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A B S T R A C T   

Background and Objective: The assessment of dependence in older adults currently requires a manual collection of 
data taken from questionnaires. This process is time consuming for the clinicians and intrudes the daily life of the 
elderly. This paper aims to semi-automate the acquisition and analysis of health data to assess and predict the 
dependence in older adults while executing one instrumental activity of daily living (IADL). 
Methods: In a mobile-health (m-health) scenario, we analyze whether the acquisition of data through wearables 
during the performance of IADLs, and with the help of machine learning techniques could replace the traditional 
questionnaires to evaluate dependence. To that end, we collected data from wearables, while older adults do the 
shopping activity. A trial supervisor (TS) labelled the different shopping stages (SS) in the collected data. We 
performed data pre-processing techniques over those SS and analyzed them with three machine learning algo
rithms: k-Nearest Neighbors (k-NN), Random Forest (RF) and Support Vector Machines (SVM). 
Results: Our results confirm that it is possible to replace the traditional questionnaires with wearable data. In 
particular, the best learning algorithm we tried reported an accuracy of 97% in the assessment of dependence. 
We tuned the hyperparameters of this algorithm and used embedded feature selection technique to get the best 
performance with a subset of only 10 features out of the initial 85. This model considers only features extracted 
from four sensors of a single wearable: accelerometer, heart rate, electrodermal activity and temperature. 
Although these features are not observational, our current proposal is semi-automatic, because it needs a TS 
labelling the SS (with a smartphone application). In the future, this labelling process could be automatic as well. 
Conclusions: Our method can semi-automatically assess the dependence, without disturbing daily activities of 
elderly people. This method can save clinicians’ time in the evaluation of dependence in older adults and reduce 
healthcare costs.   

1. Introduction 

Activities of Daily Living (ADLs) play an important role in the health 
status, well-being and the prevention of dependence [1]. Basic ADLs 
(BADLs) are survival and self-care activities [2], while instrumental 
ADLs (IADLs) require cognitive and motor complexity and imply an 

interaction with the social environment that surrounds the persons [3]. 
IADLs performance is considered a direct index of the health status 
because IADLs involve motor, cognitive or social functions. Also, IADL 
refers to activities to support daily living within the home and com
munity that, depending on the situation, require more complex in
teractions than those used in ADLs. The performance of IADLs is an 
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important health indicator that can predict mild or several cognitive 
impairments, such as dementia, and mortality in older adults [4]. The 
early detection of the state of IADL dependence in older adults and the 
activation of a rehabilitation plan avoids the establishment of functional 
dependence and several additional disorders in older adults, such as 
musculoskeletal problems, hearing impairments, cataract, falls rate, 
depression [5] and even dementia (with a high conversion rate from 
IALD dependence to dementia) [6]. Hence, the early detection of 
dependence in elderly could reduce socioeconomic costs in healthcare 
services, hospitalizations, deterioration in some chronic diseases, 
comorbidities, and even mortality rates. In particular, shopping IADL 
involves interaction with different tools, devices and other people [7]. 
For these reasons, shopping usually has higher complexity than other 
IADLs, and therefore, shopping may represent the gold standard to 
evaluate the performance in IADLs. 

Traditionally, there are different scales to evaluate the performance 
in IADLs, being the Lawton and Brody scale (LBS) [3] the most used. LBS 
is holistic, because it evaluates cognitive, motor, and social components. 

Fig. 1. A generic m-health scenario overview.  

Table 1 
Summary of shopping stages.  

Shopping Stages 

1) Sitting 
2) Standing 
3) Going the supermarket 
4) In the supermarket 
5) Looking for the product to purchase 
6) Picking up the product 
7) Going to the checkout 
8) In the checkout 
9) Paying 
10) Going to the exit 
11) Going out of the supermarket 
12) Coming back to the star point 
13) Standing at start point 
14) Sitting back  
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It is not ecological because it is not automated; it needs observation of 
IADLs by clinicians during a long period of time. 

From an ecological perspective (without disturbing the elderly life), 
the monitorization of older people using wearables contributes to an 
early detection and prevention of disorders [8,9]. In addition, to reduce 
the time for in-situ observations, wearables avoid inter- and intra- 
observer biases. In recent years, wearables have already been used to 
effectively monitor ADL (such as walking, jogging, sitting or standing) 
[10,11], due to its low cost, size, weight and energy consumption 
[12,13]. 

To address the automation of the data collection and analysis in the 
Health domain, previous works have used mobile-health (m-health) 
systems [14–18]. In m-health mobile technology helps in the monito
rization of health status, while the patient is walking or performing 
other movements. M-health systems follow a patient-centric approach, 
collecting and processing data from wearables [14,16,18]. The imple
mentation involves a medical Body Area Network (BAN) and a Mobile 
Base Unit (MBU) [19,20]. A BAN is a computer network consisting of 
different wearables located on the body of a person [16,21]. The (MBU) 
is the central element and acts as a gateway aggregating different sen
sors (intra-BAN communication) and transmitting the collected data to a 
back-end system (extra-BAN communication) (see Fig. 1). MBUs can be 
smartphones, laptops, or other devices with processing and transmission 
capabilities. 

The data collected by the m-Health needs to be analyzed in order to 
monitor the health status of patients. Previous literature has used Ma
chine Learning (ML) algorithms to select relevant variables and to 
analyze data. ML also provide better results (higher performance) than 
other data analytics techniques, when working with sensory data 
[7,11,21–24]. ML has already been used in ADL recognition (detecting 
which ADL is executed) [26,27], but not to evaluate the level of 
dependence during the performance of the ADLs. 

The aim of our proposal is to create a machine learning model of 
IADL dependence in older adults, using data from wearables during 
shopping. Hence, we could substitute the traditional manual assessment 
of dependency by an automatic assessment while the elder is performing 

Fig. 2. Overview of the proposed m-health scenario.  

Table 2 
Sensors used from two wearable devices.  

Device Signal description 

Empatica E4 wristband Accelerometer x-axis  
Accelerometer y-axis  
Accelerometer z-axis  
Heart rate  
Electrodermal activity  
Infrared Thermopile 

Samsung Gear S3 smartwatch Gyroscope x-axis  
Gyroscope y-axis  
Gyroscope z-axis  

Table 3 
Description of observational features considered per experiment.  

Human 
function 

ID Observational feature Value Ex1 Ex2 

Motor Ob1 Technical help for walking Cane/ 
Walker/ 
None 

X X  

Ob2 Average speed during the 
walk to supermarket 

Number X   

Ob3 Average speed during the 
walk back 

Number X   

Ob4 Average speed per 
Shopping Stage 

Number  X 

Cognitive Ob5 The subject needs help to 
find the product 

Yes/No X X  

Ob6 The subject has great 
difficulty to complete the 
experiment 

Yes/No X X 

Social Ob7 How many times per week 
the subject needs someone 
to go shopping 

Number X X  

Ob8 The subject asks for help Yes/No X X 
Shopping 

Performance 
Ob9 How many times per week 

the subject goes shopping 
Number X X  

Ob10 The subject is tired at the 
end of the experiment 

Yes/No X X  

Ob11 The subject has previously 
shopped at the chosen 
supermarket 

Yes/No X X  

Ob12 The subject knows the 
location of the product 

Yes/No X X  

Ob13 Distance to the 
supermarket where the 
subject usually shops 

Number X X  

Ob14 Time to find the product Number X   
Ob15 Shopping Stage Identifier Number  X  
Ob16 Duration of Shopping 

Stage 
Number  X 

The experiments consider a total of 13 observational variables. 
Note Ob14 is included in Ob16 (it is the duration of a particular shopping stage). 
The same for Ob2 and Ob3, which are included in Ob4. 
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an IADL. This automatic assessment could be repeated frequently, 
allowing the early detection of dependence. In particular, we propose a 
m-health system to assess IADL dependence automatically and ubiqui
tously, thus ecologically. Our BANs consist of different wearables 
transmitting data to the back-end located in the m-health Service System 
(mSS). The mSS receives these data and federates them with observa
tional variables supplied by healthcare professionals through their 
MBUs. Then, our mSS analyses and classifies IADL dependence in older 
adults using ML. Our holistic and ecological approach would save cli
nicians’ time. 

2. Related work 

Different tools have been used to evaluate IADL assessment manu
ally, such as Lawton and Brody Scale (LBS), Health and Retirement 
Study Care Questionnaire, and Pfeffer Functional Activities Question
naire. Although, the last two have been applied for detection of mild 
cognitive impairment in IADL [28]. Moreover, LBS is the most used tool 
used for dependence assessment during the IADL performance and 
provides an early warning of functional decline [4,29,30]. 

Introducing wearables with low-cost sensors in common spaces 
would help older adults in their daily activities and in turn facilitates 
healthy aging within the community. In addition, new wearable devices 
through detection, data transmission, algorithms, and IoT applications 
(m-health) generate new opportunities for the exploration of move
ments and activities of daily life in individuals. All this can help health 
workers with the diagnosis, prevention, intervention and evaluation of 
the results obtained during the progress of each patient [31]. 

Most studies in the domain of m-health focus on ADLs recognition 
(detecting which ADL a person is performing) such as sitting, walking 
[10,22,24,26,27]; or even IADLs such as making a phone call, managing 
money [6] and shopping [32]; or they focus on physiological changes 

detection [33–35]. Monitoring the performance of these activities daily 
can be used to know if the elderly have a healthy lifestyle or not [36]. 
However, none of the previous works assess dependence during an IADL 
such as shopping. There is another important research line using 
wearables and ML, which is focused on the prediction or assessment of 
risk factors in diseases or disorders, such as fall detection [33] and 
assessment or prediction of motor skills [33,34]. However, as they 
detect motor patterns, they use only the data of one or two sensors. 

Previous studies have assessed autonomy of IADL in an ecological 
manner by using ML and video event monitoring systems [37,38]. 
However, they do not use a validated test to assess dependence (e.g., 
LBS), require an infrastructure of video-cameras, and were applied for 
patients with a specific pathology (Alzheimer). Other study [39] 
assessed the performance of two IADLs using a smartwatch wearable 
(preparation of a cup of tea and replanting a plant), but with a small 
sample size of 17 subjects and correlating the performance of ADL with 
frailty score—which is not the most suitable score for ADL assessment 
(such as LBS). Other recent study [6] assessed IADLs such as handling 
money and making a phone call, using a smart home equipped with 
sensors and a camera. However, they focused on the relationship with 
the cognitive impairment, not in IADL dependence and without a vali
dated scale. 

3. Materials and methods 

3.1. Protocol and m-health scenario for assessing IADL dependence 

The protocol, defined by our health experts, consists of 14 Shopping 
Stages (SS) (see Table 1). Each subject with two wearables in the 
dominant hand [10,40] sits in a chair without armrests. Next, the trial 
supervisor (TS) pairs via Bluetooth these devices to a smartphone 
application (MBU gateway in Fig. 2) and starts capturing data through 
the sensors [18–20]. The subject performs all the SS (while the TS labels 
them) and may ask for help for finding the shopping product. The m- 
health Service System (or back-end) receives the data in the “Analysis of 
Data” back-end. After the model is created, in a real scenario, we could 
assess the dependency without the need to label the data (i.e., without 
the need to fill in traditional questionnaires). But for training the model, 
this first time, our health experts used the LBS to evaluate the perfor
mance of the subjects in the instrumental ADLs, and the results were 
received also by the “Analysis of Data” back-end. Finally, with all of 
these data we built the ML model. 

3.2. Recruitment 

We conducted a cross-sectional study in two community day centers 
for active participation of older people, because they assist people who 
may be at risk to have dependence (or with a dependence already 
established), and this was our target population. The sampling was 
executed in a consecutive manner. Sample comprises seventy-nine 
subjects (69 women and 10 men) aged 65 years or over, with an 
average age of 75 years. Inclusion criteria of the subjects were: 1) age 
from 65 to 90; 2) without severe cognitive impairment according to the 
Spanish validation of the Pfeiffer test [41]; 3) without perceptual al
terations; 4) walking with or without help; 5) community-dwelling older 
adults. Exclusion criteria were: 1) severe mental disorder; 2) disability 
or severe language alterations; 3) medical instability; 4) pathology in 
acute period; 5) hospitalized; 6) serious behavior alterations or motor 
risk. 

3.3. Clinical scale 

We have used LBS [3] as the dependent variable. LSB has eight 

Fig. 3. Machine learning pipeline of the IADL dependence classification pro
cess. N features are the total features extracted from the Data Segmentation 
step. The feature selection step selects the F most relevant features for this study 
out of the N total features collected (F < N). 
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questions to assess the ability to perform the tasks of using the tele
phone, shopping, food preparation, housekeeping, laundry, travelling 
via car or public transportation, ability to take own medication and 
ability to handle finances. The index ranges from 0 (dependent) to 8 
(independent). Vergara et al. [30] showed a satisfactory validity and 
reliability of the scale with Cronbach’s alpha coefficient 0.94. We stored 
the answer to each item as 0 (unable) or 1 (able). 

3.4. Sensors and observational variables 

Our independent variables are collected from different sources: 
wearables (Table 2), questionnaires and observational inputs (Table 3). 
IADLs assessed with LBS involve measuring physical, cognitive and so
cial functions. These functions can also be registered through different 
wearables and some observational variables. We need the observational 
variables because our current wearables are not able to measure some 
cognitive and social functions. In the future, we hope to have low-cost 
sensors that can measure said functions. 

The wearables with built-in sensors used in this study are an 
Empatica E4 wristband [42] and a Samsung Gear S3 smartwatch [43]. 
Empatica E4 is certified for obtaining accurate and precise physiological 
data [44], but it lacks a gyroscope sensor, which we think it is important 
for our study. Both of the devices have open Software Development Kit 
(SDK) to develop custom applications. 

3.5. Data analysis 

Fig. 3 shows the proposed ML pipeline. ML needs a training phase 
with labelled data (box 1 in Fig. 3). With these labelled data the ML 

algorithm creates a binary classification model (box 7 in Fig. 3), where 
the output specifies the dependent or independent status. In order to 
increase the performance of the classification, we pre-process the data 
(box 2 to 6 in Fig. 3). In addition, we applied IJMEDI checklist [45] 
(listed in Appendix A) for assessment of the quality of the work on 
medical AI. 

3.5.1. Data collection and labelling 
We used sampling rates greater than 10 Hz [22]. For the triaxial 

gyroscope sensor we used 25 Hz [46]. We used the default values from 
the Empatica E4 wristband: EDA and IT at 4 Hz, heart rate at 1 Hz and 
accelerometer at 32 Hz. Anomalous beat per minute values from the 
heart rate sensor were excluded [47,48] based on Equation (1). 

maximum = 220 − subject age (1) 

We divide the sample into two groups (dichotomization) [49]. A 
subject is independent if LBS equals 8; and dependent if it is lower than 7 
[50]. 

3.5.2. Signals alignment and segmentation 
We stored all the signals to the highest rate (25 Hz) and interpolated 

the missing values in signals with lower rates. Fig. 4 shows an example of 
the alignment results. 

We used sliding windows to segment the physiological time series of 
sensory data [18,24,25,51–53] (see Fig. 5). The reason behind using 
these portions of the data instead of the entire sensor signal is based on 
distribution and trends of time series [54]. If we only use the entire 
signal, we will lose the fine granularity of the time intervals when that 
signal significantly fluctuates or becomes constant. We segmented the 

Fig. 4. Some aligned wearable signals from an anonymous subject at 25 Hz during the performance of the shopping IADL.  
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raw data with different window sizes measured in seconds (0.5 s, 1 s, 1.5 
s, 2 s, 2.5 s and 3 s). The exploration of different ranges of seconds en
sures a high precision to capture the physical movements, heart rate 
variation, and other physiological signals in the subjects. In addition, a 
50% overlap between consecutive windows increases the number of 
samples in a virtual manner. 

3.5.3. Sensor feature extraction 
Most of the previous models [10,22–25,54] have shown that using 

statistics as a form of summary values, concatenating them as subject 
vectors, can reflect the nature of time series. For example, the standard 
deviation of a measure—such as heart rate—indicates the degree of 
dispersion in the distribution, thus a larger value reflects the subject’s 
heart rate fluctuates widely. In fact, a study reported that lower heart 
rate variability indicates worse IADL dependence [55]. The minimum 
and maximum observations reflect the range of the measure change, 
indicating the trend of the data and the centre value. Moreover, the 
shape of distribution could represent the evolution of the measure [54]: 
1) Skewness indicates the symmetry of data distribution, which is the 
stability of the measure change (e.g., the heart rate change); 2) Kurtosis, 
reflects the peak sharpness and peak degree, which reveals the trend of 
fluctuation and the subjects’ physiologic state. Hence, to keep the trends 
and temporal characteristics of our data, the extraction of these features 
in portions of data is better than using the entire signal data without 
segmentation. 

Therefore, as in previous works [10,22–25], for each sensor we 
extracted time- and frequency-domain features (summary statistics — 
F1..Fn, in Fig. 6) from every 50% overlapped window (see Table 4), such 
as mean, standard deviation, minimum, maximum, skewness, kurtosis 
and entropy. Since each subject takes different times to finish the 

experiment, the number of windows (k, in Fig. 6) can be different in 
every shopping stage and subject. Per each subject and per each shop
ping stage, we averaged the values of each feature of all the windows 
inside each shopping stage. The purpose of this processing is double: 1) 
to reduce the high dimensionality of using thousands of windows 
separately as the model input; and 2) to capture the distribution and fine 
granularity trends of our physiological time series in order to improve 
detection stability and avoiding loss of temporal resolution (central and 
dispersion tendencies and distribution shape) [54]. 

The result is a matrix (yellow box in Fig. 6) of all the subjects and all 
the averaged features per SS. This result will be the input of the ML 
algorithm. Hence, the number of input samples of the model is deter
mined by the number of shopping stages (14) times the features 
extracted times the number of subjects. 

3.5.4. Imbalance preprocessing 
Due to the imbalance of the labelled data (see Fig. 10), we applied 

the Synthetic Minority Oversampling Technique (SMOTE) for obtaining 
balanced data and therefore, a higher model performance [56]. 

3.5.5. Feature selection 
Feature selection algorithms are used to deal with the curse of 

dimensionality in ML, by reducing the number of features with the se
lection of the most relevant and non-redundant features. We follow an 
embedded approach [57], based on Random Forest (RF) algorithm [58] 
for getting features ranked by their importance. Then, we use a Recur
sive Feature Elimination (RFE) method for building different models 
with different subsets of features [40] and select the best one. 

Fig. 5. Sliding windows approach using 50% overlapping.  
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3.5.6. Predictive model generation with hyperparameter tuning 
Our study applies three different machine learning algorithms: k-NN, 

RF and SVM, which had good results in previous works on ADL. We 
created the classifiers with these algorithms and the input matrices 
(samples), which are the result of the data pre-processing explained in 
Section 3.5.3 and Fig. 6. 

3.5.7. Predictive model performance evaluation 
To validate our proposal, we use the Cross Validation (CV) technique 

with the most used indexes: accuracy, sensitivity, specificity and the F1- 

score. Although we reported all of these indexes, as we have imbalance 
data, we will focus on F1-score. The second most important index in the 
health field is the sensitivity, because it better detects the positives 
although with a higher rate of wrongly classified negatives. For example, 
it is better to detect a disease when it is there than to not detect it, 
although we can have a higher rate of healthy subjects detected as ill 
subjects. 

In particular, we use 5-Fold Stratified CV (5-FSCV). The idea behind 
the k-fold CV is to virtually increase the number of samples by creating 
different models with different folds (samples) for training and testing 
the classifiers; allowing testing the model with different test samples in k 
iterations contributing to obtain a robust model. This technique consists 
of training the model with k-1 folds (samples) and testing it with the 
remnant fold. Then, we repeat the train and validation k times selecting 
each time a different fold for validation. When we have imbalance data 
it is important to keep the proportion of each class in each fold (stratified 
CV). 

For instance, Fig. 7 shows an example dataset with 20 samples (A-T) 
and 50% of dependent (A-J) and 50% independent (K-T) sub
jects—coming from 5 shopping stages (SS 1–5)—, thus we create folds of 
4 SS: 2 from dependent subjects and 2 for independent subjects. At each 
iteration (total iterations: 5, the number of folds), one of the k folds is 
used to test (see bottom Fig. 7) the model with the selected metric, while 
the rest of k-1 folds are used to train the model. Since we use 5-fold, at 
the end of the process we will have 5 performances of every index (such 
as 5 F1-scores and 5 accuracies), which will be average to report a single 
test performance for our model. 

Fig. 6. Creation of the input matrix for each model (k-NN, RF or SVM). The blue color of the field C (label of the sample) represents a dependent subject, while the 
red color represents an independent subject. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Description of sensor features extracted by each sensor axis.  

Axis Feature 

By each axis 
(xa, ya, za and uniaxial b)  

Mean 
Standard deviation 
Minimum 
Maximum 
Amplitude 
Skewness 
Kurtosis  
Energy 

Each feature was extracted by each axis specified and per each sensor 
(triaxial and uniaxial). 
aTriaxial sensor: accelerometer and gyroscope. 
bUniaxial sensor: heart rate, EDA and IT. 
Total features: (8⋅3)⋅2 + (8⋅3) = 72 wearable features. 
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We are aware of the recent open debate on CV approaches in the 
health field, record-wise CV (RWCV) vs subject-wise (SWCV) [59,60]. 
RWCV consists of including samples of the same subject for both train 
and test sets, while SWCV uses all the samples of the same subject for 
either train or test. In general, RWCV should be avoided when the aim is 
to build a model for classifying new subjects, because it could introduce 
a bias of identity confounding [60,61]. However, Little et al. [60] claim 
SWCV is not always a valid substitute for RWCV, especially when 
splitting the dataset in a way that the feature distributions are different 
per subject and per split (as our shopping stages splits). These differ
ences in the feature distributions can be seen in Fig. 8. The top three 
graphs in Fig. 8 show an example in which three subjects have different 
data distribution (histogram shape) of the same feature (accelerometer 
x-axis) at the same split (shopping stage: paying). The bottom three 
graphs in Fig. 8 present a new split (shopping stage: going the super
market) where the feature distributions are different of the feature dis
tributions of the shopping stage paying of the same subject (top graphs 
vs bottom graphs). Hence, in our case, we used RWCV because we take 
advantage of the insights of inter- and intra-subject distributions [59]. 
When our model will try, in the future, to classify a new subject (unseen 
in the original sample), the model will need a recalibration to reach 

better results with the new subject. Namely, the first time a new subject 
uses our model, the model will be recalibrated in order to consider not 
only the common aspects of dependence (inter-subject detection), but 
also the personal aspects of dependence (intra-subject). 

4. Results 

We discarded one subject’s data due to missing values in several SS. 
Therefore, the total number of subject’s was 78 (69 females and 9 
males). We performed a previous experiment with all the SS considered 
as a unique SS, but in order to improve the results we split the data 
distinguishing between the SS, which increases the original sample size, 
because each subject has 14 SS (Table 1). LBS [3] reported: 420 samples 
classified as dependent in IADLs and 672 classified as independent 
(1092 samples in total) (see Fig. 9, Fig. 10 and Fig. 11). This distribution 
is imbalanced, thus applying SMOTE we obtained a proportion of 630 to 
630 dependent and independent samples (see Fig. 11). 

The results were stabilized when we took over 10 features and we ach
ieved the best performance for windows of 0.5 s (see the sliding window and 
feature extraction steps explained in Sections 3.5.2 and 3.5.3). As can be 
appreciated in Fig. 12, with 10 features or more, all the algorithms reported 

Fig. 7. Example of 5-Fold Stratified Cross Validation with 20 samples.  
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an F1-score above 90%. Additionally, we obtained the perfect performance 
without SMOTE—100% in every metric with 11 features for 1-NN (see 
Table 5). The best model was built with 1-NN with only 11 features, followed 

by SVM (with 65 features) and RF (with 69 features). Among the 11 features 
selected by 1-NN, there are 3 observational features: one social component 
(Ob7), and two shopping performance functions (Ob9 and Ob11). Likewise, 
RF and SVM also include observational features related to motor (Ob1), 
cognitive (Ob5 and Ob6), social (Ob7 and Ob8) and shopping performance 
functions (Ob9, Ob10, Ob11 and Ob12). 

We also explored models with less features to know if there exists one 
without observational features, but we did not find anyone. Addition
ally, there is a model with only 5 features that reaches over 96% in every 
metric (Table 6). In particular, this model includes the features “acc.x. 
min” (minimum value of accelerometer x-axis), “temp.min” (minimum 
value of temperature sensor), “Ob7” (related to social functions), 
“Ob11” (shopping performance) and “eda.max” (maximum value of 
EDA sensor). Thus, gyroscope is not present in this model. Therefore, 
this model with 5 features is the best candidate if we want to use only 
one wearable, the E4. 

As our final aim is to completely automate the process, we performed 
additional experiments in which we excluded the observational features 
(Table 7). Obviously, we need observation with a TS that labels each SS. 
We believe that in the future, this labelling could be done automatically, 
either with location sensors or with ML, learning in which SS the subject 
is at any time. 1-NN performed the best: 99.51% F1-score with 39 
wearable features. However, we obtained competitive performance 
(over 94%) with less features as we can see in Fig. 12 and Table 8. With 
only 5 features, 1-NN is over 94% in every metric only with the presence 
of accelerometer, EDA, heart rate and temperature sensors. Since the 
gyroscope is not present in this model, we can use only the Empatica 
wristband device with this model. Models with more than 10 features do 
include gyroscope (see Table 9). 

5. Discussion 

The results showed that IADLs dependence assessment in elderly 
population could be performed using wearables during the activity of 
shopping and analyzing the data with ML, supporting previous literature 
that encourage the use of IoT to detect health issues [31], and the use of 
wearables during ADLs [6,36,39]. The experiment performs over 96% in 
every metric in all the models that include more than 5 features. In 
addition, our best ML model (i.e., 1-NN with 39 features) used only 
wearable data (hence, it is completely ecological) and learned to classify 

Fig. 8. Example of three subjects’ data distributions where Accelerometer x-axis feature is different per subject and per split.  

Fig. 9. Ex2: Distribution of subject’s age and sex grouped by the result of 
Lawton & Brody scale. 

Fig. 10. Ex2: Distribution of subject’s age and sex after SMOTE and grouped by 
the result of Lawton & Brody scale. 
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dependent and independent subjects with an F1-score and accuracy over 
99%, using few features (Table 7): 8 from the smartwatch and 31 from 
the wristband. Hence, we could confirm that our proposal could be 
completely automatic (with 2 wearables), without the need of an 
observer (observational variables), with accuracies over 99%, which is 
an excellent accuracy in m-health [6,10,22,24,26,27,32]. The only 
observation variable we need with this model is the annotation of the 
shopping stages, which we believe could also be annotated automati
cally in the future. We also built another model with the competitive 
performance of 94% in every metric, using only 5 features and all of 
them coming from one device (the wristband). However, in this model, 
sensitivity was lower than specificity, which is against the common rule 
in the health domain. This fact implies that our model will detect better 
true negatives (independent subjects) than true positives (dependent 
subjects), missing some people with dependency. Hence, we also ob
tained another model keeping sensitivity greater than specificity, with 
10 features from the wristband and a score of 97% in every metric. 
Therefore, we could confirm that our solution is completely automatic, 
and uses only one wearable, with accuracies ranging from 94% to 97% 
and 5 to 10 features (see Table 9). These results are competitive in m- 
health [6,10,22,24,26,27,32]. Summarizing, for the sample analysed in 
this paper—keeping sensitivity greater than specificity—, we created an 
automatic model with data from only 2 wearables and an accuracy over 

99%, and another model with data from only one wearable and an ac
curacy of 97%. Therefore, it is possible to substitute/replace the manual 
questionnaires by the automatic assessment of dependency proposed in 
this paper with high accuracy. 

The benefits of our results focus on the automatization of the process 
of a holistic and ecological assessment of the IADL dependence. Our 
proposal is holistic because the shopping task used as an evaluation 
process involves the main human functions to be independent (physical, 
cognitive and social) [3,7]. We have proved that the dependence of 
IADLs can be generalized evaluating only an IADL (shopping). Our 
proposal is ecological because it is unobtrusive and transparent for the 
subjects and performed in their daily life. Hence, it can reduce the time 
the health professionals need to assess the dependence. 

As the aim of the research is empiric, i.e., to study the feasibility of 
evaluating dependence in older adults in an ecological way by means of 
a method based on m-health systems, there are no direct theoretical 
implications in the work. The main strength of this study is related to the 
practical implications of the findings in a real clinical setting assisting 
older adults. Recognizing in early stages the potential of being depen
dent in the near future before it happens is crucial to implement reha
bilitation strategies to reverse or delay the dependence or increase the 
quality of life [62]. The implications of our work are inline with the 
literature supporting the idea that wearables contribute to an early 

Fig. 11. Ex2: Class proportion comparison between original imbalance data (left) and preprocessed data with Smote to balance the original data (right).  

Fig. 12. Ex2: F1-score over all features with the original Dataset (A) and after SMOTE (B).  

F.M. Garcia-Moreno et al.                                                                                                                                                                                                                    



International Journal of Medical Informatics 157 (2022) 104625

11

detection and prevention of disorders [8,9,63]. General benefits (e.g., 
cost reduction) and risks (e.g., lack of regulation) of the mobile tech
nology are reported in [64]. The technological solution that we have 
developed and tested by mixing wearables sensors, the performance of 
an instrumental activity of daily living and the use of machine learning 
provides a novel approach to evaluate the possible dependence saving 
time for the health professionals in a daily practice and in an easier 
manner than traditional assessments. Therefore, our protocol, using 
wearables, has the power of saving time and improving the evaluation 
process when the clinician aims to assess dependency in potential 
dependent people. 

However, the present study has some limitations that have to be 
considered in the interpretation of the results. The first limitation is that 
our proposal is not completely ecological. Although our best ML model 
with 10 wearable features does not include any observational feature, it 
still needs the TS to label the SS. However, the labelling process is 
automated in the mobile application paired to the wearable device, thus 
the supervisor only has to press the labelling button. 

The second limitation is that the pragmatic integration and adoption 
of wearable technologies in the healthcare services is a challenge [65], 
especially in primary care [66], for several reasons. First, healthcare 
systems have to change their models of care for using these devices and 
sharing information. Second, wearable developers have to consider 
constraints of standardization, data privacy and security. Third, the 
solutions need to be low-cost and enable their use at large scale. And, 
fourth, the acceptance of the technology is still a challenge [67], 
although it is becoming common among the elderly [68]. 

The third limitation is that there is an imbalance in terms of sex 
distribution of the sample. Nevertheless, on the one hand, the sex 
imbalance is representative of the real scenario in terms of participation 
in the IADLs, with a higher participation of women, due to cultural 
factors [69,70]. Furthermore, since all male subjects belong to one 

Table 5 
Experiment 2 (split shopping stages): performance of different algorithms 
without SMOTE.  

Condition Random Forest Support Vector 
Machines 

k-Nearest 
Neighbors 

F1-score 0.9806108 0.992785 1.0 
Accuracy 0.9853588 0.9945164 1.0 
Sensitivity 0.9644629 0.9859331 1.0 
Specificity 0.9984848 1.0 1.0 
Total Features 82 65 11 
Features Ob7 + Ob9 + acc. 

x.min + hr.skew 
+ gyr.z.mean +
acc.x.energy +
eda.max + eda. 
min + Ob6 + gyr. 
x.kurtosis + acc.z. 
energy + eda. 
mean + Ob11 +
gyr.y.kurtosis +
temp.max + acc. 
y.skew + temp. 
energy + temp. 
mean + hr. 
kurtosis + temp. 
sd + acc.x.mean 
+ acc.z.skew +
temp.min + eda. 
energy + temp. 
range + acc.y. 
min + Ob1 + acc. 
y.max + acc.x. 
skew + acc.y. 
mean + hr.range 
+ acc.x.sd + acc. 
z.min + hr.sd +
acc.x.max + acc. 
y.kurtosis + gyr.y. 
skew + gyr.y. 
mean + eda. 
range + eda. 
kurtosis + gyr.z. 
energy + hr.max 
+ eda.sd + gyr.y. 
min + acc.z. 
kurtosis + gyr.x. 
min + temp. 
kurtosis + temp. 
skew + gyr.x. 
mean + gyr.z. 
max + acc.x. 
range + hr.mean 
+ gyr.x.max +
gyr.z.skew + hr. 
min + hr.energy 
+ acc.y.energy +
eda.skew + acc.x. 
kurtosis + gyr.z. 
min + gyr.x.skew 
+ gyr.x.sd + gyr. 
x.energy + acc.z. 
max + acc.z. 
mean + acc.y.sd 
+ gyr.y.energy +
gyr.y.range + gyr. 
z.kurtosis + acc.y. 
range + gyr.x. 
range +
event_time + gyr. 
z.range + acc.z.sd 
+ gyr.y.sd + gyr. 
z.sd + gyr.y.max 
+ Ob8 +acc.z. 
range + Ob10 +
Ob5 + Ob12 

Ob7 + Ob9 + acc. 
x.min + Ob6 +
acc.x.energy + hr. 
skew + gyr.z. 
mean + eda.mean 
+ gyr.x.kurtosis +
eda.min + Ob11 +
eda.max + temp. 
mean + acc.z. 
skew + acc.z. 
energy + acc.y. 
skew + temp. 
range + temp.min 
+ acc.x.skew +
temp.sd + Ob1 +
gyr.y.kurtosis +
temp.max + temp. 
energy + acc.z. 
min + hr.kurtosis 
+ eda.energy +
acc.y.kurtosis +
acc.y.mean + acc. 
x.mean + gyr.z. 
energy + acc.x.sd 
+ gyr.y.min + eda. 
sd + acc.y.max +
acc.y.min + gyr.z. 
max + acc.x.max 
+ temp.kurtosis +
hr.min + eda. 
kurtosis + hr. 
range + gyr.y. 
mean + acc.z. 
kurtosis + hr.sd +
gyr.z.min + gyr.y. 
skew + hr.max +
eda.range + acc.x. 
range + gyr.x. 
energy + gyr.y. 
energy + gyr.x. 
range + acc.z.max 
+ gyr.x.min + acc. 
z.mean + hr. 
energy + acc.y. 
energy + gyr.x. 
max + hr.mean +
gyr.z.kurtosis +
acc.x.kurtosis +
temp.skew + acc. 
y.range + acc.y.sd 

Ob7 + Ob11 +
acc.x.min + Ob9 
+ eda.min + acc. 
z.energy + eda. 
mean + eda.max 
+ temp.min +
temp.mean + acc. 
x.max 

Observational Yes: 9 features 
(underlined) 

Yes: 5 features 
(underlined) 

Yes: 3 features 
(underlined)  

Table 5 (continued ) 

Condition Random Forest Support Vector 
Machines 

k-Nearest 
Neighbors 

Hyperparameters number of trees: 
500 
variables 
randomly 
sampled: 10 

cost: 0.1 
gamma: 0.5 
kernel: 
“polynomial” 

k: 1 

Best performance with 1-NN of 100% F1-score (bold letters). 
Empatica sensors: acc (accelerometer); eda (EDA sensor); hr (heart rate); temp 
(temperature). Gear S3 sensors: gyr (gyroscope). 

Table 6 
Metrics for 1-NN between 1 and 15 features.  

Features F1-Score Accuracy Sensitivity Specificity 

1  0.4216014  0.6895564  0.2972841  0.9346149 
2  0.4590805  0.7307779  0.2997788  1.0000000 
3  0.7094287  0.7893343  0.6733311  0.8618040 
4  0.8060638  0.8570734  0.7736693  0.9097372 
5  0.9633385  0.9716099  0.9739039  0.9703216 
6  0.9657163  0.9734448  0.9739039  0.9732413 
7  0.9659479  0.9734531  0.9762849  0.9716936 
8  0.9802166  0.9844414  0.9906690  0.9805949 
9  0.9905123  0.9926731  0.9928571  0.9925362 
10  0.9905123  0.9926731  0.9928571  0.9925362 
11  1.0000000  1.0000000  1.0000000  1.0000000 
12  0.9952076  0.9963345  1.0000000  0.9941167 
13  0.9940381  0.9954212  0.9976744  0.9941167 
14  0.9928391  0.9945038  0.9976744  0.9926347 
15  0.9939954  0.995417  1.0000000  0.9926461 

Best performance with 11 features (underlined). 
Selection of features subset over 96% in every metric and sensitivity greater than 
specificity (bold letters). 
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single class (dependent individuals), this could introduce a bias in the 
algorithm performance because the sex of an individual may involve 
differences in physiological functions. Therefore, significant differences 
could exist in the physiological parameters of the sample between fe
male and males. On the other hand, the aim of the present study was 
focused on validating the technical solution, based on the information 
recruited from wearables and on the use of Machine Learning tech
niques, needed to validate this technical solution. Additionally, this 
study aimed to predict the dependence in IADLs of older adults while 
executing a shopping activity without taking into consideration sex 

parameters or differences in the physiological changes across sexes. 
Hence, future studies with the aim of predicting the dependence in male 
and female separately should recruit a balanced sample in terms of sex, 
assuring an equal distribution of dependent and independent partici
pants for IADLs in both groups. 

The fourth limitation is that we conducted a cross-sectional study in 
only two community day centers, offering social activities to older 
people to increase and promote an active life in this stage of their lives. 
These centers were chosen because these organizations assist people that 
may be at risk or have dependence and this was our target population. 
The results of the present work represent a first step to test the func
tioning of the wearables that automatizes the assessment process in the 
clinical setting, saving time and complexity of the evaluation of the 
possible dependence. Future studies should conduct new studies to in
crease the generalization of the results to the whole older people 
population. 

6. Conclusions 

In this work, we proposed a novel approach for assessing the elderly 
IADL dependence with an m-health system. We achieved this goal using 
wearables for collecting data, transparently to the subjects during the 
performance of one single IADL (shopping). With a sample size of 78 
subjects, the resulting model (k-NN) was validated with 5-fold stratified 
cross-validation technique, reporting an F1-score of 97% and a similar 
accuracy—keeping sensitivity higher than specificity. This model uses 
only 10 features extracted from four sensors of a single wearable placed 
on the subject’s non-dominant-hand wrist. 

The use of wearables and ML contribute to create a holistic and semi- 
ecological model that improves the traditional assessment of IADL per
formance. The proposed m-Health system could help clinicians to 
evaluate and monitor the independence and autonomy of older adults, 
assessing all the human functions with one IADL (shopping). 

Table 7 
Experiment 2 (split shopping stages): performance of different algorithms without SMOTE and non-observational variables.  

Condition Random Forest Support Vector Machines k-Nearest Neighbors 

F1-score 0.9542469 0.981914 0.9951802 
Accuracy 0.9661179 0.9862637 0.9963303 
Sensitivity 0.9286523 0.9785293 1.0 
Specificity 0.9895499 0.9910763 0.9941279 
Total Features 69 65 39 
Features hr.skew + acc.x.min + acc.y.kurtosis + gyr.z. 

mean + gyr.x.kurtosis + acc.z.skew + eda.min +
eda.mean + acc.y.skew + acc.z.min + eda.max +
temp.mean + temp.max + temp.energy + gyr.y. 
kurtosis + acc.x.energy + temp.min + gyr.y.skew 
+ acc.x.skew + eda.energy + hr.kurtosis + acc.y. 
min + temp.range + acc.y.max + acc.z.energy +
acc.y.mean + hr.max + temp.sd + acc.z.kurtosis 
+ acc.x.sd + event_time + eda.range + gyr.z. 
energy + gyr.z.skew + acc.x.mean + acc.z.max +
gyr.y.min + temp.kurtosis + acc.x.max + eda.sd 
+ acc.z.mean + gyr.z.max + eda.kurtosis + hr. 
energy + gyr.y.mean + hr.sd + gyr.x.energy +
acc.x.kurtosis + hr.min + acc.z.range + gyr.x.max 
+ hr.range + hr.mean + gyr.x.skew + acc.y. 
energy + acc.y.sd + gyr.z.min + gyr.x.min + gyr. 
x.sd + gyr.y.energy + acc.x.range + gyr.x.mean +
temp.skew + eda.skew + acc.y.range + acc.z.sd +
gyr.z.range + gyr.x.range + gyr.z.kurtosis 

hr.skew + acc.x.min + acc.y.kurtosis + gyr.z.mean 
+ gyr.x.kurtosis + acc.z.skew + acc.x.energy + acc. 
z.min + eda.max + eda.mean + eda.min + temp. 
min + temp.mean + temp.max + acc.y.skew + gyr. 
y.kurtosis + acc.x.skew + hr.kurtosis + gyr.y.skew 
+ temp.energy + temp.sd + acc.y.mean + temp. 
range + acc.y.max + hr.max + acc.x.sd + acc.y.min 
+ eda.energy + acc.z.energy + gyr.y.min + acc.z. 
max + gyr.z.max + gyr.z.skew + acc.z.kurtosis +
event_time + acc.x.kurtosis + temp.kurtosis + acc. 
x.mean + gyr.z.energy + eda.range + gyr.x.energy 
+ acc.z.mean + gyr.y.mean + hr.sd + acc.x.max +
gyr.z.min + eda.kurtosis + hr.mean + gyr.x.min +
gyr.x.max + hr.range + eda.sd + hr.energy + acc.y. 
sd + hr.min + gyr.x.sd + acc.y.energy + eda.skew 
+ gyr.x.skew + acc.x.range + gyr.y.energy + gyr.x. 
mean + temp.skew + acc.z.sd + acc.z.range 

hr.skew + acc.x.min + acc.y.kurtosis + gyr.z. 
mean + acc.z.min + gyr.x.kurtosis + acc.y.skew 
+ eda.mean + eda.min + acc.z.skew + acc.x.sd +
acc.x.energy + hr.kurtosis + acc.x.skew + hr.max 
+ eda.max + temp.min + acc.y.max + gyr.y. 
kurtosis + eda.range + temp.max + hr.mean +
gyr.y.skew + temp.energy + temp.mean + gyr.x. 
max + gyr.x.range + acc.y.min + gyr.z.max + hr. 
range + temp.range + eda.energy + temp.sd +
acc.z.max + acc.z.energy + acc.x.mean + gyr.y. 
min + acc.y.mean + acc.z.kurtosis 

Hyperparameters number of trees: 500 
variables randomly sampled: 10 

cost: 0.1 
gamma: 0.5 
kernel: “polynomial” 

k: 1 

Best performance with 1-NN of 99.52% F1-score (bold letters). 
Empatica sensors: acc (accelerometer); eda (EDA sensor); hr (heart rate); temp (temperature). Gear S3 sensors: gyr (gyroscope). 

Table 8 
Metrics for 1-NN between 1 and 15 features.  

Features F1-Score Accuracy Sensitivity Specificity 

1  0.5299375  0.6913745  0.4525743  0.8411121 
2  0.6195547  0.7353525  0.5624456  0.8438088 
3  0.8600445  0.8928239  0.8637154  0.9109086 
4  0.8711083  0.9019815  0.8709224  0.9212700 
5*  0.9428919  0.9560303  0.9451741  0.9629114 
6  0.9555843  0.9660927  0.9545607  0.9734273 
7  0.9630037  0.9715973  0.9642888  0.9763790 
8  0.9633316  0.9716015  0.9691675  0.9734372 
9  0.9633316  0.9716015  0.9691675  0.9734372 
10  0.9704221  0.9770977  0.9786673  0.9763903 
11  0.9796175  0.9844162  0.9878547  0.9823069 
12  0.9856647  0.9890034  0.9927930  0.9867080 
13  0.9915874  0.9935780  1.0000000  0.9897161 
14  0.9940089  0.9954170  0.9975309  0.9940845 
15  0.9891905  0.9917473  0.9975309  0.9882451 
39  0.9951802  0.9963303  1.0000000  0.9941279 

Reference best performance with 39 features (underlined). 
Candidate features subsets over close to 97% in every metric and sensitivity 
greater than specificity (bold letters). 
*This subset also has a decent performance over 94% in every metric. 

F.M. Garcia-Moreno et al.                                                                                                                                                                                                                    



International Journal of Medical Informatics 157 (2022) 104625

13

Regarding future directions, we will focus on the generation of a fully 
ecological model for evaluating, monitoring and assessing IADL 
dependence. In particular, we will try to avoid the intervention of an 
external observer (TS). These would further reduce economic and 
human costs in public and private health systems. The proposed model 
will be integrated in a generalized m-health system, which takes 
advantage of the decoupling, flexibility, extension, scalability and evo
lution of microservices and cloud technologies [18–20]. These tech
nologies also allow interoperability with different devices, sensors and 
applications. 
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Table 9 
Description of candidate 1-NN models without observational features.  

Features F1-Score Accuracy Sensitivity Specificity Features 

5  0.9428919  0.9560303  0.9451741  0.9629114 acc.x.min +
eda.min +
eda.max +
temp.max +
acc.z.min 

10  0.9704221  0.9770977  0.9786673  0.9763903 acc.x.min +
temp.mean 
+ temp.max 
+ hr.max +
acc.z.min +
hr.skew +
eda.max +
eda.mean +
acc.y.min +
eda.min 

11  0.9796175  0.9844162  0.9878547  0.9823069 acc.x.min +
acc.z.min +
temp.max +
temp.mean 
+ hr.max +
hr.skew +
acc.y.min +
eda.mean +
eda.min +
eda.max +
gyr.y. 
kurtosis 

12  0.9856647  0.9890034  0.9927930  0.9867080 acc.x.min +
acc.z.min +
temp.mean 
+ temp.max 
+ hr.max +
hr.skew +
eda.min +
acc.y.min +
gyr.y. 
kurtosis +
eda.mean +
acc.z.skew 
+ eda.max 

13  0.9915874  0.9935780  1.0000000  0.9897161 acc.x.min +
acc.z.min +
temp.max +
temp.mean 
+ hr.max +
hr.skew +
eda.min +
eda.mean +
eda.max +
acc.z.skew 
+ acc.y.min 
+ gyr.y. 
kurtosis +
acc.x.sd 

14  0.9940089  0.9954170  0.9975309  0.9940845 acc.x.min +
hr.skew +
acc.z.min +
temp.mean 
+ temp.max 
+ hr.max +
eda.min +
eda.max +
gyr.y. 
kurtosis +
acc.y.min +
eda.mean +
acc.x.sd +
acc.z.skew 
+ hr.kurtosis 

39  0.9951802  0.9963303  1.0000000  0.9941279 hr.skew +
acc.x.min +
acc.y. 
kurtosis +
gyr.z.mean  

Table 9 (continued ) 

Features F1-Score Accuracy Sensitivity Specificity Features 

+ acc.z.min 
+ gyr.x. 
kurtosis +
acc.y.skew 
+ eda.mean 
+ eda.min +
acc.z.skew 
+ acc.x.sd +
acc.x.energy 
+ hr. 
kurtosis +
acc.x.skew 
+ hr.max +
eda.max +
temp.min +
acc.y.max +
gyr.y. 
kurtosis +
eda.range +
temp.max +
hr.mean +
gyr.y.skew 
+ temp. 
energy +
temp.mean 
+ gyr.x.max 
+ gyr.x. 
range + acc. 
y.min + gyr. 
z.max + hr. 
range +
temp.range 
+ eda. 
energy +
temp.sd +
acc.z.max +
acc.z.energy 
+ acc.x. 
mean + gyr. 
y.min + acc. 
y.mean +
acc.z. 
kurtosis 

Reference best performance with 39 features (underlined) Empatica sensors: acc 
(accelerometer); eda (EDA sensor); hr (heart rate); temp (temperature). Gear S3 
sensors: gyr (gyroscope). 
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Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijmedinf.2021.104625. 
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