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a b s t r a c t 

Complex multi-state warm standby systems subject to different types of failures and preventive mainte- 

nance are modelled by considering discrete marked Markovian arrival processes. The system is composed 

of K units, one online and the rest in warm standby and by an indefinite number of repairpersons, R . 

The online unit passes through several performance states, which are partitioned into two types: minor 

and major. This unit can fail due to wear or to external shock. In both cases of failures, the failure can 

be repairable or non-repairable. Warm standby units can only undergo repairable failures due to wear. 

Derived systems are modelled from the basic one according to the type of the failure; repairable or non- 

repairable, and preventive maintenance. When a unit undergoes a repairable failure, it goes to the repair 

facility for corrective repair, and if it is non-repairable, it is replaced by a new, identical one. Preventive 

maintenance is carried out in response to random inspections. When an inspection takes place, the online 

unit is observed and if the performance state is major, the unit is sent to the repair facility for preventive 

maintenance. Preventive maintenance and corrective repair times follow different distributions according 

to the type of failure. The systems are modelled in transient regime, relevant performance measures are 

obtained, and rewards and costs are calculated. All results are expressed in algorithmic form and imple- 

mented computationally with Matlab. A numerical example shows the versatility of the model presented. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Redundant systems and preventive maintenance, which are two 

ways to improve system reliability and availability, are of consider- 

able research interest. Serious damage, financial losses and, possi- 

bly, total system failure can be provoked by poor reliability. Two 

approaches can be adopted to improve the reliability of a com- 

plex system: standby systems and preventive maintenance. Vari- 

ous classes of redundant systems have been proposed, depending 

on the problem to be addressed. Levitin, Xing, and Dai (2014) de- 

veloped an optimisation problem, in which a fixed set of elements 

was distributed between cold and warm standby groups; an ap- 

propriate element initiation sequence was then selected to min- 

imise the expected mission operation cost of the system while pro- 

viding the desired level of system reliability. In this respect, too, 

Vanderperre and Makhanov (2014) analysed a repairable duplex 

system characterised by cold standby and by pre-emptive priority 

rules. In this paper, general probability distributions for failure and 

repair were allowed. There exists an extensive body of literature 
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related to warm standby systems, from significant initial research 

such as that by Gnedenko (1965) , who analysed a warm standby 

system with a general number of components, to recent papers 

such as Wells (2014) where known analytic results are extended 

to a case with repairable and non-repairable failures. 

Preventive maintenance is intended to improve system relia- 

bility and to increase profits. Nakagawa (2005) studied standard 

and advanced problems of maintenance policies for system relia- 

bility. Zhong and Jin (2014) included preventive maintenance in a 

cold standby two-component system, using semi-Markovian pro- 

cesses. In order to keep components running properly, the work- 

ing component receives periodic preventive maintenance. An opti- 

mal replacement policy was developed by Zhang and Wang (2011) 

to cope with a deteriorating system with multiple types of fail- 

ures. Under this approach, the application of an optimal replace- 

ment policy ensures that the long-run expected reward per unit 

of time is maximised. Preventive maintenance has also been de- 

scribed for use in complex systems, with either a multi-state unit 

or with a general set of cold standby multi-state units ( Ruiz-Castro, 

2013, 2014 ). 

Nowadays, multi-state systems are of particular importance in 

ensuring reliability. Most texts on reliability theory analyse sys- 

tems in which the units perform in terms of traditional binary 

http://dx.doi.org/10.1016/j.ejor.2016.02.007 
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models: up state (performing) and down state (failure). Many real- 

life systems, termed multi-state systems, are composed of multiple 

components with different performance levels and incorporating 

several failure modes. In this respect, Natvig and Morch (2003) 

analysed the Norwegian offshore gas pipeline network in the North 

Sea, transporting gas to Emden in Germany, and Lisnianski, Frenkel, 

and Ding (2010) have studied multi-state systems, presenting a 

variety of significant cases of interest to engineers and industrial 

managers. Lisnianski and Frenkel (2012) included Markov processes 

in the analysis of multi-state systems, highlighting the benefits of 

their application. 

When complex systems are modelled, intractable expressions 

are often encountered. Several methodologies have been proposed 

to analyse the behaviour of a multi-state system, and one such 

method is that of Markov process theory. Markov processes en- 

able us to model the behaviour of a complex multi-state system 

and to obtain measures in an algorithmic and computational form. 

One class of distributions that makes it possible to model complex 

systems with well structured results, thanks to its matrix-algebraic 

form, is the phase-type distribution (PH), which was introduced 

and analysed in detail by Neuts (1975, 1981 ), who pointed out its 

useful algorithmic properties. Phase type distributions and Markov 

processes have been applied in fields such as queuing theory, sur- 

vival and reliability, where real-life problems have been modelled 

in an algorithmic form ( Ruiz-Castro & Fernández-Villodre, 2012 ). 

Many stochastic systems have inputs to the system over time 

that can be counted to control events, e.g. electrical systems at 

which electric shock waves arrive at random intervals. Multi-state 

systems that evolve over time may be subject to different types 

of failures, whether repairable or non-repairable, and benefit from 

measures such as preventive maintenance to enhance performance 

and economic results. The analysis of these systems requires a 

mathematical tool that can describe the input analytically and give 

rise to a numerically tractable model. The Markovian arrival pro- 

cess (MAP) class that was introduced by Neuts (1979) counts the 

number of events in an underlying Markov chain. Two special 

cases of this process are Batch MAP and Marked MAP. In the first 

case, arrivals in batch are allowed, and in the second, several types 

of arrivals are counted. In all cases, the arrival rates of events can 

be customised for different situations, which highlight the inherent 

versatility of this class of processes. In a recent study, He (2014) 

presented the main results associated with MAPs. 

Reliability systems are usually studied in the continuous case. 

However, not all systems can be continuously monitored, and some 

must be observed at certain times, for reasons such as the internal 

structure of the system, the need for periodic inspections, etc. Re- 

liability systems that evolve in discrete time have been proposed 

to analyse the behaviour of devices in fields such as civil and aero- 

nautical engineering. Ruiz-Castro and Quan-Lin (2011) considered 

a Markovian structure to model a k -out-of- n : G system with multi- 

state components by means of well-structured blocks. Recently, 

Ruiz-Castro (2014) included preventive maintenance in a discrete 

system to analyse its effectiveness with respect to performance 

measures and related costs in a complex device. 

The aim of the present paper is to model certain warm standby 

complex systems that evolve in discrete time, are subject to dif- 

ferent types of failure (repairable and non-repairable) and are pro- 

tected by means of preventive maintenance with an indeterminate 

number of repairpersons. External shocks are included and from a 

basic system various complex ones are derived. This evolution is 

analysed using a Markov model and the main measures are deter- 

mined in an algorithmic and computational form. Events occur at 

different times and are modelled by a marked, batch-arrival MAP. 

Costs are introduced and a numerical example shows the versa- 

tility of the modelling, comparing two similar complex systems 

with and without preventive maintenance. Various measures are 

applied to determine whether preventive maintenance is profitable 

from performance and financial standpoints. The results presented 

in this paper were obtained in an algorithmic and computational 

form, through the use of this methodology. 

Section 2 presents the basic system, the assumptions and the 

state space, and Section 3 describes Marked MAPs in detail and ob- 

tains the matrix blocks and the transition probability matrix that 

describes the evolution of the system. Section 4 then addresses 

the modelling of the four systems derived. Section 5 is focused on 

the performance measures; thus, availability, reliability, conditional 

probability of failure, mean times and mean number of events are 

determined in transient regime. Section 6 introduces the concept 

of rewards, together with measures such as mean costs and profit 

up to a certain time. Finally, the versatility of the modelling is 

shown in Section 7 , with a comparison of two similar systems, 

with and without preventive maintenance. 

2. The basic system (system I) 

We assume a K -system with the online unit and the rest in 

warm standby that evolves in discrete time. The online unit is sub- 

ject to repairable or non-repairable internal failures due to wear 

out. Also, the online unit is subject to random external events 

which can produce external shocks by producing failure. This one 

can be repairable and non-repairable depending on time up to fail- 

ure. Any warm standby unit can undergo only repairable failures 

due to wear. When one failure occurs, the unit goes to the re- 

pair facility for corrective repair. The repair facility is composed of 

an indefinite number of repairpersons R where R ≤ K . The online 

unit is a multi-state one where it passes through several perfor- 

mance stages which are partitioned in minor (the first n 1 states) 

and major (the rest). Inspections occur randomly and in response 

to these ones preventive maintenance can be carried out. The on- 

line unit goes to preventive maintenance only when one major 

state is observed under inspection. Corrective repair times are dif- 

ferent according to the type of failure, from either the online place 

or standby. The order of the type of failure in queue keeps in mem- 

ory. 

2.1. The assumptions 

The system described above is subject to the following assump- 

tions. 

Assumption 1. The internal operational time of the online unit is 

PH -distributed with representation ( α, T ). The number of opera- 

tional states is equal to n , and these are partitioned in minor (the 

first n 1 states) and major states (states n 1 + 1, …, n ). 

Assumption 2. Internal failures can be repairable and non- 

repairable. When an internal repairable failure occurs, a transition 

occurs to a subset of states, and the same happens for the non- 

repairable failures with another subset of states. The internal time 

up to failure can be written by blocks as ( T | T 0 r | T 0 nr ) where the 

blocks T 0 r and T 0 nr are column vectors including the absorbing prob- 

abilities from the transient states for an internal repairable and 

non-repairable failure, respectively. The absorbing probabilities for 

an internal failure from the transient states are given by the col- 

umn vector T 0 = T 0 r + T 0 nr . 

Assumption 3. Events that produce failures of the online unit due 

to external shocks occur according to a phase type renewal pro- 

cess. If the online place is occupied, this event produces the failure 

of the unit. The time between two consecutive events is PH dis- 

tributed with representation ( γ , L ). The order of the matrix L is 

equal to t . 
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Assumption 4. External failures can be repairable and non- 

repairable. When an external repairable failure occurs, a transi- 

tion occurs to a subset of states, and the same happens for the 

non-repairable failures with another subset of states. The external 

time up to failure can be written by blocks as ( L | L 0 r | L 0 nr ) where the 

blocks L 0 r and L 0 nr are column vectors including the absorbing prob- 

abilities from the transient states for an external repairable and 

non-repairable failure, respectively. The absorbing probabilities for 

an external failure from the transient states are given by the col- 

umn vector L 0 = L 0 r + L 0 nr . 

Assumption 5. When the online unit undergoes a non-repairable 

failure then it is replaced by a new and identical one in a negligi- 

ble time. 

Assumption 6. Any warm standby can fail at any time with prob- 

ability p . 

Assumption 7. While the online place is occupied by a unit, ran- 

dom inspections can occur. The time between two consecutive in- 

spections is PH distributed with representation ( η, M ). The order 

of the matrix M is equal to ε. 

Assumption 8. The corrective repair time for any warm standby 

that fails is PH distributed with representation ( β0 , S 0 ). The order 

of this matrix is equal to z 0 . 

Assumption 9. The corrective repair time when the online unit 

undergoes a repairable failure is PH distributed with representa- 

tion ( β1 , S 1 ). The order of this matrix is equal to z 1 . 

Assumption 10. The preventive maintenance time is PH dis- 

tributed with representation ( β2 , S 2 ). The order of this matrix is 

equal to z 2 . 

Assumption 11. When all standby units, the online unit does not 

undergo a failure, none unit is repaired and one inspection oc- 

curs then the online unit keeps on working independent of the 

observed state. 

Assumption 12. The random times defined above are independent. 

One interesting aspect that must be taken into account in this 

model is that events can occurs simultaneously. Thus, for instance, 

failures on several warms standby units and one inspection on the 

online unit can occur at same time. 

2.2. State space 

The system described above can be modelled by a discrete 

Markov process with a finite number of states. We define as X k 

the number of non-operational units in the repair facility at time 

k . This is a vector Markov process and the state space is composed 

of macro-states. This one is defined as E = { E 0 , E 1 ,…, E k }, where E k 

contains the phases when there are k units in the repair facility. On 

the order hand, the order of the units in the repair facility is im- 

portant to be considered, given that the type of failure determines 

the type of repairing. 

For this reason the macro-state E k is partitioned in several 

macro-states depending on the order of the units in the repair 

facility. Then, E k = { E i 1 , i 2 , ... , i k ; i l = 0 , 1 , 2 , l = 1 , . . . , k } , k = 1,…, K −1, 

and E K = { E i 1 , i 2 , ... , i K ; i K = 0 , 1 , i l = 0 , 1 , 2 , l = 1 , . . . , K − 1 } , contains 

the phases when there are k units in the repair facility and the 

order of these units to repair is given by i 1 , . . . , i k in lexicographical 

order; where 0 indicates that the unit comes from warm standby, 1 

indicates that the online unit undergoes a repairable failure and 2 

indicates that the online unit is in the repair facility for preventive 

maintenance. The first min{ R , k } units are being repaired and the 

rest are in repairing queue given that there are R repairpersons. 

Finally, the phases of the macro-states are given by 

E 0 = { ( i, j, m ) ; 1 ≤ i ≤ n, 1 ≤ j ≤ t, 1 ≤ m ≤ ε } , (1) 

for k < K 

E i 1 , ... , i k = 

{(
i, j, m, r 1 , r 2 , . . . , r min { k,R } 

)
; 1 ≤ i ≤ n, 1 ≤ j ≤ t, 

1 ≤ m ≤ ε, 1 ≤ r h ≤ z i h , h = 1 , . . . , min { k, R } } and for k = K 

E i 1 , ... , i K = 

{
( j, r 1 , r 2 , . . . , r R ) ; 1 ≤ j ≤ t, 1 ≤ r h ≤ z i h , h = 1 , . . . , R 

}
, 

where i denotes the phase of the operational time of the online 

unit, j is the phase of the external shock time, m the phase of the 

inspection time and finally, r h is the phase of the repair time of 

the h th units that is being repaired. 

3. Modelling through MMAPs 

The system that is being analysed can be modelled through a 

Discrete Marked Markov Arrival Process (MMAP). As it has been 

described, several types of events can occur while the system is 

working on. We have focused on the analysis of the different types 

of failures and preventive maintenance. Besides the modelling of 

the system, this methodology enables us to count the number of 

events by time. 

3.1. Matrix blocks 

The transition probability matrix is built by taking into account 

the state space defined in ( 1 ). To clarify certain expressions, we 

denote by e h a column vector containing all 1 of order h (if the 

subscript is not noted, then the order of e is the appropriate for a 

correct product). The Kronecker product of two matrices is used in 

this paper. Given two matrices, A and B , with order a ×b and c ×d 

respectively, the Kronecker product is a matrix with order ac ×bd 

defined as 

A ⊗ B = 

(
a i j B 

)
, 

for any element a ij of the matrix A . 

The following auxiliary matrices have been built to facility the 

complex modelling. 

3.1.1. Auxiliary matrices 

The following auxiliary matrices, U 1 and U 2 , are defined which 

are used when one inspection occurs. The element ( i , j ) of these 

matrices is given by 

U 1 ( i, j ) = 

{
1 ; i = j ≤ n 1 

0 ; otherwise 
, U 2 ( i, j ) = 

{
1 ; i = j ≥ n 1 + 1 

0 ; otherwise . 

These matrices consider only the minor and major phases re- 

spectively. 

If there are g units being repaired and a of them finishes its 

repairing then the transition probability by considering only the 

phases for these g units is given by 

For 

a < g, g ≥ 2 , a ≥ 1 , 

C ( g, a ; i 1 , . . . , i g−a ; j 1 , . . . , j g ; k 1 , . . . , k a ) 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

S ( 1 ) ⊗ · · · ⊗ S ( g ) ; j s = i 
s −I { a ≥1 } ·

a ∑ 

z=1 

I { k z <s } 
, 

s = 1 , . . . , g; s � = k z , z = 1 , . . . , a 

0 ; otherwise , 

where 

S ( h ) = 

{
S i h ; h � = k z , z = 1 , . . . , a 

S 0 
i h 
; otherwise 

, 
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and i h , j h , k h indicates the type of failure of the h th unit that is 

being repaired after the transition, before the transition and the 

ordinal of the repairpersons that concluded the repair, respectively. 

For instance, if there are g = 4 units being repaired (types j 1 = 0, 

j 2 = 1, j 3 = 1, j 4 = 2) and 2 of them are repaired (the second and the 

fourth, k 1 = 2, k 2 = 4) then the transition probability by considering 

the repair phases is given by 

C ( 4 , 2 ; 0 , 1 ; 0 , 1 , 1 , 2 ; 2 , 4 ) = S 0 ⊗ S 0 1 ⊗ S 1 ⊗ S 0 2 . 

From this matrix function the transition probability for any or- 

der of repairing is given by 

B ( g, a ; i 1 , . . . , i g−a ; j 1 , . . . , j g ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

S i 1 ⊗ · · · ⊗ S i g ; a = 0 ; i s = j s , s = 1 , . . . , g 

g−a +1 ∑ 

k 1 =1 

g−a +2 ∑ 

k 2 = k 1 +1 

· · ·
g ∑ 

k a = k a −1 +1 

C ( g, a ; i 1 , . . . , i g−a ;
j 1 , . . . , j g ; k 1 , . . . , k a ) ; 0 < a < g 

B ( l, a ; j 1 , . . . , j g ) = S 0 
j 1 

⊗ · · · ⊗ S 0 
j g 
; a = g. 

If the same example above is considered then the general tran- 

sition probability when 2 units are repaired from j 1 = 0, j 2 = 1, 

j 3 = 1, j 4 = 2 to i 1 = 0, i 2 = 1 is given by 

B ( 4 , 2 ; 0 , 1 ; 0 , 1 , 1 , 2 ) = C ( 4 , 2 ; 0 , 1 ; 0 , 1 , 1 , 2 ; 2 , 4 ) 

+ C ( 4 , 2 ; 0 , 1 ; 0 , 1 , 1 , 2 ; 3 , 4 ) 

= S 0 ⊗ S 1 ⊗ S 1 ⊗ S 0 2 + S 0 ⊗ S 1 ⊗ S 0 1 ⊗ S 0 2 . 

The situation of any unit can be modified at any time and 

changes on the online unit and on any warm standby unit can oc- 

cur at any time and simultaneously. 

Throughout the paper, given a matrix A we denote A 

0 to the 

matrix A 

0 = e −Ae . A matrix of zeros with appropriate order is de- 

noted by 0 and the function I {} is the indicatory function. 

3.1.2. The online unit 

Firstly, we are going to focus on the online unit. While this one 

is operational, then it can undergo internal failure, external shock 

and/or one inspection. These possibilities are considered in the 

definition of the following matrices that describe different transi- 

tion probabilities for the online unit. 

The transition probability when the online unit changes of 

phase without failure and preventive maintenance by considering 

the corresponding phases is given by 

H 0 = T ⊗ L ⊗ M + U 1 T ⊗ L ⊗ M 

0 η. 

The first term indicates the changes in the internal performance 

states, phases of the external shock time and phases of the in- 

spection time ( T ⊗ L ⊗ M ). The changes when one inspection oc- 

curs and a minor state is observed are given in the second term 

( U 1 T ⊗ L ⊗ M 

0 η). The matrix U 1 T contains the transition probabili- 

ties between any two internal operational phases of the online unit 

when a minor state is observed by inspection, an external failure 

does not occur ( L ) and one inspection takes place and the time up 

to the following inspection is reinitialised ( M 

0 η). 

A repairable failure on the online unit takes place when an in- 

ternal failure, an external shock by producing repairable failure or 

both things occur. If there are units in warm standby or one unit 

is repaired at same time, then the matrix transition probability is 

given by 

H 1 = T 

0 
r α ⊗

(
L + L 0 r γ

)
⊗

(
M 

0 η + M 

)
+ 

(
e n − T 

0 
)
α ⊗ L 0 r γ ⊗

(
M 

0 η + M 

)
. 

The above case when the only operational unit is the online, 

and at same transition time a repaired is not produced is given 

by 

H 

′ 
1 = T 

0 
r ⊗

(
L + L 0 r γ

)
⊗ e ε + 

(
e n − T 

0 
)

⊗ L 0 r γ ⊗ e ε . 

When one inspection occurs and a major state is observed then 

the unit goes to the repair facility to preventive maintenance (at 

same time a failure does not occur). If there are units in warm 

standby or one unit is repaired at same time then the transition 

probability block is given by 

H 2 = U 2 

(
e n − T 

0 
)
α ⊗ L ⊗ M 

0 η. 

In the previous case, we assume that when there is only one 

operational unit and a repaired is not produced at a certain time, 

then the online unit keeping on working although a major state is 

observed by inspection. It is considered to optimise the operational 

time of the system. This transition probability block is given by 

H 

′ 
2 = U 2 T ⊗ L ⊗ M 

0 η. 

A non-repairable failure on the online unit takes place when a 

non-repairable external shock is produced. The non-repairable fail- 

ure is ‘stronger’ than a repairable one and preventive maintenance. 

Then, the matrix transition probability is given by 

H 3 = T 

0 
nr α ⊗

(
L + L 0 γ

)
⊗

(
M 

0 η + M 

)
+ 

(
e n − T 

0 
nr 

)
α ⊗ L 0 nr γ ⊗

(
M 

0 η + M 

)
. 

Table 1 shows the matrices associated to the events over the 

online unit. 

3.1.3. The online unit and the warm standby units 

The matrices described above are the basis of the modelling of 

this multi-state complex system. The transition probability matrix 

is composed of matrix blocks according to the macro-states de- 

fined in ( 1 ). We have already analysed the behaviour of the online 

unit, next warm standby units are introduced in the analysis. 

If r indicates the number of standby units which are broken at a 

certain time and l the number of units in the repair facility before 

that time, then we define the matrix 

H c,l,r = 

(
K − l − 1 

r 

)
p r ( 1 − p ) 

K−l−1 −r H c , 

where 

c = 0 , 1 , 2 , 3 ; l = 0 , . . . , K − 1 ; r ≤ K − l − 1 . 

This matrix H c , l , r contains the transition probabilities when 

there are l non-operational units, and at next time r warm standby 

units breaks down and the online unit passes to the situation c 

in that time; where c is equal to 0 when the online unit keeps 

on working the next time, 1 when this one undergoes a repairable 

failure, 2 when it undergoes a major inspection and 3 when the 

online unit undergoes a non-repairable failure. 

If the online unit goes to repair facility, all warm standby units 

fail and a repair does not occur then 

H 

′ 
c,l ,K−l −1 = p K−l−1 H 

′ 
c, for c = 1 , 2 . 

Fig. 1 shows the possible transitions for only the online and 

standby units. 

3.2. The MMAP with arrivals in batch 

The behaviour of the system; when the online unit, the standby 

units, and the repair facility are considered, is modelled through a 

MMAP with arrivals in batch. We distinguish among four types of 

events: 

O : the only units that fail at a certain time are warm standby 

units. 

A : the online unit undergoes a repairable failure and any unit 

in warm standby can fail. 

B : the online unit undergoes a major inspection and any unit in 

warm standby can fail. 
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Table 1 

Matrices associated to the events over the online unit. 

Matrix Repairable failure Non-repairable failure External shock Major inspection All units fail in this transition 

H 0 NO NO NO NO –

H 1 YES NO YES/NO YES/NO NO 

H 

′ 
1 YES NO YES/NO YES/NO YES 

H 2 NO NO NO YES NO 

H 

′ 
2 NO NO NO YES YES 

H 3 YES/NO YES YES/NO YES/NO YES/NO 

Fig. 1. Events associated to the matrices H c , l , r . 

C : the online unit undergoes a non-repairable failure and any 

unit in warm standby can fail. 

When the events A , B and C have place at a certain time, the 

number of warm standby units that fail can vary from 0 to the 

total units in standby at the previous moment. We defined D 

Or , 

D 

Ar , D 

Br and D 

Cr , for r = 0,…, K − 1, as the matrices that contain the 

transition probabilities between any two phases described in the 

state space when the event O , A , B or C occurs, respectively, and r 

standby units fail. 

The system is modelled by the following MMAP , (
D 

O 0 , D 

O 1 , . . . , D 

O,K−1 , D 

A 0 , D 

A 1 , . . . , D 

A,K−1 , D 

B 0 , 

D 

B 1 , . . . , D 

B,K−1 , D 

C0 , D 

C1 , . . . , D 

C,K−1 
)
. 

Fig. 2 shows the transitions when there are l units in the repair 

facility, a of them are repaired and r standby units fail. 

3.2.1. The matrices of the MMAP 

In this section the matrices associated to the MMAP are worked 

out. Some of them are developed in this section and the rest are 

given in the Appendix. 

Matrix D 

Or 

The matrix D 

Or contains the transition probabilities when the 

online unit does not go to repair facility and r warm standby units 

fail at a certain time. This fact depends on the number of units in 

the repair facility before and after the transition time. The block ( l , 

k ) of the following matrix corresponds to this transition between 

the macro-states E l and E k . This matrix is given by 

D 

Or = 

(
D 

Or 
lk 

)
l,k =0 , ... ,K 

, 

where 

D 

Or 
lk = 0 if k > l + r or k < l + r − min { l, R } or l ≥ I { r ≥1 } (K − r) . 

Once again, the matrices D 

Or 
lk 

are composed by matrix blocks 

corresponding to the transition between macro-states E j 1 , ... , j l and 

E i 1 , ... , i k . The matrix block D 

Or 
lk 

( i 1 , . . . , i k ; j 1 , . . . , j l ) contains the tran- 

sition probabilities described by considering the order under re- 

pairing and in queue of failure types before and after transition. 

These blocks are built by considering the H blocks and the auxil- 

iary matrix functions defined in Section 3.1 . Then, 

D 

O 0 
00 = H 0 , 0 , 0 , 

D 

Or 
0 r ( i 1 , . . . , i r ) = 

(
H 0 , 0 ,r + H 

′ 
2 , 0 ,r I { r= K−1 } 

)
⊗ β i 1 ⊗ · · · ⊗ β i min { r,R } ;

i s = 0 , s = 1 , . . . , r; r = 1 , . . . , K − 1 , 

D 

O 0 
l, 0 ( j 1 , . . . , j l ) = 

(
H 0 ,l, 0 + H 

′ 
2 ,l, 0 I { r= K−l−1 } 

)
⊗ B ( l , l ; j 1 , . . . , j l ) ;

l = 1 , 2 , . . . , R � = K 

j s = 0 , 1 , 2 ; s = 1 , . . . , l, 

D 

O 0 
K, 0 ( j 1 , . . . , j K ) = α ⊗

(
L + L 0 γ

)
⊗ η ⊗ B ( K, K; j 1 , . . . , j K ) ;

K = R 

j K = 0 , 1 ;
j s = 0 , 1 , 2 , s = 1 , . . . , K − 1 . 

Fora = 1 , . . . , R � = K , i R −a + s = j R + s ;
s = 1 , . . . , min { K − R, a } and j K = 0 , 1 , 

D 

O 0 
K,K−a ( i 1 , . . . , i K−a ; j 1 , . . . , j K ) 

= α ⊗
(
L + L 0 γ

)
⊗ η ⊗ B ( K, a ; i 1 , . . . , i K−a ; j 1 , . . . , j K ) 

⊗β i R −a +1 ⊗ β i R −a +2 ⊗ · · · ⊗ β i min { K−a,R } . 

D 

O 0 
K,K ( i 1 , . . . , i K ; j 1 , . . . , j K ) = 

(
L + L 0 γ

)
⊗ B ( K; 0 ; i 1 , . . . , i K ; j 1 , . . . , j K ) ; i s = j s , s = 1 , . . . , K, 



J.E. Ruiz-Castro / European Journal of Operational Research 252 (2016) 852–865 857 

Fig. 2. Events associated to the matrices D . 

and 

for r = 0 , . . . , K − 2 ; l = 1 , . . . , K − r − 1 ;
a = 0 , . . . , min { l, R, l + r − 1 } , i l−a + s = 0 ; s = 1 , . . . , r, 

j K = 0 , 1 and i R −a + s = j R + s ; s = 1 , . . . , l − R if l > R, 

D 

Or 
l ,l + r−a ( i 1 , . . . , i l+ r−a ; j 1 , . . . , j l ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
H 0 ,l,r + H 

′ 
2 ,l,r 

I { r= K−l−1 ,a =0 } 
)

⊗ B ( l, a ; i 1 , . . . , i l−a ; j 1 , . . . , j l ) 

⊗β i l−a +1 ⊗ β i l−a +2 ⊗ · · · ⊗ β i min { l−a + r,R } ;
min { l − a + r, R } ≥ l − a + 1 (

H 0 ,l,r +H 

′ 
2 ,l,r 

I { r= K−l−1 ,a =0 } 
)

⊗ B ( l, a ; i 1 , . . . , i l−a ; j 1 , . . . , j l ) ;
min { l − a + r, R } < l − a + 1 , 

where I {} is the indicatory function. 

For instance, if there are l units in the repair facility with order 

j 1 , . . . , j l , then the probability that the online unit does not go to 

repair facility, r warm standby units fail ( H 0 ,l,r ), a units that are be- 

ing repaired are finished ( B ( l, a ; i 1 , . . . , i l−a ; j 1 , . . . , j l ) ) and the pos- 

sible units in queue entry to be repaired ( β i l−a +1 ⊗ β i l−a +2 ⊗ · · · ⊗
β i min { l−a + r,R } ) is given by D 

Or 
l ,l + r−a 

( i 1 , . . . , i l+ r−a ; j 1 , . . . , j l ) . 

Matrices D 

Ar 

The matrix D 

Ar contains the transition probabilities when the 

online unit undergoes a repairable failure and r warm standby 

units fail at a certain time. This fact depends on the number of 

units in the repair facility before and after the transition time. The 

block ( l , k ) of this matrix corresponds to this transition between 

the macro-states E l and E k . This matrix is given by 

D 

Ar = 

(
D 

Ar 
lk 

)
l,k =0 , ... ,K 

where 

D 

Ar 
lk = 0 if k > l + r + 1 or k < l + 1 + r − min { l, R } or l ≥ K − r. 

As above, the matrices D 

Ar 
lk 

are composed by the matrix blocks 

D 

Ar 
lk 

( i 1 , . . . , i k ; j 1 , . . . , j l ) that contains the transition probabilities 

described by considering the order in queue of failure types be- 

fore and after transition. These blocks are built by considering the 

H blocks defined above. Then, 

D 

Ar 
0 ,r+1 ( i 1 , . . . , i r+1 ) = 

(
H 1 , 0 ,r I { r<K−1 } + H 

′ 
1 , 0 ,r I { r= K−1 } 

)
⊗β i 1 ⊗ β i 2 ⊗ · · · ⊗ β i min { r+1 ,R } ; r = 0 , . . . , K − 1 

i 1 = 1 

i s = 0 ; s = 2 , . . . , r + 1 

For r = 0 , . . . , K − 2 ; l = 1 , . . . , K − r − 1 ;
a = 0 , . . . , min { l, R } , i l−a +1 = 1 , i l−a + s = 0 ; s = 2 , . . . , r 

j K = 0 , 1 and i R −a + s = j R + s ; s = 1 , . . . , l − R if l > R, 

D 

Ar 
l ,l + r+1 −a ( i 1 , . . . , i l+ r+1 −a ; j 1 , . . . , j l ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
H 1 ,l,r I { r<K−l−1 or a> 0 } + H 

′ 
1 ,l,r 

I { r= K−l−1 and a =0 } 
)

⊗B ( l, a ; i 1 , . . . , i l−a ; j 1 , . . . , j l ) 

⊗β i l−a +1 ⊗ β i l−a +2 ⊗ · · · ⊗ β i min { l+ r+1 −a,R } ;
min { l + r + 1 − a + r, R } ≥ l − a + 1 (

H 1 ,l,r I { r<K−l−1 or a> 0 } + H 

′ 
1 ,l,r 

I { r= K−l−1 and a =0 } 
)

⊗ B ( l, a ; i 1 , . . . , i l−a ; j 1 , . . . , j l ) ;
min { l + r + 1 − a + r, R } < l − a + 1 

Thus, in the last case, if there are l units in the re- 

pair facility with order j 1 , . . . , j l , then the probability that the 

online unit undergoes a repairable failure, r warm standby 

units fail ( H 1 ,l,r ), a units that are being repaired are finished 

( B ( l, a ; i 1 , . . . , i l−a ; j 1 , . . . , j l ) ) and the possible units in queue en- 

try to be repaired ( β i l−a +1 ⊗ β i l−a +2 ⊗ · · · ⊗ β i min { l+ r+1 −a,R } ) is given by 

D 

Ar 
l ,l + r−a 

( i 1 , . . . , i l+ r−a ; j 1 , . . . , j l ) . 

The rest blocks are given in the Appendix. 

3.2.2. The transition probability matrix 

The system is modelled through a vector Markov process as it 

has been described above. Given the MMAP that governs the be- 

haviour of the system, the transition probability matrix associated 
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to the Markov process is given as the addition of the matrices built 

above. Thus, 

P = 

K−1 ∑ 

r=0 

(
D 

Or + D 

Ar + D 

Br + D 

Cr 
)

= ( D lk ) l=0 , ... ,K 
k = max { 0 ,l−R } , ... ,K 

, (2) 

where these blocks can be expressed through the blocks different 

of zero in the following way. 

For l = 0 , . . . , K; k = max { 0 , l − R } , . . . , K, 

D lk = I { l= K } D 

O, 0 
lk 

+ I { l <K,k ≥max { l −R, 0 } } 
min { l,R, max { K−k −1 , 0 } } ∑ 

a = max { l−k, 0 } 
D 

O,k −l+ a 
lk 

+ I { l <K,k ≥max { l −R +1 , 1 } } 
min { l,R, max { K−k, 0 } } ∑ 

a = max { l−k +1 , 0 } 
D 

A,k −l+ a −1 
lk 

+ I { l <K, max { l −R +1 , 1 } ≤k<K } 
min { l,R, max { K−k, 0 } } ∑ 

a = max { l−k +1 , 0 } 
D 

B,k −l+ a −1 
lk 

+ I { l <K, max { l −R, 0 } ≤k<K } 
min { l,R, max { K−k −1 , 0 } } ∑ 

a = max { l−k, 0 } 
D 

C,k −l+ a 
lk 

. 

The transient distribution of the model can be worked out from 

the transition probability matrix by considering the different ma- 

trix blocks. Given the initial distribution ω = ( ω 0 , ω 1 , . . . , ω K ) the 

probability that at time ν the system is in the different states of 

the macro-state E k is noted by p ν
E k 

and it is given by considering 

the matrix block structure as 

p ν
E k 

= 

K ∑ 

l=0 

ω l D 

( ν) 
lk 

, 

where 

D 

( ν) 
lk 

= 

min { k + min { l,R } ,K } ∑ 

l 1 = l −min { l ,R } 
D l, l 1 

min { k + min { l 1 ,R } ,K } ∑ 

l 2 = l 1 −min { l 1 ,R } 
D l 1 , l 2 · · ·

×
min { k + min { l ν−3 ,R } ,K } ∑ 

l ν−2 = l ν−3 −min { l ν−3 ,R } 
D l ν−3 , l ν−2 

min { k + min { l ν−2 ,R } ,K } ∑ 

l ν−1 = l ν−2 −min { l ν−2 ,R } 
D l ν−2 , l ν−1 

D l ν−1 ,k . 

4. Derived systems 

Some different systems can be derived from the basic system. 

Repairable and non-repairable failures on the online unit where 

these failures may, or may not depend on the time up to inter- 

nal failure of the online unit are considered. These new systems 

are modelled by considering similar structure as given above but 

with different matrices H . 

SYSTEM II: A System with only repairable or non-repairable inter- 

nal failures depending on the time up to failure of the online unit 

We assume the system I where external failures cannot occur. 

This one is a particular case of the system above but the state 

space changes in the following way 

E 0 = { ( i, m ) ; 1 ≤ i ≤ n, 1 ≤ m ≤ ε } , 
for k < K 

E i 1 , ... , i k = 

{(
i, m, r 1 , r 2 , . . . , r min { k,R } 

)
; 1 ≤ i ≤ n, 1 ≤ m ≤ ε, 

1 ≤ r h ≤ z i h , h = 1 , . . . , min { k, R } }, 

and for k = K 

E i 1 , ... , i K = 

{
( r 1 , r 2 , . . . , r R ) ; 1 ≤ r h ≤ z i h , h = 1 , . . . , R 

}
. 

The matrix blocks are given by 

H 0 = T ⊗ M + U 1 T ⊗ M 

0 η, 

H 1 = T 

0 
r α ⊗

(
M 

0 η + M 

)
, 

H 

′ 
1 = T 

0 
r ⊗ e ε . 

H 2 = U 2 

(
e n − T 

0 
)
α ⊗ M 

0 η. 

H 

′ 
2 = U 2 T ⊗ M 

0 η. 

H 3 = T 

0 
nr α ⊗

(
M 

0 η + M 

)
. 

SYSTEM III: A System with repairable or non-repairable external 

and internal failures depending on the time up to failure of the online 

unit without preventive maintenance 

We assume system I without random inspections. Preventive 

maintenance is removed. This one is a particular case of system 

I with the following state space 

E 0 = { ( i, j ) ; 1 ≤ i ≤ n, 1 ≤ j ≤ t } , 
for k < K 

E i 1 , ... , i k = 

{(
i, j, r 1 , r 2 , . . . , r min { k,R } 

)
; 1 ≤ i ≤ n, 1 ≤ j ≤ t, 

1 ≤ r h ≤ z i h , h = 1 , . . . , min { k, R } }, 

and for k = K 

E i 1 , ... , i K = 

{
( j, r 1 , r 2 , . . . , r R ) ; 1 ≤ j ≤ t, 1 ≤ r h ≤ z i h , h = 1 , . . . , R 

}
, 

The matrix blocks are given in this case as 

H 0 = T ⊗ L , 

H 1 = T 

0 
r α ⊗

(
L + L 0 r γ

)
+ 

(
e n − T 

0 
)
α ⊗ L 0 r γ , 

H 

′ 
1 = T 

0 
r ⊗

(
L + L 0 r γ

)
+ 

(
e n − T 

0 
)

⊗ L 0 r γ , 

H 3 = T 

0 
nr α ⊗

(
L + L 0 γ

)
+ 

(
e n − T 

0 
)
α ⊗ L 0 nr γ . 

Finally, in this case the MMAP is given by (
D 

O 0 , D 

O 1 , . . . , D 

O,K−1 , D 

A 0 , D 

A 1 , . . . , D 

A,K−1 , D 

C0 , D 

C1 , . . . , D 

C,K−1 
)
. 

SYSTEM IV: A System with repairable or non-repairable internal 

and external failure of the online unit independent of the time up to 

failure 

We assume the basic system I where the internal (external) op- 

erational failure can be repairable with probability p in_re ( p ex_re ) 

and non-repairable with probability p in_nre = 1 − p in_nre ( p ex_nre = 

1 − p ex_nre ). The type of failure is independent of the failure time. 

The model of this system is achieved from system I by consid- 

ering T 0 r = p in _ re T 
0 , T 0 nr = p in _ nre T 

0 , L 0 r = p ex _ re L 
0 and L 0 nr = p ex _ nre L 

0 

SYSTEM V: A System with repairable internal failure and external re- 

pairable or non-repairable failure independent of the time up to fail- 

ure 

We assume the basic system I where the internal operational 

failure is always repairable ( p in_re = 1) and the external opera- 

tional failure can be repairable with probability p ex_re and non- 

repairable with probability p ex_nre = 1 − p ex_nre . The type of fail- 

ure is independent of the failure time. The model of this system 

is achieved from system I by considering T 0 r = T 0 , T 0 nr = 0 , L 0 r = 

p ex _ re L 
0 and L 0 nr = p ex _ nre L 

0 . 

Remark. New systems can be obtained by considering inde- 

pendence on the type of failure. In this case, new models 

can be achieved by considering system I , II and III with T 0 r = 

T 0 p in _ re , T 0 nr = T 0 p in _ nre , L 0 r = L 0 p ex _ re and L 0 nr = L 0 p ex _ nre . 
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5. Performance measures 

Some interesting measures associated to system I (the more 

general system) are calculated. Particular cases can be worked out 

for the other systems in a similar way. 

5.1. Availability 

The availability is the probability that the system is working on 

at a certain time ν . It is given by 

A ( ν) = 1 − p ν
E K 

e 
I { R<K } 2 ·3 K−R −1 t 

R ∑ 

i =0 

R −i ∑ 

j=0 

R ! 
i ! j!(R −i − j)! 

z i 
0 

z j 
1 

z R −i − j 
2 

+ I { R = K } t ( z 0 + z 1 ) 
R −1 ∑ 

i =0 

R −i −1 ∑ 

j=0 

( R −1 ) ! 
i ! j!(R −i − j−1)! 

z i 
0 

z j 
1 

z R −i − j−1 
2 

, 

where the subscript of the vector e is the number of columns of 

p ν
E K 

(defined in Section 3.2.2 ). 

If the system is new initially then 

A ( ν) = 1 − ω 0 D 
( ν) 
0 K 

e 
I { R<K } 2 ·3 K−R −1 t 

R ∑ 
i =0 

R −i ∑ 
j=0 

R ! 
i ! j!(R −i − j)! 

z i 
0 

z j 
1 

z R −i − j 
2 

+ I { R = K } t ( z 0 + z 1 ) 
R −1 ∑ 
i =0 

R −i −1 ∑ 
j=0 

( R −1 ) ! 
i ! j!(R −i − j−1)! 

z i 
0 

z j 
1 

z R −i − j−1 
2 

. 

5.2. Reliability 

The reliability function is defined as the probability that the 

system fails by first time after a certain time. This function can 

be defined by considering different stop times while the system is 

evolving by time. The distribution function of this stop time is PH- 

distributed where the absorbing state is the fact that produces the 

stop event. For instance, if the system is new initially, then the dis- 

tribution of the time up to first time that the system has not oper- 

ational units is PH distributed with representation ( ω ∗, P ∗) where 

ω ∗and P ∗ are the initial distribution and the matrix P restricted to 

the macro-states { E 0 ,…, E K −1 }. 

Thus, the mean time up to first time that the system is not op- 

erational is given by 

μ = ω ∗( I − P ∗) 
−2 P 

0 
∗ = ω ∗( I − P ∗) 

−1 e . 

5.3. Conditional probability of failure 

Some different conditional probability of failure can be defined 

if the different types of failures and preventive maintenance are 

considered. We focused on system I , a similar reasoning can be de- 

veloped for the rest of systems. 

5.3.1. Conditional probability of internal repairable failure 

The conditional probability of internal repairable failure is the 

probability that the system is working on at the beginning of a 

certain time ν , and an internal repairable failure on the online unit 

and r warm standby units fail at that moment (an accidental non- 

repairable failure on the online unit does not occur). This probabil- 

ity is given by 

φr,ν
in _ re 

= 

K−1 ∑ 

k =0 

I { r≤K−k −1 } p ν−1 
E k 

[
T 

0 
r ⊗

(
e t − L 0 nr 

)
⊗ e 

]
p r ( 1 − p ) 

K−k −r−1 
. 

5.3.2. Conditional probability of internal non-repairable failure 

The conditional probability of internal non-repairable failure is 

the probability that the system is working on at the beginning of a 

certain time ν , and an internal non-repairable failure on the online 

unit and r warm standby units fail at that moment (any accidental 

failure can occur). This probability is given by 

φr,ν
in _ nre 

= 

K−1 ∑ 

k =0 

I { r≤K−k −1 } p ν−1 
E k 

[
T 

0 
nr ⊗ e 

]
p r ( 1 − p ) 

K−k −r−1 
. 

The conditional probability of internal failure is achieved by 

adding both measures above. 

5.3.3. Conditional probability of repairable external failure 

A similar reasoning as above can be made for the external fail- 

ures. Thus, the conditional probability of repairable external failure 

is the probability that the system is working on at the beginning 

of a certain time ν , and a repairable external failure on the on- 

line unit and r warm standby units fail at that moment (an inter- 

nal non-repairable failure does not occur). This probability is given 

by 

φr,ν
ex _ re = 

K−1 ∑ 

k =0 

I { r≤K−k −1 } p ν−1 
E k 

[(
e n − T 

0 
nr 

)
⊗ L 0 r ⊗ e 

]
p r ( 1 − p ) 

K−k −r−1 
. 

5.3.4. Conditional probability of non-repairable external failure 

The conditional probability of non-repairable external failure is 

the probability that the system is working on at the beginning of a 

certain time ν , and a non-repairable external failure on the online 

unit and r warm standby units fail at that moment (any internal 

failure can occur). This probability is given by 

φr,ν
ex _ nre = 

K−1 ∑ 

k =0 

I { r≤K−k −1 } p ν−1 
E k 

[
e n ⊗ L 0 nr ⊗ e 

]
p r ( 1 − p ) 

K−k −r−1 
. 

The conditional probability of external failure is achieved by 

adding both measures above. 

5.3.5. Conditional probability of major inspection 

The conditional probability of major inspection is the proba- 

bility that the system is working on at the beginning of a cer- 

tain time ν , and a major inspection occurs by producing pre- 

ventive maintenance and r warm standby units fail (the online 

unit does not undergo failures at that time.). This probability is 

given by 

φν
pm 

= 

K−2 ∑ 

k =0 

I { r≤K−k −1 } p ν−1 
E k 

[(
e n −T 

0 
)

⊗
(
e t −L 0 

)
⊗ e 

]
p r ( 1 −p ) 

K−k −r−1 
. 

5.4. Mean times 

One interesting measure from economic and performance point 

of view is the mean sojourn time. While the system is working on, 

this one passes through several states, how long does it spend in 

each macro-state up to a certain time? 

5.4.1. Mean sojourn time in macro-state k up to a certain time 

From the Markovian theory, it is well-known that the mean so- 

journ mean time at any macro-state k up to time ν can be worked 

out as 

ψ 

ν
k = 

ν∑ 

m =0 

p m 

E k 
e , for k = 0 , 1 , . . . , K. (3) 

5.4.2. Mean working time of the repairpersons 

The units of the system are partitioned between online and 

warm standby, and the repair time of any one, when a repairable 

failure occurs, depends on it. In this section we are interested 

about the mean time that the repairpersons are working on units 

that failed from the online place and from the standby up to a cer- 

tain time. 

5.4.3. Mean working time on standby repairable failures up to a 

certain time 

The mean time that the repairpersons are working on 

standby repairable failures from the beginning up to time ν is 
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given by 

ψ 

ν
stby = 

ν∑ 

m =0 

K ∑ 

k =1 

p m 

E k 
q 

0 
k , (4) 

where q 

w 

k 
is a column vector defined for k = 1,…, K −1 as 

q 

w 

k = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

q w 

(
0 , 0 , min { k, R } 

. . . , 0 , 0 

)
e 

ntε 3 
I { k>R } ( k −R ) 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 0 , 0 ) 

i 

q w 

(
0 , 0 , min { k, R } 

. . . , 0 , 1 

)
e 

ntε 3 
I { k>R } ( k −R ) 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 0 , 1 ) 

i 

q w 

(
0 , 0 , min { k, R } 

. . . , 0 , 2 

)
e 

ntε 3 
I { k>R } ( k −R ) 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 0 , 2 ) 

i 

q w 

( 0 , 0 , . . . , 1 , 0 ) e 
ntε 3 

I { k>R } ( k −R ) 
2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 1 , 0 ) 

i 

q w 

( 0 , 0 , . . . , 1 , 1 ) e 
ntε 3 

I { k>R } ( k −R ) 
2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 1 , 1 ) 

i 

q w 

( 0 , 0 , . . . , 1 , 2 ) e 
I { k>R } ntε ( k −R ) 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 1 , 2 ) 

i 

. . . 

q w 

( 2 , 2 , . . . , 2 , 2 ) e 
ntε 3 

I { k>R } ( k −R ) 
2 ∏ 

i =0 

z 
q i ( 2 , 2 , ... , 2 , 2 ) 

i 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

q 

w 

K = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

q w 

(
0 , 0 , R 

. . . , 0 , 0 

)
e 

2 t 3 ( K−R −1 ) 
2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 0 , 0 ) 

i 

q w 

(
0 , 0 , R 

. . . , 0 , 1 

)
e 

2 t 3 ( K−R −1 ) 
2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 0 , 1 ) 

i 

q w 

(
0 , 0 , R 

. . . , 0 , 2 

)
e 

2 t 3 ( K−R −1 ) 
2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 0 , 2 ) 

i 

q w 

( 0 , 0 , . . . , 1 , 0 ) e 
2 t 3 ( K−R −1 ) 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 1 , 0 ) 

i 

q w 

( 0 , 0 , . . . , 1 , 1 ) e 
2 t 3 ( K−R −1 ) 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 1 , 1 ) 

i 

q w 

( 0 , 0 , . . . , 1 , 2 ) ⊗ e 
2 t 3 ( K−R −1 ) 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 1 , 2 ) 

i 

. . . 

q w 

( 2 , 2 , . . . , 2 , 2 ) e 
2 t 3 ( K−R −1 ) 

2 ∏ 

i =0 

z 
q i ( 2 , 2 , ... , 2 , 2 ) 

i 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

with K � = R and for K = R , 

q 

w 

K = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

q w 

(
0 , 0 , R 

. . . , 0 , 0 

)
e 

t 
2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 0 , 0 ) 

i 

q w 

(
0 , 0 , R 

. . . , 0 , 1 

)
e 

t 
2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 0 , 1 ) 

i 

q w 

( 0 , 0 , . . . , 1 , 0 ) e 
t 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 1 , 0 ) 

i 

q w 

( 0 , 0 , . . . , 1 , 1 ) e 
t 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 1 , 1 ) 

i 

q w 

( 0 , 0 , . . . , 2 , 0 ) e 
t 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 2 , 0 ) 

i 

q K ( 0 , 0 , . . . , 2 , 1 ) e 
t 

2 ∏ 

i =0 

z 
q i ( 0 , 0 , ... , 2 , 1 ) 

i 

. . . 

q w 

( 2 , 2 , . . . , 2 , 2 ) e 
t 

2 ∏ 

i =0 

z 
q i ( 2 , 2 , ... , 2 , 2 ) 

i 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

being the function q w 

(·) the number of types of failure w = 0, w = 1 

or w = 2, that are being repaired given in the corresponding se- 

quence. 

5.4.4. Mean working time on online repairable failures up to a 

certain time 

The mean time that the repairpersons are working on re- 

pairable failures of online units from the beginning up to time ν
is given by 

ψ 

ν
online = 

ν∑ 

m =0 

K ∑ 

k =1 

p m 

E k 
q 

1 
k . (5) 

5.4.5. Working mean time on preventive maintenance up to a certain 

time 

The mean time that the repairpersons are working on preven- 

tive maintenance from the beginning up to time ν is given by 

ψ 

ν
pm 

= 

ν∑ 

m =0 

K−1 ∑ 

k =1 

p m 

E k 
q 

2 
k . (6) 

5.5. Mean number of events 

The most general system that has been modelled, System I , is 

subject to several types of events; repairable and non-repairable 

failures and preventive maintenance. These events are happening 

by time and it is interesting to analyse the mean number of these 

ones up to a certain time. 

Given a type of event, the mean number of occurrences up to 

time ν is worked out as 

ν∑ 

m =1 

P { event occurs at time m } . 

These measures are calculated by considering the MMAP struc- 

ture in the modelling. 

Thus, the mean number of repairable failures of the online unit 

up to a certain time ν is 

�ν
re = ω 

ν∑ 

m =1 

P 

m −1 D 

A e , (7) 

where 

D 

A = 

K−1 ∑ 

r=0 

D 

A,r . 

Analogously, the mean number of non-repairable failures and 

major revisions of the online unit up to a certain time ν is equal 

to these expressions respectively, 

�ν
nre = ω 

ν∑ 

m =1 

P 

m −1 D 

C e and �ν
pm 

= ω 

ν∑ 

m =1 

P 

m −1 D 

B e , (8) 

where 

D 

B = 

K−2 ∑ 

r=0 

D 

B,r and D 

C = 

K−1 ∑ 

r=0 

D 

C,r . 

Finally, the mean number of warm standby units that fail up to 

a certain time ν is equal to 

�ν
stby = ω 

ν∑ 

m =1 

P 

m −1 
K−1 ∑ 

r=1 

r 
[
D 

Or + D 

Ar + D 

Br + D 

Cr 
]
e . (9) 

6. Rewards 

When a complex system is going to be analysed, at least two 

points must be taken into account: performing times and rewards. 
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In this section we analyse the behaviour of the costs and benefits 

associated to the system over time. 

6.1. The cost vector 

We assume two logical classes of rewards and costs: per unit of 

time and due to events. 

6.1.1. Rewards and costs per unit of time 

While the system is operational, a gross profit is obtained 

per unit of time. The mean gross profit per unit of time is de- 

noted by B . Also, each unit produces an operational cost per unit 

of time according to the type of unit. Each operational standby 

unit produces a mean cost per unit of time equal to c s and 

the online unit produces a cost depending to the operational 

phase. The mean cost per unit of time produced by the on- 

line unit and for each operational phase is given by the column 

vector c 0 . 

On the other hand, while a repairperson is working, a cost 

is produced per unit of time, depending on the type of repair 

(online unit, standby unit and preventive maintenance) and de- 

pending on the repair phase in each case. Then, the mean cost 

per unit of time when a unit is being repaired; type standby, 

online unit or preventive maintenance is given by the column 

vectors cr 0 , cr 1 and cr 2 respectively. Finally, while the system 

is not working, a mean loss equal to C is produced by unit of 

time. 

Different column vectors containing the mean net reward 

per unit of time, depending on performing phase and on the 

types of failures and on the number of units in the re- 

pair facility is calculated. Next, the case system I is devel- 

oped in this section; it can be performed for the other systems 

analogously. 

6.1.2. Net profit associated to the state space 

The profit vector containing the mean net profit per unit of 

time associated to the macro-state E k is given by 

n r k = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

( B − ( K − 1 ) c s ) e ntε − c 0 ⊗ e tε ; k = 0 

( B − ( K − k − 1 ) c s ) e 
ntε·3 k −min { k,R } 

min { k,R } ∑ 
i =0 

min { k,R } −i ∑ 
j=0 

min { k,R } ! 
i ! j! ( min { k,R } −i − j ) ! 

z i 
0 

z j 
1 

z 
min { k,R } −i − j 

2 

−

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

c 0 ⊗ e 
tε·3 k −min { k,R } 2 ∏ 

i =0 

z i 
q i (0 ,. min { k, R } 

. . . , 0 , 0) 

c 0 ⊗ e 
tε·3 k −min { k,R } 2 ∏ 

i =0 

z i 
q i (0 ,. min { k, R } 

. . . , 0 , 1) 

c 0 ⊗ e 
tε·3 k −min { k,R } 2 ∏ 

i =0 

z i 
q i (0 ,. min { k, R } 

. . . , 0 , 2) 

. 

. 

. 

c 0 ⊗ e 
tε·3 k −min { k,R } 2 ∏ 

i =0 

z i 
q i (2 ,. min { k, R } 

. . . , 2 , 0) 

c 0 ⊗ e 
tε·3 k −min { k,R } 2 ∏ 

i =0 

z i 
q i (2 ,. min { k, R } 

. . . , 2 , 0) 

c 0 ⊗ e 
tε·3 k −min { k,R } 2 ∏ 

i =0 

z i 
q i (2 ,. min { k, R } 

. . . , 2 , 0) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

; k = 1 , . . . , K − 1 

−C · e 
t ( 2 ·3 K−R −1 ) 

1 −I { R = K } 
R −I { R = K } ∑ 

i =0 

R −I { R = K } −i ∑ 
j=0 

( R −I { R = K } ) ! 
i ! j! ( R −i − j−I { R = K } ) ! 

z i 
0 

z j 
1 

z 
R −i − j−I { R = K } 
2 ( z 0 + z 1 ) I { R = K } 

; k = K 

, 

and the cost vector containing the mean cost per unit of time de- 

pending on the type of repair associated to the macro-state E i 1 , ... , i k 
is given by 

nc k i 1 , ... , i k 
= e 

t ( nε ) 
I { k � = K } ⊗ c r i 1 � · · · � c r i min { k,R } , 

where given two column vectors v and w, with order a and b re- 

spectively, then v � w is defined as v � w = v ⊗ e b + e a ⊗ w . 

The mean cost per unit of time depending on the type of repair 

associated to the macro-state E k is given by 

nc k = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
nc k 0 , 0 , ... , 0 , 0 , nc k 0 , 0 , ... , 0 , 1 , nc k 0 , 0 , ... , 0 , 2 , . . . , 

nc k 2 , 2 , ... , 2 , 0 , nc k 2 , 2 , ... , 2 , 1 , nc k 2 , 2 , ... , 2 , 2 

)′ ; 0 < k < K (
nc k 0 , 0 , ... , 0 , 0 , nc k 0 , 0 , ... , 0 , 1 , nc k 0 , 0 , ... , 1 , 0 , nc k 0 , 0 , ... , 1 , 1 , nc k 0 , 0 , ... , 2 , 0 , 

nc k 0 , 0 , ... , 2 , 1 , . . . , nc k 2 , 2 , ... , 2 , 0 , nc k 2 , 2 , ... , 2 , 1 

)′ ; k = K 

For the case k units in the repair facility the global net column 

cost vector is built as c 0 = n r 0 and c k = n r k − n c k for k = 1 , . . . , K. 

Finally, the global net column profit vector by considering the 

state space given in Section 1 is built as c = ( c 0 , . . . , c K ) ′ . 

6.1.3. Fixed costs per event 

The complex system, described in this work, is subject to sev- 

eral events; repairable failures of the online, repairable failures of 

the standby units, preventive maintenance and non repairable fail- 

ure of the online unit. Each time that an event occurs, a mean 

fixed cost is produced due to several reasons such as materials, 

new units, etc. We introduce in the model these costs as 

fc s : mean fixed cost due to one repairable failure of one standby 

unit 

fc 0 : mean fixed cost due to one repairable failure of the online 

unit 

fc pm 

: mean fixed cost due to one preventive maintenance 

fc nr : mean cost of a new unit 

6.2. Reward measures 

Different reward measures can be defined from the vectors de- 

scribed above. The costs and profit per unit of time are given by 

the following expressions. 

Mean net profit up to time ν

�ν
w 

= 

ν∑ 

m =0 

K−1 ∑ 

k =0 

p m 

E k 
n r k , (10) 

Mean cost due to corrective repair of standby units up to time ν

�ν
s = 

ν∑ 

m =0 

K ∑ 

k =1 

p 

m 

E k 
· mc k, 0 (11) 

where 

mc k,w = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
mc k,w 

0 , 0 , ... , 0 , 0 
, mc k,w 

0 , 0 , ... , 0 , 1 
, mc k,w 

0 , 0 , ... , 0 , 2 
, . . . , 

mc k,w 

2 , 2 , ... , 2 , 0 
, mc k,w 

2 , 2 , ... , 2 , 1 
, mc k,w 

2 , 2 , ... , 2 , 2 

)′ ; 0 < k < K (
mc k,w 

0 , 0 , ... , 0 , 0 
, mc k,w 

0 , 0 , ... , 0 , 1 
, mc k,w 

0 , 0 , ... , 1 , 0 
, mc k,w 

0 , 0 , ... , 1 , 1 
, 

mc k,w 

0 , 0 , ... , 2 , 0 
, mc k,w 

0 , 0 , ... , 2 , 1 
, . . . , mc k,w 

2 , 2 , ... , 2 , 0 
, mc k,w 

2 , 2 , ... , 2 , 1 

)′ ;
k = K 

being mc k,w 

i 1 , ... , i k 
= e ntε ⊗ cr w 

i 1 
� · · · � cr w 

i min { k,R } where cr w 

type = 

cr type if type = w and cr w 

type = 0 z type otherwise for w = 0, 1, 2. 

Mean cost due to corrective repair of online units up to time ν

�ν
0 = 

ν∑ 

m =0 

K ∑ 

k =1 

p 

m 

E k 
· mc k, 1 (12) 

Mean cost due to preventive maintenance up to time ν

�ν
pm 

= 

ν∑ 

m =0 

K ∑ 

k =1 

p 

m 

E k 
· mc k, 2 . (13) 
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Table 2 

Time distributions for the online unit, times between shocks and inspections. 

Lifetime distribution online unit Time distribution between two 

external shocks 

Time distribution between two 

consecutive inspections 

α = ( 1 , 0 , 0 ) 

T = 

⎛ 

⎜ ⎝ 

0 . 995 0 . 005 0 

0 0 . 95 0 . 05 

0 0 0 . 95 

⎞ 

⎟ ⎠ 

γ = ( 1 , 0 ) 

L = 

( 

0 . 987 0 . 006 

0 . 995 0 . 0 0 05 

) 

η = ( 1 , 0 ) 

M = 

( 

0 . 8 0 . 1 

0 . 5 0 . 4 

) 

Table 3 

Time distributions for corrective repairs and preventive maintenance. 

Corrective repair 

distribution warm 

standby unit 

Corrective repair 

distribution on line 

unit 

Preventive maintenance 

time distribution 

β0 = ( 1 , 0 ) 

S 0 = 

( 

0 . 2 0 . 75 

0 . 8 0 . 15 

) 

β1 = ( 1 , 0 ) 

S 1 = 

( 

0 . 7 0 . 28 

0 . 8 0 . 18 

) 

β2 = ( 1 , 0 ) 

S 2 = 

( 

0 . 7 0 . 2 

0 . 1 0 . 2 

) 

The total net profit up to time ν is worked out by adding costs 

produced by the events. It is worked out from ( 7 )–( 9 ) and it is 

equal to 

�ν = �ν
w 

− �ν
s − �ν

0 − �ν
pm 

− ( 1 + �ν
nr ) f c nr 

−�ν
re · f c 0 − �ν

stby · f c s − �ν
pm 

· f c pm 

. 

The mean net profit measure �ν
w 

takes into account only the 

profit generated by the online unit while the system is working 

on, whereas the mean total net profit, �ν , includes profit and costs 

due to repair and preventive maintenance. 

7. Numerical example 

We assume a system with 4 units, the online one and the rest 

in warm standby, and 2 repairpersons. The objective of this study 

is to analyse the effectiveness of preventive maintenance in the 

behaviour of the reliability system. It is going to be studied by 

comparing some reliability measures by considering the system I 

(with preventive maintenance) and III (without preventive mainte- 

nance) described in Section 4 . The lifetime distribution for the on- 

line unit, the time distributions between two external shocks and 

two inspections, the preventive maintenance time distribution and 

the repair time distributions according to the types of failures are 

given in Tables 2 and 3 . Any standby unit can undergo a repairable 

failure at any moment with probability p = 0.001. 

The internal behaviour of the online unit is composed of three 

phases (good, fair, poor). These phases are disposed consecutively. 

The mean time in each phase is equal to 200, 20 and 20 respec- 

tively; therefore the mean time up to internal failure is 240 units 

of time. The inspections over this unit occur randomly with a mean 

time between two consecutive inspections equal to 10 units of 

time. In this case, the online unit is inspected and if phase one 

or two is observed then the unit continues working. Therefore, if 

phase three (poor) is observed then the unit goes to repair facility 

for preventive maintenance. The online unit is subject to external 

shocks. The mean time between two consecutive shocks is equal 

to 143.16 units of time. 

On the other hand, the mean corrective and preventive main- 

tenance time depends on the type of corrective repair. We assume 

that the mean corrective repair time for the online unit is higher 

than preventive maintenance. The mean time for corrective repair 

of the online unit is equal to 50 units of time whereas that the 

mean preventive maintenance time is 10 unit of time. Preventive 

maintenance is important to improve the reliability of the system. 

Fig. 3. Reliability function for system I (with preventive maintenance) and system 

III (without preventive maintenance). 

Finally, the mean corrective repair time for any standby unit is 

equal to 20 units of time. This failure type is more important than 

preventive maintenance but not such as the failure of the online 

unit. 

When the online unit fails, this one is repairable with proba- 

bility 0.8 and non repairable with probability 0.2. The column vec- 

tors that determine the type of failures for the external shocks are 

given by 

L 0 r = 

(
0 . 005 

0 . 0035 

)
and L 0 nr = 

(
0 . 002 

0 . 001 

)
. 

Thus, when one external shock occurs then it is repairable with 

probability 0.7145 and non-repairable with probability 0.2855. 

This system has been compared with and without preventive 

maintenance. We assume that the initial vector of the system is 

built by considering new units, new operational times and, given 

that the events that produces external shocks occurs consecutively, 

independently of the rest of the system, the stationary distribu- 

tion of the time between external shocks is considered. The relia- 

bility functions have been built and plotted from Section 5.2 . Fig. 3 

shows the reliability functions in both cases. 

We can see that the reliability function for the system with 

preventive maintenance is higher than the case without preven- 

tive maintenance. The mean time up to no operational unit by first 

time is equal to 28,166.16 and 22,619.54 for the system with and 

without preventive maintenance respectively. 

Some measures associated to both systems have been compared 

to analyse the effectiveness of preventive maintenance. Firstly, the 

mean sojourn time in each macro-state has been calculated in sev- 

eral times from ( 3 ). It is shown in Table 4 where we can observe 

that if preventive maintenance is considered, the mean time with 
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Table 4 

Mean sojourn time in each macro-state for the system with preventive maintenance 

and without preventive maintenance (in parentheses). 

Time ( ν) ψ 

ν
0 ψ 

ν
1 ψ 

ν
2 ψ 

ν
3 ψ 

ν
4 

50 44.0332 6.4482 0.4903 0.0272 0.0010 

(44.2065) (6.2963) (0.4710) (0.0252) (0.0010) 

100 80.7078 18.1054 1.9967 0.1782 0.0118 

(80.1987) (18.5224) (2.0878) (0.1791) (0.0121) 

10 0 0 691.0202 260.3024 42.4224 6.4413 0.8136 

(654.2809) (285.9510) (51.8471) (7.8756) (1.0455) 

50 0 0 3396.1893 1340.9278 224.2753 35.0539 4.5537 

(3194.7798) (14 80.26 87) (276.7143) (43.3207) (5.9165) 

10,0 0 0 6777.6506 2691.7096 451.5914 70.8196 9.2288 

(6370.4034) (2973.1659) (557.7984) (87.6271) (12.0052) 

all units being operational is higher, whereas the mean time with 

units in the repair facility is lower. 

It is also very interesting to analyse the mean time that the re- 

pairman is working by considering the different types of failures 

and preventive maintenance up to a certain time. These measures 

have been worked out from ( 4 )–( 6 ) and they are given in Table 5 

for both systems. 

In Table 5 we can observe that the repairpersons work more 

time in units that had an online repairable failure when preventive 

maintenance was not introduced. Thus, if the case up to 20,0 0 0 

units of time is considered, the mean time working in online failed 

units increases a 27.07 percent when preventive maintenance is 

not taken into account. In this same case, the mean time that the 

repairpersons are occupied increases a 14.24 percent when preven- 

tive maintenance is not applied. This fact is very important from an 

economic standpoint. 

Finally, preventive maintenance avoids the failure of the online 

unit. Therefore, it is interesting to compare the mean number of 

events occurred up to a certain time between both systems, with 

and without preventive maintenance. These events are repairable 

and non-repairable failures of the online unit, repairable failures of 

the warms standby units and major revisions for preventive main- 

tenance. These measures are worked out by considering the results 

given in ( 7 )–( 9 ). They are compared in Table 6. 

From Table 6 we can observe that the mean number of events 

up to any time on the online unit is lower when preventive main- 

tenance is considered. This fact is essential when high costs are 

presented when a failure happens. 

7.1. Costs 

The behaviour of the system has been analysed from the per- 

formance point of view, but is preventive maintenance profitable 

from an economic standpoint? This question is answered by intro- 

Table 6 

Mean number of events (repairable and non-repairable failures 

of the online unit, major revisions inspected and standby fail- 

ures) for both systems (without preventive maintenance be- 

tween parentheses) up to a certain time. 

Time ( ν) �ν
re �ν

nre �ν
pm �ν

stby 

50 5.2458 1.9690 2.0269 2.3325 

(6.5267) (2.2911) (–) (2.2929) 

100 5.5456 2.0814 2.1463 2.4674 

(6.8996) (2.4218) (–) (2.4270) 

10 0 0 10.9580 4.1070 4.3315 4.8232 

(13.7397) (4.8065) (–) (4.7340) 

50 0 0 35.0131 13.1095 14.0426 15.2818 

(44.1394) (15.4043) (–) (14.9690) 

10,0 0 0 65.0820 24.3626 26.1814 28.3551 

(82.1390) (28.6516) (–) (27.7627) 

ducing costs and rewards associated to the evolution of the system 

according Section 6 . The following assumptions are considered. 

While the system is working a profit equal to B = 5 and differ- 

ent costs per unit of time are produced. If the online unit is at 

degradation level 1, 2, or 3, then a cost of 0.5, 1 and 2, respec- 

tively, per unit of time is produced while it is working. Each warm 

standby unit produces a mean cost per unit of time equal to 0.25. 

The units can fail, and in this case they go to the repair facility. 

The repairman can be working in different situations; with a unit 

that failed from online, standby or preventive maintenance. In each 

case the cost per unit of time is equal to 1.5, 1 and 0.25, respec- 

tively. Of course, while the system is not working (all units in the 

repair facility), this one is having a loss per unit of time equal to 

C = 4. 

When a failure occurs, a mean fixed cost is produced due to 

several causes such as new pieces. These ones have a mean cost 

equal to 1 for any type of failure. Finally, a new unit has a cost 

equal to 500. 

The cost vector and the measures given in ( 10 )–( 13 ) have been 

worked out. The results are compared for system I (with pre- 

ventive maintenance) and system III (without preventive mainte- 

nance). These measures are given in Table 7. 

A comparison from Table 7 can be performed. The net profit 

due to performance of the system and performing costs are given 

by �ν
w 

, and we can observe that preventive maintenance is prof- 

itable if any time is considered. Regarding costs, these ones pro- 

duced by the repairable online failures are higher when preventive 

maintenance is not considered. Also, we can achieve that the cost 

due to preventive maintenance is negligible in this case. In this 

way, the last column show that the total net profit up to a certain 

time is greater when preventive maintenance is included. Preven- 

tive maintenance avoids repairable and non repairable failures of 

the online unit, and this fact avoids great costs. 

Table 5 

Mean sojourn time working the repairman in each type of task for the system with preventive maintenance and without preventive maintenance (in parentheses). 

Time ( ν) ψ 

ν
stby 

ψ 

ν
online 

ψ 

ν
pm One idle repairperson time Two idle repairpersons time Mean time repairpersons are working 

50 1.8671 5.1048 0.5119 6.4482 44.0332 7.4854 

(1.8695) (5.4213) (–) (6.2963) (44.2065) (7.2907) 

100 4.5262 16.2622 1.6702 18.1054 80.7078 22.4790 

(4.5207) (18.5596) (–) (18.5224) (80.1987) (23.0802) 

10 0 0 51.6561 282.9543 23.5147 260.3024 691.0202 359.6572 

(50.6816) (356.8056) (–) (285.9510) (654.2809) (407.4872) 

50 0 0 260.8283 1478.6434 120.6253 1340.9278 3396.1893 1868.6936 

(255.3816) (1876.7901) (–) (14 80.26 87) (3194.7798) (2132.1717) 

10,0 0 0 522.2936 2973.2548 242.0134 2691.7096 6777.6506 3754.9892 

(511.2566) (3776.7708) (–) (2973.1659) (6370.4034) (4288.0273) 

20,0 0 0 1045.2242 5962.4775 484.7898 5393.2731 13,540.5733 7527.5803 

(1023.0066) (7576.7321) (–) (5958.9602) (12,721.6506) (8599.7386) 
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Table 7 

Mean costs and mean total net profit up to a certain time for both systems (without 

preventive maintenance, system V , between parentheses). 

Time ( ν) �ν
w �ν

s �ν
0 �ν

pm �ν

50 3309.4282 44.4795 356.3679 4.9566 1409.5055 

(3270.5373) (43.7009) (4 4 4.7389) (–) (1127.7113) 

100 3496.7787 47.1386 373.1322 5.2462 1520.4228 

(3455.3723) (46.3520) (464.4464) (–) (1224.3234) 

10 0 0 6 880.76 83 94.2686 775.4378 10.7073 3426.7550 

(6797.0484) (92.5130) (971.8153) (–) (2811.0140) 

50 0 0 21,922.0615 303.4408 2579.5683 34.9850 11,884.9822 

(21,651.0168) (297.2130) (3251.7921) (–) (9840.7618) 

10,0 0 0 40,723.6780 564.9060 4834.7315 65.3320 22,457.7663 

(40,218.4774) (553.0880) (6101.7631) (–) (18,627.9466) 

8. Conclusions 

When we wish to model a complex reliability system in order 

to analyse its evolution over time, it is essential to express this 

modelling and its associated measures in a well-structured form. 

In this paper, a complex model with an indeterminate number of 

units and repairpersons is developed. Derivative systems from this 

one have also been modelled, examining Markov models by means 

of a marked, batch-arrival Markovian process. Redundancy is incor- 

porated into the system, where the online unit is subject to inter- 

nal failures, which may or may not be repairable, and to external 

shocks. Preventive maintenance is carried out to improve system 

reliability. The different types of corrective repair and the preven- 

tive maintenance performed all follow different time distributions 

while the unit is in the repair facility. For this reason, the order of 

the failures must be taken into account and saved in memory, in 

modelling the process. 

The Markovian arrival processes examined are versatile and 

provide an excellent tool for stochastic modelling. Any stochastic 

counting process can be approximated arbitrarily by a sequence of 

Markovian arrival processes. We highlight the versatility of MAPs, 

and analyse several complex models with the corresponding mea- 

sures, in a well structured form using an algorithmic matrix struc- 

ture. 

In summary, in this study we model general reliability systems 

and associated measures to analyse the behaviour and effective- 

ness of preventive maintenance, in an algorithmic and computa- 

tional form. Costs are introduced into the system and a numerical 

example given to compare the performance and cost behaviour of 

two similar multi-state reliability systems, with and without pre- 

ventive maintenance, by means of the features presented in the 

proposed methodology. 
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Appendix 

Matrix blocks of the transition probability matrix given in ( 2 ). 

Matrix D 

Br 

D 

Br = 

(
D 

Br 
lk 

)
l,k =0 , ... ,K 

where 

D 

Br 
lk = 0 if k > l + r + 1 or k < l + 1 + r − min { l, R } or l 

≥ K − r or k = K. 

D 

Br 
0 ,r+1 ( i 1 , . . . , i r+1 ) = H 2 , 0 ,r ⊗ β i 1 ⊗ β i 2 ⊗ · · · ⊗ β i min { r+1 ,R } ;

r = 0 , . . . , K − 2 

i 1 = 2 

i s = 0 ; s = 2 , . . . , r + 1 

For r = 0 , . . . , K − 2 ; l = 1 , . . . , K − r − 1 ;
a = max { 0 , l + r + 2 − K} , . . . , min { l, R } , 
i l−a +1 = 2 , i l−a + s = 0 ; s = 2 , . . . , r, 

and i R −a + s = j R + s ; s = 1 , . . . , l − R if l > R, 

D 

Br 
l ,l + r+1 −a ( i 1 , . . . , i l+ r+1 −a ; j 1 , . . . , j l ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

H 2 ,l,r ⊗ B ( l, a ; i 1 , . . . , i l−a ; j 1 , . . . , j l ) 

⊗β i l−a +1 ⊗ β i l−a +2 ⊗ · · · ⊗ β i min { l+ r+1 −a,R } ;
min { l + r + 1 − a, R } ≥ l − a + 1 

H 2 ,l,r ⊗ B ( l, a ; i 1 , . . . , i l−a ; j 1 , . . . , j l ) ;
min { l + r + 1 − a, R } < l − a + 1 

Matrix D 

Cr 

D 

Cr = 

(
D 

Cr 
lk 

)
l,k =0 , ... ,K 

where 

D 

Cr 
lk = 0 if k > l + r or k < l + r − min { l, R } or l ≥ K − r. 

D 

C0 
00 = H 3 , 0 , 0 , 

D 

Cr 
0 r ( i 1 , . . . , i r ) = H 3 , 0 ,r ⊗ β i 1 ⊗ β i 2 ⊗ · · · ⊗ β i min { r,R } ;

i s = 0 ; s = 1 , . . . , r 

r = 1 , . . . , K − 1 

D 

C0 
l, 0 ( j 1 , . . . , j l ) = H 3 ,l, 0 ⊗ B ( l , l ; j 1 , . . . , j l ) ; l = 1 , 2 , . . . , R � = K 

For r = 0 , . . . , K − 2 ; l = 1 , . . . , K − r − 1 ;
a = 0 , . . . , min { l, R, l + r − 1 } , i l−a + s = 0 ; s = 1 , . . . , r, 

and i R −a + s = j R + s ; s = 1 , . . . , l − R if l > R, 

D 

Cr 
l ,l + r−a ( i 1 , . . . , i l+ r−a ; j 1 , . . . , j l ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

H 3 ,l,r ⊗ B ( l, a ; i 1 , . . . , i l−a ; j 1 , . . . , j l ) 

⊗β i l−a +1 ⊗ β i l−a +2 ⊗ · · · ⊗ β i min { l−a + r,R } 
;

min { l − a + r, R } ≥ l − a + 1 

H 3 ,l,r ⊗ B ( l, a ; i 1 , . . . , i l−a ; j 1 , . . . , j l ) ;
min { l − a + r, R } < l − a + 1 
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