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Abstract—This article investigates multiplicative consistency
ascertaining, inconsistency repairing, and weights derivation for
hesitant multiplicative preference relations (HMPRs). First, the
completely multiplicative consistency and weakly multiplicative
consistency of HMPRs are defined. Based on them, 0-1 mixed pro-
gramming models and simple algebraic operations are proposed
to ascertain the multiplicative consistency of HMPRs. Then, some
goal programming models are developed to generate the weights
from consistent HMPRs and to revise inconsistent HMPRs. An
integrated procedure to manage the multiplicative consistencies of
HMPRs is designed. The proposed methods are also extended to
accommodate incomplete HMPRs, and to estimate missing val-
ues. Finally, some numerical examples, a comparative analysis
with existent approaches, and a simulation analysis are included
to illustrate the practicality and effectiveness of the developed
models.

Index Terms—Consistency ascertaining, hesitant multiplicative
preference relations (HMPRs), inconsistency repairing, missing
values, weights derivation.

I. INTRODUCTION

IN DECISION making, the following relations are widely
used to represent the preference information of decision

makers: multiplicative preference relation (MPR) [1], fuzzy
preference relation [2], interval preference relation [3]–[5],
intuitionistic preference relation [6]–[9], and linguistic pref-
erence relation [10]–[13]. However, these preference relations
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do not allow to handle situations where decision makers ascer-
tain the membership of elements with a set of values derived
from their hesitancy among several different values. To handle
these cases, Torra [14] introduced the concept of the hesitant
fuzzy set with elements in the unit interval [0, 1]. Based on
the concept of the hesitant fuzzy set, Xia and Xu [15] used
Saaty’s analytic hierarchy process (AHP) 1/9–9 scale [1] to
further define the concept of hesitant MPR (HMPR), which
can vividly simulate both the decision makers’ uncertainty
and hesitation by allowing preferences to be expressed with
hesitant multiplicative elements (HMEs) using the AHP scale.

In recent years, HMPR research has become a hot topic [16].
In particular, it is worth mentioning the HMPR research
on priority weights derivation [17]–[20], consistency analy-
sis [21]–[25], and group consensus [21], [26]–[29].

Consistency is one of the key and challenging issues that
need to be resolved in decision-making processes. Inconsistent
preferences can lead to bad decisions. Thus, methods have
been developed to deal with the consistencies of the vari-
ous preference relations [10], [11], [30]–[39]. Consistency of
HMPRs, which can help decision makers to derive reason-
able weighting values and decision results, has also received
great attention recently with regard to the following two
aspects: 1) consistency ascertaining: how to measure the con-
sistency level of an HMPR and 2) inconsistency repairing:
how to derive an HMPR with acceptable consistency from an
inconsistent HMPR.

So far, research scholars have made some suggestions
regarding consistency and the priority derivation of HMPRs.
Indeed, Zhang and Wu [21] defined the multiplicatively con-
sistent HMPR and developed a decision support model for
group decision making as per the group consensus level.
However, their α-normalization and β-normalization processes
reduce or add some additional values to an HME, respectively,
which destructs and distorts the decision maker’s original
judgments. Furthermore, Zhang and Wu [17] introduced the
definitions of consistent HMPR and acceptably consistent
HMPR, and derived the interval weights from HMPRs based
on the β-normalization process but no inconsistency rectifi-
cation process was proposed. Meng et al. also defined the
consistency of HMPRs in [25], which is based on the assump-
tion of any element in the HMEs forming a consistent MPR. In
real applications, it is difficult to provide fully consistent
MPRs, which is even more difficult in the case of HMPRs.
If the uncertain information provided by a decision maker is
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consistent, then this indicates that such decision maker pos-
sesses a strong logic and is sure of his/her information [40]. In
other words, he/she knows his/her preferences perfectly well,
and therefore he/she is not hesitant about his/her judgments
in the HMPR. Mou et al. [23] defined the multiplicative con-
sistency level of HMPRs and developed a method to repair
inconsistency, which included a normalized process, and an
artificial threshold of acceptable consistency level. Similarly,
Nie [24]’s approach is based on a randomly given threshold of
the consistency index, which lacks a theoretical basis. Zhang
and Guo [41] gave some formulas for calculating the weights
of incomplete HMPRs, but they only considered the acceptable
consistent incomplete HMPRs and ignored the inconsistent
cases that occur in practical problems. Lin et al. [42] con-
structed a linear programming model to obtain priorities from
HMPRs. Additionally, HMPRs have been widely utilized to
handle various practical issues, such as the allocation of water
conservancy investment of river basins [18], [25], logistics ser-
vice provider selection [42], and city sustainable development
evaluation [43].

The above analysis highlights some research achievements
with regard to the consistency of HMPRs. However, there
are still some issues that remain to be solved. The research
motivations of this article can be summarized as follows.

1) Existing multiplicative consistency research approaches
are often hindered with drawbacks related to the chang-
ing of the decision makers’ original judgments and the
optional setting of consistency thresholds. Therefore, it
is necessary to answer the following question: what is
the multiplicative consistency of HMPRs and how can
it be verified?

2) When decision makers hesitate to express their opin-
ions in decision-making problems, a precise priority
vector cannot represent the decision makers’ hesitation
judgments accurately and naturally [17]. Consequently,
the following question needs answering: how to gener-
ate suitable and realistic weights from an HMPR with
multiplicative consistency?

3) Decision makers with allodoxaphobia may hesitate to
deal with decision-making problems. Thus, the devel-
opment of models to help decision makers eliminate
their illogical, inconsistent, or unreasonable information
could be really useful to decision makers in general, and
to allodoxaphobia decision makers in particular. Hence,
a question to address is: if an HMPR is inconsistent,
how can inconsistency be repaired?

4) There are few papers in the literature reporting on
multiplicative consistency measurement, inconsistency
level improvement, and weights derivation for incom-
plete HMPRs, which is addressed in this article.

To answer the above questions, two new multiplicative con-
sistencies of HMPRs, completely multiplicative consistency
and weakly multiplicative consistency, respectively, are intro-
duced. Moreover, 0-1 mixed programming models and some
algebraic approaches are developed to determine the con-
sistency type for HMPRs. Goal programming methods are
proposed to 1) derive priority weights from an HMPR and
2) find the inconsistent elements in an HMPR. This new

approach allows decision makers to assign suitable weights to
different stages to reflect their preferences in HMPR problems.
Subsequently, an efficient and flexible integrated algorithm is
designed to test consistency, obtain logical weights, and repair
inconsistency of HMPRs, while a novel method to judge the
consistency type, estimate missing values, and derive priority
vectors from incomplete HMPRs is developed.

The remainder of this article is arranged as follows.
Section II introduces the required basic concepts of MPR,
hesitant multiplicative sets (HMSs), and HMPR. Two new def-
initions of consistency of HMPRs are introduced in Section III.
Section IV develops methods to ascertain the consistency of
HMPRs. In Section V, a priority weight derivation model
and an inconsistency repairing method based on multiplicative
consistency are proposed. These are used to obtain consis-
tent HMPRs and the reasonable alternatives ranking results.
Section VI is devoted to incomplete HMPRs, and two
multiplicative consistency-based goal programming models
are proposed to assess their unknown values and to ascertain
their consistency. Section VII provides three examples, a dis-
cussion, and a simulation analysis to show the effectiveness
of the developed approaches. Finally, some conclusions are
offered in Section VIII.

II. PRELIMINARIES

In order to make this article self-contained, some concepts
associated with MPRs, HMSs, and HMPRs, which are used
throughout this article, are reviewed.

For simplicity, let X = {x1, . . . , xn} be a finite set of
alternatives, and N = {1, . . . , n}.

Definition 1 [1]: An MPR R = (rij)n×n ⊂ X × X is
reciprocal if

rij · rji = 1, rii = 1, rij ∈ [1/9, 9] ∀i, j ∈ N. (1)

Definition 2 [1]: An MPR R = (rij)n×n is perfect
consistent if

rij = rik · rkj ∀i, j, k ∈ N. (2)

Let w = (w1, . . . , wn)
T be the weight vector of the set of

alternatives X, such that wi > 0, and
∑n

i=1 wi = 1. If MPR R
on X is perfect consistent, then

rij = wi

wj
∀i, j ∈ N. (3)

An MPR is incomplete when some of its elements are
missing.

Definition 3 [44]: An MPR R = (rij)n×n is incomplete when
some of its elements cannot be given by the decision maker,
while the rest of provided preference values, �, satisfy the
conditions

rij · rji = 1, rii = 1, rij > 0, for all rij ∈ �. (4)

Definition 4 [45]: An incomplete MPR R = (rij)n×n is
consistent if

rij = rik · rkj, for all rij, rik, rkj ∈ �. (5)

Motivated by the concepts of the hesitant fuzzy set and
MPR, Xia and Xu [15] defined the concept of HMS.
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Definition 5 [15]: An HMS M on X is mathematically
expressed as

M = {< x, bM(x) > |x ∈ X} (6)

where bM(x) is a subset of finite cardinality of set [1/9, 9],
which denotes all the possible membership degrees of the
element x ∈ X to the set M.

For convenience, b = bM(x) is often called an
HME. Motivated by Torra [14], Zhang and Wu [17] defined
the upper and lower bounds of an HME.

Definition 6 [17]: The upper and lower bounds of an HME
are h+

ij = max{ht
ij|t = 1, . . . , lhij} and h−

ij = min{ht
ij|t =

1, . . . , lhij}, respectively.
Combining HMSs and MPRs, the concept of HMPR is

defined.
Definition 7 [15]: An HMPR H = (hij)n×n ⊂ X × X is

a preference relation with HMEs, hij = {ht
ij|t = 1, 2, . . . , lhij},

indicating all the possible degrees to which alternative xi is
preferred to alternative xj subject to the constraints

hσ(t)
ij h

σ
(

lhij−t+1
)

ji = 1, hii = {1}, lhij = lhji , i, j ∈ N (7)

where hσ(t)
ij denotes the tth smallest element in hij.

Similar to the definition of hesitant fuzzy preference rela-
tions discussed by Xu et al. [46], the values in each HME
are ordered from smallest to largest as per Definition 7, which
may result in property (7) not to be verified. At the same time,
because of the disorder of sets, there is no need to arrange hij

in ascending or descending order. Thus, a revised definition
of HMPRs is introduced here.

Definition 8: An HMPR H = (hij)n×n ⊂ X × X is a pref-
erence relation with HMEs, hij = {ht

ij|t = 1, 2, . . . , lhij},
indicating the possible degrees to which alternative xi is
preferred to alternative xj, subject to the following constraints:

ht
ijh

lhij−t+1

ji = 1, hii = {1}, lhij = lhji, i, j ∈ N. (8)

If some elements of an HMPR cannot be given by a decision
maker, then an incomplete HMPR results. Zhang and Guo [41]
introduced the concept of acceptable incomplete HMPRs.

Definition 9 [41]: An HMPR H = (hij)n×n ⊂ X × X
is incomplete when some of its HMEs are unknown while
its known HMEs hij = {ht

ij|t = 1, 2, . . . , lhij} satisfy the
constraints

ht
ijh

lhij−t+1

ji = 1, hii = {1}, lhij = lhji, i, j ∈ N. (9)

To improve readability, Table I lists the abbreviations used
in this article.

III. MULTIPLICATIVE CONSISTENCIES OF HMPRS

This section introduces two multiplicative consistency con-
cepts for HMPRs: 1) completely multiplicative consistency
and 2) weakly multiplicative consistency.

Definition 10: Let H = (hij)n×n be an HMPR. If there is
a complete consistent MPR R = (rij)n×n, such that

rij = rik · rkj, rij ∈ hij ∀i, j, k ∈ N (10)

TABLE I
NOMENCLATURE

then H is called a completely multiplicative consistent (CMC)
HMPR and R is a complete consistent MPR in H.

The CMC HMPR concept extracts existing elements from
the HMPR to form an MPR that satisfies the multiplicative
transitivity property (2). As the information provided by
a decision maker is uncertain, our goal is “to find the rea-
sonable information in an HMPR.” Definition 10 does not
rely on Zhang’s β-normalization [26]. Therefore, no elements
are added to HMEs. In any case, completely multiplicative
consistency is difficult to be verified by an HMPR. Let us
consider the following example: when evaluating a set of three
alternatives X = {x1, x2, x3}, a decision maker expresses that
alternative x1 is weakly less important than alternative x2, and
gives the preference value h12 = 1/2; while x2 is strongly
more important than alternative x3, and gives the preference
value h23 = 5. In the AHP context, if his/her information is
consistent, then it should be h13 = h12 × h23 = 5/2. However,
the value 5/2 is not one of the original scale values in the
AHP scale set {1/9, . . . , 1/2, 1, 2, . . . , 9}. In addition to the
above, if the decision maker is unsure about the preference
of alternative x1 over alternative x3 but considers x1 more
important than x3, and gives the following HME {2, 3}, then
it is obviously that his/her preferences are not CMC (5/2 is
between 2 and 3). In this case, we could regard the deci-
sion maker’s information to be close to complete consistent.
In our view, because the upper and lower bounds of HMEs
produce a range containing all possible decision maker’s pref-
erence information, the extraction of a consistent MPR from
the upper and lower bounds of HMEs is a viable approach.
In order to accommodate this scenario, another consistency
property of HMPRs is introduced here.

Definition 11: Let H = (hij)n×n be an HMPR. If there is
a complete consistent MPR R = (rij)n×n satisfying

rij = rik · rkj, h−
ij ≤ rij ≤ h+

ij ∀i, j, k ∈ N (11)

then H is called a weakly multiplicative consistent (WMC)
HMPR and R is a complete consistent MPR in H.

Considering the aforementioned relationship between rij and
w as per (3), an equivalent definition of WMC HMPR is given
as follows.

Definition 12: An HMPR H = (hij)n×n is called a WMC
HMPR, if there exists a weight vector w = (w1, . . . , wn)

T ,
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Fig. 1. Relationship of the two multiplicative consistencies for HMPRs.

such that

h−
ij ≤ wi

wj
≤ h+

ij ∀i, j ∈ N. (12)

The reciprocity property of HMPRs allows the above defi-
nition to be rewritten equivalently as follows.

Definition 13: An HMPR H = (hij)n×n is called a WMC
HMPR if there is a weighting vector w = (w1, . . . , wn)

T , such
that

h−
ij ≤ wi

wj
≤ h+

ij , i = 1, 2, . . . , n, j = i + 1, . . . , n. (13)

It is obvious that a CMC HMPR is a special case of WMC
HMPR, while a WMC HMPR might not necessarily be a CMC
HMPR (see Fig. 1).

IV. CONSISTENCY ASCERTAINING

An important question to answer is whether an HMPR is
CMC or WMC.

The direct verification of the CMC property as per
Definition 11 is not an easy task. In order to facilitate cal-
culation, the following 0-1 indicator variables of HMEs hij

are introduced: αt
ij =

{
1, if ht

ij ∈ hij is chosen
0, otherwise

. Each ele-

ment in hij can be expressed as follows:
∏lhij

t=1(h
t
ij)

αt
ij with

∑lhij
t=1 αt

ij = 1.
According to Definition 10, if H is a CMC HMPR, then

lhij∏

t=1

(
ht

ij

)αt
ij =

lhik∏

t=1

(
ht

ik

)αt
ik ×

lhkj∏

t=1

(
ht

kj

)αt
kj
. (14)

This is equivalent to

lhij∑

t=1

αt
ij log

(
ht

ij

)
−

lhik∑

t=1

αt
ik log

(
ht

ik

) −
lhkj∑

t=1

αt
kj log

(
ht

kj

)
= 0.

(15)

As aforementioned, (15) does not always hold. We
relax (15) appropriately with the introduction of non-negative
deviation numbers d−

ijk and d+
ijk ∀i, j, k ∈ N

lhij∑

t=1

αt
ij log

(
ht

ij

)
−

lhik∑

t=1

αt
ik log

(
ht

ik

) −
lhkj∑

t=1

αt
kj log

(
ht

kj

)

− d+
ijk + d−

ijk = 0. (16)

Equation (16) becomes (15) iff d−
ijk = d+

ijk = 0. Thus, the
following 0-1 mixed programming model is established to

ascertain the completely multiplicative consistency property
of HMPRs

(M-1) J1 = min
n∑

k=1

n∑

i=1,i�=k

n∑

j=1,i�=j,j�=k

(
d−

ijk + d+
ijk

)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑lhij
t=1 αt

ij log
(

ht
ij

)
− ∑lhik

t=1 αt
ik log

(
ht

ik

)

−∑lhkj
t=1 αt

kj log
(

ht
kj

)
− d+

ijk + d−
ijk = 0

i, j, k ∈ N, i �= k, i �= j, j �= k
∑lhij

t=1 αt
ij log

(
ht

ij

)
+ ∑hij

t=1 α
lhij−t+1

ji

log

(

h
lhij−t+1

ji

)

= 0, i, j ∈ N, i �= j

∑lhij
t=1 αt

ij = ∑lhji
t=1 αt

ji = 1, i, j ∈ N, i �= j
αt

ij = 0 or 1, i, j ∈ N, i �= j,
t = 1, 2, . . . , lhij

d−
ijk, d+

ijk ≥ 0, i, j, k ∈ N, i �= k, i �= j, j �= k.

By solving (M-1), if J1 = 0 for all i, j with i �= j and each
t = 1, 2 . . . , lhij , then H is CMC; otherwise, H is not CMC.

The reciprocity of H means that (M-1) can be equivalently
rewritten as

(M-2) J2 = min
n−1∑

i=1

j−1∑

k=i+1

n∑

j=k+1

(
d−

ijk + d+
ijk

)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑lhij
t=1 αt

ij log
(

ht
ij

)
− ∑lhik

t=1 αt
ik log

(
ht

ik

)

−∑lhkj
t=1 αt

kj log
(

ht
kj

)
− d+

ijk + d−
ijk = 0

i, j, k ∈ N, i < k < j
∑lhij

t=1 αt
ij log

(
ht

ij

)
+ ∑hij

t=1 α
lhij−t+1

ji

log

(

h
lhij−t+1

ji

)

= 0, i, j ∈ N, i �= j

∑lhij
t=1 αt

ij = ∑lhji
t=1 αt

ji = 1, i, j ∈ N, i < j
αt

ij = 0 or 1, i, j ∈ N, i < j,
t = 1, 2, . . . , lhij

d−
ijk, d+

ijk ≥ 0, i, j, k ∈ N, i < k < j.

The following result proves the validity of model (M-2) to
ascertain the completely multiplicative consistency property
of HMPRs.

Theorem 1: An HMPR H is a CMC HMPR iff J2 = 0.
Proof (Sufficiency): If J2 = 0, then d−

ijk = d+
ijk = 0 ∀i, j, k ∈

N and (16) reduces to (15). Thus, H is CMC.
Necessary: If H is CMC, (15) holds and d−

ijk = d+
ijk = 0

in (16), which implies that J2 = 0.
When H is a CMC HMPR, a complete consistent MPR

can be derived by solving (M-2). On the contrary, if H is not
a CMC HMPR, in the following, some algebraic methods are
proposed to detect whether it is a WMC HMPR.

Theorem 2: An HMPR H = (hij)n×n is a WMC HMPR iff

max
k

{
h−

ij , h−
ikh−

kj

}
≤ min

k

{
h+

ij , h+
ikh+

kj

}
∀i, j, k ∈ N. (17)

Proof: If H is a WMC HMPR, then there is a complete
consistent MPR R = (rij)n×n such that

h−
ij ≤ rij ≤ h+

ij ∀i, j ∈ N (18)
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h−
ik ≤ rik ≤ h+

ik ∀i, k ∈ N (19)

h−
kj ≤ rkj ≤ h+

kj ∀k, j ∈ N. (20)

Multiplying (19) by (20), we have

h−
ikh−

kj ≤ rij ≤ h+
ikh+

kj ∀i, j, k ∈ N. (21)

Since (21) holds for any k ∈ N, it is maxk{h−
ij , h−

ikh−
kj} ≤

mink{h+
ij , h+

ikh+
kj} for all i, j, k ∈ N.

Conversely, if (17) holds for all i, j, k ∈ N, there exists
a complete consistent MPR R = (rij)n×n satisfying rij = rik·rkj,
h−

ij ≤ rij ≤ h+
ij ∀i, j, k ∈ N. By Definition 11, H is a WMC

HMPR.
As per (17), we have the following equivalence theorem

to ascertain the weakly multiplicative consistency property
of HMPRs.

Theorem 3: An HMPR H = (hij)n×n is a WMC HMPR iff

n⋂

k=1

[
h−

ikh−
kj, h+

ikh+
kj

]
�= ∅ ∀i, j, k ∈ N. (22)

Proof: We only need to prove that (17) and (22) are
equivalent. Suppose that H is a WMC HMPR, then there is
a complete consistent MPR R = (rij)n×n such that

h−
ij ≤ rij ≤ h+

ij ∀i, j ∈ N (23)

h−
ik ≤ rik ≤ h+

ik ∀i, k ∈ N (24)

h−
kj ≤ rkj ≤ h+

kj ∀k, j ∈ N. (25)

Therefore, it is

h−
ikh−

kj ≤ rij ≤ h+
ikh+

kj ∀i, j, k ∈ N. (26)

Since (26) holds for any k ∈ N, it is
rij ∈ ⋂n

k=1 [h−
ikh−

kj, h+
ikh+

kj] �= ∅, which is equivalent to
maxk{h−

ij , h−
ikh−

kj} ≤ mink{h+
ij , h+

ikh+
kj}. By Theorem 2, H is

a WMC HMPR, which completes the proof of Theorem 3.
The below interval MPR definition is needed for Theorem 4,

which is an equivalent result to Theorems 2 and 3, to ascer-
tain the weakly multiplicative consistency property of HMPRs.
Recall that given two interval numbers x̄ = [x−, x+] and ȳ =
[y−, y+] with x−, y− > 0, their product is x̄·ȳ = [x−y−, x+y+].

Definition 14 [47]: An interval MPR H̄ = (h̄ij)n×n is
a preference relation with elements h̄ij = [h−

ij , h+
ij ] verifying:

0 < h−
ij ≤ h+

ij , h−
ij h+

ji = 1, h+
ij h−

ji = 1. The element h̄ij is called
the interval preference ratio and denotes that alternative xi is
between h−

ij and h+
ij times as important as alternative xj.

Notice that given an HMPR H = (hij)n×n, the interval MPR
H̄ = (h̄ij)n×n with elements h̄ij = [h−

ij , h+
ij ] can be constructed.

Theorem 4: An HMPR H = (hij)n×n is a WMC HMPR iff
H̄ = (h̄ij)n×n, h̄ij = [h−

ij , h+
ij ], satisfies

n⋂

k=1

(
h̄ikh̄kj

) �= ∅ ∀i, j, k ∈ N. (27)

Proof (Sufficiency): If
⋂n

k=1(h̄ikh̄kj) �= ∅ for all i, j, k ∈
N, then it is

⋂n
k=1(h̄ikh̄kj) = [p−

ij , p+
ij ]. Thus, it is

maxk{h−
ij , h−

ikh−
kj} ≤ p−

ij ≤ p+
ij ≤ mink{h+

ij , h+
ikh+

kj}, i.e.,
Theorem 2 is true and H is WMC.

Necessary: If H is a WMC HMPR, then there is a com-
plete consistent MPR R = (rij)n×n satisfying h−

ij ≤ rij ≤
h+

ij and rij = rik · rkj ∈ h̄ikh̄kj ∀i, j, k ∈ N. Therefore,
⋂n

k=1(h̄ikh̄kj) �= ∅.
The reciprocity of HMPRs means that when ascertaining the

validity of the above results only the elements of the upper or
lower part of an HMPR are to be considered.

V. GOAL PROGRAMMING APPROACH TO PRIORITY

WEIGHT DERIVATION AND INCONSISTENCY

REPAIRING OF HMPR

Consistency is a key property of preference relations, so it is
natural to generate priority weights of alternatives from con-
sistent HMPRs. In this section, the following two research
questions will be answered: 1) How to generate a priority
weight vector from a consistent HMPR? and 2) How to rectify
the inconsistency of an HMPR?

To answer these questions, effective optimization models
based on multiplicative consistency are established: 1) to
test the weakly multiplicative consistency property; 2) to
derive priority weights of alternatives; and 3) to repair the
inconsistency of a given HMPR.

To find out whether a given HMPR H = (hij)n×n is WMC,
non-negative deviation values d−

ij and d+
ij are introduced in (13)

h−
ij − d−

ij ≤ wi

wj
≤ h+

ij + d+
ij , i = 1, 2, . . . , n

j = i + 1, . . . , n. (28)

Clearly, H is WMC iff d−
ij and d+

ij are 0 in (28), for
i = 1, . . . , n, j = i + 1, . . . , n. Therefore, the sum of these
deviations is used as the objective function of the following
optimization model:

(M-3) J3 = min
n−1∑

i=1

n∑

j=i+1

(
d−

ij + d+
ij

)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi
wj

+ d−
ij ≥ h−

ij , i = 1, 2, . . . , n − 1

j = i + 1, . . . , n
wi
wj

− d+
ij ≤ h+

ij , i = 1, 2, . . . , n − 1,

j = i + 1, . . . , n∑n
i=1 wi = 1

wi ≥ 0, i = 1, 2, . . . , n
d−

ij , d+
ij ≥ 0, i = 1, 2, . . . , n − 1,

j = i + 1, . . . , n.

The following result proves the validity of model (M-3) to
ascertain the weakly multiplicative consistency property of
HMPRs.

Theorem 5: An HMPR H = (hij)n×n is a WMC HMPR iff
J3 = 0.

Proof (Necessary): If H is a WMC HMPR, then (13) holds
and it is d−

ij = d+
ij = 0 in (28), which implies that J3 = 0.

Sufficiency: If J3 = 0, then d−
ij = d+

ij = 0 ∀i, j ∈ N, and (28)
becomes (13). Hence, H is a WMC HMPR.

Model (M-3) provides an alternative way, but equiva-
lent to (13), to ascertain the weakly multiplicative consis-
tency property of HMPRs. Unlike the algebraic operations in
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Section IV, model (M-3) generates the priority weights of alter-
natives directly from the HMPR. In any case, when J3 = 0, H
is WMC but not necessarily CMC, which can be ascertained
with model (M-2).

Since a nonlinear programming model may have multiple
solutions, there may be more than one set of weights wi with
J3 = 0 in (M-3). As a result, (M-3) main aims are to ascertain
whether an HMPR has the weakly multiplicative consistency
property and to repair inconsistency, but not to derive the pri-
ority weight vector. Hence, it is only necessary to observe the
value of J3 to test if the consistency type is WMC. Thus,
a more reasonable and reliable method to derive the weights
of alternatives is needed.

When an HMPR is consistent, model (M-3) results in prior-
ity weights of alternatives as single values in the unit interval.
However, following the argument provided in [17], interval
priority weights are more natural and reasonable than precise
weights for hesitant judgments provided by decision makers.
Therefore, to generate interval priority weights of alterna-
tives from consistent HMPRs, the below lower and upper
approximation models are proposed

(M-4) w−
i = min wi

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wi
wj

≥ h−
ij , i = 1, 2, . . . , n − 1

j = i + 1, . . . , n
wi
wj

≤ h+
ij , i = 1, 2, . . . , n − 1

j = i + 1, . . . , n∑n
i=1 wi = 1

wi ≥ 0, i = 1, 2, . . . , n.

(M-5) w+
i = max wi

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wi
wj

≥ h−
ij , i = 1, 2, . . . , n − 1

j = i + 1, . . . , n
wi
wj

≤ h+
ij , i = 1, 2, . . . , n − 1

j = i + 1, . . . , n∑n
i=1 wi = 1

wi ≥ 0, i = 1, 2, . . . , n.

Given a WMC HMPR, solving models (M-4) and (M-5) will
result in unique optimal interval priority weights of alternatives
wi = [w−

i , w+
i ] ∀i ∈ N. Thus, if an HMPR is not consistent, it

is necessary first to repair its inconsistency. In the following,
an inconsistency repairing method is proposed. The principles
of the modification are two: 1) to reduce the total adjustments
of an HMPR, and 2) not to increase the number of the values
in the adjusted HMPR with respect to the original HMPR.

Given an inconsistency HMPR, model (M-3) allows to iden-
tify the inconsistent elements. Therefore, it can guide the
inconsistency repairing process as described as follows.

1) If J3 �= 0, then there are optimal nonzero deviations
d−

ij and d+
ij when solving (M-3), which corresponds to

HMPR inconsistent elements. Indeed, if d+(−)
i0j0

�= 0,
then hi0j0 is an inconsistent element. With regard to the
inconsistent element, its range changes from [h−

ij , h+
ij ] to

[h−
ij −d−

ij , h+
ij +d+

ij ]. In other words, the upper and lower
bounds of HME are replaced by the new values h+

ij +d+
ij

and h−
ij − d−

ij , while the other values remain unchanged,

Fig. 2. Process of consistency ascertaining, inconsistency repairing, and
weights derivation for HMPRs.

that is

h̄ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
h−

ij − d−
ij orh+

ij + d+
ij

}

lhij = 1{

h−
ij − d−

ij , hσ(2)
ij , . . . , h

σ
(

lhij−1
)

ij , h+
ij + d+

ij

}

lhij �= 1.

(29)

Thus, a new modified HMPR H is obtained

(
h̄ij, h̄ji

) =
⎧
⎨

⎩

(
h̄ij, 1/h̄ij

)
, if hij is the inconsistent

element(
hij, hji

)
, otherwise.

(30)

2) In (29), there are two cases for adjusting the inconsistent
elements. Notice that when there is only one element in
the HME, the original value is replaced by the modified
value. When there are two or more elements in the HME,
the lower and upper bound values are replaced and the
rest of values are unchanged. This approach maintains
the original number of values in each HME, and pre-
serves most of the decision maker’s original preferences
because only the inconsistent elements are adjusted.

3) After improving the consistency of the HMPR, the pri-
ority weight vector derived from the newly adjusted
HMPR satisfies (13), and it is J3 = 0. Consequently, (29)
and (30) convert an inconsistent HMPR into a consis-
tent HMPR.
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Algorithm 1 : Algorithms for consistency ascertaining,
inconsistency repairing and weights derivation of HMPRs.

Step 1. Given an HMPR H, check completely multiplicative con-
sistency property with model (M-2). If H is CMC, go to Step 3A;
otherwise, go to next step.

Step 2. Check weakly multiplicative consistency property
by (17), (22), (27) or model (M-3). If H is WMC, go to Step 3B;
otherwise, go to Step 4.

Step 3. Priority weights derivation and ranking of alternatives.
Step 3A. (Following Step 1).
Derive the priority weights with the Logarithmic Least Squares

Method [48, 49]:

wi =
⎛

⎝
n∏

j=1

rij

⎞

⎠

1/n/ n∑

i=1

⎛

⎝
n∏

j=1

rij

⎞

⎠

1/n

, i = 1, 2, . . . , n (31)

and go to Step 5.
Step 3B. (Following Step 2).
Generate the interval weights with models (M-4) and (M-5).

Alternatives are ranked according to their priority weights ranking,
via the degree of possibility of wi ≥ wj [5, 50]:

p
(
wi ≥ wj

) =
max

{
0, w+

i − w−
j

}
− max

{
0, w−

i − w+
j

}

w+
i − w−

i + w+
j − w−

j

(32)

pi =
n∑

j=1

pij, i ∈ N (33)

and pij = p(wi ≥ wj).

Interval weights are ranked using pi values, i.e. wi
p(wi≥wj)	 wj iff

pi > pj . Go to Step 5.
Step 4. Solve model (M-3), and repair inconsistency with (29);

construct the newly adjusted HMPR with (30). Go to Step 1.
Step 5. End.

In what follows, an integrated algorithm to ascertain con-
sistency, inconsistency repairing, and priority weights deriva-
tion for HMPRs is proposed, with corresponding flowchart
depicted in Fig. 2.

VI. INCOMPLETE HMPRS

In a decision-making problem, decision makers may omit
some judgments, i.e., some information may be unknown.
Hence, a key problem to address is the estimation of missing
information. With respect to incomplete HMPRs, this section
extends two multiplicative consistency concepts of complete
HMPRs to the case of incomplete HMPRs and utilizes two
multiplicative consistency-based goal programming models:
1) to estimate their missing HME preference values, and 2) to
ascertain the type of multiplicative consistency property that
is verified.

Let H = (hij)n×n be an incomplete HMPR. The notation
hij = x is used to represent that hij is not given by the deci-
sion maker. To incorporate (16) into incomplete HMPRs, the
following indicator functions for an incomplete HMPR H are
introduced:

δij =
{

1, hij �= x
0, hij = x

δijk =
{

1, δijδikδkj = 1
0, otherwise.

When hij, hik, and hkj are all known it is δijk = 1. Then, (16)
for an incomplete HMPR can be rewritten as

δijk

⎛

⎝

lhij∑

t=1

αt
ij log

(
ht

ij

)
−

lhik∑

t=1

αt
ik log

(
ht

ik

) −
lhkj∑

t=1

αt
kj log

(
ht

kj

)
⎞

⎠

− ε+
ijk + ε−

ijk = 0. (34)

Consequently, to ascertain the completely multiplicative
consistency property of incomplete HMPRs, the following
0-1 mixed programming model is constructed:

(M-6) J6 = min
n∑

k=1

n∑

i=1,i�=k

n∑

j=1, i�=j,j�=k

(
ε−

ijk + ε+
ijk

)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δijk

(
∑lhij

t=1 αt
ij log

(
ht

ij

)
− ∑lhik

t=1 αt
ik log

(
ht

ik

)

−∑lhkj
t=1 αt

kj log
(

ht
kj

))

− ε+
ijk

+ε−
ijk = 0, i, j, k ∈ N, i �= j, i �= k, j �= k

δij

(
∑lhij

t=1 αt
ij log

(
ht

ij

)
+ ∑hij

t=1 α
lhij−t+1

ji

log

(

h
lhij−t+1

ji

))

= 0, i, j ∈ N, i �= j

∑lhij
t=1 αt

ij = ∑lhji
t=1 αt

ji = 1, i, j ∈ N, i �= j
αt

ij = 0 or 1, i, j ∈ N, i �= j
ε−

ijk, ε
+
ijk ≥ 0, i, j, k ∈ N, i �= j, i �= k, j �= k

δij =
{

1, hij �= x
0, hij = x

, i, j ∈ N

δijk =
{

1, δijδikδkj = 1
0, otherwise

, i, j, k ∈ N.

This model can be equivalently simplified as follows:

(M-7) J7 = min
n∑

k=1

n−1∑

i=1

n∑

j=i+1

(
ε−

ijk + ε+
ijk

)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δijk

(
∑lhij

t=1 αt
ij log

(
ht

ij

)
− ∑lhik

t=1 αt
ik log

(
ht

ik

)

−∑lhkj
t=1 αt

kj log
(

ht
kj

))

− ε+
ijk

+ε−
ijk = 0, i, j, k ∈ N, i < j, k �= i, k �= j

δij

(
∑lhij

t=1 αt
ij log

(
ht

ij

)
+ ∑hij

t=1 α
lhij−t+1

ji

log

(

h
lhij−t+1

ji

))

= 0, i, j ∈ N, i < j

∑lhij
t=1 αt

ij = ∑lhji
t=1 αt

ji = 1, i, j ∈ N, i < j
αt

ij = 0 or 1, i, j ∈ N, i �= j
t = 1, 2, . . . , lhij

ε−
ijk, ε

+
ijk ≥ 0, i, j, k ∈ N, i < j

k �= i, k �= j

δij =
{

1, hij �= x
0, hij = x

, i, j ∈ N

δijk =
{

1, δijδikδkj = 1
0, otherwise

, i, j, k ∈ N.

The following result proves the validity of model (M-7) to
ascertain the completely multiplicative consistency property of
incomplete HMPRs.
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Theorem 6: An incomplete HMPR H is CMC iff J7 = 0.
Proof (Necessary): If an incomplete HMPR H is CMC,

then (15) holds for all known elements, that is, ε−
ijk = ε+

ijk = 0
in (34). Therefore, J7 = 0.

Sufficiency: If an incomplete HMPR H has J7 = 0, then
ε−

ijk = ε+
ijk = 0 for all known elements, and (34) becomes (15).

Thus, the incomplete HMPR H is CMC.
The following example illustrates the process of estimating

missing values and determining the consistency of incomplete
HMPRs with model (M-7).

Example 1: Consider the incomplete HMPR H1 (adapted
from [41])

H1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

{1}
{

1
2 , 1

} {
1
3 , 1

2

}
{1}

{1, 2} {1} {1, 2, 3} {2}
{2, 3}

{
1
3 , 1

2 , 1
}

{1} x

{1}
{

1
2

}
x {1}.

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Solving model (M-7) gives J7 = 0. Thus, the incomplete
HMPR H1 is CMC. At the same time, the missing HMEs
obtained are h34 = {2} and h43 = {1/2}, and there exists
a complete consistent MPR R1

R1 =

⎛

⎜
⎜
⎝

1 1
2

1
2 1

2 1 1 2
2 1 1 2
1 1

2
1
2 1

⎞

⎟
⎟
⎠.

Thus, H1 is transformed into the below complete HMPR

H′
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

{1}
{

1
2 , 1

} {
1
3 , 1

2

}
{1}

{1, 2} {1} {1, 2, 3} {2}
{2, 3}

{
1
3 , 1

2 , 1
}

{1} {2}
{1}

{
1
2

} {
1
2

}
{1}

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The proposed model is more reasonable and effective than
Sahu and Gupta’s model [22], since their β-normalization
method is superfluous, and no additional elements are added to
HMEs. In addition, the proposed model can determine the con-
sistency type of incomplete HMPRs, while Sahu and Gupta’s
model fails to do so.

When the incomplete HMPR H is not CMC, its weakly
multiplicative consistency property is considered. Similar to
Theorems 2–4 of Section IV, the following results for incom-
plete HMPRs are provided.

Theorem 7: An incomplete HMPR H = (hij)n×n is WMC
iff for all known elements

max
k

{
h−

ij , h−
ikh−

kj

}
≤ min

k

{
h+

ij , h+
ikh+

kj

}
(35)

or, equivalently
n⋂

k=1

[
h−

ikh−
kj, h+

ikh+
kj

]
�= ∅ (36)

is verified.
Given an incomplete HMPR, H = (hij)n×n, its associated

incomplete interval MPR H̄ = (h̄ij)n×n has elements: h̄ij =
[h−

ij , h+
ij ] if h̄ij is known; otherwise, h̄ij = x is unknown. Let

� be the set of all the known elements in H.

Theorem 8: An incomplete HMPR H = (hij)n×n is WMC iff

n⋂

k=1

(
h̄ikh̄kj

) �= ∅, for all h̄ij ∈ �. (37)

The following optimization model for incomplete HMPRs
can be established, based on the weakly multiplicative consis-
tency property, to estimate the missing information and to test
consistency:

(M-8) J8 = min
n−1∑

i=1

n∑

j=i+1

(
ε−

ij + ε+
ij

)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δij

(
wi
wj

+ ε−
ij − h−

ij

)
≥ 0

i = 1, 2, . . . , n − 1, j = i + 1, . . . , n

δij

(
wi
wj

− ε+
ij − h+

ij

)
≤ 0

i = 1, 2, . . . , n − 1, j = i + 1, . . . , n∑n
i=1 wi = 1

wi ≥ 0, i ∈ N

δij =
{

1, hij �= x
0, hij = x

, i, j ∈ N

ε−
ij , ε

+
ij ≥ 0, i = 1, 2, . . . , n − 1

j = i + 1, . . . , n.

Solving model (M-8), the incomplete HMPR is WMC when
J8 = 0, in which case, via (3), its missing elements can
be estimated. As before, an example is provided below to
illustrate the weakly multiplicative consistency-based HMPR
completion process.

Example 2: Consider the incomplete HMPR H2

H2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

{1}
{

3
7

} {
3
7 , 3

2

}
{1}

{ 7
3

} {1}
{

3
7 , 3

2

}
x

{
2
3 , 7

3

} {
2
3 , 7

3

}
{1}

{
2
3 , 7

3

}

{1} x
{

3
7 , 3

2

}
{1}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Solving model (M-7) gives J7 = 2.4692 �= 0. Thus, H2
is not CMC, and Theorem 7 is used to check whether H2 is
WMC. For all known elements, (36) yields

4⋂

k=1

[
h−

1kh−
k3, h+

1kh+
k3

] =
[

3

7
,

3

2

]⋂[
9

49
,

9

14

]⋂[
3

7
,

3

2

]

⋂[
3

7
,

3

2

]

=
[

9

49
,

9

14

]

�= ∅.

Thus, the incomplete HMPR H2 is WMC. Notice that this can
also be verified using (35) as shown in Table II.

Solving model (M-8) gives J8 = 0, and the missing HMEs
are estimated as h24 = {7/3} and h42 = {3/7}. The follow-
ing complete HMPR H′

2 and complete consistent MPR R2 are
obtained:

H′
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

{1}
{

3
7

} {
3
7 , 3

2

}
{1}

{ 7
3

} {1}
{

3
7 , 3

2

} { 7
3

}

{
2
3 , 7

3

} {
2
3 , 7

3

}
{1}

{
2
3 , 7

3

}

{1}
{

3
7

} {
3
7 , 3

2

}
{1}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠
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TABLE II
CONSISTENCY ASCERTAINING FOR EXAMPLE 2

and

R2 =

⎛

⎜
⎜
⎝

1 3
7

3
7 1

7
3 1 1 7

3
7
3 1 1 7

3
1 3

7
3
7 1

⎞

⎟
⎟
⎠.

After estimating the missing values, an incomplete HMPR
is converted into a complete HMPR, and Algorithm 1 can
be used to generate the priority weights of alternatives. The
consistency improving method proposed in Section V can be
applied to incomplete HMPRs found to be inconsistent with
both models (M-7) and (M-8).

VII. ILLUSTRATIVE EXAMPLES AND COMPARATIVE

ANALYSIS

A. Illustrative Examples

This section offers three examples that complement the the-
oretical effectiveness of the approaches presented in previous
sections: Examples 3 and 4 concern with CMC and WMC
HMPRs, respectively, while Example 5 verifies the practical
value of our proposal.

Example 3: Consider the following HMPR on X =
{x1, x2, x3} (adapted from Zhang [26]):

H3 =

⎛

⎜
⎜
⎝

{1}
{

1
7 , 1

5 , 1
4 , 1

3

} {
1
6 , 1

3 , 1
}

{3, 4, 5, 7} {1} {2, 3, 5}
{1, 3, 6}

{
1
5 , 1

3 , 1
2

}
{1}

⎞

⎟
⎟
⎠.

Step 1: Solving model (M-2) gives J2 =0. Thus, H3 is
CMC. Meanwhile, the following complete consistent MPR is
derived:

R =
⎛

⎝
1 1

3 1
3 1 3
1 1

3 1

⎞

⎠.

TABLE III
CONSISTENCY ASCERTAINING FOR EXAMPLE 4

Step 2: From (31), the following priority weight vector
of alternatives is obtained: w = (0.2, 0.6, 0.2)T , and the
alternatives ranking would be: x2 	 x1 ∼ x3.

Example 4: Consider the following HMPR (adapted from
Lin and Wang [19]):

H4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

{1}
{

2
3 , 2, 5

2

} {
3
4 , 5

2 , 7
2

} {
1
3 , 3

2

}

{
2
5 , 1

2 , 3
2

}
{1}

{
1
2 , 2, 3

} {
1, 2, 5

2

}

{
2
7 , 2

5 , 4
3

} {
1
3 , 1

2 , 2
}

{1}
{

1
3 , 1

2 , 1
}

{
2
3 , 3

} {
2
5 , 1

2 , 1
}

{1, 2, 3} {1}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Step 1: Solving model (M-2), we have J2 = 0.5754, which
means that HMPR H4 is not CMC.

Step 2: Expression (17) is used to check the weakly
multiplicative consistency property for H4, with the corre-
sponding processes shown in Table III. It is concluded that
HMPR H4 is WMC. Notice that this could have been done
using (22). Indeed, HMPR H4 is WMC because

4⋂

k=1

[
h−

1kh−
k2, h+

1kh+
k2

] =
[

2

3
,

5

2

]⋂[
2

3
,

5

2

]⋂[
1

4
, 7

]

⋂[
2

15
,

3

2

]

�= ∅
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4⋂

k=1

[
h−

1kh−
k3, h+

1kh+
k3

] =
[

3

4
,

7

2

]⋂[
1

3
,

15

2

]⋂[
3

4
,

7

2

]

⋂[
1

3
,

9

2

]

�= ∅

4⋂

k=1

[
h−

1kh−
k4, h+

1kh+
k4

] =
[

1

3
,

3

2

]⋂[
2

3
,

25

4

]⋂[
1

4
,

7

2

]

⋂[
1

3
,

3

2

]

�= ∅

4⋂

k=1

[
h−

2kh−
k3, h+

2kh+
k3

] =
[

3

10
,

21

4

]⋂[
1

2
, 3

]⋂[
1

2
, 3

]

⋂[

1,
15

2

]

�= ∅

4⋂

k=1

[
h−

2kh−
k4, h+

2kh+
k4

] =
[

2

15
,

9

4

]⋂[

1,
5

2

]⋂[

1,
5

2

]

⋂[
1

6
, 3

]

�= ∅

4⋂

k=1

[
h−

3kh−
k4, h+

3kh+
k4

] =
[

2

21
, 2

]⋂[
1

3
, 5

]⋂[
1

3
, 1

]

⋂[
1

3
, 1

]

�= ∅.

Since HMPR H4 is WMC, the priority weights of alterna-
tives are derived by solving models (M-3)–(M-5).

Step 3: Solving model (M-3) gives J3 = 0, and w =
(0.25, 0.25, 0.25, 0.25)T . From (3), we obtain the following
complete consistent MPR:

R =

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠.

Solving models (M-4) and (M-5), the following
interval priority vector of alternatives is obtained from
H4: w(H4) = ([0.1875, 0.3818], [0.2222, 0.4091],
[0.0952, 0.2667], [0.1739, 0.3333]). Using expres-
sion (32), the ranking of the alternatives would be:

x2
0.5813	 x1

0.5878	 x4
0.7196	 x3.Thus, alternative x2 is superior

to alternative x1 with 58.13% possibility degree, alternative x1
is superior to alternative x4 with 58.78% possibility degree,
while alternative x4 is superior alternative x3 with 71.96%
possibility degree.

Example 5: A practical problem is considered where an
investment company is looking to invest a sum of money in
the best of the following four possible investment options.

1) x1 is an energy company.
2) x2 is a medical corporation.
3) x3 is a high-tech company.
4) x4 is a food company.
The investment company evaluates the four alternative com-

panies with the help of a third-party evaluation agency, which

provides the following HMPR information:

H5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

{1} {3} {5, 7} {3}{
1
3

}
{1}

{
1
9 , 1

7

}
{5}

{
1
7 , 1

5

}
{7, 9} {1}

{
1
7 , 1

5

}

{
1
3

} {
1
5

}
{5, 7} {1}

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Step 1: Solving model (M-2) gives J2 = 10.3296. Thus, H5
is not CMC.

Step 2: Solving model (M-3) gives J3 = 5.9238. Thus, H5
is not WMC. This means that we are in the presence of an
inconsistent HMPR.

Step 3: The optimal deviation values are d+
23 = 1.5238,

d+
34 = 0.4, and d−

24 = 4; so, h23, h24, and h34 are the inconsis-
tent elements of HMPR H5. From (29), the adjusted elements
are h̄23 = {1/9, 1.667}, h̄24 = {1}, and h̄34 = {1/7, 3/5}.
From (30), the improved HMPR H5 is

H̄5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

{1} {3} {5, 7} {3}{
1
3

}
{1}

{
1
9 , 1.667

}
{1}

{
1
7 , 1

5

}
{0.6, 9} {1}

{
1
7 , 3

5

}

{
1
3

}
{1}

{
5
3 , 7

}
{1}

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Step 4: Solving model (M-2) implies that H̄5 is not CMC.
Step 5: Solving model (M-3) gives J3 = 0. Thus, H̄5

is WMC.
Step 6: Solving models (M-4) and (M-5), the

interval priority weight vector of the alternatives for
H̄5 is w(H̄5) = ([0.5357, 0.5382], [0.1786, 0.1794],
[0.1029, 0.1071], [0.1786, 0.1794]). Applying (32) results in

the following ranking of the four alternatives: x1
1	x2 ∼ x4

1	x3.
This means that investment options x1 is superior to invest-
ment options x2 with 100% possibility degree, investment
options x2 is equally preferred to investment options x4,
and investment options x4 is superior to investment options
x3 with 100% possibility degree. Therefore, the optimal
investment would be x1.

In decision-making problems, the consistency problem is
closely related to the reliability of preferences provided by
decision makers. The rationality of the judgments determines
the reliability of the final decision result. It is worth noting
that the consistency improvement of HMPRs in this process
plays a role in regulating the logic and rationality of the given
preference information. Therefore, in practice, our proposal
contributes to achieving reliable decision-making results.

In what follows, a discussion and a simulation analysis are
reported to illustrate the availability and advantages of the
proposed method.

B. Discussion, Simulation, and Comparative Analysis

In this section, we compare the peculiarities of existing
methods and discuss the advantages of our proposed meth-
ods. A summary of the improvements of the proposed method
based on the previous illustrative examples is provided. In
addition, a systematic analysis with the help of simula-
tion experiments is carried out, which clearly and intuitively
highlights the superior performance of the proposed method.
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1) Discussion: In view of the evident differences with the
existing consistency studies, the proposed approach improve-
ments can be summarized as follows.

1) As far as we are aware, the proposed approach is the
first attempt to study simultaneously both completely
multiplicative consistency and weakly multiplicative
consistency properties for HMPRs, which represents
a more effective and precise way to describe and detect
consistency. Meng et al. [25] studied the multiplicative
consistency property of HMPRs. They proposed a strict
consistency concept for HMPRs that requires the exis-
tence of multiplicative consistent MPRs for every
value in every HMEs. This means that in practice
most HMPRs will fail to verify Meng et al.’s [25]
definition of consistency property. For example, H3
(Example 3), which was judged to be CMC, does not
satisfy Meng et al.’s consistency definition. Although
theoretically there exist HMPRs that verify Meng et al.’s
consistency definition, this is not reasonable in practice.
Hesitancy means that a decision maker is unsure about
the preference values when comparing two alternatives,
though he/she can give some possible preference val-
ues (hence the hesitation). If for every value in every
HME, a consistent MPR exists, then this would imply
a level of consistency knowledge by the decision maker
that would make hesitancy improbable and therefore
impractical in a hesitancy environment. As the decision
maker is hesitant, we should aim to find the reasonable
information (i.e., consistent information) from his/her
hesitant information, which is exactly the aim of the
proposed method.

2) Zhang and Wu proposed two consistency improvement
methods in [17] and [21]. These methods rely on a β-
normalization process, which converts the HMEs so that
they all have the same number of values, and then the
HMPR is managed as several MPRs. The normalization
process obviously distorts the DM’s original information
and the results obtained could be unrelated to the origi-
nal information, which makes them unreliable. In this
article, the proposed method does not rely on any
normalization process, which translates into minimal
changes of the original information of DMs and lower
computational cost. Moreover, Xu et al. [46] pointed out
that Zhang and Wu’s [21] consistency process is artifi-
cial, the consistent HMPR may not be an HMPR because
the improved MPRs will not be arranged in ascending
order. Additionally, the smaller the improvement process
consistency threshold in [21] is, the larger the number
of iterations and the computational cost are.

3) The priority weights of alternatives derived from the
proposed method are of interval nature. As the DM’s
information is hesitant, it is more logical and natural
to derive interval weights from consistent HMPRs than
exact priority weights as proposed by Zhu and Xu [18].
Although Zhang and Wu’s [17] weight-derivation algo-
rithm for HMPRs results in an interval priority weight
vector for H5, w = ([0.3938, 0.4581], [0.1715, 0.1729],
[0.1882, 0.2108], [0.1823, 0.2225]), which leads to the

TABLE IV
COMPARISON BETWEEN THE EXISTING STUDIES AND OUR PROPOSAL

optimal choice x1, which is consistent with the proposed
approach, although it is based on an additional nor-
malization process, which implies higher computa-
tional cost.

4) The proposed approach can be utilized to solve decision-
making problems with incomplete HMPRs via the two
multiplicative consistency goal programming models
developed to ascertain the consistency property and
to estimate the missing values. The existent literature
method by Sahu and Gupta [22] requires a normalization
process to improve the consistency, and therefore is sub-
jected to the previously mentioned drawbacks. Thus, the
proposed approach can deal with incomplete information
in HMPR, which allows DMs or decision organizations
to express their preferences more flexibly, and therefore
more effectively.

In summary, the above analysis shows that the performance
of the proposal approach can compete with other approaches.
The comparative analysis, based on eight performance crite-
ria, of these methods is summarized in Table IV. The label
“
√

” means that the method is very suitable, “−” means that
the method is acceptable, while “×” means that the method
performs poorly on the given criterion.

From Table IV, it can see that the functionality of the
proposed approach is powerful, and that it can help to 1) deter-
mine the consistency type without the help of consistency
threshold setting and normalization process; 2) repair incon-
sistency with lower information distortion and computation;
3) derive interval weights based on the decision maker’s
hesitation; and 4) solve decision-making problems with incom-
plete HMPRs. Consequently, the proposed approach can deal
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with decision-making problems with HMPRs more flexibly,
reasonably, and effectively.

2) Simulation and Comparative Analysis: In order to fur-
ther show the effectiveness and advantages of the proposed
method, Monte Carlo simulation experiments are carried out
and analyzed. Further, the proposed method is compared
with the methods by Zhang and Wu [17] and Zhang and
Wu [21], since their methods also proposed different con-
sistency concepts and consistency improving processes. The
β-normalization method is used in [17] and [21] with h̄ij =
(h+

ij )
ς × (h−

ij )
(1−ς) used to add some values to the HMEs of

shorter length to make all the HMEs have the same length.
In this article, we assume ς = 0.5. Both Zhang and Wu [17]
and Zhang and Wu [21] splited the HMPR into several MPRs.
Zhang and Wu [17] used Saaty’s consistency ratio (CR<0.1) to
check whether these MPRs are of acceptable consistency. If
any of the MPR is not acceptable consistent, Xu and Wei [51]’s
Algorithm I (with λ = 0.5) is used to improving its con-
sistency. Notice that Zhang and Wu [21] proposed another
algorithm (referred to as [21, Algorithm 2]) to improve con-
sistency. In the method, a consistency threshold CI is set in
advance (CI = 1.01). Meng et al.’s [25] method only find
the consistent MPRs in an HMPR, with no method to repair
the inconsistency proposed when there is no such consistent
MPR in an HMPR. Sahu and Gupta [22] proposed a method
to estimate the missing values in an incomplete HMPR, and
Zhang and Wu’s [17] is adopted to check whether the complete
HMPR is of acceptable consistency. If the complete HMPR is
not consistent, no consistency improving method is provided.
Therefore, in the following, we only do simulations and com-
pare the proposed method with Zhang and Wu [17] and Zhang
and Wu [21]’s methods.

A total of 1000 HMPRs with different dimensions, rang-
ing from 3 to 9, are randomly generated. In order to be
close to the actual decision-making scenario, we assume
that the number of elements in each HME is less than
3. Furthermore, all the randomly generated values are in
Saaty’s scale {1/9, 1/8, . . . , 1/2, 1, . . . , 9}. In order to com-
pare the performances of the different methods, we propose
the following criteria.

1) Length Change Ratio:

LCR = 2
∑n−1

i=1
∑n

j=i+1 f̄ij

n(n − 1)

where f̄ij =
{

0, l
h(0)

ij
= lh∗

ij

1, otherwise
denotes whether the length

of an HME is changed; and H(0) = (h(0)
ij ) and H∗ =

(h∗
ij) are the original and the final adjusted HMPRs,

respectively.
2) Numerical Adjustment Ratio:

NAR = 2
∑n−1

i=1
∑n

j=i+1 fij

n(n − 1)

where fij =
{

0, h(0)
ij = h∗

ij
1, otherwise

denotes whether the values

in an HME h(0)
ij are adjusted.

TABLE V
AVERAGE LCR, NAR, AD, LAD, DR, AND ITERATION VALUES OF

DIFFERENT METHODS

3) Absolute Deviation:

AD = 2

n(n − 1)

n−1∑

i=1

n∑

j=i+1

∣
∣
∣h

(0)
ij − h∗

ij

∣
∣
∣.

Absolute deviation (AD) measures the average numeri-
cal difference between the original HMPR H(0) and the
final improved HMPR H∗. Since the lengths in each hij

between H(0) and H∗ are different in Zhang and Wu [17]
and Zhang and Wu [21], the β-normalization HMPR
is used on the original HMPR to compute AD for the
proposed approach.

4) Logarithm Absolute Deviation:

LAD = 2

n(n − 1)

n−1∑

i=1

n∑

j=i+1

(
ln
(

h(0)
ij

)
− ln

(
h∗

ij

))2
.

5) Difference Ratio: Li et al. [52] introduced a ratio-based
concept to gauge the difference between two interval
multiplicative comparison matrices. Based on this idea,
the below difference ratio (DR) is proposed to mea-
sure the difference between the original HMPR and the
improved HMPR

DR
(

H(0), H∗) =
⎛

⎝
∏

i<j

⎛

⎝
max

{
h(0)−

ij , h∗−
ij

}

min
{

h(0)−
ij , h∗−

ij

}

⎞

⎠

×
⎛

⎝
max

{
h(0)+

ij , h∗+
ij

}

min
{

h(0)+
ij , h∗+

ij

}

⎞

⎠

⎞

⎠

1
n(n−1)

.

Obviously, DR(H(0), H∗) ≥ 1. The smaller the ratio
DR(H(0), H∗), the closer H(0) is to H∗. In particular,
if DR(H(0), H∗) = 1, H(0) = H∗.

Table V lists the average values of length change
ratio (LCR), numerical adjustment ratio (NAR), AD, logarithm
AD (LAD), and DR for each of the three considered methods,
which are represented in Fig. 3 to help visualize the different
methods’ performance.
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(a) (b)

(c) (d)

(e)

Fig. 3. (a) LCR of Zhang and Wu [17]. (b) NAR of this article. (c) AD. (d) LAD. (e) DR.

In Fig. 3(a), since the length of HMEs is not changed by
the proposed method, the corresponding LCR value is always
equal to 0 at every one of the considered dimensions. Zhang
and Wu [17] and Zhang and Wu [21] used the same normal-
ization methods, thus their LCR values coincide and therefore
there is only need to draw the LCR values for one of them.
The LCR values increase drastically from 3 to 5, while they
change little when n is from 5 to 9. In Fig. 3(b), the NAR
values in Zhang and Wu [17] and Zhang and Wu [21] are
always equal to 1, which means that all the values are revised
in their consistency improving processes. However, the NAR
values increases from 0.149 (n = 3) to 0.991 (n = 9) for the
proposed method. These two indexes show that the proposed

method perform best in retain the decision makers’ original
information as much as possible.

In Fig. 3(c)–(e), the AD, LAD, and DR values all increase
with the value of n. However, in all cases, the proposed
method results in the smallest values, with Zhang and Wu [21]
resulting in the largest. Therefore, the proposed method pro-
duces improved consistent HMPRs closest to the original
HMPRs. These results reinforce the achievement of the aim
of the proposed method to retain the decision makers’ original
information as much as possible.

3) Computational Complexity: Regarding computational
complexity as measured by the average number of iterations
required to complete the overall process, again the proposed
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Fig. 4. Average iterations of different methods.

method is superior to the method by Zhang and Wu. This
information is provided in the last column of Table V and
depicted in Fig. 4. The proposed method requires in all cases 1
iteration to improve consistency, Zhang and Wu’s [21] method
is stable at three iterations on average, while Zhang and
Wu’s [17] method need 3 to 6 iterations on average increasing
with the dimension value.

As mentioned earlier, Zhang and Wu [21] required that all
HMEs have the same length before the process of consistency
ascertaining. This normalization method, and therefore its
associated complicated calculation process, is superfluous for
the proposed method. Since the length of HMEs increases with
the normalization process, the HMPR will be converted into
a high number of MPRs to judge its consistency, which will
increase the computation cost when compared to the proposed
method. On the other hand, Zhang and Wu [21] preset a con-
sistency threshold in the process of consistency checking
and improvement. Decreasing the threshold value implies an
increase of the number of iterations and, as a consequence,
the computational cost will increase. In contrast, the consis-
tency properties of HMPRs proposed in this article can directly
be ascertain without the need of a normalization process
or a consistency threshold, while the inconsistency repairing
method only revises the inconsistent elements, and therefore
most of the decision maker’s judgments are unchanged. Most
importantly, the proposed approach can achieve multiplicative
consistency ascertaining, inconsistency repairing, and weights
derivation for HMPRs in one iteration.

Meng et al. [25] also implemented the consistency test based
on the decision maker’s original HMPR without the normal-
ization process. Their consistency determination and improve-
ment process can also be completed within one iteration.
However, Meng et al.’s approach requires to detect that for
each value in each HME a multiplicatively consistent MPR
needs to be detected. As the length of the HMEs increases,
the number of multiplicatively consistent MPRs to be found
increases. Namely, there are a total of

∏
i<j lhij MPRs that

need to be judged, and at least the minimum of lhij mod-
els to operate. Hence, this method may not be suitable to be

applied in practical decision-making problems due to its high
computational cost.

To summarize, compared with the existing methods, the
proposed method has lowest computational complexity and
cost. Therefore, the proposed method is a highly functional
and computationally convenient method.

VIII. CONCLUSION

In this article, two types of multiplicative consistency of
HMPRs, completely multiplicative consistency and weakly
multiplicative consistency, are investigated simultaneously.
A number of 0-1 mixed programming models are established
to ascertain these consistency properties. The following cases
are addressed.

1) If an HMPR is CMC, then the corresponding
multiplicative consistent MPR can be found.

2) If an HMPR is not CMC but WMC, then interval priority
weights of alternatives are derived, which allows to rank
them.

3) If an HMPR is not consistent, only the inconsistent
elements are revised to repair the inconsistency, which
means that most of the decision maker’s judgments are
unchanged.

4) These models have also been extended to the case of
incomplete HMPRs by estimating the missing values.

In the future, the research areas to focus on include:
1) how to apply the proposed method to other types of

preference relations [53], [54];
2) in addition to the consistency analysis of individual

decision makers, consensus analysis with HMPRs is
also an important research topic in group decision
making [55]–[59];

3) investigate new algorithms for group decision-making
problems to tackle practical problems [60]–[62].
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