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Abstract We inspect the Littlest Higgs model with T-parity, based on a global symmetry
SU(5) spontaneously broken to SO(5), in order to elucidate the pathologies it presents due to
the non-trivial interplay between the gauge invariance associated to the heavy modes and the
discrete T-parity symmetry. In particular, the usual Yukawa Lagrangian responsible for pro-
viding masses to the heavy ‘mirror’ fermions is not gauge invariant. This is because it contains
an SO(5) quintuplet of right-handed fermions that transforms nonlinearly under SU(5), hence
involving in general all SO(5) generators when a gauge transformation is performed and not
only those associated to its gauge subgroup. Part of the solution to this problem consists of
completing the right-handed fermion quintuplet with T-odd ‘mirror partners’ and a gauge
singlet, what has been previously suggested for other purposes. Furthermore, we find that the
singlet must be T-even, the global symmetry group must be enlarged, an additional nonlinear
sigma field should be introduced to parametrize the spontaneous symmetry breaking and new
extra fermionic degrees of freedom are required to give a mass to all fermions in an economic
way while preserving gauge invariance. Finally, we derive the Coleman—Weinberg potential
for the Goldstone fields using the background field method.

1 Introduction

Besides supersymmetry, Composite Higgs models [1] are one of the most elegant proposals
to alleviate the fine-tuning in the Higgs mass afflicting the Standard Model (SM). In this
family of models, the Higgs boson arises as the pseudo-Nambu—Goldstone boson (pNGB) of
a spontaneously broken global symmetry. Within this class of models, one of the most popular
frameworks is the Littlest Higgs model with T-parity (LHT) [2—8] based on a global symmetry
group SU(5) spontaneously broken to an SO(5) subgroup by the vacuum expectation value
(vev) of a symmetric tensor field X' at a scale f ~ 1-10 TeV. Using the Callan—Coleman—
Wess—Zumino (CCWZ) formalism [9,10], a nonlinear field & is introduced, built as the
exponential of the 14 Goldstone bosons in the direction of the broken generators. Since
the coset SU(5)/SO(5) is symmetric, there is an inherited Z, automorphism in the algebra,
allowing the definition of the T-parity discrete symmetry. This T-parity symmetry significantly
relaxes direct and indirect constraints from electroweak precision data (EWPD) [11,12]: the
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SM particles are T-even and (most of) the new particles are T-odd and hence pair-produced.
The Goldstone sector includes a physical T-even doublet, which is identified with the SM
Higgs, and an extra T-odd physical triplet with zero vev or otherwise T-parity would be
broken. A subgroup [SU(2) x U(1)]? of the full global symmetry group SU(5) is gauged
and gets broken spontaneously to the diagonal subgroup SU(2) x U(1), leading to a set of
T-odd massive vector bosons with masses of order f after eating up the rest of Goldstone
scalar fields. The Higgs mass, apart from being protected by the T-parity, is also protected by
the so-alled collective symmetry breaking mechanism [11,13]: the global symmetry is also
broken explicitly by gauge and Yukawa interactions, but this breaking only occurs when two
or more couplings are not vanishing at the same time. Otherwise there would still remain
an unbroken global symmetry that is sufficient to ensure the Goldstone nature of the Higgs
boson. When those couplings are not set to zero the model predicts a divergence in the Higgs
mass sensitive to just the logarithm of the cut-off, hence solving the problems of quadratic
divergences and fine-tuning of the SM.

In spite of its success to cope with the issues above, the LHT suffers pathologies in the
fermionic sector (except for the third-generation quarks [11,14]). The matter content, that
includes extra fermions, breaks explicitly the gauge invariance of the model, as was already
pointed out in [15,16]. In most phenomenological studies [17-24], the left-handed SM and
the so-called mirror fermions are introduced in incomplete multiplets of SU(5) whereas
their right-handed counterparts come in multiplets of SO(5) that include an SU(2) doublet
of mirror fermions (sometimes completed with a SU(2) doublet of mirror partners and a
gauge singlet). The mirror fermions acquire a vector-like mass by a Yukawa coupling to
the nonlinear sigma field £ and the rest (when they are not ignored) need extra mass terms.
However, as we will show, this assumption breaks gauge invariance, due to the nonlinear
transformation of the SO(5) multiplet that mixes all the right-handed fermionic fields, being
impossible to separate them to give different masses to its components. On the other hand, it
is usually claimed that the T-parity of the singlet field can be chosen to be either odd [6,7,25]
or even [26,27], what gives rise to a very different phenomenology [27]. But again a close
look will reveal that only a T-even singlet is compatible with gauge invariance. In this work
we propose an economic cure to these problems which consists in enlarging minimally the
global group, introducing a new pattern for the spontaneous symmetry breaking (SSB) and
adding extra fermionic degrees of freedom.

Once the new Lagrangian is built, we derive the Coleman—Weinberg potential for the scalar
fields [28] following the background field method [29-33], that allows for the calculation of
the divergent part of the potential in terms of the nonlinear sigma fields of the theory. The
logarithmic divergences were already given by a master formula [32,33] that was derived
rewriting the one-loop effective action in the Schwinger representation and applying a heat
kernel expansion in the so-called proper time variable using dimensional regularization.
However, we are interested in distinguishing between quadratic and logarithmic divergences
so we will rather impose a cut-off in the proper time [34]. We will reproduce the previous
formula for the logarithmic part and find a new master formula for the quadratic divergences
in the cut-off regularization scheme.

This paper is organized as follows. In Sect. 2, we review the usual LHT to fix the notation.
Section 3 contains a detailed explanation of the pathologies of the model. Section 4 is devoted
to address the issues and construct the Lagrangian of a new and gauge invariant Littlest Higgs
model with T-parity. In Sect. 5, we introduce the background field method to evaluate the
Coleman—Weinberg potential for the Goldstone fields. Finally, in the last section we present
our conclusions and outlook.

@ Springer



Eur. Phys. J. Plus (2022) 137:42 Page30f 44 42

2 The littlest Higgs model with T-parity in a nutshell
2.1 Global symmetries

In this section we review the usual LHT, following closely the notation of Refs. [26,27]. The
model is based on the symmetric coset SU(5)/SO(5) parametrized by the vev of a symmetric
tensor,

02x2 0 122
Xy = 0 1 0 s (1)
Ioxo 0 Ozx2

leaving 24 — 10 = 14 unbroken generators. This spontaneous breaking direction fixes the
embedding of SO(5) in SU(5) with the fundamental representation of the latter reduced to the
defining (real) representation of the former. The unbroken generators preserve the vacuum
verifying the relation

7%y + XoTT = 0. )

The expression above suggests the definition of an automorphism in the Lie algebra under
which the unbroken generators transform as [6]

7 2 _ 501 50 = T, 3)

where the last equality follows from Eq. (2). The set of broken generators will be orthogonal
to the unbroken ones if their eigenvalue under the automorphism is the opposite,

x¢ 2 yoxaT 5y = —x°. )
This characterizes the broken generators as the set that verifies
X3y — ZoXT =0. 3)
Broken and unbroken generators verify the following schematic commutation relations,
[T, T1~T, [T,X]~X, [X,X]~T, (6)

that can be derived from the automorphism. One usually takes an orthogonal basis of gen-
erators. The broken generators expand the Goldstone matrix [T = 7¢X“ and allows the
introduction of a nonlinear field £ that transforms under the global symmetry group,

£=eT, £ 5 yeyt %

where f is the scale of new physics, V is an SU(5) transformation and U = U (V, IT) is the
compensating SO(5) nonlinear transformation, that depends on V and I7. According to the
CCWZ formalism, the transformation of £ is such that it keeps the exponential form.

Let us derive a relevant property that U satisfies. The characterization of the broken
generators (5) leads to

§ = Zog" o ®)
and applying the transformation given by the CCWZ formalism to this expression one finds

veUT = Zo(veUNT 2y = Ue ZoVT X, 9)
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where we have used Eq. (8), the hermiticity of the generators and the defining property of
the unbroken ones in Eq. (2) that implies U Xy = XoU*. Equation (9) can be interpreted as a
definition for the nonlinear transformation U and it is also a consequence of the spontaneous
breaking of SU(5) to SO(5).

This formalism allows to define a tensor field X' that transforms linearly under the global
symmetry group

S=txEl =25, S vyvT, (10)
where we have used Eq. (2) to commute & with Y.
2.2 Gauge group
The group SU(5) contains two copies of SU(2)xU(1). In order to implement the collec-

tive symmetry breaking mechanism in the gauge sector, one gauges the subgroup G, =
[SU2) x U()]; x [SU(2) x U(1)], expanded by the Hermitian and traceless generators

a

1 (° 0 0 1
of = 3 00 O , Y1 = Ediag 3,3,-2,-2,-2), (11)
0 002x2
1 02 0 O 1
0¢=-| 0 0 0 |. ¥=—diag(2.2,2,-3,-3), (12)
2\ 0 0—o 10

with o the three Pauli matrices. The normalization of the gauge generators is tr (Q? Qi) =

%S“béjk and tr (Yj Yk) = %(Sjk + % and the rest of the traces vanish. A useful property that
the gauge generators verify is

0f = —%004" %o, Y1 =—oY] Xo. (13)

which relates the generators of both gauged subgroups. The vev along the direction of Xy
also breaks spontaneously the gauge group down to the diagonal subgroup SU(2); x U(1)y
identified as the SM gauge group, generated by the combinations {Q‘l‘ +095. Y1 + Yz} C
{T?}, while the broken combinations {Q‘l’ - 05. Y — Yz} C {X“} expand the Goldstone
matrix

0 + + +
e e il _iptt el
2 20 V2 V2 2
w” oY n v+h+ind ot —ig0 + P
_e o N Al
2 2 V20 2 V2 V2
T v+h—irro 4 at v+h+i7ro
I1 = i— —_— — —i— ——— 1, (14)
V2 2 5 V2 2
- DT T o0 n w
i —= — - —-—
V2 2 20 V2
o io0+ P y4h—in0 ot o g
Pl _e @
V2 V2 2 V2 2 V20

where v is the Higgs vev. Under the SM gauge group the Goldstone matrix decomposes as

IT: 19 ® 30 ® 212 ® 31, (15)
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including a complex symmetric SU(2) triplet and its hermitian conjugate

ot (2
—iott -5 o7 i
— T
P = .¢+ —l¢0+@P s @' = .¢— l¢0+@P s (16)
e = 7 i 7
V2 V2 V2 V2
the SM Higgs doublet
int
H=|v+h+in® |, 17)
V2
plus a SU(2) triplet
o ot
w=| 2 V2 (18)
w w
J2 2

and a singlet (n). The latter two will become the longitudinal modes of the heavy gauge fields.

2.3 Lagrangian
2.3.1 Gauge sector

In the construction of the Lagrangian we take into account the action of the discrete T-parity
symmetry which is introduced to keep the SM gauge bosons T-even and light while the new
ones are T-odd and heavy. The action of T-parity consists in an interchange of the two gauge
groups

G| <% G, (19)

where G| = [SU(2) x U(1)]; and G> = [SU(2) x U(1)],. This requires that the coupling
constants of both copies must be the same g; = g» = +/2g, g =8 = V2g', with the first
set of couplings referring to SU(2) and the second to U(1). In this way, the T-parity affects
the collective symmetry breaking in the gauge sector, since being the couplings equal for
both subgroups they are different from zero at the same time. The gauge Lagrangian takes
the usual form

2
1 ~ ~ 1
2= Y |3 (T T)) = g2l @)
j=1

in terms of fields and field strength tensors,

Wi, = W¢, 09, 1)
Wmv = auwjv — o W./’/L —iv2g [W./'/u WJ'V] ’ (22)
Bjuw =0y Bjy — By, (23)

where in the first expression the index j is fixed. Before the electroweak SSB, the SM gauge
bosons come from the T-even combinations

W = % (Wi +W2) 5 (Wi +W3)], 24)
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_W13+W23 B—Bl+32

w? , B=——, (25)
V2 V2
while the remaining T-odd combinations will define the heavy fields
1 .
wi = 5 (W] —w))Fi (W2 —w3)], (26)
WP — w; B — B
Wy =——"2 By=—"_"2 27)

N NG

2.3.2 Scalar sector

In order to assign a T-even parity to the SM Higgs boson and T-odd parities to the rest of the
scalar fields, one defines

o5 —ene, @=dag(—1,-1,1,—1,-1). (28)

It is important to remark that £2 is an element of the center of the gauge subgroup and
consequently only commutes with the gauge generators. This fact will be crucial in the
following. The T-parity transformation of the Goldstone matrix implies

t L otie L S=0x 5. (29)

With these ingredients one builds the scalar Lagrangian which is gauge and T-parity invariant
using Eq. (13),

_ nys)
Ls =gt (D*2)' D, x|, (30)
where the covariant derivative is defined as
2
D2 =8,5 — 2y [gWe, (045 +50T)
j=1
/ T
~¢'Bju (v, 2+ 2v])] 31)

2.3.3 Fermion sector

Implementing T-parity and giving masses to all the fermions is less straightforward. In fact,
this is the main source of the trouble we will address and try to solve. Here, we will focus
on the leptonic sector but the same construction applies to quarks, except for the top quark,
that has extra couplings and additional partners.

First of all, in the usual procedure [6,7] one introduces two left-handed SU(5) quintuplets
in the anti-fundamental and fundamental representations, respectively,

—iazllL 02
lIll = 0 . Wz = O . (32)
02 —iO'ZZzL

The explicit form of these multiplets breaks explicitly the global SU(5) symmetry, because
they are incomplete, but the gauge subgroup is preserved. In particular, under a gauge trans-
formation,
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v Eovie, w5 v, (33)

For a T-parity transformation it is common to contemplate two options [6,7,26,27]:
a) ¥ > QD0 (34)
b) ¥ > —Zow,. (35)

Then one can define T-even and T-odd combinations given, respectively, by

v 4+ 2200, v — 2309,

a) ¥, = T, v = T, (36)
Y — Yo, v 4+ Yo

by ¥, = T, v = T (37)

The T-odd combinationlg; = (I11 +121)/ /2 needs to be paired with a right-handed doublet
I g so that ‘mirror’ leptons /i may get a vector-like mass. To that end, a right-handed SO(5)
quintuplet is introduced,

—io? ()R
Yr = IXR . (38)

—iO'QIHR

We will denote with a subscript & the T-parity assignment to be defined below. The T-odd
doublet (I°) g describes the ‘mirror partner’ leptons and x g is a gauge singlet, that in principle
can be taken either ( X+)R or (x—)R. Some authors [19,22-24] leave this quintuplet incom-
plete, including in it just the doublet /5 g. The transformation under the gauged subgroup
reads

G
Wg —> U,Wg, (39)

where Uy is an SO(5) nonlinear transformation that verifies Eq. (9) for a given V,. Under
T-parity, there are two possible realizations:

a) Vg 5> Qug, (40)
by Wp > —wp. 1)

The first one differs from the second in that xr is T-even; the rest of the fields are all T-odd.
With this in mind, one can correspondingly construct two versions of a Yukawa Lagrangian,

LD = —if (Wak + V1505 ") Vg +hc, @)
“%IEZ) = _Kf (325 +al EOQSJ'-Q) Yr +h.c. (43)

tailored to provide the mirror leptons with a mass of order « f'.
In order to give a mass of order Av to the SM leptons after the electroweak SSB, the
following Yukawa Lagrangian has been proposed [11,12,35-38],

M X X 55
gY _ITSXyZSVS (lpz )xzryzsz“‘("pl EO-Q)XEryESZ ER

+h.c., (44)
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where {x, y, z} = 3,4, 5 and {r, s} = 1, 2. Here, the left-handed fermions are embedded in
incomplete SU(S) quintuplets,

XL ) 02
vw=| o |, @& = 0 , (45)
0, X*lp

transforming under the gauge group as

G * G *
e L A 2 R 2 (46)
and under T-parity as
wX L @y = —sow)”, (47)

where the last equality follows from the field content of these quintuplets. Despite the ¢z
is an SU(S) singlet and all indices are contracted, this Lagrangian is not invariant under
the global SU(5) symmetry, broken due to X and the incomplete multiplets. Nevertheless,
we just need that the gauge symmetry G, is preserved, and this requires the introduction of
lI/lX (l1/2X ") transforming opposite to ¥y (¥,) so that the SM charged leptons, with left-handed
components in the T-even doublet [} = (I1 — I>1)/ V2, geta mass.! On the other hand, ¢
inherits no hypercharge from the global symmetry group. To give it the proper hypercharge
(Y = —1) one has to enlarge SU(5) with two extra factors U(1 )/{ and U(1 )’2’ hence preserving
gauge invariance [22],

SUG) x U] x U1, (48)

Then for any field the actual hypercharges under the gauged U(1); and U(1), will be the
sum of those under the U(l)/1 and U(l)’2 present in SU(5) plus the extra ones. The auxiliary
field X and its complex conjugate X* are introduced in Eq. (45) in order to reverse the U(1)
charges of the left-handed components and at the same time compensate for the hypercharge
assignment of the right-handed leptons. From the hypercharges of the X~ components in
Table 1 (note that all relevant products have the same values) and the requirements above
one derives the charge assignments for the fermion fields of Table 2. A particular realization
of the scalar X can be constructed with the fields already present in the model [11,22,37].
The element X33 has hypercharges (Y1, Y2) = (— 5 5) and it is a SU(2) singlet, so we can

identify X = 2337 and X* = (233)_’ which also verifies the right transformation under
T-parity X L x*2 ~

The mirror partner leptons (/) and the gauge singlet (x+ or x—) must be heavy. It is cus-
tomary [6,7] to give them a large vector-like mass introducing their left-handed components
(1)L and (x4)r in incomplete SO(S) multiplets,

() 0
= o |, w=[ o]l (49)
0o 0>

! The neutrinos are massless throughout this work.

2 In view of the charge assignments in Table 2, it is clear that X™* is not the complex conjugate of X, since
they do not have opposite hypercharges under the U(1) factors. However only gauged hypercharges matter
and they are actually opposite, so we prefer to keep this notation. Indeed, the particular realization for these
fields shows that one is the Hermitian conjugate of the other.
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Table 1 Hypercharges under U(1)] x U(1), C SU(5) of the X components in Eq. (44)

Yi Y)
213 % %
214 % —rlo
s % —Tlo
23 % %
24 % —%
295 % —%
21324 % 1%
21325 % %
223214 é 1%
2335 % 1%

Table 2 Hypercharge assignments under U(1)] x U(1)5 x U(1)] x U(1)}, where the single-prime abelian
groups are inside SU(5) and the others are extra factors

Yl/ Yé Yl// Yé/ Y1 Y>
b : ! -} -} N
e 0 4
e TS S 0 & -
oo i -} -, & -
4 : -} -} 4
x : -} -t b
x ; -} -} b “h

The hypercharges ¥ = Y + Y> under the gauge group U(1); x U(1); come from Y¥; = Y} + Y;’, j=12

Their direct mass terms are assumed to be a soft breaking of the SO(5) global symmetry and
have the form

Ly, = —M0), (g — My (o), (x£)r +hc. (50)

Finally, the CCWZ formalism provides us with the kinetic terms and the gauge interactions
of all fermions,

L = Lr + Ly + (W = V) + (Pg > W) (5D
where
L, =iV YD +iVay" Dy (52)

and depending on the T-parity implementation,
= 1 1
‘gl(”t;) = i¥gry" [aﬂ + EST (Dut) + ESEODZ (20§T):| PR, (53)
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b 1
2y = gy [0 + 58 (Dyb)
1
+ 595):00;; (Zo&") 2] W, (54)
with the covariant derivative defined as
D, = oy — V2ig (W, 0 + W5, 04)
+2ig' (BiuY1 + BouYa). (55)
And for SM right-handed leptons,
- . 1 1
L =ilg |8, — V2ig —5 B = 5By ) | tr
=ilg (9, +ig By) Lr. (56)

3 Non-gauge invariance of the original model

This section is devoted to one of the main points of this work: the incompatibility between
gauge invariance associated to the heavy modes and the usual T-parity implementation in
which the gauge singlet x is assumed T-odd. We will also show that in any case the content
of the fermion multiplets transforming nonlinearly under SO(5) cannot be arbitrary in order
to preserve the gauge invariance and T-parity at the same time.

Let us consider a generic global SU(S) transformation V' and find the corresponding
nonlinear transformation U of SO(5), related by the spontaneous breaking of the first group
down to the second. Both transformations can be parametrized by

V= ei(oz“X"-&—,BbTb)’ U= eiobT[” (57)
where U depends only on the SO(5) unbroken generators 7” and V depends on all the
generators of SU(5). The fact that U is a function of V and the Goldstone fields I7 is
encoded in the parameters o” = o?(a?, %, IT). We can derive these parameters by taking
infinitesimal transformations and using Eq. (9):

(1 FiatXY 4 iﬂbT”)g (1 - iabTb)
_ (1 n iabTb) £5, (1 +iatxT 4 iﬂbTbT) o
= o/(T", &) = p"(T". &} + o« [X“, €], (58)

where we have used Egs. (2) and (5) to eliminate Y. As £ is a power expansion in the inverse
of the high energy scale f,

- Sl in I
£=ell = ;F, (59)
n=0 """
one can assume the following ansatz for the parameters o?,
© )
o

o’ = f—’; (60)

n=0
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At zero-th order in 1/f, & = 1 and we find cré’ = B%, which gives the linear part of the
transformation. Particularizing for a gauge transformation, if higher order corrections were
neglected, U, would only depend on the SM gauge generators and then the Lagrangians of
Egs. (42) and (43) would be both gauge invariant, with or without completing the SO(5)
quintuplet ¥ with the gauge singlet and the partner leptons, because then the SM gauge
generators would not mix the upper and lower components of the quintuplet. However, this
simplification cannot be done. To obtain the nonlinear I7-dependent effects of the transfor-
mation, one must solve Eq. (58) for higher orders,

o0

1 " 1
b n b b n
LN S Sty
+m g
o fn m p| = fn
a n
+af Zﬁﬁ [xe, m"]. (61)
Renaming the indices of the term in the Lh.s. we have
Z b —{Tb "
+
n,m=0 f” "
_ZZ b i {Tb Yyian m} (62)
n=0m=0 f” (n—
and then
n jn—m in
Yoo AT Ty = B (TP, 1T
o (n —m)! n!
Tn
tatl [X*,.1"], n>0, (63)
n!
that can be rewritten using that oé’ = pb,
ln m l-n

where we see that the nonlinear part of the infinitesimal U transformation only depends on the
coefficients that go with the broken generators. With this expression we can obtain directly
the coefficient of’ using that the basis of generators is orthogonal,

200 =ia®u ([x°. 1] T"). (65)

This trace is different from zero because the automorphism in the Lie algebra implies
[X a xb ] ~ T*¢. The fact that in this expression appears the commutator between the Gold-
stone matrix and the broken generators in short implies that o brb depends in principle on a
linear combination of all the SO(5) generators. Coming back to Eq. (64), separating the term
m = n from the rest and taking traces, we obtain a recursive formula for the n-th coefficient
(n>1),

207T" = Za {T” m="} + o —[x“ . (66)
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In general, the right-handed side will depend on all the SO(5) generators. Using the orthonor-
mal basis of generators, we can multiply both sides of the previous equation by 7 and take
the trace to find

|:( Z b " {Tb Yo m}

+a° i[x“ H])T] n> 1. (67)

n!

Just for completeness, we also derive o5 that turns out to be zero,
1
204 =tr|:(—lal{Tb I} — 20{“ [X”,H2]> TC]
(rer ([, ] T2) 7, 1) = 0 [x7, 112]) 7€

o
= —tr[(«{[X9, ], T} — o« [X*, [T%]) T°]
[

N\'—‘N\*—‘NW—‘

tr[(ef X, 1*] — o [X°, 1*]) T¢] = 0, (68)

where first we have substituted o f’ calculated above, then we have replaced A = %[X 4 I
tr(AT?)T? in {A, [T} = tw(AT?){T?, [T} and finally we have used {[X”, 17] LI} =
[X“, 1'[] T+ 11 [X“, 17] = [X”, 172]. Therefore, given an infinitesimal SU(5) transfor-
mation

Val+ia®X+iBT?, (69)

the corresponding infinitesimal SO(5) transformation reads

2f f?

which is a result of the particular embedding of SO(5) into SU(5).
Now we focus on a gauge transformation, belonging to the subgroup [SU(2) x U(1))]; x
[SU2) x U(1))]> € SU(5) that is spontaneously broken to the SM group [SU(2) x U(1))].

Then V, is expanded by no more than the union of the set {Xg} = {0 - 05.Y1 - Y}

3
UnL4iptTh — g [x, ]+o<n> (70)

of broken generators and the set [ T; } = {Q‘l’ + 05,71 + Y2} of unbroken ones. However,

from Eq. (70) it is clear that, due to the nonlinearity of U, restricting ourselves to transforma-
tions along the gauge directions in the group does not imply that the matrix U, depends only

on the diagonal gauge subgroup generators: the commutator [X a. 11 ] cannot be expanded

entirely in terms of the SM gauge generators because [ g ] #tr ([ g 11 ] Tb> Téf’ , S0 it

requires the full set of SO(5) generators. As a consequence, the Lagrangian f}fﬁ) in Eq. (43)
whose second term (the T-parity transformed of the first one) depends explicitly on £2 (the
element of the center of the gauge group, commuting only with the gauge generators) is not
invariant under a gauge transformation,

—kf (WrWg + le().QS-i“.QlI/R)

G g _
2y ef (wzgwRerlongTU;QUgwR), 1)
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Fig.1 One-loop Feynman
diagrams contributing to the
ultraviolet divergences of lepton
flavor changing Higgs decays in
the original LHT if the gauge
singlet x is T-odd ('t
Hooft-Feynman gauge)

because in general U, does not commute with £2.

This has two important implications. First, this implementation of T-parity in the fermionic
sector with a x T-odd must be discarded because it is incompatible with gauge invariance. In
fact we have found that this Lagrangian gives rise to unmatched divergent contributions in
lepton flavor changing Higgs decays [27] from the one-loop diagrams of Fig. 1 that involve
a (x—)r- On the other hand, regardless of the T-parity realization, it results apparent that
the SO(5) multiplets must be complete (as it is the case of ¥x) because a nonlinear gauge
transformation U, mixes all its components and not just those laying in the invariant subspaces
under the linear part of (70). In particular, the incoleete SO(5) representations ¥, and lI/LX
of Eq. (49), introduced to give direct mass terms to [° and x through Eq. (50) by coupling
them with ¥g, do not only break the global SO(5) but also the gauge invariance, as we have
just shown.

In contrast to the case of a T-odd x_ discussed above, the amplitudes for lepton flavor
changing Higgs decays are finite at one loop if the gauge singlet is x4, T-even. However,
these amplitudes exhibit a non-decoupling behaviour proportional to the logarithm of the
mirror partner masses and to the misalignment between the mass matrices of mirror and
mirror-partner leptons [26]. This new source of lepton flavor violation can be viewed as a
vestige of the broken gauge invariance, that is restored when partners and mirror partners
share a complete multiplet and hence get their masses from the same coupling. Actually
the one-loop amplitudes are finite thanks to the contributions of both types of T-odd leptons
that are individually divergent but cancel each other, so mirror partners cannot be ignored.
Interestingly, the contribution of x4 does decouple and is finite by its own.

At any rate, we need a new mechanism to give masses at least of order f to the partner
leptons and the y, because they must be heavy enough to fulfill the EWPD constraints [11, 12].
A way to proceed that at the same time is compatible with the gauge symmetry and T-parity
is the object of next section.

4 A gauge-invariant littlest Higgs with T-parity

In this section, we construct in detail the Lagrangian of a new LHT with explicit compat-
ibility between gauge invariance and T-parity in order to address and eventually solve the
problems we encountered in previous sections. The guiding line is the necessity of giving
gauge-invariant mass terms to the gauge singlet y g and the mirror-partner leptons Tf? without
introducing their left-handed counterparts in additional SO(5) multiplets transforming like
W, which would then be incomplete and hence at odds with the gauge symmetry.
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4.1 A minimal extension of the global symmetry

The simplest way to proceed consists of assuming that the new fermion fields (left-handed
components of x and lNC) transform only under an external SU(2) x U(1). Then they will not
mix with the others, as it would happen if they belonged to the same SO(5) multiplet. This
requires the enlargement of the original global symmetry group (48) to at least:>

SU(5) x [SU2) x U(D]{ x [SUQ2) x U(D]5 . (72)

This larger global group gets broken spontaneously when fwo nonlinear tensor fields, X~ and
X, acquire a vey at an energy scale f (for simplicity we take the same scale in both sectors),

SU(5) x [SUQ2) x UD]] x [SUQ2) x U5

2050 505) x [SU) x UD)]". (73)

where X in Eq. (1) breaks spontaneously SU(5) down to SO(5) as before (see Sect. 2.1),
and fo = X breaks the extra piece to its diagonal subgroup [SU(2) x U(1)]”, leaving
1444 = 18 Goldstone bosons. This particular breaking direction allows us to take advantage
of all the properties already mentioned. On the other hand, since extra U(1) factors had to be
introduced before to accommodate the hypercharges of the right-handed SM charged leptons,
this is the minimal and most natural extension one can think of.

Throughout the rest of the work, the notation we follow for the extra fields and their corre-
sponding transformations consists of putting a hat over their symbols. In our construction the
new sigma field X transforms only under the diagonal subgroup SU(2)” x U(1)". To be con-
sistent, for the scalar and fermionic sector we take the representation of [SU(2) x U(1)]’1’ X
[SUR) x U(1 )]/2’ over a five-dimensional complex space generated by the same set of matri-
ces of Egs. (11) and (12).

The gauged subgroup is again [SU(2) x U(1)]; x [SU(2) x U(1)], but now it is the sum of
the [SU(2) x U(D)]} x [SU(2) x U(1)]; € SU(S) plus the extra [SU(2) x U(1)] x [SU(2) x
U(D1; of Eq. (72), so there are the same number of gauge bosons. Likewise, the SM gauge
group will be the sum of the [SU(2) x U(1)]’ inside SO(5) and the extra [SU(2) x U(1)]”.In
this way, we can have fermions that transform only under the SM gauge group alleviating the
aforementioned difficulties. The Lagrangian for the gauge fields and their self-interactions
is as shown before in Eq. (20).

4.2 The additional Goldstone fields

According to the SSB, the additional Goldstone matrix is expanded by the broken generators
of the extra group {Qf — 09, Y1 — Y2}. It reads

3 In [16] the same extension of the symmetry group was proposed. However, they chose to embed the right-
handed mirror leptons in a representation of the diagonal subgroup, coupling them to their left-handed coun-
terparts through the new nonlinear scalar field. There no mirror partners are introduced, and the fermion SU(2)
singlet does not couple to the Higgs hence preventing the unwanted quadratic mass corrections. Here, we prefer
to keep the fermion content and the structure of Yukawa couplings of the usual LHT, completing the SU(5)
fermion multiplets and providing singlet and mirror partners with masses compatible with gauge invariance.
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~0 = ~
e _n e 0 0 0
2 20 V2
o 0 7
- ———= 0 0 0
V2 2 V20
= 4
IT = 0 0 gﬁ 0 0 . (74)
~0 ~ ~
0 0 0o .1 e
2 V20 V2
0 0 0 Cal @ 7
V2 2 V20

These Goldstone fields are charged only under [SU(2) x U(1)]{ x [SU(2) x U(1)]5. Under
the SM gauge group they decompose in

Iad 2 19 @ 30, (75)
including a new SU(2) triplet

Sl 8
g

\2 (76)

g)
Il

4

and a singlet (77). These scalars have the same quantum numbers as the corresponding unhatted
would-be Goldstone bosons (to be eaten by the heavy gauge fields) and will actually mix
with them at order v2/f2. From this matrix we build the nonlinear sigma field

E=elIf O GETT = GExyVT 5, a7

where V, U are transformations of the extra group. In the particular case of a gauge transfor-
mation V, and ‘7g coincide. However, from Egs. (9) and (77), U, and U, ¢ are different, since
the former depends on V, and I7, involving all SO(5) generators, while latter depends on V
and I7, requiring just SM generators.

We also introduce the field that transforms linearly under the extra group,

—~ " —~~

S =ExEl =8y, L VIV (78)
To assign a T-odd parity to all new scalars we define

~ T —~

T — —I1 (79)
and therefore
Ly 51 55, (80)

A gauge-invariant and T-parity preserving Lagrangian for the kinetic terms and self-
interactions of the new scalars can be built similarly to %5 (30),

2
L= %tr[(D”Z)TDMZ’], 81)
where the covariant derivative for < is defined analogously to that in Eq. (31),
2
DL =0,5 -2y [gws, (01 +£0T)
j=1
—¢'Bj, (Y,-f + ijT) ] (82)
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Fig. 2 One-loop Feynman
diagrams that would lead to
unacceptable quadratic
divergences in the Higgs mass if
the mixed Lagrangian of Eq. (83)
did not vanish

(b)

At this point one may argue that an additional term mixing both scalar sectors,
[P . f2 123 T 55
Lg=ag fu|(D'E) DX | +he, (83)

is both gauge and T-parity invariant and hence should be included. However, this Lagrangian
involves couplings of heavy gauge bosons to scalars that lead to unmatched quadratically
divergent contributions to the Higgs mass from the diagrams of Fig. 2. Therefore, one must
take a g5 = 0.

4.3 Extra fermions and their interactions

The original LHT allows for masses of SM and mirror leptons through Yukawa interactions
but, in order to be consistent with gauge and T-parity invariance, the right-handed components
of mirror leptons must share a complete SO(5) quintuplet ¥ with T-odd mirror-partner
leptons (I°)g and a singlet (x4)r that must be T-even according to Eq. (71). To provide
these fields with a heavy mass one needs to introduce their left-handed components as well,
but they cannot live in SO(5) multiplets transforming like ¥ (as the ¥, and lI/LX of Eq. (49)
usually introduced) because then they would be incomplete and their vector-like mass terms
would break gauge invariance.

We show below that the goal of giving masses to all fermions compatible with gauge
invariance and T-parity can be achieved in the context of an extended global symmetry with
the modified spontaneous breaking pattern described in previous section. In a first proposal
we include (ZNC_) 1 and (x4)r in a quintuplet charged only under the gauged SU (2) x U(1)
subgroup of the enlarged global symmetry, but this minimal model will generate undesired
quadratic contributions to the Higgs mass. Then, as a viable solution, we are forced to
further extend the fermion content with additional T-even mirror partners Tfr and a T-odd x_—
embedding their left and right handed components in appropriate representations of SU(5)
and SU(2) x U(1), respectively.

4.3.1 A first attempt introduces quadratic Higgs mass corrections

Let us introduce the left-handed components of 1¢ and X+ in such a way that they transform
under the SM gauge group but do not mix under an SO(5) transformation. Then, taking a
representation of the extra group that acts over the five-dimensional space, we compose the
following multiplet

@ Springer



Eur. Phys. J. Plus (2022) 137:42 Page 17 of 44 42

R -\ g
V=1 ilxy)r |. ¥ — Ug¥p (84)
0

emphasizing that it transforms nonlinearly, and not under SO(5) but just under the diagonal
subgroup of the extra group. For simplicity, we have chosen that both fields lay in the same
multiplet, but they could be split into two and our conclusions would not change. Under the
discrete T-parity symmetry we define

T T (85)

in order to assign the proper parities. The right-handed fields form the SO(5) quintuplet ¥
of Eq. (38) with

—io2(I%)g G T
U= ixpr |, Wr—> UWr, Wg— Q2. (86)
—ialeR

We may now pair @L with Wg in the following Yukawa Lagrangian

255 = O, (86 + &) wp +he 87)

to give ¢ and X+ amass of order «’ f, compatible with gauge invariance and T-parity since
Ee 75 O fieu], (88)

Ee 5 iele, (89)

where we have used that [£2, é‘ ] = 0 because only gauge generators are involved.
Unfortunately, these interactions lead to unacceptable quadratic divergences to the Higgs

boson mass from the diagrams in Fig. 3. Diagrams (a) and (b), already in the original LHT,

cancel each other.* However (c) and (d), from the new interaction in Eq. (87), add up to yield

3K/2A2
472

In order to prevent such a quadratic divergence, an alternative mechanism is needed to give
masses to x and the mirror partner leptons.

sm3 = (90)

4.3.2 A viable model with consistent fermion representations

Instead of including the new left-handed fields in quintuples transforming nonlinearly under
the SM gauge group as above, we proceed to complete the SU(5) multiplets as follows,

—ic?ly —i(fz’lng
=\ ixie |, Ya=| ixe |, oD
—io?l¢, —io?ly
with the usual
Gy % Gg T
U — VU, W — Vo, W — 2300, 92)

4 The cancellation occurs regardless the mechanism that gives mass to x4 because the divergence is indepen-
dent of the x mass [27].
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Fig. 3 One-loop Feynman (x+)r
diagrams contributing to the
quadratic divergences of the
Higgs self-energy from the
fermion sector in the LHT
extended with ¥y (84). Diagrams
(a) and (b) from Zy,, cancel
each other, whereas (c¢) and (d)

from ,2”5 § (87) are proportional
to «’2 and do not cancel

(¢ d)

so that the (x+)r and the (’lvi) g inside the SO(5) quintuplet ¥ of Eq. (86) can couple to
them and get a mass proportional to « f through the same %y, in Eq. (42), like the mirror
leptons Iy do.

But still the T-odd combination (x )r = (X1 — x2L)/ /2 and the T-even combination
of the mirror partners (Ti) L = (ZNTL — ZNEL) / +/2 remain massless. [Note that although the
T-parities of these fields are different the relative sign in previous definitions is the same
according to Eq. (36).] At this stage, barring the explicit breaking due to the gauge interactions
of [SU(2) x U(l)]z, the theory would be SU(5) invariant because now the fermion multiplets
are complete, so the Higgs would be an exact Goldstone boson with no mass corrections from
this sector through loops at any order in perturbation theory. To give a mass to these additional
combinations of fields, we introduce their corresponding right-handed components in an
incomplete multiplet that only transforms under the SM gauge group [analogous to Eq. (84)
but for opposite chiralities and T-parities],

R —iaZ(IN_C,_)R Gy o~ - P .
YR = (X R , YR — UgWr, Vg —> —QWg, 93)
0

where we emphasize one more time that the new T-even partner lepton doublet and the new T-
odd singlet do not mix under a gauge group transformation what allows them to be separated
in different SO(5) multiplets. Finally, we couple this multiplet to ¥ and ¥, through the
nonlinear field é

4, =% f (Waf ¥ %E") Ty +he, (94)

using again that £2 commutes with £. This way Tﬁr and x_ get a mass of order ¥ f.

As this new sector does not have a direct coupling with the Higgs field and the Lagrangian in
Eq. (42) with complete multiplets is SU(5) invariant, we do not expect quadratic divergences
in the Higgs mass. In fact, the relevant one-loop diagrams, shown in Fig. 4, result in a
logaritmically divergent correction to the Higgs mass of

" log A% (95)
T

This result obtained diagrammatically will be reproduced in Sect. 5 from the calculation of
the Coleman—Weinberg potential using the background field method.
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Fig. 4 One-loop Feynman (x)r
diagrams contributing to the

quadratic divergences of the

Higgs self-energy from the h-- - h
fermion sector in the new LHT.
Diagrams (a) and (b) arise from
"ZYH and cancel each other, as in (a)
Fig. 3. The rest stem from ZyH
(94) and also cancel among
themselves

VHR (7)r
(e) ®
(x+)r
h --h
(v
(2)

There remains the introduction of kinetic terms and gauge interactions of all fermion
ﬁelgs in the model. The new fields EL and x,; that make up the left-handed components
of I{ and x4 belong to the SU(5) quintuplets ¥, (r = 1, 2) so they will get their kinetic
terms and gauge interactions from the same Lagrangian .F, of Eq. (52). The right-handed
components of ¢ and x+ were already in the SO(5) quintuplet ¥ with kinetic terms and
interactions from ;—?FR in Eq. (53). For the right-handed fields (Ti) g and (x—)g in the new
SO(5) quintuplet ¥ we introduce

= 1. ~ 1. ~ ~
Zp, = G gp" [a“ + 587 (Dué) + 550D (zos*)] 7 %)
with the covariant derivative in Eq. (55). Notice that under a T-parity transformation
=< A A~ T =< =~ AN
U ré' DTk - T b oD} (208") T, ©7)

since £2 commutes with £ and the gauge generators. The SM right-handed leptons are singlets
under SU(2)] x SU(2); and only the charged ones get their proper hypercharge under the
extra U(1)] x U(1)}; with gauge interactions £ already given in Eq. (56).

For the sake of clarity, we show in Tables 3 and 4 the transformation properties of the
fermion fields under the different SU(2) x U(1) factors. The fields belonging to the complete
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Table 3 Charge assignments under the different [SU(2) x U(1)]; x [SU(2) x U(1)]»

LR (1, Do,0) (1,1)(7
X (1,1)(z %) (1,1)(7 %) (1,1 %7%)
) (1,1

[SUQY x U(Y]* € SUG) [SU@)” x u()'T? [SUQ) x U(D)auge
by U T (1, D) U T
I @05 (1. D00y @05
xor Dy gy (. Do) R
XL .0 ) (1, Doy .0y )
&, @D 1) (1, D0.0) @D(a 1)
e, 1.2, 2 (1, D.0) .2 4
(
(
(

X* (1,1)(% (1,1)(_

Table 4 Charge assignments under the different [SU(2) x U(1)]

SU2) x U(1)’ c SO(5) SU®R)” x U1)” [SU2) x U(l)]gauge
—io?()p 24 2
Yr=| i(X+)R Lo lo Lo
— 2 2
ioc“lyr _% _%
(4 1 2 2
( +)R 0 % %
(Xr Lo Lo Lo

SO(5) representation are written in their corresponding multiplet in order to emphasize that
they mix under a gauge transformation.
To summarize, the full Lagrangian of the new LHT model reads:

L =%c+ L5+ L5+ L+ Ly + L, + L
+ Ly + L, + Ly (98)
4.4 Physical fields

4.4.1 Gauge bosons

After the electroweak SSB, the SM gauge bosons are obtained from the T-even fields of
Eq. (25) by diagonalizing the Lagrangian .Zs of Eq. (30),

+ 1 12 Z\ _( ew sw w3
w _Tz(Wq:lW), (A)_<—swcw>(3> (99)
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with
W“:W‘GJFW;, B=BI+BZ'
V2 V2

To get the T-odd gauge bosons, one needs to expand both £ and £ (81) up to order v2/f?
to derive the heavy physical fields from those in Eq. (27),

(100)

1 .
Wi = 7 (WhFiWE), (101
2
z L —xu'm ) (w3
()= 7)) o
H foﬁ 1 H
with
wi — Wi B — B> 5gg’
weé =—1 2 By—— = yp=—2° 103
H 7 H 7 H 868 —7) (103)
Their corresponding masses to order v>/f? are
2
gV v
Mw=7<1— 12f2>’ Mz = Mw /cw, (104)
)
My, = Mz, =~2gf <1 - —16f2> : (105)
2 502
My, = gg’f (1 - 16f2>. (106)

Notice that even though the gauge bosons are the same as in the original model, the masses
of the T-odd combinations are at leading order a factor of /2 heavier (see for instance [26]).
This is because the new extra scalar sector parametrized by S also takes the vev Yo hence
giving an additional contribution to the heavy gauge boson masses. However, the T-even
gauge bosons couple only to the Higgs field, belonging to ¥, and higher order corrections
are forbidden by T-parity, so their masses do not change.

4.4.2 Scalars after gauge fixing

The spontaneous breaking of gauge symmetries leads to kinetic mixing between gauge bosons
and would-be Goldstone boson fields. In the mass eigenbasis, these unwanted mixing terms
can be removed, up to an irrelevant total derivative, by introducing the appropriate gauge-
fixing Lagrangian

1 1
Lyp = —— (0, A" — — (8, Z" — £z Mzn")?
of 25)/( A" 252( i §zMzm™)
1 u . -2 1 " 2
- §_7W|8MW +ikwMwn™|" — E(auAH‘i‘%'AHMAHU)
H
1
— 5 OuZly — 2, Mz, )’
£y
1 oy -2
— STIBHWH + iEwy, My, 0|, (107)
H
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defining which Goldstone fields are unphysical and can be absorbed.

After the SSB, the kinetic terms of the scalar fields we have introduced are neither diagonal
nor canonically normalized. Besides, the new set of T-odd scalars from the extra group mix
with the old ones that have the same quantum numbers. In order to define the physical scalars
and identify the actual would-be-Goldstone fields we will perform the following redefinitions
in two steps. First we perform a rotation of 45° in the subspace of every scalar pair with same
quantum numbers, so that only one of them (the unhatted) will retain the kinetic mixing with
a gauge boson hence becoming the actual would-be-Goldstone field at leading order,

w HZE@F—aﬂ,ai%:%@)+wﬂ (108)

cyeiaﬁ—ﬁyaﬂﬁia&+§% (109)
1 1

n%ﬁ(n—m, ﬁ%ﬁ(nﬂ%- (110)

At this point all kinetic-mixing terms are of order v2/f2. In the next step we impose that all
kinetic terms are canonically normalized and diagonal so that the actual would-be-Goldstone
fields could still be removed by the gauge fixing (107) at order v2/f2. To that end we rescale
and mix them as follows,’

h— h, (111)
o 2
7% > 7 (1+ . 2) (112)
2t ot (142 (113)
12 f 2
0, @014 v? (114)
122
2
of S oP (14
1212
+ (= =+ V50 + D) o 12f2’ (115)
+ + v + + v
ot & ot (14 +i (0 + @ (116)
( 24f2> ( )12\/“][2
Tt 5 pFE, (117)
502
n — 1+48f2
N —Sgn—«/g[g’ (wo—@0+2®P)—12ngw0]L2 (118)
12g/ f2’
0 0 v?
w = w (1+48f2>
5g (—@0 +20F +«/§7)\) - ﬁ(5g+ 12¢'x) 0 02
+ (119)

60g f7’

5 We follow the same procedure as in [12] for the original LHT, but the shifts are different in our model.
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2
+ + v . +  ~3) Y
ot > o <1+48f2>+(i1ﬁ¢ -o )12f2’ (120)
502 v2
o1+ 22 (5 — V30" , 121
'7_”7<+48f2>+ n fw)24f2 (121)
~0 __ ~0 v 0 ~ v
W — o (1+48f2>+<w —ﬁn—x@n) a7 (122)
~t o~k v? L v
w- —> w <1+48f2>+w 24 (123)

After these redefinitions, the scalars 7, ©° and w® are the would-be-Goldstone bosons of the
SSB of the gauge group down to the SM gauge group, eaten by Ay, Zy and le Similarly,
70 and 7* are the would-be-Goldstone bosons of the SSB of the SM gauge group down to
U(1)em, eaten by Z and W*. The remaining scalar fields are all physical. They are the Higgs
boson, a triplet of hypercharge ¥ = 1 composed of @*+, @*, @Y and @7, and the four
new scalars of hypercharge ¥ = 0, a singlet 77 and a triplet composed of @° and @+. All of
them get a mass by gauge and Yukawa interactions from the Coleman—Weinberg potential
[28,35]: the triplet @ receives a mass of order f from quadratic contributions and the rest
from logarithmic contributions to the potential. As a consequence the masses of 7, @° and &+
are independent of f, but they can still be large thanks to the interplay of different Yukawa
couplings (see Sect. 5.2.3).

4.4.3 Fermion masses and mixings

When the fermion content of the model is extended beyond one family, the Yukawa couplings
K,k and A in Ly, fyH and %y, respectively, must be understood as 3 x 3 matrices in flavor
space. Omitting flavor indices, for each of the three SM (T-even) left-handed lepton doublets
(/) there is a vector-like doublet of heavy T-odd mirror leptons (/g ),

VL hiy —Dbr

I = i 124
t (£L> V2 (124

VHL hip +Dbr VHR
l = = —, [ = s 125
= (o) =5 = () )

where
Ly, = (Zf) , r=12 (126)
r

are part of the SU(5) multiplets ¥, in Eq. (91) and /g is part of the SO(5) multiplet ¥ in
Eq. (38). The SM right-handed charged leptons £ are singlets under the full SU(5) but have
hypercharges under the external U(1)” groups.

In addition there are two heavy right-handed mirror-partner doublets,

e ()R SeN (Ei)R)

The first one is T-odd and is necessary to complete the SO(5) multiplet g together with
(x+)r, while the second is T-even and lives in the incomplete multiplet Wg in Eq. (93)
along with (x )r, charged only under the external SU(2)” x U(1)”. Their corresponding
left-handed counterparts come from the SU(5) multiplets,
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o (GO _ e+ G
)L = ( @ ) =5 (128)
o (D) =B
(DL = ( Ay ) =75 = (129)
with
o ()L _
@), = ((em)’ r=12. (130)

Finally we have the aforementioned (x4 )g and (x—)g. Their left-handed counterparts
are the combinations with proper T-parities of the fields xi7 and x2; completing the SU(5)
multiplets,

X1L + XL _ XIL — XaL

ﬁ ’ (Xﬁ)L - \/Q

Next we introduce flavor indices and derive the mass eigenstates. Since T-parity is exact,
the SM (T-even) charged leptons £ do not mix with the heavy T-odd combinations. They
cannot mix with the T-even Zi either, because they have opposite hypercharge and a coupling
through the Yukawa Lagrangian %%, would require a non-existing scalar field of hypercharge
Y = 1 acquiring a vev. Therefore, the SM mass eigenstates result from the diagonalization
of the matrix A in Eq. (44) leading to the replacements

(L = 131

O, — Vitr, Lr— Vilg, (132)

and the tree-level SM charged lepton masses from

AV v?
V2 <1 - sz) = VimeVy', (133)

where Vf g are unitary matrices in flavor space. Likewise, the heavy charged lepton mass
eigenstates are obtained by the replacements

tur — Vileur, tur— VE8eyr, (134)
) = V@)L, )r— VEE)r, (135)
@y — V@, FEor— Vi TEr. (136)
with
Vacf = Viime, Vit = viimp v, (137)
VIRf = vfim;c+ vi, (138)

i . . . .
where VLH r and VL+R are unitary matrices. In contrast to [26], in our model the T-odd mirror

lepton doublets /7 and their partners 1€ rotate with the same matrix as the T-even singlets x4,
getting a mass proportional to « from the Yukawa Lagrangian .%y,,. The new combinations
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Table 5 Order of the mixing between neutral fields

(X)L (L vy VHL DL (G2
Ty . - ~v - ~v -
COr - . - - - -
VHR - ~v - . - ~ 2
DR - - - - . -
(IR - ~v - ~ 2 _ R

A dot means that they are connected by the mass term and a dash indicates that no mixing term is generated
to order v?

with opposite T-parities, '11 and x , get masses proportional to ¥ from 4%, Then for the
neutral lepton sector the fields have to be redefined as follows,’

vir = Vivur, var — Vg, (139)
O = VI, G9% = VE )R, (140)
~ ©o ©o
GO = V"D, GDr = Ve GOk, (141)
L = VI Ger = Vi r,s (142)
© 7
L= V. GO, GOr = Vi" Xk (143)
and the corresponding mass matrices are diagonalized by
2
v
Vi f (1 - W) = Viim,, Vit = vimge vt (144)
2
N, (1 _ 4%) Vi, v (145)

“ o

VIRf =V, my Vi = V) mie Vi (146)

To find the mass eigenstates of the neutral leptons one also has to take into account that those
with same gauge quantum numbers mix as well when the Lagrangian is expanded up to order
v2/f? (see Table 5). The mixing of order v/ f is the most pressing to include, since it corrects
the masses at order v/ f2. The mixing of order v? /£ only plays a role in the diagonalization
matrix because it enters in the masses at order v*/f*.

The misalignment between the sectors «, ¥ and A is a source of flavor mixing. The flavor
mixing matrices parametrizing this misalignment can be defined as follows:

v=v/Tvt W=v,vH (147)

.. L . .
One could argue that another mixing matrix VLJrT Vf is also needed, but this is not the case
because there is no gauge or Yukawa coupling between the SM doublet /;, and the new fields.

On the other hand, the matrices W = Vf’TVLH and Z = (Vl)e()TVI? introduced in [26,27]

6 In[26] the partner lepton fields T are rotated with matrices Vf - Here, we adopt the convention of rotating
their conjugates T¢, which seems more natural as these are the ones embedded in the SO(5) quintuplet. To

~ E‘c * ~ Zz‘ *
relate both conventions, Vf = (VR*> and Vlg = (V{) .
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are both the identity in our model, since now the T-odd combination of the mirror-partner
leptons and the T-even combination of the x receive their masses from the same Yukawa
Lagrangian .25, .

This completes the derivation of the full Lagrangian. Next, we proceed to the calculation
of the Goldstone potential, which is generated radiatively.

4.5 New fermion contribution to LFV Higgs decays

In the original LHT model one can define two different implementations of T-parity on
the fermion fields. Depending on the T-parity realization, the singlet xg inside the SO(5)
quintuplet ¥ in Eq. (38) can be chosen T-odd (x_)r or T-even (x+)r. As we have shown,
the T-odd case is incompatible with gauge invariance, resulting in an infinite contribution to
lepton flavor violating (LFV) Higgs decays at order v?/f? [27]. However, the T-even option
gives a finite result. In short, this is because the infinite contribution of mirror and mirror
partner leptons cancels each other [26] but the individual contribution of a T-odd singlet is
divergent. On the other hand the contribution of a T-even singlet is finite, as will be presented
elsewhere.

As already emphasized, gauge invariance requires the singlet in the SO(5) quintuplet to be
T-even. Our model verifies this requirement. Our (x4 ) g has the same couplings with the SM
charged leptons as the T-even singlet of the original LHT, so its contribution to LFV Higgs
decays is finite as well. Moreover, to provide gauge invariant mass terms to all the fermions
in our model, we had to enlarge the fermion field content. Firstly we have completed the
left-handed SU(5) quintuplets in Eq. (91). Their combination with well-defined T-parity now
includes two new singlets (x )z and two new doublets of mirror partners leptons (Ti) L apart
from the usual doublets /; and /g7 of SM and mirror leptons, respectively. And secondly
we have introduced the right-handed quintuplet @R in Eq. (93) including a T-even doublet
of mirror partners (Tﬁr) g and a T-odd singlet (x_)r. One may argue that these new fields
could reintroduce unwanted divergences in LFV Higgs decays, since in particular there is
anew T-odd (x_)r. To prove that this is actually not the case, below we will analyze their
couplings to the SM charged leptons. They are needed to compute the divergences of the
different classes of one-loop diagrams (see e.g. [26]). The relevant vertices come from the
Lagrangians .Zf, , Ly, ffyﬂ and .y in Eqgs. (52), (42), (94) and (44), respectively.

The couplings between gauge bosons and left-handed fermions in ., involve the gauge
generators in Egs. (11) and (12), that cannot connect the upper and lower components of
the quintuplets, hence forbidding any coupling between the SM charged leptons and the new
left-handed fermion fields. Concerning the Yukawa Lagrangian .%y,,, the new left-handed
fields share quintuplets with /17 and /> preventing any coupling to the SM charged leptons.
On the other hand, the new Yukawa Lagrangian fyH couples /17 and [, to the multiplet
@R in Eq. (93) through the nonlinear sigma field E Since it is built as the exponential of the
new Goldstone bosons multiplying the broken combination of gauge generators, the same
argument applied in .ZF, is also valid here. In particular, the T-odd right-handed singlet only
couples to its T-even or T-odd left-handed counterpart through the new Goldstone fields.
Therefore, its interactions are completely different to those of the original model with the
T-odd singlet option. Finally, the Yukawa Lagrangian %y only couples the right-handed
SM charged leptons £ to I and lp;, because the multiplets lI/lX and lIIZX* in Eq. (45) are
incomplete. As a consequence, in our model there are no vertices between the SM charged
leptons and the new fermion fields.

Finally, the new neutral fields might still generate a divergent contribution through mixing
with other fields that have direct couplings, as vy g for instance. Restricting ourselves to
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order v/ f? the possible terms are presented in Table 5. Among the one-loop diagrams listed
in [26] one can distinguish two different cases. In the case where the diagram involves a
Higgs coupling to two neutral fermions, that can be inferred from Eq. (144) and Table 5 by
substituting the vev by a Higgs boson, at least a mass or one mixing insertion is required.
On the other hand, one may check that before the mixing insertion the degree of divergence
of this kind of topologies is at most of order log A in the cut-off regularization scheme.
Therefore, the contribution of the new fermion fields to this kind of topologies is finite. This
is because the mass contributes as M/ p? to the loop and each mixing insertion is followed by
the introduction of a new propagator contributing at least as 1/ p, with p the corresponding
momentum. In the other case, at least two mixing insertions are required. Furthermore the
degree of divergence of the involved topologies is at most of order A before the mixing
insertions. Thus, the contribution of the new fermion fields to these topologies is also finite.
As aconsequence, LFV Higgs decays are finite. This stems from two reasons: our new model
is gauge invariant and we have chosen the appropriate fermion field representations.

5 The Coleman—Weinberg potential

In this section, we calculate the Coleman—Weinberg potential [28] generated by integrating
out fermions and gauge bosons at one loop. For this purpose, we apply the background field
method (BFM) with a proper time cut-off, that allows the classification of divergences into
quadratic and logarithmic. This is relevant because only logarithmic divergences in the Higgs
mass are admissible. First we will derive generic expressions for the potential that then will
be applied to our model in order to derive the physical scalar masses and the Higgs potential.

5.1 Integrating out fermions and gauge bosons in the background field method

The BFM allows to find the divergent terms of a theory in a gauge invariant way, translating
the divergences in the spacetime integration into those of the functional trace of a heat kernel
in a new variable called proper time [29,39]. This method has been extensively employed
in the literature to study the renormalization of the linear realization of the SM [30,31] and
more recently has been applied to its nonlinear realization in [32], where a master formula
was derived in the dimensional regularization scheme using super-heat kernel tools [40]. The
BFM is also useful when dealing with the Standard Model Effective Field Theory (SMEFT;
see [41] for a recent review). In particular, in [33] a master formula that includes the effects
of bosonic operators up to dimension six is applied to the calculation of the Renormalization
Group equations in the context of the SMEFT.

Our starting point is a general Lorentz-invariant four-dimensional action containing real
bosonic fields and operators at most bilinear in the fermion fields,

s [wi, A“,W’,E}’] - /d4x,$ (ga", A“,W’,W’), (148)

where Latin indices refer to the different species of bosons and fermions in our theory.” To
obtain the generating functional of Green functions, we couple the fields to external sources

ZLjisJE oo, By] = / [DpD A, DY D]

X exp {i (S + <ji<pi + JH A, + 9 op + ﬁbw”»} , (149)

7 If the bosonic fields are complex they are split into real and imaginary parts.
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where Z = ¢V with W the generating functional of connected Green functions and (- - - )
stands for integration over spacetime. The path integral is normalized to Z [0] = 1. The
classical, or background, fields are the solutions of the classical equations of motion (EoM)

éS 88
2 4i=o, - (150)
8¢t g SAY,
cl Az,cl
éS S
— +pop =0, 50 |-» —pp = 0. (151)
5y I v

(‘cl’ stands for classical and the Grassmannian character of fermion fields has been used.)

In order to integrate out gauge bosons and fermions and get the scalar potential, we perform
a change of variables in the path integral consisting in a linear split of each gauge or fermion
field in two parts: the background field and the (quantum) fluctuating field which will be the
new variable of integration in the path integral,

AL = A%+ al, (152)
wh =yl 4 o, (153)
—b —b _

v =va+x (154)

The scalar fields are fixed by the EoM, ¢! = <p£1. The background fields only appear as
external legs in the Feynman diagrams whereas the fluctuating fields only occur in loops.
Substituting in the Lagrangian and keeping terms up to second order in fermion and gauge
fluctuations one may parametrize the action as

o —b -
S+ <1i<p’ +JG AL+ + pbW)
L —b —
=50 4 <Ji¢’é1 + AL+ Yaes + pblﬁfl)
+ 5@ [‘Péu a%. x", Yb] : (159

The first term on the r.h.s is the classical action evaluated in the background fields and the
last is quadratic in the fluctuations,® and takes the general form

@ [%1; ac, ijb] _ /d4x e (‘Pél; ac, ijb), (156)
with
2@ (wél; al, xb,ib) = —%qbkAkldn + %" (it = G, x°
= —%¢TA¢ +XBx. (157)

where <pi collects the bosonic (gauge) fluctuations, and all the dependence on the background
fields ¢, is encoded in the matrices A and G, with {k, [} indices of any type. After integrating
by parts, the interaction between bosonic fields is given by second-order differential operators

A=D'D,+V, with D, =0d,+N,, (158)

8 The part of the action that is linear in the fluctuating fields is identically zero since it is proportional to the
EoM and the background fields are on shell.
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where N, and V depend on the background scalar fields, and the most general Lorentz
structure of the Scalar—Fermion interaction is

G=rPr+I1PL. (159)

To express the bosonic interactions in the canonical form of Eq. (158), one must introduce
appropriate gauge-fixing terms for the fluctuating gauge fields, still preserving the gauge
invariance of the one-loop effective action [42]. Now we redefine all the fluctuating gauge
fields to have the same sign in the derivatives of time and space components,

= (iaf, af) = Mya, M, =diag(i,1,1,1). (160)
The contravariant vector a#* = (a(“), —a?) transforms with the inverse matrix
= (M) 2 = (—iag, —a), (161)
(M~ = diag (=i, 1, 1, 1), (162)
implying that EZ = —3* 2 In terms of these new gauge fields, the kinetic term reads
lpnre ooy 1 iy o a2za
Aing = —589°8 — ST = =3 (—a") 5,07, (163)

Comparing with Eq. (157) we have ¢f = -3 = aj and ¢ = @(. The advantage of this
redefinition of the fluctuating gauge fields is that the functions at both sides of the operator
A are the same, which is necessary to later perform a Gaussian integration.

The expansion of the action to second order in the fluctuations is enough to get the
generating functional W to one loop,

W = Wr—o + W= + higher order corrections, (164)

where L is the number of loops. Then, to this order, the generating functional Z can be written
as Z = Zj—oZ—1. The first factor is

o —b
iWL—o (S(O)+<Ji(ﬁil+-/;AZ'C]‘H//CIP};‘FP};‘//?[»
9

Zi—o=e = (165)

a constant for the path integral, independent of the quantum variables. Taking logarithms,
Y —b _
Wi—o =85O+ ( Ji%a + LAY+ e+ pbwfl}, (166)

which after subtracting the source term is nothing but the classical action. Focusing on the
contribution of gauge bosons and fermions to the scalar potential, the one loop correction to
the generating functional W comes from the quadratic Lagrangian in Eq. (157),

eiWL=1 :/‘[D¢DXDY]€iSQ)
. 4 Y —
:/ (DpDy Dy 1 (107 A0+7Bx) (167)

Performing the Gaussian integration over the gauge and fermion fields in the path integral
and taking logarithms, the one-loop generating functional reads

Wi = %log Det A — i log Det B (168)

9 The auxiliary matrix M appears in intermediate steps of the calculation but it will cancel at the end.
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where Det stands for the functional determinant and capital letters indicate that it involves a
spacetime integration. Since it does not depend on the source term, Wy —; can be interpreted
as the one-loop effective action. Squaring the operator B as in [29,43], we may write

1
log Det B = 7 log Det (BB°), (169)
where B¢ = —i§ — G'. Then
w —il SthO —il Sdet A 170
=1 = 5 logSdet| ) ppe | = 7 logSdet A. (170)

In this compact notation borrowed from supersymmetry, SdetM stands for the superdeter-
minant or Berezinian of a supermatrix M,

M= <ZZ> Sdet M = Det (a — ab™' B) /Det b, (171)

where the entries a, b (¢, 8) are bosonic (fermionic) variables. In our case « = 8 = 0. Notice
that A can be written in the canonical form,

A= (0" +A") (9 +Ap) +7Y, (172)

expression which holds in our case because our starting Lagrangian is, at most, bilinear in
the fermion fields [32,33]. Going to the Euclidean spacetime, performing the usual change
of variables in the time coordinate, t = —it, we can rewrite the one-loop effective action

1 1
WE = —iWi_1 = 3 logDet (—AE) — S Strg log (—AE), (173)

where Strg is the supertrace (StrM = tra — trb) that also includes a Euclidean spacetime
integration.'? In the last expression, the operator A¥ is defined as

E _ _ E E E E E
AF = A= (9F +af) (9 + aF) - ¥, (174)

where the Euclidean versions of the matrices above verify

Ao x) =iAf (%)
Ap (8,0 = !A,» (t,x) = AF (7,%), (175)
Y(t,x)=YF (1,x). (176)

To obtain the divergences of the one-loop functional, we rewrite it using the proper time or
Schwinger representation [44]:

1 [*d 5
WE:] = —7/ lStTE E‘SAE
2 0 N
1 [*d
_7/ —S/d4xE str K(s: x5 x5), a77)
2 0 N
where the integrand is the supertrace of the heat kernel of the elliptic operator AZ. The

reason to go to Euclidean spacetime is that the heat kernel is better behaved [45]. DeWitt
[46] proposes the following ansatz for the heat kernel in the limit s — 0,

10 The supertrace and the superdeterminant have the same properties as the usual trace and determinant with
respect to the logarithms.
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] o0
K(s;xE;xE):WZan (xE,xE)s". (178)
n=0

The coefficients a,, are the so-called Seeley—DeWitt coefficients [46,47] which are completely
regular. As we will show below, the divergences we are looking for are proportional to the
first coefficients. The integral converges in the upper limit.

To regularize the integral in the lower limit, let us focus in the units of the proper time
variable s. Since the argument of the exponential is dimensionless, s has units of inverse
mass squared. Using a proper time cut-off in the lower limit we may write [34]

WwE __ 1 [®ads d*xE strK(s; xF; xF) (179)
L=1,reg — 2 A2 S ’ ’ ’

with A — oo the usual energy cut-off. Then we can use the DeWitt expansion in Eq. (178)
to solve the integral in the proper time variable to find the divergences in the lower limit:

- 21nA4 o, 20
0 as noo _ 2 _
s" log A n=2 (180)
A= — LA ps2
-

where we have introduced an upper limit £ 2 related to the maximum value of the proper
time variable for which the DeWitt expansion of the heat kernel is valid. Actually this energy
scale should appear in the argument of log A% making it dimensionless, but it is omitted
here and in the following. As previously advertised, the divergences are found just in the
first three coefficients.!! Since we are interested in quadratic and logarithmic divergences,
only the expressions of a; and a; are needed. These can be found in [29] and their values in
Euclidean spacetime are

ar (xE,xF) = —yE (181)
1 1

ar (xF.xF) = Sz, Zf, + SV, (182)

zE, =ofaf —oF AL + [aE, af]. (183)

Writing everything together, the effective action reads

11
WE | e = —5 /d4xEstr [ —yEp2

21672
l ek 1 g 2]
+(12Z“"Z +3Y )1ogA . (184)

Turning back to the Minkowski spacetime using Eq. (175), the divergent part of the
Lagrangian at one loop is
1 1 1
d1v _ 2 v 2 2

In order to find the scalar potential we can ignore all the interactions involving derivatives of
the background scalar fields. Then only Y and the commutator [A#, AV]in Z*" are needed.
Besides, in our model N* = 0. Reversing the sign in previous expression we obtain

41/d1V zdlv ( 1 8 6)

1T The coefficient ap = 1 is independent of the background fields, being only important if we were dealing
with gravity, since it contributes to the vacuum energy.
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Finally, using Eqgs. (170) and (172), the expressions for the matrices A, and Y read

NH 0
H— .
. _( 0 é(GV“—V“GT))’ e

Vo
Y = (0 Y22>’ (188)

and

with
Yo = —%a,l (Gy* — y"GY)
1
+ (Gy Gyu — y"* GGy, +y" Gy, GY). (189)

Evaluating the supertrace of the matrix Y ignoring all the derivative interactions involving
background scalars and performing the traces in spinor space [48] using the definition of G,
the quadratic and logarithmic parts of the scalar potential are given by

A? A?

A
7/[,:1 = ﬁtr vV — WU‘ (lr) 5 (]90)
and
 log A2 1 2, 1,2 1 2
o = 62 log A“tr V= + 62 log A“tr (Irlr) . (191)

These are the two master formulas that we will employ in the following.

5.2 Quadratic and logarithmic corrections to the scalar potential

To obtain the quadratic and logarithmic contributions to the scalar one loop effective potential,
we have to evaluate the expression for the matrices V, [ and r defined in Eqgs. (157), (158),
(159). In this work we neglect the contribution of the lightest SM lepton Yukawa interactions
in Egs. (44) as well as those of the lightest SM quarks, since their Yukawa couplings are
parametrically small. Thus, the leading contributions come from the interaction between
scalars and gauge bosons in Egs. (30), (81), the Yukawa Lagrangian for the heavy leptons
in Egs. (42) and (94) with the field content of Egs. (86), (91) and (93), plus the analogous
heavy quark Yukawa Lagrangians given by

Ly = —raf (P36 + T 08" ) 0 + e, (192)
and
%, =%y f (P36 — T 50f") O + e, (193)

where k, and &, are matrices in flavor space. Finally, one needs the top Yukawa Lagrangian
[11,14] which implements the collective symmetry breaking to avoid quadratic divergences
on the Higgs boson mass proportional to the top Yukawa,

Al — _ ~ ~
L= _lszijkexy [(Q1), ZjxZky + (0220R), Zjx Ziy| tr
A _ _
= (TouTir+ToTig) +he. (194)

V2
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with {i, j,k} = 1,2,3 and {x, y} = 4,5. The quark multiplets in Eqgs. (192), (193) are
defined by

—i02q1L —iGZZ]JEL
ol = ?ngé,c , vl = ;‘x%qL , (195)
—l07qyy —loTqaL
—io(G°)r R —io%(@$)r
= i0De |- ¥r=| () (196)
—i0°qHR 02
where
qu:<Z:II:>, afL:(gi), r=1,2 (197)
and

UHR ~c (EEL-) R
= , = I~ 198
o= (ie) - @~ ({0 9
with analogous transformation properties under the gauged subgroup and T-parity as those

for leptons [see Egs. (39), (40), (92), (93)]. The multiplets that appear in Eq. (194) are given
by

—io? Ty, 02
0 = iT{, , O = iTy, , (199)
0, —i0%Ty
where
m=(“), r=1,2 (200)
brL

with the transformation properties

Gy % Gy T
01— V, 01, Q2 — V02, Q01— 22002 (201)
and the SU(2) singlets
T/ x> Ty (202)
In what follows, the Higgs potential is parametrized as

2
Yitiges = n> (H'H) + 1 (H'H)". (203)
5.2.1 Gauge boson contribution to the scalar potential

Using Eq. (152) for the fluctuating gauge bosons in Egs. (30) and (81),
2y
2 2 b
2P+ P55 Y 2o, 0w (040] + 050} =)
k=1

+ 82t (Y;Ye + v, 5Y] 57)

— g’ bl (Q;EYkTE*)
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b b T
- gg/bj.‘wk#tr(gkzyj ):T)]

2
f? b ST S
+7 X [feeltn(0jel + 0Tl 5)
jk=1
+82bubfite (VY + Y, SY] £7)

— gg/a);f#bf:tr (Q‘; fYkTE;)

— gg'blaf,r (QQEYJTET) ] (204)

where the background scalars are parametrized in the nonlinear sigma fields X, S and 0,
b, are the fluctuations of the gauge bosons associated to SU(2) and U(1), respectively. As
already mentioned, using the appropriate gauge for these fluctuating fields, their kinetic terms
take the canonical form. The redefinition of the gauge fields as in Egs. (160) and (161),

ot o == (=) o, (205)
biubl = — (—1;5.‘) 8% b (206)
ot b = = (=" ) 81w, (207)

allows us to find the corresponding matrix V

v= () o
where
Vi = 13567 (20900 + 04z 0l T + 01507 ) (209)
Via = — £} g¢'tr (QjEYkTET +04Zy] ET) (210)
Var = — 2888w (QF EYT =7+ QP SYT £7) 211)
Vo = f26),¢" <2x, Ve +Y; 2y 2t v, Zy] f*) : (212)

According to Eq. (190), to obtain the quadratic divergences of this sector, we must take the
trace of the matrix in Eq. (208). V is a block matrix with gauge group as well as Lorentz
indices in each block. Taking the trace implies a = b, j = k, ;. = v in each block and then
sum the diagonal terms of the matrix (sum over repeated indices in their corresponding range
is understood)

2 A? —~ —~
Ve = | (05T 0 B+ 05207 )
+¢2 2w (v, Ey] '+ v SYT ) | 213)

where a global factor 4 comes from 8}, = 4 and irrelevant constant terms have been dropped.
This part of the potential contains a mass term for the triplet @ and a quartic Higgs coupling
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A2 A? 2 2 ¥
Yitie 27 (& +g°%) (o7 o)
1 A2

T 3

(&> +¢?) (HTHY’ (214)

and no mass terms for the rest of the physical scalars. Since the leading order of the mass
of the triplet @ and the Higgs quartic coupling is A> ~ 1672 f2, we will neglect all the
logarithmic contributions to these operators in the following.

To evaluate the logarithmic divergences, from Eq. (191) we must take the trace of V2. To
construct this matrix we must pair the indices of both V factors. For the sake of clarity, the
left upper block V121 would contain

Vi o f%se% (2050 + 05T o) 5+ 0550} 5Y)
x 2o g% (20005 + 0px 0"+ Q) £0TET). 15

Then we repeat the same procedure applied above to take the trace. Again a global factor 4
will appear from the trace over the Lorentz indices 8 8;‘1 = SZ = 4 leading to

logA2 _ 1
L=Le =™ 1672

x [g4tr (2Qj Q)+ 04zl "+ Q‘;szTfT)
X tr (2Q2Q‘; + 0z s+ QZSQ;TST)

+2¢%¢ % (042 5+ 04 YT )

fHlog A?

T vt vl T
x tr(Q_‘;Z‘Yk =F 4 0i8Y] ):‘)
+ g (20, Y+ Y, ZY[ 5 4 v, EYT EY)
X <2Yij + YTy s+ Yk)fYJTfT) ] (216)

This part of the potential contains a contribution to the 12 term in the Higgs potential and a
mass term for the triplet @

log A2 3¢t g :
A, D fPlog A7 <—+ (H'H)

872 4072

4
8 2 2, e
+ ;f log A*tr (ww)

1 2 (2,212 2102 i
= 152 log A (3¢° My, +¢*M3,) (H'H)
g2
+33 My, log A’tr (03) (217)
where we have used M2, = 2g2f2 and M2 = 2gf2. These masses are naturall
Wy 8 Ay Sg : y

smaller than the mass of the triplet @ since log A? is parametrically of order one and there is
a suppression of 167> which allows masses of order of the electroweak scale. No mass term
is induced for the physical scalar 77 by gauge interactions.
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5.2.2 Fermion contribution to the scalar potential

In order to obtain the heavy leptons, heavy quarks and top contribution to the potential, the
matrices r and [ in Eq. (159) are needed. Since the Lagrangian for quarks is more involved,
we illustrate the process with the lepton contribution. For simplicity, from Eqgs. (86), (91)
and (93) we define the new multiplets

U = By, W =W, Wg=odUr, g=RBUpg 218)

where

—ig? —io?

o = i , B= i (219)
—io 0252

to extract the matrices from the multiplets. Splitting the fields as in Eq. (152) we get

00 «felear ALY
) 7 | 00kfa T Bt —RfaTBoE T
Lypta 2~ (0201) g 0 0 YR

00 0 0 VR

+he. (220

where V1, ¥», Y g and {/7R are the quantum fluctuations of l:f/l, l:f/z, @R and ¥ R respectively
and the bullet means that the corresponding field is not present in the theory. All the flavor
dependence is encoded in the couplings « and k. Comparing with Eqs. (157) and (159), the
form of the matrices r and [ for leptons is

00 «fallecs fatER
00«fa Xttt —RfartToET 2
00 0 0

00 0 0

n=1 = (221)

To evaluate the quadratically divergent contribution to the potential arising from this sector,
we need the product /r

00 0 0
00 0 0

im=1{o00 2t f 2 1555 K frat (sfé - 557‘) 2 |- (222)
007 Kr2at (é*g _ 557‘) o W 2 133

As in the gauge boson case, the matrix /r is block diagonal and its trace is the sum of the
trace of each of its diagonal entries,

tr (yr) = 10tr (k" f2) + 6tr (K& 7)., (223)
which is independent of the scalar fields. In this model, all the scalars are protected from

quadratic divergences coming from the new sector. Analogously, for the logarithmic diver-
gences we have to evaluate
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tr (rljr) = 2tr (KKT??T f4)
xul (8 — &) (s*é ~§87) 24']
+3'5) 25"

I
|
&
-
—_
=
=
e
=
=
A
\
S
~
[~
Mo ™
| M

S0+ T}y Zoa (224)

using that é commutes with %" and Z‘g = l5yx5. Then, the logarithmically divergent
contribution to the potential is

log A2
‘//Lo:glJ = 8—10gA2tr(/cK KICTf4)
305
x Y3 [E Zoa + 2 B0 (225)
a=1b=1

This expression contains leading order contributions to the i parameter of the Higgs poten-
tial and to the masses of @ and 77

ylogAz f? | 2 ot
=11 2 372 og Actr(kk "kk'")
6H'H+—— +8u@'®) ), (226)

in agreement with the diagrammatic calculation for the Higgs part in Eq. (95).

The last contribution comes from the heavy quarks in Egs. (192), (193) and the top sector
in Eq. (194). In this last equation notice that due to the presence of the three dimensional
Levi—Civita tensor ¢; j x with {i, j, k} =1, 2, 3, only the three upper components of Q| and
X082 0 are relevant. Then, comparing Eqs. (195) and (199) we have that fori = 1, 2 one
could substitute (Q1~2)i by (llll‘{z)i and for i = 3 we would have i T, and i T, . Then,

similarly as we did for leptons, we perform the following substitutions

— 7 4 q _ 754
=¥, wl =¥,

Q1 — CW!, 01— G (227)
where
—ic20 0
€ = 0 0 0 (228)
0 0—ic?

since only the mentioned components of those multiplets are relevant. The zero in the middle
of ¢ is to take into account that the multiplets Q; > and lI/ﬁ , defer in the field in its center.
Collecting the left-handed and right-handed quantum fields in vectors

qT T T
UL = (W Y 5'7'3'7t2L5t1L>7
T _ qT 79T T T T
Vg = ("'a‘pR VR ’tR’IZR’[lR)’ (229)
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we may write

(2) 5
fYqH,?qH,z = —ULIqUR + h.c. (230)
where
00 (r2R) g’ (’21?)mn,3a "20)pg O 0
00 (PR g’ (rlié)mn,sa "m0 0
00 0 0 0 0 0
rg=[00 0 0 0 0 0 @30
00 0 0 0 0 0
00 0 0 (7’2’1)/30[ (r2’2’)/3a 0
00 0 0 (rl/t)ﬁa 0 (rl’l’)ﬂa

where the Greek indices are the SU(3) color indices and as before [, = r; . As announced,
this sector is more involved and it manifests in the size of the matrix r,. This is because
apart of the introduction of the right-handed singlets 7} ,  the field in the center of the SU(5)
multiplets ¥/, ( X1 L) is not the same as that inside of Q1 » (Tl’ ) L). The components of
the matrix r, are defined as

F2R) nf’ = g f (7€), 85, (232)
(r2R) g = Raf (7€2),, 85, (233)
i . -
20f = 1 f (€7 2082),,; €ijkexy £ i85, (234)
1R = Ko f (" 208" ), 85, (235)
("R g = —Kaf (7" 205" 2),,, 55, (236)
i -
F1)ff = 21 Cpiijueny Zjx Ty 85 (237)
1 o~
(ryn)g” = Z)\lf€3jk€xy2jx2ky8z» (238)
1
(rl’t)ﬂa = Z)‘lfe_’ajkfxyzszky(sg» (239)
A2
(rr2)g" = =18, (240)
A2
(ri)g” = 2185, (241)

Proceeding similarly as for leptons, the quadratically divergent part of the potential due to
quarks coming from the product /r reads

342
=la ™ 1282

x ():,-szy 5+ 5505, Ej,,) . (242)

2 72
A f €ijk€inp€xy€qr

where the factor 3 comes from 8§ = Nc = 3. This term contains a contribution to the triplet
@ mass and to the quartic Higgs coupling,

2 42
oLty
1672 f2

37 :
Viig D ph At (@10) + (243)
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From the product /rlr we get the quark contribution to the logarithmic part of the potential
given by

log A2 1
08 4% logAz[ A )wzf €3k€3mn€xy€pq

3
L=La ™ 1652 16
X (EjXEkyEmpan + gjx gkyg}j;pf];q)
1
s (eukeimnersep 5L, Zmp Eng
~r o~ o~ o~ 2
+ Gijkéimnéxyepq E}k Eljy Emp 2nq>

1
+ 3 (KqKJ)3 )L%f4€ijk€ij’k’€xy€x (21x2ky2 I ,2, ¥

+ ijzkyz i x /2/ />

3 5
=2t (kgref®eg 1) Y2 D (£0yBoa + £, 50a) |. (244)
a=1b=1

where the factor 3 comes from the number of colors. This term contains a negative contribution
to the % parameter of the Higgs potential from the first term in brackets and a contribution
similar to leptons up to factor 3 coming from the last term

log A 3 2 429242 (gt
TSy O = ez log ATFRAA (H'H)

37 2 ~F
+ 8—10gA tr(KqK Kqky )

L

(6HTH + = 367 + 8tr(@' )). (245)

5.2.3 Physical scalar masses and Higgs potential

We can finally collect our results for the physical scalar masses and the Higgs potential at
one loop. From Eqgs. (214) and (243) we find the mass of the heaviest T-odd triplet @

2

A
2 _ 2 72 2
Mg =— (87 + 87 +317) (246)
and the Higgs quartic coupling
1 g 2 17) 2
=—— 317) . 247
1672 f2 (g +8~+ 1) ( )
The mass for the lightest T-odd triplet @ is given by Egs. (217), (226), (245)
MZ—f—zlo A [g" + 1] (248)
CR) g 8 K]
with
T, tr(K/c Kk ) + 3tr(/cq/c kg q) (249)
The lightest T-odd scalar 77 only receives a contribution from Egs. (226) and (245),
2
9
ME = f S log A>T, (250)

5
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And the u? parameter of the Higgs potential follows from Egs. (217), (226) and (245),

P
1672

2
M log A2 <6g4 + gg’4 —330% + 12TK> ) 251)

To obtain the physical mass of the Higgs boson we have to minimize the potential of Eq. (203).
If the contribution of the top sector dominates over the heavy Yukawa and gauge interactions
then % < 0 and the EWSB is triggered,

aQVHiggs

=0 H+20(H'H)H =0 252
SH = WH+2\.(H'H) (252)
when the neutral component of the Higgs doublet gets a vev
1 0 —u?
H)=— , =, —. 253
=1 (%), oo/ -
In our case, this expression gives
o Y o3 —6gt — 3¢ - 127,
ve = log A 5 > 5 . (254)
A2 8-+ g~ +30

Then, from M7 = —2u% = 2).v?, and Eqs. (247) and (254) we have
2 f2 2 2 4 2 4
Mj = Z—log A <3k 23 —6g% — 3 g — 12TK> , (255)

whose value is M), >~ 125 GeV. Comparing previous expressions, we find the same relation
between the masses of the Higgs and the heaviest triplet as in the original LHT model,

2 2

My = 2th’ (256)
and the following one for the new physical scalar masses,
4

T,

M3 =8M} —— g4+ — , (257)
307A5 — 6g% — g% — 12T,

72 T,

M2 = M? L (258)

T 5 T2 —6gt — 2g4 — 121,

Letus take g2 > 0.40, g2 > 0.12, v ~ 246 GeV, m, ~ 173 GeV and the relation >+, * ~
(v/ (\/Em,))2 [49] '2. The combination of Yukawa couplings 7, in Eq. (249) has an upper
bound from Eq. (251) depending on A; or X, (correlated) to ensure u? < 0, and Eq. (247)
provides the value of the ratio A/f as a function of A; given A = Mh /2v%) = 0.13.
Furthermore, the cutoff scale must be A > f and also greater than any particle mass or else
the model would not make sense. In particular, the top quark partner T, of mass mt, =

\%, / )\% + )\% is the heaviest one and has to be checked. Putting together all these constraints,
that must be fulfilled also by the original LHT model, we obtain from Fig. 5 the admissible
interval of A and hence the upper limit of 7, values that are allowed: A; € [1.05, 1.71] and
T, <2.57for a1 ~ 1.050r T, < 0.9 for A1 = 1.4. In addition, any heavy fermion must be

~

12 Notice the extra factor /2 multiplying the top and top partner masses due to the different definitions of the
top Yukawa couplings A1 and A in Eq. (194) with respect to [49].
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Fig.5 Theinterval of A yielding a top quark partner mass mt, below the scale A on the plot of the left-hand
side determines the range of possible values of the combination of Yukawa couplings 7, = r(ex 77T +
3tr(kg K,jl/(\qff\; ) compatible with 12 < 0 on the plot of the right-hand side

lighter than the cutoff scale, that implies all v/2«; and ~/2&; be smaller than A/f, a function
of A1 given by Eq. (247) depicted in the left panel of Fig. 5.

As for the scalars, the resulting mass of the usual triplet (256) is Mg ~ 0.73 f, independent
of any Yukawa couplings. However the masses of the new triplet and singlet scalars (257),
(258), independent of f, could in principle take large values but only when 7} is extremely
close to its maximum for a given A1, being otherwise naturally of the order of a few hundreds
of GeV within the allowed range in the right panel of Fig. 5.

Therefore there is enough room in the parameter space for the validity of the model below
the cutoff scale.

6 Conclusions and outlook

We have examined carefully the Littlest Higgs model with T-parity, which is an interesting
effective field theory that addresses the hierarchy problem justifying the lightness of the
Higgs boson mass with respect to the cut-off by assuming it is a pseudo-Goldstone boson of
a spontaneously broken approximate global symmetry. We have identified a couple of flaws
in the fermion sector of the model, related to the mass terms of heavy fermions, that have
to do with the non-trivial relation between T-parity and gauge invariance. We have probed
different realizations of T-parity in the fermionic sector, in which the SU(2) singlet field
in the middle of the multiplets can be even or odd, or it could be left out. We have shown
that the nonlinear transformation of the right-handed multiplet under the gauge group needs
all the SO(5) generators, not just those associated with the SM, what forces us to rule out
the T-odd realization and rely only on complete SO(5) multiplets. The reason for this is the
presence of the gauge group element £2, that only commutes with the gauge generators. As a
consequence, some fermions will remain massless because in particular the usual mass terms
for the x and the mirror-partner leptons are not gauge invariant since they come from the
coupling of incomplete SO(5) multiplets.

To fix these issues, we have proposed that the global symmetry group SU(5) is enlarged
with an extra [SU(2) x U(1)]? factor broken spontaneously to [SU(2) x U(1)] by the vev
of a new nonlinear sigma field with four scalars. This allows us to introduce fermion fields
that only transform in this additional nonlinear representation without invoking again SO(5)
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multiplets that would need to be complete by gauge invariance. As a gauged subgroup we
take the sum of two [SU(2) x U(1)]? factors, the one inside SU(5) and the extra one, hence
preserving the number of gauge boson fields. This is a natural extension of the model, which
was already SU(5) x [U(1)]2, with the external abelian factors required to accommodate the
hypercharges of the right-handed charged leptons.

Once the global and gauged groups were defined we have explored two different options.
In a first attempt, the left-handed components of the mirror-partner leptons and the y were
introduced in a representation that only transforms under the SM gauge group, coupled to their
right-handed counterparts through both the original and new nonlinear sigma fields. Then
we tried with a model based on the completion of the SU(5) multiplets with new left-handed
fields and the introduction of the additional right-handed components in a representation
that only transforms under the SM gauge group. The first proposal, despite of being more
economical in terms of fermion fields, had to be discarded because the remaining symmetry
is not enough to protect the Higgs mass from quadratic divergences, as we proved with
a diagrammatic calculation. However, the model with complete SU(5) multiplets is viable
because it prevents all scalar fields from quadratic divergences: if the coupling giving masses
to the extra fermion fields is switched off the Lagrangian remains SU(5) invariant. In fact
the Higgs mass squared only presents an admissible logarithmic divergence proportional to
%2, involving the product of two different couplings giving masses to the non-standard
fermions hence respecting the collective symmetry breaking.

Next we have found the mass eigenfields that diagonalize the Lagrangian up to order v2 />
as well as the fermion masses and flavor mixing matrices parametrizing the misalignment
of the Yukawa couplings («, k¥ and 1) in the flavor space of several fermion families. This
version of the LHT keeps one of the original sources of lepton flavor violation [19-21] (the
mixing matrix V in Eq. (147)), eliminates those found in [26,27] (now W = Z = 1) and
introduces an additional source (W) related to the new Yukawa coupling ¥ connecting the
original to the extra fermion sector.

In addition, we have considered the influence of the new fermion fields in LFV Higgs
decays. Besides the contribution of the T-even right-handed singlet (x+) g, which is finite on
its own, the contribution of the remaining fields, including the T-odd singlet, is finite. This
is because they enter in the loops only through two insertions of their mixing term with the
original fields of the LHT model, thus reducing the degree of divergence of the topologies
involved in the process.

In the last section, we have applied the background field method to calculate the Coleman—
Weinberg potential for the scalar fields generated by integrating out at one loop vector bosons
and fermions, including both heavy quarks and leptons. We have calculated the one-loop
contributions to the masses of the Higgs and the complex triplet of the original LHT model,
as well as those of the new scalars. In our model, the Higgs mass is still not sensitive
to quadratic divergences coming from the heavy leptons and heavy quark sectors. On the
other hand, the relation between the Higgs mass and the complex triplet mass remains the
same. Besides, the Higgs quartic coupling generated al leading order from the quadratically
divergent terms of the potential does not receive contributions from the new sector. Finally,
the masses of the new physical scalars are found to be proportional to just the logarithm of
the high energy scale A. This is because they inherit part of the symmetry from the would-be
Goldstone bosons to be eaten after the SSB at the scale f.

As a future work, we plan to extend previous phenomenological studies on lepton flavor
changing processes in the context of the LHT model [26,50] (Z and Higgs decays, two and
three body lepton decays, i — e conversion in nuclei) to include the contributions from the
new fermion and scalar fields. A mechanism to accommodate neutrino masses in the new
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LHT model, completing the work in [27], will also be presented elsewhere. The predictions
of this model for the quark sector should be explored as well.
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