzz = 2r4〈~a,~a〉+ 2(r2)′〈x+m~a,~a〉 − (r2)′′.
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Inserting Fz and Fzz in (2),

2|~a|2r6 + (r2)′2 − r2(2 + (r2)′′) = 0.

By taking q = r2, we deduce

(5) 2〈~a,~a〉q3 + q′2 − q(2 + q′′) = 0.

Definitively, equation (5) describe all ZMC surfaces foliated by circles contained in parallel
spacelike planes.

As immediate consequence of (5) is the existence of solutions where the radius function r
is constant, which is a novelty comparing with the Euclidean case.

Proposition 3.2 (Case of constant radii). The only Riemann ZMC examples foliated by
circles with constant radii contained in spacelike planes are parametrized by

(6) X(z, v) = z(−r2~a, 1) + r(cos(v), sin(v), 0),

where z, v ∈ R and ~a ∈ R2 \ {0}. The surfaces are timelike and can be extended to two
lightlike straight-lines. See figure 1, left.

Proof. If r is constant, then |~a|2q2 − 1 = 0. Thus ~a 6= 0 and r2 = 1/|~a|. Then m(z) = r2z
and α(z) = −r2z~a obtaining (6). In order to know the causal character of the surface,
we have Xz = (−r2~a, 1) and Xv = r(− sin(v), cos(v), 0). Hence, g11 = 0, g22 = r2 and
g12 = −r3〈~a, (− sin(v), cos(v))〉. We infer that M is timelike except at the points where
g12 = 0, which are lightlike points.

Therefore the surface can be extended to the points 〈~a, (− sin(v), cos(v))〉 = 0 as a region
of lightlike points. These points form a set of straight-lines, such as was demonstrated
in [1]. Indeed, there are exactly two values v0 and v1, up to an integer 2π-multiple,
such that 〈~a, (− sin(vi), cos(vi))〉 = 0, i = 1, 2. This set parametrizes as z 7→ X(z, vi) =
r(cos(vi), sin(vi), 0) + z(−r2~a, 1), proving that they are two lightlike straight-lines. �

Figure 1. Riemann ZMC examples with constant radii. Left: Euclidean
circles. Middle: spacelike hyperbola. Right: timelike hyperbola
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From now, we suppose that the radii of the foliation are not constant. We write (5) as(
(q′)2

q2

)′
=

2q′

q3
(q′′q − q′2) = 4q′

(
|~a|2 − 1

q2

)
.

Integrating with respect to z,

(7)
(q′)2

q2
= 4

(
|~a|2q +

1

q

)
+ 4λ

for a constant λ ∈ R. In particular, the right-hand side of (7) must be non-negative. Now
we have

q′ =
dq

dz
= 2
√
|~a|2q3 + λq2 + q,

or equivalently,
dz

dq
=

1

2

1√
|~a|2q3 + λq2 + q

.

As the new parameter is q, the center of the circle M ∩ {x3 = z} is (−m(q)~a, z(q)), where

(8) z(q) =
1

2

∫ q du√
|~a|2u3 + λu2 + u

, m(q) =
1

2

∫ q u du√
|~a|2u3 + λu2 + u

.

The parametrization of M is

X(q, v) = (−m(q)~a, z(q)) +
√
q(cos(v), sin(v), 0).

After a rotation about the x3-axis, suppose that ~a = a(1, 0), a > 0. With a change
of variables, we see that Xa,λ and X1,λ/a is

√
aXa,λ(q, v) = X1,λ/a(aq, v). Hence the

corresponding surfaces are equal up to a homothety of ratio
√
a. Fixing the value of a,

say a = 1, we conclude from 8 that the family of Riemann ZMC examples only depends
on the real parameter λ. Now

(9) z(q) =
1

2

∫ q

q0

du√
u3 + λu2 + u

, m(q) =
1

2

∫ q

q0

u du√
u3 + λu2 + u

.

Suppose now that the surface is spacelike. The first derivatives of X are

Xq = (−m′, 0, z′) +
1

2
√
q

(cos(v), sin(v), 0)

Xv =
√
q(− sin(v), cos(v), 0).

From (9), the spacelike condition g11g22 − g2
12 > 0 is

(10) (1 + cos(v)2)q − 2 cos(v)
√
q2 + λq + 1 + λ > 0.

The radicand of this two-degree inequation is q3 + λq2 + q. We analyze if it is positive in
order to determined the lower limit q0 of the integrals (9). The equation u3 +λu2 + u = 0
has three roots, namely, 0 and, if exist,

q1 =
−λ−

√
λ2 − 4

2
, q2 =

−λ+
√
λ2 − 4

2
,

with q1 ≤ q2.

We now study the properties of the surface depending if λ2 − 4 < 0, λ2 − 4 = 0 and
λ2 − 4 > 0. Firstly, we distinguish the case λ2 − 4 = 0 because we will obtain explicit
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parametrizations of surfaces. This contrast to the Euclidean case, where the Riemann
minimal examples are given in terms of elliptic integrals that can not be integrated by
simple quadratures.

Theorem 3.3. There are spacelike Riemann ZMC examples foliated by circles contained
in spacelike planes with parametrizations given in terms of elementary functions for the
cases λ = 2 and λ = −2.

(1) Case λ = 2. The surface is

(11) X(r, v) = (−r + arctan(r), 0, arctan(r)) + r(cos(v), sin(v), 0),

where r > 0, v ∈ (0, 2π). See figure 2, left. The properties of this surface are the
following.
(a) The circles of the foliation are punctured.
(b) The surface is contained in the horizontal slab 0 < x3 ≤ π/2.
(c) The surface converges to a conelike point as x3 → 0 and converges to a

straight-line L orthogonal to the plane Π of equation x2 = 0 as x3 → π/2.
The straight-line L is contained in the surface.

(d) The surface is asymptotic to the horizontal plane of equation x3 = π/2.
(e) The surface can be extended to a lightlike straight-line.

(2) Case λ = −2. The surface is

(12) X(r, v) =

(
−r − 1

2
log

(
r − 1

r + 1

)
, 0,

1

2
log

(
r − 1

r + 1

))
+ r(cos(v), sin(v), 0),

where r ∈ [r0,∞) for any r0 > 1 and cos(v) < 1 − 2/r2. See figure 2, right. The
properties of this surface are the following.
(a) The surface is foliated by pieces of circles that can be extended to fully circles

assuming that the surface is degenerated in the points cos(v) = 1 − 2/r2 and
timelike when cos(v) > 1− 2/r2.

(b) The surface lies contained in the horizontal slab z0 < x3 < 0, where z0 =
log( r0−1

r0+1)/2.

(c) If r = r0, the surface has a boundary component that is (part of) a circle
and it converges to a straight-line orthogonal to the plane Π as x3 → 0. This
straight-line is contained in the surface.

Proof. (1) Case λ = 2. Then q1 = q2 = −1 and we take q0 = 0 as the lower limit of
integration in (9). An integration by quadratures gives

z(q) =
1

2

∫ q

0

du√
u(u+ 1)

= arctan(
√
q)

m(q) =
1

2

∫ q

0

√
u du

u+ 1
=
√
q − arctan(

√
q).

Setting r =
√
q, the parametrization of the surface is (11). Inequality (10) writes

as
q(1− cos(v))2 + 2(1− cos(v)) > 0,

which holds if cos(v) 6= 1. This proves that the circles of the foliation are punc-
tured.
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On the other hand, the excluded points cos(v) = 1 form a curve where the
metric is degenerated. Moreover, as the (extended) surface has only spacelike and
lightlike points, the lightlike points correspond with a straight-line ([1]). Indeed,
these points parametrize as r 7→ X(r, v) = arctan(r)(1, 0, 1) and from (11), we
have

lim
r→0

x3(r) = 0, lim
r→∞

x3(r) =
π

2
.

This proves that the surface is included in the slab 0 < x3 < π/2. Finally, we
consider the intersection of the plane Π with each circle of the foliation, that is,
for the points where cos(v) = ±1. If r → ∞, the points where cos(v) = −1 go
to −∞ and the points where cos(v) = 1 (lightlike points) converge to the point
(π/2, 0, π/2). If r →∞, the surface converges to the straight-line L orthogonal to
the plane Π through the point (π/2, 0, π/2).

(2) Case λ = −2. Then q1 = q2 = 1. There are two cases, namely, q0 = 0 and
q ∈ (0, 1), or q0 = 1 and q ∈ (1,∞). We observe that if q ∈ (0, 1), then (10) is
equivalent to

(1 + cos(v)) (q(1 + cos(v))− 2) > 0.

It is clear that cos(v) 6= −1. Then the above inequality writes as q > 2/(1+cos(v)),
which is impossible since q ∈ (0, 1). This proves definitively that if the surface is
spacelike, then q ∈ (1,∞). The spacelike condition (10) is now

(1− cos(v)) ((1− cos(v))q − 2) > 0,

in particular, cos(v) 6= 1, hence cos(v) < (q − 2)/q. Consequently, the spacelike
condition implies that in each leaf of the foliation the corresponding circle is not
complete, and the spacelike character is only defined in arcs of this circle. More-
over, the lengths of these (spacelike) arcs go varying along the foliation. Assume
that cos(v) < (q − 2)/q, hence v ∈ (arccos((q − 2)/2), 2π arccos((q − 2)/2)). It
follows

z(q) =
1

2
log

(√
q − 1
√
q + 1

)
, m(q) =

√
q +

1

2
log

(√
q − 1
√
q + 1

)
.

It is obvious that q0 > 1 since if q0 = 1, the integrals are indefinite. If r =
√
q, the

parametrization of the surface coincides with (12). Moreover, z0 ≤ x3 < 0, where
z0 = log((r0 − 1)/(r0 + 1))/2 and r0 =

√
q0.

If r → ∞, the points satisfying cos(v) = −1 go to −∞ but the points with
cos(v) = 1 (lightlike points) converge to the point (0, 0, 0). Since r → ∞, the
surface has a limit set the straight-line L orthogonal to the plane Π through the
point (0, 0, 0).

�

Until here, we have assumed that the surface is spacelike. However, the same arguments
hold by changing the domain of the parametrization in order to ensure W < 0. Recall
that if λ = 2, then the surface can not extend to timelike points. However, this differs if
λ = −2. In such a case, if q ∈ (1,∞), there are regions of timelike points and if q ∈ (0, 1),
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,

Figure 2. Riemann ZMC examples foliated by Euclidean circles of Theo-
rem 3.3. Both surfaces extend to lightlike straight-lines

the surface is timelike except when cos(v) = −1. Here we take q0 = 0 to be the lower limit
of integration in (9), obtaining

z(q) = artanh(
√
q), m(q) = −√q + artanh(

√
q).

Theorem 3.4. In case λ = −2, we have parametrizations of timelike Riemann ZMC
examples foliated by circles contained in spacelike planes in terms of elementary functions:

(1) The parametrization (12) for any r0 > 1, when r ∈ [r0,∞) and 1−2/r2 < cos(v) <
1.

(2) The parametrization

X(r, v) = (r − artanh(r), 0, artanh(r)) + r(cos(v), sin(v), 0),

where r ∈ (0, 1) and v ∈ (−π, π). This surface extends to a lightlike straight-line
by considering the points cos(v) = −1. The surface is included in the halfspace
x3 > 0 with limr→∞ x3 =∞. See figure 3 and [10, Ex. 1].

Figure 3. Theorem 3.4: a timelike Riemann ZMC example foliated by
circles contained in spacelike planes and with explicit parametrization

We consider the general case for the parameter λ. In the following result, we show the
geometric properties of these surfaces.

Theorem 3.5. Riemann ZMC examples foliated by circles contained in spacelike planes
form a one-parameter family of surfaces depending on a parameter λ and parametrize as

X(q, v) = (m(q), 0, z(q)) +
√
q(cos(v), sin(v), 0),
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where

z(q) =
1

2

∫ q du√
u3 + λu2 + u

, m(q) =
1

2

∫ q u du√
u3 + λu2 + u

.

Depending on λ, we have the following cases.

(1) Case λ2 = 4. These surfaces have been described in Theorems 3.3 and 3.4.
(2) Case λ2 < 4. The surface contains regions of points with the three causal char-

acters; it is included in a horizontal slab z0 ≤ x3 < 0 with a conelike point at
x3 = 0; the surface contains a straight-line orthogonal to the plane Π. See figure
4, left.

(3) Case λ < −2. The q-parameter belongs to (0, q1) ∪ (q2,∞).
(a) In the interval (0, q1) the surface is timelike and included in a horizontal slab

0 < x3 < z0. As x3 → 0, the surface converges to a point and if x3 → c, the
surface converges to a circle.

(b) If q ∈ (q2,∞), the surface has regions of points with the three causal charac-
ters. Moreover, it is included in a horizontal slab 0 ≤ x3 ≤ z0. If x3 = 0,
the surface has a lower boundary component that is a circle and as x3 = z0,
the surface is a straight-line orthogonal to the plane Π at the height z0. See
figure 4, right.

(4) Case λ > 2. The surface is spacelike and included in a horizontal slab 0 < x3 ≤ z0.
As x3 → 0, the surface converges to a conelike point and if x3 = z0, the surface is
a straight-line L orthogonal to the plane Π.

Proof. Let M be a Riemann ZMC example foliated by circles contained in parallel planes
to the plane of equation x3 = 0. The centers of the circles M ∩ {x3 = z(q)} lie included
in the plane Π of equation x2 = 0. Assume λ2 6= 4.

(1) Case λ2 − 4 < 0. Since u2 + λu+ 1 has not real roots, then u2 + λu+ 1 > 0. This
implies that u3 + λu2 + u only vanishes at u = 0, hence the radicand u3 + λu2 + u
is positive when u > 0. Then we can choose q0 = 0 to be the lower limit in the
integrals in (9). In view of

lim
q→∞

1

2

∫ q

0

du√
u3 + λu2 + u

:= z0 <∞,

the surface M lies contained in a slab of the form 0 < z < z0 and M is asymptotic
to the horizontal plane of equation x3 = z0.

Each circle M ∩{x3 = z(q)} meets Π in two antipodal points, A+(q) and A−(q),
by taking cos(v) = 1 and cos(v) = −1 respectively:

A±(q) =

(
±√q +

1

2

∫ q

0

u√
u3 + λu2 + u

du, 0,
1

2

∫ q

0

1√
u3 + λu2 + u

du

)
.

Then

lim
q→∞

√
q +

1

2

∫ q

0

u√
u3 + λu2 + u

du =∞

lim
q→∞

−√q +
1

2

∫ q

0

u√
u3 + λu2 + u

du := c <∞
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for some c < 0. Thus

lim
q→∞

A−(q) := A = (c, 0, z0), lim
q→∞

A+(q) =∞.

This implies that M ∩ {x3 = z0} 6= ∅. Since A+(q) diverges, then M ∩ {x3 = z0}
is a straight-line L orthogonal to the plane Π through the point A.

(2) Case λ < −2. Then 0 < q1 < q2 and the polynomial u3 + λu2 + u is positive in
(0, q1) ∪ (q2,∞).
(a) Case q ∈ (0, q1). The right-hand side of (10) is negative, hence the surface is

timelike. As the integrals in (9) are finite, the surface lies contained in the
slab 0 < x3 < z0 where z0 = x3(q1).

(b) Case q ∈ (q2,∞). We take q2 to be the lower limit of the integrals in (9). This
implies that the initial circle of the foliation has radius

√
q2. Now

lim
q→∞

1

2

∫ q

q2

1√
u3 + λu2 + u

du =: z0 <∞,

proving that M is included in the horizontal slab 0 < x3 < z0. Moreover,

lim
q→∞

√
q +

1

2

∫ q

q2

u√
u3 + λu2 + u

du =∞

lim
q→∞

−√q +
1

2

∫ q

q2

u√
u3 + λu2 + u

du := c

for some c ∈ R. A similar argument as in the case λ2 − 4 < 0, proves that
the surface is asymptotic to a straight-line orthogonal to the plane Π at the
point (c, 0, z0).

(3) Case λ > 2. The roots of the radicand u3 + λu2 + u are 0, q1 and q2 with
q1 < q2 < 0. Since q is positive, we may choose q0 = 0 to be the lower limit in
the integrals (9). Now the spacelike condition (10) holds for any q > 0, indeed,

(10) is equivalent to ((1 + cos(v)2)q + λ > 2 cos(v)
√
q2 + λq + 1. This inequality

holds trivially if cos(v) ≤ 0. If cos(v) > 0, squaring and simplifying, we obtain
sin(v)4q2 +2λq sin(v)2 +λ2−4 cos(v)2, which is positive if λ > 2. Again, we obtain

lim
q→∞

1

2

∫ q

0

1√
u3 + λu2 + u

du := z0 <∞

lim
q→∞

√
q +

1

2

∫ q

0

u√
u3 + λu2 + u

du =∞

lim
q→∞

−√q +
1

2

∫ q

0

u√
u3 + λu2 + u

du := c

for some z0, c ∈ R. This proves that M is included in the slab 0 < x3 < z0 and M
is asymptotic to a straight-line orthogonal to the plane Π at the height x3 = z0.

�

Focusing on the Riemann ZMC surfaces of spacelike type, we conclude:

Corollary 3.6. Any spacelike Riemann ZMC surface foliated by circles contained in space-
like planes is included in a horizontal slab 0 < x3 ≤ z0. If x3 → 0, the surface converges
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Figure 4. Theorem 3.5. Left: case λ2 < 4. Right: case λ < −2 and q ∈ (q2,∞)

to a conelike point or a circle. At the height x3 = z0, the surface is a straight-line line
L orthogonal to Π. Furthermore, if x3 → z0, the surface is asymptotic to the horizontal
plane of equation x3 = z0.

We finish this section obtaining properties of symmetries of the above Riemann ZMC
examples. As a consequence of Proposition 3.1, we deduce the existence of symmetries
about a vertical plane.

Corollary 3.7 (symmetry I). Any Riemann ZMC example foliated by circles contained
in spacelike planes is symmetric about the plane containing the centers of the circles of the
foliation.

Suppose that M is a spacelike Riemann ZMC example foliated by circles contained in
spacelike planes. Up to rotations and dilations, we can assume that the plane containing
the centers of the circles is the plane Π of equation x2 = 0. By Corollary 3.6, M is
asymptotic to the plane x3 = z0 and M ∩ {x3 = z0} is a straight-line L orthogonal to Π.
We reflect M about L and we want to apply the Schwarz’s reflection principle in order to
extend analytically M along L. The Schwarz’s reflection principle is due to the reflection
principle of harmonic functions ([16]), which can be easily extended for maximal surfaces
in L3. We need to assure that M is spacelike around L. The straight-line L is obtained
letting q → ∞ with W > 0 except if cos(v) = 1 and the parameter λ satisfies 0 ≤ λ ≤ 2.
In such a case, the surface is spacelike around L except at the point where cos(v) = 1,
which coincides with the intersection point Π ∩ L. Definitively, we have established the
following result.

Corollary 3.8 (symmetry II). If M is a spacelike Riemann ZMC example foliated by
circles contained in spacelike planes, then M contains a straight-line L orthogonal to the
plane Π and M can be reflected analytically across L.

In figure 5, the surface of Theorem 3.3, case (1), has been extended by a reflection about
the line L.

Now, we focus in those spacelike Riemann ZMC examples converging to conelike points:
Theorem 3.3, case (1) and Theorem 3.5, cases (2) and (4). We know that as x3 → 0, the
surface converges to a conelike point P . Once that we have reflected the surface M about
the straight-line L, if R is the reflection across L, the surface M∗ = M ∪R(M) is included
in the slab 0 < x3 < 2z0. If x3 → 2z0, the surface M∗ converges to the conelike point

R(P ). By means of the discrete group of translations generated by the vector
−−−−→
PR(P ), we

produce copies of M∗ obtaining a periodic maximal surface: see figure 6.
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Figure 5. The surface parametrized by (11) has been extended by the
Schwarz’s reflection principle

Corollary 3.9 (symmetry III). Let M be a spacelike Riemann ZMC example foliated by
pieces of circles contained in spacelike planes. Suppose that M is bounded by a conelike
point and a straight-line L orthogonal to the plane Π. Then M can be reflected across
L and repeated by translations obtaining a periodic maximal surface foliated by pieces of
circles, a discrete set of straight-lines in horizontal planes and a discrete set of conelike
points. Furthermore, the surface is asymptotic to horizontal planes at the heights where
are situated the straight-lines.

Figure 6. Case λ > 2 in Theorem 3.5: the surface has been extended by
reflection across the line L and by translations
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Finally, we study the spacelike Riemann ZMC examples that converge to a circle if x3 → 0:
see Theorem 3.3, case (2) and Theorem 3.5, case (3). In such a case, the surface can be
extended by reflection across L by the Schwarz’s reflection principle, obtaining a spacelike
Riemann ZMC example included in the slab 0 < x3 < 2z0 and converging to two circles if
x3 → 0 and if x3 → 2z0. See figure 7.

Corollary 3.10. Let M be a spacelike Riemann ZMC example foliated by pieces of circles
contained in spacelike planes. Suppose that M converges to a circle if x3 → 0 and contains
a straight-line L orthogonal to the plane Π at x3 = z0. Then M can be reflected across L
obtaining a spacelike surface contained in the slab 0 < x3 < 2z0 and foliated by pieces of
circles. Furthermore, the surface contains a straight-line and converges to two circles as
x3 → 0 and as x3 → 2z0. The surface is asymptotic to the horizontal plane that contains
L.

Figure 7. A spacelike Riemann ZMC example of Theorem 3.3, case (2).
Left: the surface is bounded by a straight-line L and a circle. Right: the
same surface after a reflection across L

4. Riemann ZMC examples foliated by spacelike circles contained in
timelike planes

In this section, we study ZMC surfaces in L3 foliated by spacelike circles contained in
parallel timelike planes. The arguments and computations follow the same steps than in
the previous section. In order to be not repeated, we will omit the details.

Without loss of generality, we can assume that the planes of the foliation are parallel to the
plane of equation x1 = 0. LetM be a such surface and consider the height x1 of the plane as
a parameter of the foliation. Let x = x1 and let (x, α(x)) = (x, α2(x), α3(x)) be the center
of the circle M∩{x1 = x}. A Lorentzian circle in the x2x3-plane is a hyperbola that can be
parametrized as α(s) = p+r(0, sinh(s), cosh(s)), s ∈ R, or β(s) = p+r(0, cosh(s), sinh(s)),
s ∈ R, where p ∈ L3 and r > 0. Since in this section we are considering spacelike circles,
then right choice is the hyperbola α. We notice now that each circle of the foliation is not
compact.

The surface M can be expressed as M ⊂ F−1({0}), where F : (a, b)× R2 → R is

F (x, y) = (x2 − α2(x)2 − (x3 − α3(x))2 + r(x)2.

Let y = (x2, x3). We identify the factor R2 of the domain of F as {0} ×R2 endowed with
the induced metric 〈, 〉 = dx2

2 − dx2
3. The equation (1) is

2r2 + r2Fxx − (r2)′Fx = 0.
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Again, we divide this equation by r4, obtaining

2

∫ x 1

r(u)2
du+

Fx
r(x)2

= c(y)

for a function c = c(y) depending only the variable y. We deduce that there is a vector
~a = (a2, a3) such that α′(x) = r(x)2~a. Integrating with respect to x,

α(x) = m(x)~a, m(x) =

∫ x

r(u)2du.

If ~a = (0, 0), the centers of the circles are included in the x1-axis, M is a surface of revo-
lution and the x1-line is the rotational axis. This case was discarded from the beginning.
By taking q = r2, we obtain an ordinary differential equation on q, namely,

(13) 2〈~a,~a〉q3 − q′2 + q(2 + q′′) = 0.

As in the previous section, we study the case that the radii coincide in all circles of the
foliation.

Proposition 4.1 (Case of constant radii). The only Riemann ZMC examples foliated by
spacelike circles with constant radii contained in timelike planes are parametrized by

(14) X(x, v) = r2x(0,~a) + (x, r sinh(v), r cosh(v)),

where x, v ∈ R and ~a ∈ R2 \ {0}. The surfaces are timelike except at the points satisfying
〈~a, (cosh(v), sinh(v))〉 = 0, which form a lightlike straight-line.

Proof. Let us observe that the vector ~a may have any causal character. Now (13) is
2〈~a,~a〉q3 +2q = 0, so there are not solutions if 〈~a,~a〉 ≥ 0. If 〈~a,~a〉 < 0, then q2 = −1/〈~a,~a〉
and the parametrization of the surface is (14): see figure 1, right. The first derivatives
of X are Xx = r2(0,~a) + (1, 0, 0) and Xv = r(0, cosh(v), sinh(v)), obtaining g11 = 0 and
g12 = r3〈~a, (cosh(v), sinh(v))〉. Thus the surface is timelike, except at the points satisfying
〈~a, (cosh(v), sinh(v))〉 = 0. These points form a lightlike straight-line. Indeed, this curve
parametrizes as x 7→ X(x, v) so X ′(x) = r2(0,~a) + (1, 0, 0) and X ′(x) is lightlike because
1 + r4〈~a,~a〉 = 0. �

From now, we suppose that the radii of the foliation circles are not constant.

Theorem 4.2. Riemann ZMC examples foliated by spacelike circles contained in timelike
planes form a one-parameter family of surfaces depending on a parameter λ ∈ R and
parametrize as

X(q, v) = (x(q),m(q)~a) +
√
q(0, sinh(v), cosh(v)),

where

(15) x(q) =
1

2

∫ q du√
−〈~a,~a〉u3 + λu2 + u

, m(q) =
1

2

∫ q u du√
−〈~a,~a〉u3 + λu2 + u

.

The curve formed by the centers of the circles is contained in a plane and the surface is
symmetric about this plane.
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Proof. Using (13), (
(q′)2

q2

)′
= −4q′

(
〈~a,~a〉+

1

q2

)
and integrating with respect to x,

(16)
(q′)2

q2
= 4

(
−〈~a,~a〉q +

1

q

)
+ 4λ,

for a constant λ ∈ R. In particular, the right-hand side of (16) must be non-negative.
Now we have

q′ =
dq

dx
= 2
√
−〈~a,~a〉q3 + λq2 + q

and
dx

dq
=

1

2

1√
−〈~a,~a〉q3 + λq2 + q

.

As our new parameter is q, the center of the circle M ∩{x1 = x} is (x, α(x)) = (x,m(x)~a).
This proves that this curve is contained in the plane determined by the x1-axis and the
vector ~a (recall f ~a 6= (0, 0)). �

We identify the vector ~a = (a2, a3) with (0,~a) ∈ L3 contained in the x2x3-plane. After a
rotation about the x1-axis and a dilation, we may suppose that the vector ~a is (1, 0), (0, 1)
or (1, 1). We discuss the three cases.

4.1. Case ~a = (1, 0). The parametrization of the surface is

X(q, v) = (x(q),m(q), 0) +
√
q(0, sinh(v), cosh(v)),

where

(17) x(q) =
1

2

∫ q

q0

du√
−u3 + λu2 + u

, m(q) =
1

2

∫ q

q0

u du√
−u3 + λu2 + u

.

The sign of W is determined by the expression

(18) q − q sinh2(v) + 2
√
−q2 + λq + 1 sinh(v)− λ.

We analyze when −u2 + λu+ 1 is positive in order to determine the lower limit q0 in the
integrals (17). The roots of the function −u3 + λu2 + u = 0 are 0 and

q1 =
λ−
√
λ2 + 4

2
, q2 =

λ+
√
λ2 + 4

2
,

with q1 < 0 < q2. Then q ∈ (0, q2) and the surface contains regions with the three causal
character according to (18). It is immediate that the integral x(q) in (17) for q0 = 0 is
finite. Let c = x1(q2).

Proposition 4.3. If ~a = (1, 0), then the surface lies contained in the vertical slab 0 <
x1 < c and the surface converges to one one point if x1 → 0.
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4.2. Case ~a = (0, 1). The parametrization of the surface is

X(q, v) = (x(q), 0,m(q)) +
√
q(0, sinh(v), cosh(v)),

where

(19) x(q) =
1

2

∫ q

q0

du√
u3 + λu2 + u

, m(q) =
1

2

∫ q

q0

u du√
u3 + λu2 + u

.

The roots of u3 + λu2 + u are 0 and

q1 =
−λ−

√
λ2 − 4

2
, q2 =

−λ+
√
λ2 − 4

2
.

The spacelike condition W > 0 is equivalent to

(20) (1 + cosh2(v))q + 2 cosh(v)
√
q2 + λq + 1 + λ < 0.

Therefore λ is negative. As in the previous section, the integrals (19) can be explicitly
integrated if λ = ±2.

Proposition 4.4. If ~a = (0, 1), the special cases λ = ±2 provide parametrizations of
Riemann ZMC examples in terms of elementary functions, namely,

(1) Case λ = 2. The surface is

X(r, v) = (arctan(r), 0, r − arctan(r)) + r(0, sinh(v), cosh(v)),

where r > 0, v ∈ R. The surface is timelike converging to a point if r → 0. See
figure 8, left.

(2) Case λ = −2. The surface is

X(r, v) =

(
log

∣∣∣∣1− rr + 1

∣∣∣∣ , 0, r +
1

2
log

∣∣∣∣1− rr + 1

∣∣∣∣)+ r(0, sinh(v), cosh(v)),

where r > 0, r 6= 1 and v ∈ R. If 0 < r < 1 the surface contains regions of
spacelike and timelike points, but if r > 1, the surface is timelike. See figure 8,
right.

If we now consider the integrals (19), the discussion is similar as in Section 3. We need to
distinguish on the parameter λ according if λ > 2, λ2 − 4 < 0 and λ < −2.

Proposition 4.5. If ~a = (0, 1) and λ2 6= 4, then the surface is included in a vertical slab
0 < x1 < c. If λ < −2 and q ∈ (q2,∞), then the surface converges to a hyperbola if
q → q2. In the rest of cases, the surface converges to a point as x1 → 0.

Proof. (1) Case λ > 2. Then q1 < q2 < 0 and we take q0 = 0 to be the lower limit in
(19). From (20) we deduce that the surface is timelike. It is also immediate that
at q = 0, the surface converges to a point and if q → ∞, the integral for x(q) is
finite, that is, limq→∞ x(q) <∞.

(2) Case λ2 < 4. Since the polynomial u2 + λu+ 1 has not real roots, u3 + λu2 + u is
positive for u > 0. We infer that we can take q0 = 0 to be the lower limit in (19).
Again, we have limq→∞ x(q) <∞.
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Figure 8. Surfaces of Proposition 4.4: Riemann ZMC surfaces in L3 foli-
ated by spacelike hyperbolas in timelike planes

(3) Case λ < −2. Then 0 < q1 < q2, hence that u3 + λu2 + u > 0 in (0, q1) ∪ (q2,∞).
If q ∈ (0, q1), let q0 = 0 and if q ∈ (q2,∞), the lower integration limit is q0 = q2.
Moreover, the improper integral x(∞) is finite.

�

4.3. Case ~a = (1, 1). In this case 〈~a,~a〉 = 0. The parametrization of the surface is

(21) X(r, v) = (x(r),m(r),m(r)) + r(0, sinh(v), cosh(v)),

where if q = r2, then

(22) x(q) =
1

2

∫ q

q0

du√
λu2 + u

, m(q) =
1

2

∫ q

q0

u du√
λu2 + u

and λq + 1 > 0. The computation of W yields

(23) W = − qe−2v

4(1 + λq)
(λe2v + 2ev

√
1 + λq + q).

In particular, if the surface is spacelike if λ < 0, and the surface if timelike if λ > 0. This
case ~a = (1, 1) provides explicit parametrizations by integrating (22).

Proposition 4.6. Riemann ZMC examples foliated by spacelike circles contained in time-
like planes corresponding to the choice ~a = (1, 1) have the following explicit parametriza-
tions (21), where the functions x(r) and m(r) are the following.

(1) Case λ = 0. Here x(r) = r and m(r) = r3/3. The surface is timelike and converges
to a point as r → 0.

(2) Case λ > 0. The surface converges to a point as r → 0. Here

x(r) =
1√
λ

arsinh(
√
λr), m(r) =

1

2λ3/2

(
r
√
λr2 + 1− arsinh(

√
λr)
)
.



20 SEHER KAYA AND RAFAEL LÓPEZ

(3) Case λ < 0. Here

x(r) =
1√
−λ

arcsin(
√
−λr), m(r) =

1

2λ
r
√
λr2 + 1 +

1

4(−λ)3/2
arcsin(−2λr2 − 1).

Depending on the values v in (23), the surface contains spacelike, lightlike and
timelike regions. The surface is included in the slab 0 < x1 < π/(2

√
−λ) and

converges to a point as r → 0.

5. Riemann ZMC examples foliated by timelike circles contained in
timelike planes

In this section, we study ZMC surfaces in L3 foliated by timelike circles contained in
parallel timelike planes. Recall that any curve contained in a spacelike surface is a spacelike
curve. Thus all surfaces of this section will be timelike and, perhaps, can be extended to
lightlike regions. Again, we will assume that the planes of the foliation are parallel to
the plane of equation x1 = 0. We know that a timelike circle in the plane x1 = 0 is
parametrized by β(s) = p + r(0, cosh(s), sinh(s)). Let M be a such surface and take the
x1-coordinate as the parameter of the circles of the foliation. Then M is included in
F−1({0}), where F : (a, b)× R2 → R is

F (x, y) = −(x2 − α2(x))2 + (x3 − α3(x))2 + r(x)2.

Again, let y = (x2, x3), α = (α2, α3) and 〈, 〉 = dx2
2 − dx2

3 the induced metric in the
x2x3-plane. The zero mean curvature equation (1) is

F 2
x + r2(2− Fxx)− 2Fx〈y − α, α′〉 = 0.

If we repeat the same steps of the previous section, there is a vector ~a = (a2, a3), which
we identify in the x2x3-plane as ~a = (0, a2, a3)) ∈ L3, such that

α(x) = m(x)~a, m(x) =

∫ x

r(u)2du

and

(24) 2〈~a,~a〉r6 + (r2)′2 + r2(2− (r2)′′) = 0.

When the radii of the circles are constant, the above equation is 〈~a,~a〉r4 + 1 = 0. In
particular, 〈~a,~a〉 < 0, so the vector ~a is timelike.

Proposition 5.1 (Case of constant radii). The only Riemann ZMC examples foliated by
timelike circles with constant radii contained in timelike planes are parametrized by

X(x, v) = x(1, r2~a) + r(0, cosh(v), sinh(v)),

where x, v ∈ R and ~a ∈ R2 \ {0}. The surfaces are timelike except at the points v = 0,
which form a straight-line of lightlike points. See figure 1, right.

We assume that the radii of the foliation circles are not constant.
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Theorem 5.2. Riemann ZCM examples foliated by timelike circles form a one-parameter
family of surfaces depending on a parameter λ ∈ R and parametrize as

(25) X(q, v) = (x(q),m(q)~a) +
√
q(0, cosh(v), sinh(v)),

where ~a is any timelike vector in the x2x3-plane and

(26) x(q) =
1

2

∫ q 1√
〈~a,~a〉u3 + λu2 − u

du, m(q) =
1

2

∫ q u√
〈~a,~a〉u3 + λu2 − u

du.

The curve formed by the centers of the foliation is contained in a plane and the surface is
symmetric about this plane.

Proof. Let q = r2. Then (24) is 2〈~a,~a〉q3 + (q′)2 + q(2− q′′) = 0. Using this equation, we
obtain (

(q′)2

q2

)′
= 4q′

(
〈~a,~a〉+

1

q2

)
,

and integrating with respect to x,

(q′)2

q2
= 4

(
〈~a,~a〉q − 1

q

)
+ 4λ, λ ∈ R.

In particular, the right-hand side of this equation must be non-negative. Now we have

q′ =
dq

dx
= 2
√
〈~a,~a〉q3 − q + λq2

and
dx

dq
=

1

2

1√
〈~a,~a〉q3 + λq2 − q

.

Using q as a new parameter is q, it follows (26), hence (25). �

Again the arguments are similar with Section 4. The family of timelike Riemann ZMC
examples foliated by timelike circles contained in timelike planes depends on a real pa-
rameter λ. After a rigid motion and a dilation, we have three cases according the value of
the vector ~a.

5.1. Case ~a = (1, 0). The parametrization of the surface is

(27) X(q, v) = (x(q),m(q), 0) +
√
q(0, cosh(v), sinh(v)),

where

(28) x(q) =
1

2

∫ q

q0

du√
u3 + λu2 − u

, m(q) =
1

2

∫ q

q0

u du√
u3 + λu2 − u

.

Then

(29) W = −
q
(

(1 + cosh2(v))q − 2
√
q2 + λq − 1 cosh(v) + λ

)
4(q2 + λq − 1)

.

The roots of u3 + λu2 − u = 0 are 0 and

q1 =
−λ−

√
λ2 + 4

2
, q2 =

−λ+
√
λ2 + 4

2
.
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Since q1 < 0 < q2, then q ∈ (q2,∞). Hence we can take the lower limit in (28) as q2.
From (29), we have W < 0 and the surface is timelike. On the other hand, the improper
integral x(q) in (28) with q = ∞ is convergent, that is, limq→∞ x(q) = c < ∞, and the
same occurs if q → q2. Accordingly, in the limit x1(q2), the surface is a hyperbola.

Proposition 5.3. If ~a = (1, 0), the surface is timelike and parametrized as (27). Here the
lower integration limit is q2 and the functions x(q) and m(q) are determined in (28). The
surface is contained in a vertical slab 0 ≤ x1 < c and the surface converges to a hyperbola
as x1 → 0.

5.2. Case ~a = (0, 1). The parametrization of the surface is

(30) X(q, v) = (x(q), 0,m(q)) +
√
q(0, cosh(v), sinh(v)),

where

(31) x(q) =
1

2

∫ q

q0

du√
−u3 + λu2 − u

, m(q) =
1

2

∫ q

q0

u du√
−u3 + λu2 − u

.

The roots of the equation −u3 + λu2 − u are 0 and

q1 =
λ−
√
λ2 − 4

2
, q2 =

λ+
√
λ2 − 4

2
.

Then

(32) W = −
q
(

(−1 + sinh2(v))q − 2
√
−q2 + λq − 1 sinh(v) + λ

)
4(−q2 + λq − 1)

.

Here the case λ2 = 4 must be discarded because −u3 + λu2 − u ≤ 0. If λ2 6= 4, we
distinguish the cases λ > 2, λ2−4 < 0 and λ < −2. However, for the cases λ2−4 < 0 and
λ < −2, the polynomial −u3 + λu2 − u is negative when u > 0. Consequently, the only
possibility is that λ > 2. In such a case, 0 < q1 < q2 and −u3 +λu2− u > 0 if q ∈ (q1, q2).
We take q1 to be the lower limit in (31). From (32), we deduce that the surface is timelike.

Proposition 5.4. If ~a = (0, 1), then λ > 2. The surface is parametrized as (30), where
the lower integration limit is q1 and the functions x(q) and m(q) are given by (31). The
surface is contained in a vertical slab 0 < x1 < c, with c = x(q2), and in the limits x1 = 0
and x1 = c, the surface is formed by two hyperbolas.

5.3. Case ~a = (1, 1). The integrals in (26) are now

x(q) =
1

2

∫ q

q0

du√
λu2 − u

, m(q) =
1

2

∫ q

q0

u du√
λu2 − u

.

In particular, λ must be a positive number. From a direct integration, we prove the
following proposition.

Proposition 5.5. Riemann ZMC examples foliated by timelike circles contained in time-
like planes corresponding to the case ~a = (1, 1) parametrize as

X(r, v) = (x(r),m(r),m(r)) + r(0, cosh(v), sinh(v)),
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where r > 1/
√
λ, v ∈ R, λ > 0 and

x(r) =
1√
λ

arcosh(
√
λr), m(r) =

√
λr
√
λr2 − 1 + arsinh

(√
λr2 − 1

)
2λ3/2

.

The surface is contained in the halfspace x1 > 0 and converges to a hyperbola as x1 → 0.
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