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Abstract: High dimensional atomic states play a relevant role in a broad range of quantum fields,
ranging from atomic and molecular physics to quantum technologies. The D-dimensional hydrogenic
system (i.e., a negatively-charged particle moving around a positively charged core under a Coulomb-
like potential) is the main prototype of the physics of multidimensional quantum systems. In
this work, we review the leading terms of the Heisenberg-like (radial expectation values) and
entropy-like (Rényi, Shannon) uncertainty measures of this system at the limit of high D. They are
given in a simple compact way in terms of the space dimensionality, the Coulomb strength and the
state’s hyperquantum numbers. The associated multidimensional position–momentum uncertainty
relations are also revised and compared with those of other relevant systems.

Keywords: high dimensional hydrogenic systems; Rényi entropies; Shannon entropies; Heisenberg-
like uncertainty measures

1. Introduction

High dimensional quantum states (HDQS), often referred to as pseudoclassical states,
play a fundamental and practical role in numerous scientific and technological areas
such as atomic and molecular chemistry and physics [1–8], quantum information and
computation [9–11], quantum cosmology [12] and quantum technologies [13–16]. It has
been observed that physics is much simpler when the space dimensionality D is very high
in numerous quantum systems from single-particle systems subject to a central potential
to more complex systems and phenomena such as, for example, random walks, quantum
liquids and some quantum field models containing SU(D) gauge fields [7,17–20]. Indeed,
the high dimensional (D → ∞) limit is the starting point of a very useful strategy developed
by Dudley R. Herschbach et al. [4,21–23] in atoms and molecules: the D-dimensional
scaling method. This method needs to solve a finite many-electron problem in the (high
D)-limit and then, perturbation theory in 1/D is used to have an approximate result for
the standard dimension (D = 3), obtaining at times a quantitative accuracy comparable
to the self-consistent Hartree–Fock calculations. The electrons in the (high D)-limit of a
many-electron system assume fixed positions relative to the nuclei and each other, in the
D-scaled space [3].

The uncertainty measures of the Heisenberg (radial expectation values, variance)
and entropy (Shannon, Rényi) types, which quantify the spreading properties of the
electronic probability density, have recently been determined [24–27] for the D-dimensional
hydrogenic system at all D from first principles; that is, in terms of the dimensionality
D, the strength of the Coulomb potential (the nuclear charge) and the D hyperquantum
numbers (η, µ1, µ2, . . . , µD−1), which characterize the quantum state under consideration.
This has been possible because the physical solutions (wavefunctions) of the corresponding
Schrödinger equation are expressed by means of the Laguerre and Gegenbauer polynomials,
which have a great deal of simple and useful algebraic properties.
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However, the theoretical expressions found for the uncertainty measures of general D-
dimensional hydrogenic states [24–27] provide with algorithmic procedures to find their numer-
ical values, but they are somewhat highbrow and not so handy for analytical manipulations.
This is because they require the numerical evaluation at the unity of a generalized univariate hy-
pergeometric functions of p+1Fp(z) type (Heisenberg-like measures), a multivariate Lauricella

function of type A of s variables and 2s + 1 parameters F(s)
A (x1, . . . , xs) [28,29], and a r-variate

Srivastava–Daoust function F1:2;...;2
1:1;...;1 (x1, . . . , xr) [30,31] (Shannon and Rényi entropies).

In this work, we briefly review and show, in a simple, transparent and compact form,
the Heisenberg measures and the Shannon and Rényi entropies of the high-dimensional
(D → ∞) hydrogenic states by use of some recent mathematical tools [32–35] relative to the
asymptotics (α→ ∞) of the underlying integral functionals of Laguerre polynomials L(α)k (x)

and Gegenbauer polynomials C(α)k (x), which control the hydrogenic wavefunctions as already
said, the polynomial parameter α being a linear function of the space dimensionality.

The structure of this work is as follows. In Section 2, the wave functions for the
multidimensional hydrogenic states in both position and momentum spaces are briefly
described, and the associated probability densities are shown. Later, in Sections 3 and 4, the
uncertainty measures of Heisenberg, Rényi and Shannon types are shown and reviewed for
the high dimensional hydrogenic states, respectively, in the two conjugated spaces. Finally,
some conclusions are given.

2. Position and Momentum Probability Densities of Multidimensional
Hydrogenic States

In this section, we briefly describe the stationary wavefunctions for the bound states
of the D-dimensional hydrogenic system (i.e., a negatively-charged particle moving around
a positively charged core under the Coulomb potential VD(r) = − Z

r , being r = |~r|, D > 2,
and Z the charge of the nuclear core, assumed to be pointwise and located at the ori-
gin) and the associated electron probability densities in both position and momentum
spaces. Atomic units are used from here onwards. In position space, the time-independent
Schrödinger equation of this system is:(

−1
2
~∇2

D −
Z
r

)
Ψ(~r) = EΨ(~r), (1)

where ~∇D denotes the D-dimensional gradient operator, Z is the nuclear charge, and the elec-
tronic position vector~r = (x1, . . . , xD) in hyperspherical units is given as (r, θ1, θ2, . . . , θD−1) ≡
(r, ΩD−1), ΩD−1 ∈ SD−1, where r ≡ |~r| =

√
∑D

i=1 x2
i ∈ [0 ; +∞) and xi = r

(
∏i−1

k=1 sin θk

)
cos θi for 1 ≤ i ≤ D and with θi ∈ [0 ; π), i < D− 1, θD−1 ≡ φ ∈ [0 ; 2π). The physical
eigensolutions of this equation are known [36–39] to be given by the energies

E = − Z2

2η2 , η = n +
D− 3

2
; n = 1, 2, 3, . . . , (2)

(where n is the principal hyperquantum number associated to the radial variable r) and the
associated eigenfunctions:

Ψn,l,{µ}(~r) = Rn,l(r)×Yl,{µ}(ΩD−1), (3)

where (l, {µ}) ≡ (l ≡ µ1, µ2, . . . , µD−1) denote the hyperquantum numbers associated
to the angular variables Ωd−1 ≡ (θ1, θ2, . . . , θD−1), which may take all values consistent
with the inequalities l ≡ µ1 ≥ µ2 ≥ . . . ≥ |µD−1| ≡ |m| ≥ 0. The angular parts of the
eigenfunctions are the hyperspherical harmonics, Yl,{µ}(ΩD−1), defined [36,40–42] as

Yl,{µ}(ΩD−1) =
1√
2π

eimφ
D−2

∏
j=1

C̃
(αj+µj+1)
µj−µj+1

(cos θj)(sin θj)
µj+1 , (4)
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where 2αj = D − j − 1, C̃(α)
m (t) denotes the orthonormal Gegenbauer or ultraspheri-

cal polynomial [28] of degree m and parameter α, and with the values 0 ≤ θj ≤ π
(j = 1, 2, . . . , D − 2) and 0 ≤ φ ≤ 2π. These hyperfunctions satisfy the orthonomal-
ization condition:∫

SD−1

Y∗l′ ,{µ′}(ΩD−1)Yl,{µ}(ΩD−1)dΩD−1 = δl,l′δ{µ}{µ′}. (5)

The symbol Rn,l(r) of Equation (3) denote the radial part of the position wavefunction
known to be given as:

Rn,l(r) = Kn,l

( r
λ

)l
e−

r
2λL(2l+D−2)

n−l−1

( r
λ

)
(6)

= Kn,l

[
ω2L+1(r̃)

r̃D−2

]1/2

L2L+1
η−L−1(r̃)

=

(
λ−D

2η

)1/2[
ω2L+1(r̃)

r̃D−2

]1/2

L̃2L+1
η−L−1(r̃),

where

L = l +
D− 3

2
, l = 0, 1, 2, . . . (7)

r̃ =
r
λ

, λ =
η

2Z
(8)

denote the “grand orbital angular momentum quantum number” L and the adimensional
parameters (r̃, λ), respectively. In addition, ωs(x) = xse−x, s = 2l + D− 2, is the weight
function of the Laguerre polynomials with parameter s. The symbols Ls

n(x) and L̃s
n(x)

denote the orthogonal and orthonormal, respectively, Laguerre polynomials with respect
to the weight ωs(x) = xse−x on the interval [0, ∞), so that:

L̃s
m(x) =

(
m!

Γ(m + s + 1)

)1/2
Ls

m(x), (9)

and finally,

Kn,L = λ−
D
2

{
(η − L− 1)!
2η(η + L)!

} 1
2
=


(

2Z
n + D−3

2

)D
(n− l − 1)!

2
(

n + D−3
2

)
(n + l + D− 3)!


1
2

≡ Kn,l (10)

represents the normalization constant, which ensures that
∫ ∣∣∣Ψη,l,{µ}(~r)

∣∣∣2d~r = 1.
In momentum space, the eigenfunctions for a generic stationary state (n, l, {µ}) of

the D-dimensional hydrogenic system can be obtained via the Fourier transform of the
position eigenfunctions (3),

Ψ̃n,l,{µ}(~p) =
∫
RD

e−i~p·~r Ψn,l,{µ}(~r) dD~r, (11)

obtaining
Ψ̃n,l,{µ}(~p) =Mn,l(p)×Yl,{µ}(ΩD−1), (12)

where ~p = (p, θ1, . . . , θD−1), and the radial momentum wavefunction is:

Mn,l(p) = K′n,l
(η p̃)l

(1 + η2 p̃2)L+2 C
(L+1)
η−L−1

(
1− η2 p̃2

1 + η2 p̃2

)
=

( η

Z

)D/2
(1 + y)3/2

(
1 + y
1− y

) D−2
4 √

ω∗L+1(y) C̃
L+1
η−L−1(y), (13)



Entropy 2021, 23, 1339 4 of 16

with y = 1−η2 p̃2

1−η2 p̃2 , the dimensionless parameter p̃ = p
Z and the normalization constant:

K′n,l = 22L+3
(
(η − L− 1)!
2π(η + L)!

)1/2

Γ(L + 1)η
D+1

2

= 22l+D
(

(n− l − 1)!
2π(n + l + D− 3)!

)1/2

Γ(l +
D− 1

2
) η

D+1
2 , (14)

where η− L− 1 = n− l− 1 and L + 1 = l + D−1
2 . The symbols C(α)m (y) and C̃(α)m (y) denote

the orthogonal and orthonormal Gegenbauer polynomials [28] with respect to the weight
function ω∗α(y) = (1− y2)α− 1

2 on the interval [−1,+1], respectively, which are mutually
related by:

C̃(λ)k (x) =
(

k!(k + λ)Γ2(λ)

π21−2λΓ(2λ + k)

)1/2

C(λ)k (x), (15)

so that
C̃(l+

D−1
2 )

n−l−1 (x) = A(n, l; D)
1
2 C(l+

D−1
2 )

n−l−1 (x)

with the constant

A(n, l; D) =
(n− l − 1)!(n + D−3

2 )[Γ(l + D−1
2 )]2

22−2l−DπΓ(n + l + D− 2)
. (16)

The position and momentum D-dimensional wavefunctions (3) and (12), respectively,
reduce to the corresponding three-dimensional wavefunctions obtained by numerous
authors (see e.g., [43–45]).

Multidimensional Probability Densities

Then, the corresponding position and momentum probability densities of a D-dimensional
hydrogenic system (i.e., the charge and momentum densities of the system) are given in
terms of the hyperquantum numbers, (n, l, {µ}), by:

ρn,l,{µ}(~r) =
∣∣∣Ψn,l,{µ}(~r)

∣∣∣2 = R2
nl(r)× |Yl,{µ}(ΩD−1)|2

= K2
n,l r̃

2le−r̃[L(2l+D−2)
n−l−1 (r̃)]2 × |Yl,{µ}(ΩD−1)|2

=

(
2Z
η

)D 1
2η

ω2L+1(r̃)
r̃D−2 [L̃(2L+1)

η−L−1(r̃)]
2 × |Yl,{µ}(ΩD−1)|2 (17)

≡ ρn,l(r̃)× |Yl,{µ}(ΩD−1)|2, (18)

in position space, and

γn,l,{µ}(~p) =
∣∣∣Ψ̃n,l,{µ}(~p)

∣∣∣2 =M2
n,l(p)×

∣∣∣Yl,{µ}(ΩD−1)
∣∣∣2

= K′2n,l
(η p̃)2l

(1 + η2 p̃2)2L+4

[
C(L+1)

η−L−1

(
1− η2 p̃2

1 + η2 p̃2

)]2

× |Yl,{µ}(ΩD−1)|2

=
( η

Z

)D
(1 + y)3

(
1 + y
1− y

) D−2
2

ω∗L+1(y) [C̃
(L+1)
η−L−1(y)]

2 × |Yl,{µ}(ΩD−1)|2 (19)

≡ γn,l( p̃)× |Yl,{µ}(ΩD−1)|2, (20)

in momentum space. The symbols ρn,l(r̃) and γn,l( p̃) denote the radial densities:

ρn,l(r̃) = [Rn,l(r)]2 =
λ−D

2η

ω2L+1(r̃)
r̃D−2 [L̃2L+1

η−L−1(r̃)]
2 (21)
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and

γn,l( p̃) = [Mn,l(p)]2 =
( η

Z

)D
(1 + y)3

(
1 + y
1− y

) D−2
2

ω∗L+1(y) [C̃
(L+1)
η−L−1(y)]

2, (22)

in position and momentum spaces, respectively.

3. Heisenberg-like Measures of High-Dimensional Hydrogenic States

In this section, we show and discuss the Heisenberg-like uncertainty measures of the
high-dimensional (D → ∞) hydrogenic states in position and momentum spaces. They
are given by the radial position and momentum expectation values of the corresponding
probability distributions for such states. First, we give the somewhat highbrow, but
compact, corresponding expressions, for any D-dimensional hydrogenic state with D ≥ 2
by means of a generalized hypergeometric function of qFp(z) type, and then we obtain the
high dimensional limit by asymptotical techniques of integral functionals of the orthogonal
polynomials involved in the associated hydrogenic wavefunctions.

3.1. Position Space

The Heisenberg-like uncertainty measures of the D-dimensional hydrogenic states in
position space are given by the expectation values:

〈rα〉 =
∫
RD

rαρ(~r)d~r =
∫ ∞

0
rα+D−1R2

n,l(r)dr

=
1

2η

( η

2Z

)α ∫ ∞

0
ω2l+D−2(t) [L̃

(2l+D−2)
n−l−1 (t)]2 tα+1 d t, (23)

which holds for α > −D− 2l. Then, using the integral representation of the generalized
hypergeometric functions p+1Fp(1) [28,46], one finds [38,47–50] that

〈rα〉 = ηα−1

2α+1Zα

Γ(2L + α + 3)
Γ(2L + 2) 3F2

(
−η + L + 1, −α− 1, α + 2

2L + 2, 1

∣∣∣∣1), (24)

where the symbol p+1Fp(z) denotes the generalized hypergemetric series given by

p+1Fp

(
a1, . . . , ap+1
b1, . . . , bp

∣∣∣∣z) =
∞

∑
j=0

(a1)j · · · (ap+1)j

(b1)j · · · (bp)j

zj

j!
, (25)

which is terminating when the first one or more of the top parameters is a nonnegative
integer, so that it reduces to a polynomial in z. Then, note that the previous functions
3F2(1) given by Equation (24) are terminating hypergeometric functions (so, a polynomial)
evaluated at z = 1. An alternative expression could be obtained via the not yet explored
method of Perrey et al. [51]. From (23) or (24) and the known properties of the function
3F2(1) [28] one obtains 〈r0〉 = 1 and the first few Heisenberg-like measures. Moreover, for
the ground state (n = 1, l = 0) of the D-dimensional hydrogenic state one has

〈rα〉 =
(

D− 1
4Z

)α Γ(D + α)

Γ(D)
; α > −D. (26)

For further information and reduction to three-dimensional values, see [25].
The Heisenberg-like uncertainty measures of the high-dimensional hydrogenic states

can be obtained by means of the D → +∞ limit of Equation (24). Then, taking into account
the asymptotics:

3F2(−n + l + 1,−α− 1, α + 2; 2l − 1 + D, 1; 1) = 1 +
(α + 1)(α + 2)(n− l − 1)

2l − 1 + D
+O

(
1

D2

)
. (27)
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Together with the following asymptotics of the gamma ratio (see e.g., Equations (5), (11)
and (12) in [28]),

Γ(D + 2l + α)

Γ(D + 2l − 1)
= D1+α

(
1 +

(α + 1)(α + 4l − 2)
2D

+O
(

1
D2

))
, (28)

we finally have [26] the values:

〈rα〉 =

(
D2

4Z

)α(
1 +

(α + 1)(α + 4l − 2)
2D

)(
1 +

(α + 1)(α + 2)(n− l − 1)
D

)(
1 +O

(
1

D2

))
,

(29)

for the Heisenberg-like uncertainty measures of the high-dimensional hydrogenic states.
Note that in this limit one has that 〈rα〉 → rα

char, where rchar =
D2

4Z . Then, rchar appears to be
as the characteristic length for the Coulomb problem.

In particular, for l = n− 1 the last expression yields the following values:

〈rα〉cs =

(
D2

4Z

)α[
1 +

(α + 1)(4n + α− 6)
2D

](
1 +O

(
1

D2

))
, (30)

for the position Heisenberg-like measures of the high dimensional hydrogenic states of
circular type. Moreover, remark from this expression that the position Heisenberg-like
expectation values for the ground state (n = 1) of the D-dimensional hydrogenic system at

high D are 〈rα〉gs =
(

D2

4Z

)α
, in agreement with the corresponding limit of (26).

3.2. Momentum Space

The Heisenberg-like uncertainty measures of the D-dimensional hydrogenic states
(n, l, {µ}) in momentum space are given by the expectation values,

〈pα〉 =
∫

pαγ(~p)d~p =
∫ ∞

0
pα+D−1M2

n,l(p)dp

=

(
Z
η

)α

Kn,l

∫ +1

−1

[
C(ν)k (t)

]2
(1− t)ν+ α−1

2 (1 + t)ν− α−1
2 dt (31)

=

(
Z
η

)α ∫ +1

−1
ω∗ν(t)

[
C̃(ν)k (t)

]2
(1− t)

α
2 (1 + t)1− α

2 dt, (32)

(which holds for −2l − D ≤ α ≤ 2l + D + 2). Note that k = η − L − 1 = n − l − 1,
ν = L + 1 = l + (D− 1)/2, ω∗ν(t) = (1− t2)ν− 1

2 = (1− t2)l+ D−2
2 is the weight function of

the Gegenbauer polynomials C̃(ν)k (t), and the constant:

Kn,l =
K′2n,l

22l+D+1ηD = 22(L+1)η[Γ(L + 1)]2
(
(η − L− 1)!
2π(η + L)!

)
. (33)

Then, the use of the properties of the function 5F4(z) allows us to find

〈pα〉 = 21−2νZα
√

π

k!ηα

(k + ν)Γ(k + 2ν)Γ(ν + α+1
2 )Γ(ν + 3−α

2 )

Γ2(ν + 1
2 )Γ(ν + 1)Γ(ν + 3

z )

× 5F4

(
−k, k + 2ν, ν, ν + α+1

2 , ν + 3−α
2

2ν, ν + 1
2 , ν + 1, ν + 3

2

∣∣∣∣1), (34)

for the momentum Heisenberg-like measures [52] of a generic D-dimensional hydrogenic
state (n, l). From (32) or (34) and the known properties of the function 5F4(1) [28] one
obtains 〈p0〉 = 1 and the first few Heisenberg-like measures.
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For further information and reduction to three-dimensional values, see [25]. In partic-
ular, let us remark that the problem to calculate explicitly the momentum Heisenberg-like
measures with an odd integer order for the D-dimensional hydrogenic system requires a
more delicate treatment as is detailed in Section 4 of [25]. Note also that for the ground
state (n = 1, l = 0) of the D-dimensional hydrogenic state one has the value:

〈pα〉 =
(

2Z
D− 1

)α 2 Γ(D−α
2 + 1)Γ(D+α

2 )

D Γ2
(

D
2

) ; −D < α < D + 2 (35)

for the momentum expectation values when D ≥ 2.
The momentum Heisenberg-like uncertainty measures of the high-dimensional hy-

drogenic states can be obtained as follows by means of the D → +∞ limit of Equation (31)
or (34). Using the definition (25) for the terminating hypergeometric function 5F4(z), one
can [53] express (34) as:

〈pα〉 ηα

Zα
=

2
k!
(k + ν)Γ(k + 2ν)

Γ(2ν + 1)
Γ(ν + α+1

2 )Γ(ν + 3−α
2 )

Γ(ν + 1
2 )Γ(ν + 3

2 )

×
k

∑
j=0

(−1)j
(

k
j

)
(k + 2ν)j(ν)j(ν + α+1

2 )j(ν + 3−α
2 )j

(2ν)j(ν + 1)j(ν + 1
2 )j(ν + 3

2 )j
. (36)

In the ν→ +∞ limit we find the asymptotical formula:

〈pα〉 = Zα

ηα

(
1 +

α(α− 2)(2k + 1)
4ν

+ o(1/ν)

)
, ν→ +∞. (37)

And taking into account that η = n + D−3
2 and ν = l + D−1

2 , one finally obtains [25] the
values:

〈pα〉 =

(
Z

n + D−3
2

)α(
1 +

α(α− 2)(2n− 2l − 1)
2D

+O(D−2)

)
=

(
2Z
D

)α(
1 +

α(α− 2)(2n− 2l − 1)
2D

+O(D−2)

)
(38)

for the high dimensional (D → ∞) hydrogenic states (n, l, {µ}), which is valid at −2l −
D ≤ α ≤ 2l + D + 2. Note that in such a limit, one has that

(
D2

4Z

)−α
〈pα〉 → 1. Thus,

our D-dimensional hydrogenic system has a characteristic momentum, pchar =
2Z
D , which

corresponds to the localization of the maximum of the ground-state probability density in
momentum space. So, the high-dimensional hydrogenic system seems to behave like an
electron moving with velocity pchar in a circular orbit of angular momentum D

2 and radius
rchar. See [25] for Heisenberg-like measures with a specific α.

In particular, for l = n− 1 the last expression yields the following values:

〈pα〉cs =

(
2Z
D

)α(
1 +

α(α− 2)
2D

+O(D−2)

)
, (39)

for the momentum Heisenberg-like measures of the high dimensional hydrogenic states of
circular type. Moreover, remark from this expression that the momentum Heisenberg-like
expectation values for the ground state (n = 1) of the high-dimensional hydrogenic state

are 〈pα〉gs =
(

2Z
D

)α
, in agreement with the corresponding limit of (35).
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3.3. Heisenberg-like Uncertainty Relations

Then, from Equations (29) and (38) one has that the position–momentum Heisenberg
product 〈rα〉〈pα〉 for the high dimensional (D → ∞) hydrogenic states (n, l, {µ}) fulfills:

〈rα〉〈pα〉 ∼
(

D
2

)α(
1 +

(α + 1)(α + 4l − 2)
2D

)(
1 +

(α + 1)(α + 2)(n− l − 1)
D

)
×
(

1 +
α(α− 2)(2n− 2l − 1)

2D

)
, (40)

valid for α ∈ (−D− 2l, D + 2l + 2); or, more simply [53]

〈rα〉〈pα〉 =
(

D
2

)α(
1 +O

(
1
D

))
. (41)

For the high dimensional hydrogenic states of circular type (i.e., when l = n− 1) we have:

〈rα〉cs〈pα〉cs ∼
(

D
2

)α(
1 +

(α + 1)(α + 4n− 6) + α(α− 2)
2D

+
α(α− 2)(α + 1)(α + 4n− 6)

4D2

)
,

(42)

which, for α = 2 boils down to:

〈r2〉cs〈p2〉cs =
D2

4

[
1 +

6(n− 1)
D

]
(1 + o(1)). (43)

Then, we have that 〈r2〉gs〈p2〉gs = D2

4 for the ground state (n = 1). Then, in high di-
mensions, the standard Heisenberg uncertainty relation (first found by Heisenberg and
Kennard for one-dimensional systems [54,55]):

〈r2〉gs〈p2〉gs ≥
D2

4
(44)

saturates not only for the oscillator ground state but also at the hydrogenic ground state.
Moreover, the expression (40) for α = 2 also fulfills the uncertainty relation:

〈
r2
〉〈

p2
〉
≥
(

l +
D
2

)2
, (45)

which holds for general spherically-symmetric potentials [56]. Moreover, the high-dimensional
uncertainty relations also satisfy the corresponding Heisenberg-like relation for general
quantum systems of Angulo [57,58] (see also [59]). For further details and recent informa-
tion about the position and momentum of Heisenberg-like uncertainty measures of multidi-
mensional hydrogenic systems and their associated uncertainty relations, see [25,53,59,60].

Interestingly, the high dimensional hydrogenic behavior (41) has also been observed
for the high dimensional Heisnberg-like product of the the high dimensional harmonic
(oscillator-like) systems [60,61]. Since the Coulomb and quadratic potentials of the hydro-
genic and harmonic systems, respectively, are so different we can possibly conjecture that
the expression (41) remains valid for high dimensional states of quantum systems with a
general power-law central potential.

4. Rényi and Shannon Entropies of High-Dimensional Hydrogenics States

In this section, we show and revise the Rényi and Shannon entropies of the high-
dimensional (D → ∞) hydrogenic states (n, l, {µ}) in position and momentum spaces.
Recently, the position and momentum Rényi entropies [27,62,63] and the position Shannon
entropies [26,64] for D-dimensional hydrogenic states (n, l, {µ}) with D ≥ 2. However,
the resulting general expressions are given in a closed but highbrow and not easily handy
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way, so that they can provide the values of these physical entropies only algorithmically.
Here we obtain the high dimensional limit in a closed, compact analytical form by use of
asymptotical techniques of integral functionals of the orthogonal polynomials involved in
the associated hydrogenic wavefunctions [33].

4.1. Position Space

In position space, the Rényi entropies Rq[ρ], q > 0 of a D-dimensional hydrogenic
state (n, l, {µ}) is defined [27,62] as:

Rq[ρn,l,{µ}] =
1

1− q
log

∫
RD

[ρn,l,{µ}(~r)]
q d~r, q 6= 1, (46)

where the state’s probability density ρn,l,{µ} is given by (17), and the volume element is:

d~r = rD−1dr dΩD−1, dΩD−1 =

(
D−2

∏
j=1

sin2αj θj

)
dφ,

with 2αj = D− j− 1. Then, this expression can be decomposed as:

Rq[ρn,l,{µ}] = Rq[ρn,l ] + Rq[Yl,{µ}], (47)

where the symbols Rp[ρn,l ] and Rp[Yl,{µ}] defined by

Rq[ρn,l ] =
1

1− q
log

∫ ∞

0
[ρn,l(r)]qrD−1 dr, (48)

Rq[Yl,{µ}] =
1

1− q
log Λl,{µ}(ΩD−1), (49)

denote the radial and angular parts of the Rényi entropy Rq[ρn,l,{µ}], respectively, and with
the following Rényi-like integral functional of the hyperspherical harmonics:

Λl,{µ}(ΩD−1) =
∫

SD−1
|Yl,{µ}(ΩD−1)|2q dΩD−1. (50)

Now we calculate the high dimensional limit of these quantities. To tackle the high
dimensional limit of the radial Rényi entropy Rq[ρn,l ], we first consider the Lq-norm of the
Laguerre polynomials:

Nn(α, q, β) =

∞∫
0

([
L̃(α)n (x)

]2
wα(x)

)q
xβ dx , α > −1 , q > 0 , β + qα > −1, (51)

so that, from Equation (48), one can express the radial Rényi entropy in the form:

Rq[ρn,l ] =
1

1− q
log

[
ηD(1−q)−q

2D(1−q)+qZD(1−q)
Nn,l(D, q)

]
, (52)

where Nn,l(D, p) = Nn(α, p, β), with r̃ ≡ x and

α = 2L + 1 = 2l + D− 2 , l = 0, 1, 2, . . . , n− 1, q > 0 and β = (2− D)q + D− 1, (53)
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which guarantee the convergence of integral (51); that is, the condition β + qα = 2lq + D−
1 > −1 is always satisfied for physically meaningful values of the parameters. Moreover,
the norm Nn,l(D, q) can be rewritten as:

Nn,l(D, q) =

∞∫
0

([
L̃(D+2l−2)

n−l−1 (x)
]2

wD+2l−2(x)
)q

x2q−1+(1−q)D dx

=

[
Γ(n− l)

Γ(n + l + D− 2)

]q ∞∫
0

xD+2lq−1e−qx
[
L(D+2l−2)

n−l−1 (x)
]2q

dx. (54)

According to Equations (52) and (54), the determination of the high dimensional limit
of the radial Rényi entropy boils down to finding the corresponding limit of the integral
functional involved in the norm Nn,l(D, q). The latter can be obtained by use of Theorem 1
of Temme et al. [33,34], so that for every non-negative q 6= 1 one has

Nn,l(D, q) ∼ (2π)
1−q

2 |q− 1|2(n−l−1)q

Γ(n− l)q q−2q(n−1)
(

D
e

)D(1−q)
q−DDq(n−l+ 1

2 )−
1
2 , (55)

where we have also used the Stirling’s formula [28] for the gamma function Γ(x) =

e−xxx− 1
2 (2π)

1
2
[
1 +O

(
x−1)]. Thus, from (52) and (55) we find [33] the following high-D

behavior for the radial Rényi entropy:

Rq[ρn,l ] ∼ 2D log[D] + D log

 q
1

q−1

4Ze

+
q(n− l − 1

2 )−
1
2

1− q
log D +

1
1− q

logF (n, l, q), (56)

where F (n, l, q) = (2π)
1−q

2 |q−1|2(n−l−1)q

Γ(n−l)q
e(2n−3)(1−q)

q2q(n−1) .

Let us now tackle the high dimensional limit of the angular Rényi entropy Rq[Yl,{µ}]
given by Equations (4), (50) and (49). Then, using Theorem 2 at zeroth-order of
Temme et al. [33,34] relative to some related Rényi-like integral functionals of Gegen-
bauer polynomials, we obtain the expression:

Rq[Yl,{µ}] ∼
1

1− q
log

 Γ
(

D
2 + l

)q

Γ
(

D
2 + ql

)
+

D
2

log π

+
1

1− q
log
(
Ẽ(D, {µ})qM̃(D, q, {µ})Γ(1 + qµD−1)

Γ(1 + µD−1)q 21−q
)

∼ − log
(

Γ
(

D
2

))
+

D
2

log π +
1

1− q
log
(
Ẽ(D, {µ})qM̃(D, q, {µ})Γ(1 + qµD−1)

Γ(1 + µD−1)q 21−q
)

∼ −D
2

log D +
D
2

log(2πe) +
1
2

log D

+
1

1− q
log

(
Ẽ(D, {µ})qM̃(D, q, {µ})Γ(1 + qµD−1)

Γ(1 + µD−1)q

(π

2

) q−1
2

)
, (57)

where

M̃(D, q, {µ}) ≡ 4q(l−µD−1)π1− D
2

D−2

∏
j=1

Γ
(
q(µj − µj+1) +

1
2
)

Γ
(
µj − µj+1 + 1

)q (58)

and

Ẽ(D, {µ}) ≡
D−2

∏
j=1

(αj + µj+1)
2(µj−µj+1)

(2αj + 2µj+1)µj−µj+1

1
(αj + µj+1)µj−µj+1

. (59)
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From Equations (56)–(59) and (47) we find [33] that the total Rényi entropy Rq[ρn,l,{µ}] in
position space for a high-dimensional hydrogenic-state with the hyerquantum numbers
(n, l, {µ}), has the expression:

Rq[ρn,l,{µ}] ∼ log

 D2D

Γ
(

D
2

)
+ D log

 q
1

q−1
√

π

4Ze

+
q(n− l − 1

2 )−
1
2

1− q
log D

+
1

1− q
log

(
Ẽ(D, {µ})qM̃(D, q, {µ})F (n, l, q)

Γ(1 + qµD−1)

Γ(1 + µD−1)q

(π

2

) q−1
2

)

∼ 3
2

D log D + D log

 q
1

q−1

Z

√
π

8e

+
q(n− l − 1)

1− q
log D (60)

+
1

1− q
log

(
Ẽ(D, {µ})qM̃(D, q, {µ})F (n, l, q)

Γ(1 + qµD−1)

Γ(1 + µD−1)q

(π

2

) q−1
2

)
,

which holds for every non-negative q 6= 1. Then, after some algebraic and asymptotical
manipulations, we finally have the value:

Rq[ρ
(H)
n,l,{µ}] =

3
2

D log
(

D
2

)
+ D log

 q
1

q−1

Z

√
π

e

+
q(n− l − 1)

1− q
log D +O(1), (61)

for the Rényi entropies of the high-dimensional (D → ∞) hydrogenic states (n, l, {µ}) in
position space. See [33] for further details and application to various relevant classes of
hydrogenic states, such as the ns and circular states. See [33] for further details and application
to various relevant classes of hydrogenic states, such as the ns and circular states.

Moreover, from this expression we can calculate the Shannon entropy for the high
dimensional stationary hydrogenic states with fixed hyperquantum numbers (n, l, {µ})
since this entropic measure is defined [63,64]) as:

S[ρn,l,{µ}] = −
∫

ρn,l,{µ}(~r) log ρn,l,{µ}(~r)d~r = lim
q→1

Rq[ρn,l,{µ}]. (62)

Since q
1

q−1 → e when q→ 1, the expression (61) in this limit simplifies as:

S[ρn,l,{µ}] ∼ log

 D2D

Γ
(

D
2

)
+ D log

(√
π

4Z

)

∼ 3
2

D log D + D log
(√

eπ√
8Z

)
, D → ∞ (63)

for the Shannon entropy of the high-dimensional hydrogenic states (n, l, {µ}) in position
space. See [32] for further details and applications.

4.2. Momentum Space

In momentum space the Rényi entropies Rq[γn,l,{µ}], q > 0 of a D-dimensional hydro-
genic state (n, l, {µ}) is defined [62] as:

Rq[γn,l,{µ}] =
1

1− q
log

∫
RD

[γn,l,{µ}(~p)]
q d~p, q 6= 1, (64)

where γn,l,{µ} denotes the state’s probability density given by Equation (22), so that it can
be expressed as:

Rq[γn,l,{µ}] = Rq[γn,l ] + Rq[Yl,{µ}], (65)
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where the momentum radial Shannon entropy Rq[γn,l ] is defined by:

Rq[γn,l ] =
1

1− q
log

∫ ∞

0
[Mn,l(p)]2q pD−1 dp, (66)

and the symbol Rq[Yl,{µ}] denotes the abovementioned angular part of the Rényi entropy
Rq[γn,l,{µ}] given by (49).

Working similarly as for position space, here we find the following expression:

Rq[γn,l,{µ}] ∼ − log

ηD Γ
(

D
2

)
ZD

+ D log

√π

(
(2q− 1)2q−1

q2q

) 1
2−2q


+

q(n− l − 1
2 )−

1
2

1− q
log D +

1
1− q

log
(
Ẽ(D, {µ})qM̃(D, q, {µ})Q0(q, n, l)π

q−1
2

)
∼ −3

2
D log D + D log

Z
√

8eπ

(
(2q− 1)2q−1

q2q

) 1
2−2q


+

q(n− l − 1)
1− q

log D +
1

1− q
log
(
Ẽ(D, {µ})qM̃(D, q, {µ})Q0(q, n, l)π

q−1
2

)
,

(67)

(with q 6= 1 and η ∼ D
2 ) for the high-D behavior of the total momentum Rényi entropy of

the generic hydrogenic state (n, l, {µ}), where the symbols M̃(D, q, {µ}) and Ẽ(D, {µ})
are defined in Equations (58) and (59), respectively. Moreover, the factor Q0(q) is given by:

Q0(q, n, l) =
√

2π 4q(n−l−1)

Γ(n− l)2q
(2q− 1)q(l+1)− 1

2 (q− 1)2q(n−l−1)

qq(2n−1)− 1
2

. (68)

And with some algebraic and asymptotical manipulations, we have that:

Rq[γ
(H)
n,l,{µ}] = −3

2
D log

(
D
2

)
+ D log

Z
√

eπ

q̃
1

q−1

+
q(n− l − 1)

1− q
log D +O(1), (69)

where q̃ =
(
(2q−1)2q−1

q2q

) 1
2
. See [33] for further details and application to various relevant

classes of hydrogenic states, such as the ns and circular states. Note from Equations (61) and
(69) that the potential manifestation (i.e., the dependence on the nuclear charge Z) appears
in the second term and the dependence on the quantum numbers (n, l) does not arise until
the third term in both position and momentum Rényi entropies, respectively.

Moreover, from expression (69) we can calculate the momentum Shannon entropy
for the high dimensional stationary hydrogenic states with fixed hyperquantum numbers
(n, l, {µ}) since it is defined [63,64]) as

S[γn,l,{µ}] = −
∫

γn,l,{µ}(~r) log γn,l,{µ}(~r)d~r = lim
q→1

Rq[γn,l,{µ}]. (70)

Then, the expression (69) in the limit q→ 1 gives rise to the value:

S[γn,l,{µ}] ∼ −
3
2

D log D + D log
(

Z
√

8eπ
)

, (71)

for the Shannon entropy of the high-dimensional (D → ∞) hydrogenic states (n, l, {µ}) in
momentum space.
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4.3. Entropic Uncertainty Relations

Finally, from Equations (60) and (67), it is straightforward to obtain the leading term
for the position–momentum Rényi-entropy-based uncertainty sum of the high-dimensional
hydrogenic states for a pair of parameters p and q which fulfill the Holder conjugacy rela-
tion 1

p + 1
q = 2. Indeed, the summation of the previously-found position and momentum

Rényi entropies yields:

Rq[ρn,l,{µ}] + Rp[γn,l,{µ}] ∼ D log

π

(
(2p− 1)(2p−1)

p2p

) 1
2−2p

q
1

q−1


= D log

[
2π (2p)

1
2p−2 (2q)

1
2q−2

]
, q 6= 1, D → ∞, (72)

for all states with fixed hyperquantum numbers (n, l, {µ}). Note that this expression
saturates the known position-momentum Rényi-entropy-based uncertainty relation [65,66].
It is also interesting to point out that the dependence at second order on the quantum
numbers n and l of this sum, numerically observed out of the so called conjugacy curve
(i.e., for arbitrary positive pairs of values of p and q) can be explained by means of the
second-order terms of the position and momentum Rényi entropies mentioned above.

Additionally, taking into account the expressions (63) and (71) for the Shannon entropy
in the two conjugated position and momentum spaces, respectively, we have the following
joint position-momentum Shannon entropy of the high dimensional hydrogenic states:

S[ρn,l,{µ}] + S[γn,l,{µ}] ∼ D log[2πe], (73)

which saturates the position–momentum Shannon-entropy-based uncertainty relation [67],
valid for general quantum systems.

Interestingly, the high dimensional hydrogenic behaviors (72) and (73) have also been
observed for the high dimensional Rényi and Shannon entropic sums, respectively, of the
harmonic (oscillator-like) systems [33,60]. Thus, here again we can possibly conjecture that
the expressions (72) and (73) remain valid for high dimensional states of quantum systems
with a general spherically-symmetric potential.

5. Conclusions

In conclusion, we have revised and reviewed the recent knowledge on the Heisenberg-
like and entropy-like uncertainty measures of the high-dimensional (or pseudoclassical)
atomic states of hydrogenic type, and their associated uncertainty relations. These quanti-
ties are shown to have a simple and compact analytical expression in terms of the space
dimensionality D, the Coulomb strength or nuclear charge Z, and the principal and or-
bital hyperquantum numbers (n, l). The leading term of the position and momentum
Heisenberg-like measures depends on (D, Z) only, so that the Heisenberg-like uncertainty

product 〈rα〉〈pα〉 ∼
(

D
2

)α
at first order. The leading term of the position and momentum

entropic measures only depends on D, so that the entropy-like of Rényi and Shannon types
behave as ± 3

2 D log D, respectively. Moreover, the dependence on (Z, n, l) arises at the
second and third asymptotical orders in D, respectively. All this happens in such a way
that the joint position-momentum entropic sums saturate the corresponding entropic uncer-
tainty relations. The latter is also known for the corresponding uncertainty relations of high
dimensional harmonic systems [61], which are subject to a quadratic potential. It remains
open whether this phenomenon is also fulfilled for high dimensional states of quantum
systems moving in general central potentials or, at least, in power-law central potentials.

Funding: This work has been partially supported by the Grant PID2020-113390GB-I00 of the Agencia
Estatal de Investigación (Spain)) and the European Regional Development Fund (FEDER), and the
Grant FQM-207 of the Agencia de Innovación y Desarrollo de Andalucía.



Entropy 2021, 23, 1339 14 of 16

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design
of the study: in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Herrick, D.R.; Stillinger, F.H. Variable dimensionality in atoms and its effect on the ground state of the helium isoelectronic

sequence. Phys. Rev. A 1975, 11, 42. [CrossRef]
2. Witten, E. Quarks, atoms, and the 1/N expansion. Phys. Today 1980, 33, 38. [CrossRef]
3. Herschbach, D.R. Dimensional interpolation for two-electron atoms. J. Chem. Phys. 1986, 84, 838 [CrossRef]
4. Herschbach, D.R.; Avery, S.; Goscinski, O. Dimensional Scaling in Chemical Physics; Kluwer: Dordrecht, The Netherlands, 1992.
5. Chen, G.; Ding, Z.; Lin, C.S.; Herschbach, D.R.; Scully, M.O. Variational justification of the dimensional-scaling method in

chemical physics: The H-atom. J. Math. Chem. 2010, 48, 791. [CrossRef]
6. Svidzinsky, A.; Chen, G.; Chin, S.; Kim, M.; Ma, D.; Murawski, R.; Sergeev, A.; Scully, M.; Herschbach, D. Bohr model and

dimensional scaling analysis of atoms and molecules. Int. Rev. Phys. Chem. 2008, 27, 665. [CrossRef]
7. Maimsbourg, T.; Dyre, J.C.; Costigliola, L. Density scaling of generalized Lennard-Jones fluids in different dimensions. SciPost

Phys. 2020, 9, 090. [CrossRef]
8. Dulieu, O.; Colgan, J.; Grant, E.; Krishnakumar, E.; Osterwalder, A.; Sadeghpour, H.; Vrakking, M.; Wu, J. (Eds.) Jubilee Issue of

Hydrogen: A Fundamental System in All States; Special issue of Journal of Physics B; IOP Publishing: Bristol, UK, 2018.
9. Bharti, K.; Ray, M.; Varvitsiotis, A.; Cabello, A.; Kwek, L.C. Local certification of programmable quantum devices of arbitrary

high dimensionality. arXiv 2019, arXiv:1911.09448v1.
10. Gschwendtner, M.; Winter, A. Infinite-dimensional programmable quantum processors. PRX Quantum 2021, 2, 030308. [CrossRef]
11. Zhang, T.; Xi, Y.; Fei, S.M. A note on quantum Bell nonlocality and quantum entanglement for high dimensional quantum systems.

Int. J. Theoret. Phys. 2021, 60, 2909 [CrossRef]
12. Corda C. On black hole Schrödinger equation and gravitational fine structure constant. arXiv 2020, arXiv:2012.08967v1.
13. Chen, X.; Zhang, J.H.; Zhang, F.L. Probabilistic resumable quantum teleportation in high dimensions. arXiv 2021,

arXiv:2102.03146v1.
14. Anwar, A.; Prabhakar, S.; Singh, R.P. Size invariant twisted optical modes for efficient generation of higher dimensional quantum

states. arXiv 2021, arXiv:2107.02227v1.
15. Achatz, L.; Ortega, E.; Dovzhik, K.; Shiozaki, R.F.; Fuenzalida, J.; Wengerowsky, S.; Bohmann, M.; Ursin, R. High-dimensional

EPR entanglement from a SPDC source at telecom wavelength. arXiv 2021, arXiv:2012.08157v2.
16. Kopf, L.; Hiekkamaki, M.; Prabhakar, S.; Fickler, R. Endless fun in high dimensions-A quantum card game. arXiv 2021,

arXiv:2107.12007v1.
17. Chatterjee, A. Large-N expansions in quantum mechanics, atomic physics and some O(N) invariant systems. Phys. Rep. 1990,

186, 249. [CrossRef]
18. Beldjenna, A.; Rudnick, J.; Gaspari, G. Shapes of random walks at order 1/d2. J. Phys. A 1991, 24, 2131. [CrossRef]
19. Bender, C.M.; Milton, K.A. Scalar Casimir effect for a D-dimensional sphere. Phys. Rev. D 1994, 50, 6547. [CrossRef]
20. Kleftogiannos, I.; Amanatidis, I. Physics in non-fixed spatial dimensions. arXiv 2021, arXiv:2106.08911v2.
21. Tsipis, C.T.; Popov, V.S.; Herschbach, D.R.; Avery, J.S. (Eds.) New Methods in Quantum Theory; Kluwer Academic Publishers:

Dordrecht, The Netherlands, 1996.
22. Herschbach, D.R. Dimensional scaling and renormalization. Int. J. Quantum Chem. 1996, 57, 295. [CrossRef]
23. Ghosh, K.J.B.; Kais, S.; Herschbach, D.R. Unorthodox dimensional interpolations for He, Li, Be atoms and hydrogen molecule.

Front. Phys. 2020, 8, 331. [CrossRef]
24. Romera, E.; Sánchez-Moreno, P.; Dehesa, J.S. Uncertainty relation for Fisher information of D-dimensional single-particle systems

with central potentials. J. Math. Phys. 2006, 47, 103504. [CrossRef]
25. Dehesa, J.S.; Puertas-Centeno, D. Multidimensional hydrogenic states: Position and momentum expectation values. J. Phys. B At.

Mol. Opt. Phys. 2021, 54, 065006. [CrossRef]
26. Toranzo, I.V.; Puertas-Centeno, D.; Sobrino, N.; Dehesa, J.S. Analytical Shannon information entropies for all discrete multidimen-

sional hydrogenic states. Int J Quantum Chem. 2020, 120, e26077. [CrossRef]
27. Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Rényi entropies for multidimensional hydrogenic systems in position and

momentum spaces. Stat. Mech. Theory Exp. 2018, 2018, 073203. [CrossRef]
28. Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: New

York, NY, USA, 2010.
29. Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press-Ellis Horwood Limited: Chichester, West

Sussex, UK, 1985.

http://doi.org/10.1103/PhysRevA.11.42
http://dx.doi.org/10.1063/1.2914163
http://dx.doi.org/10.1063/1.450584
http://dx.doi.org/10.1007/s10910-010-9710-6
http://dx.doi.org/10.1080/01442350802364664
http://dx.doi.org/10.21468/SciPostPhys.9.6.090
http://dx.doi.org/10.1103/PRXQuantum.2.030308
http://dx.doi.org/10.1007/s10773-021-04889-8
http://dx.doi.org/10.1016/0370-1573(90)90048-7
http://dx.doi.org/10.1088/0305-4470/24/9/022
http://dx.doi.org/10.1103/PhysRevD.50.6547
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)57:3<295::AID-QUA3>3.0.CO;2-T
http://dx.doi.org/10.3389/fphy.2020.00331
http://dx.doi.org/10.1063/1.2357998
http://dx.doi.org/10.1088/1361-6455/abcdee
http://dx.doi.org/10.1002/qua.26077
http://dx.doi.org/10.1088/1742-5468/aacf0c


Entropy 2021, 23, 1339 15 of 16

30. Srivastava, H.M. A unified theory of polynomial expansions and their applications involving Clebsch-Gordan type linearization
relations and Neumann series. Astr. Sp. Sci. 1988, 150, 251. [CrossRef]

31. Sánchez-Moreno, P.; Dehesa, J.S.; Zarzo, A.; Guerrero, A. Rényi entropies, Lq norms and linearization of powers of hypergeometric
orthogonal polynomials by means of multivariate special functions. Appl. Math. Comp. 2013, 223, 25. [CrossRef]

32. Dehesa, J.S.; Belega, E.D.; Toranzo, I.V.; Aptekarev, A.I. The Shannon entropy of high-dimensional hydrogenic and harmonic
systems. Int. J. Quantum Chem. 2019, 119, e25977. [CrossRef]

33. Puertas-Centeno, D.; Temme, N.M.; Toranzo, I.V.; Dehesa, J.S. Entropic uncertainty measures for large dimensional hydrogenic
systems. J. Math. Phys. 2017, 58, 103302. [CrossRef]

34. Temme, N.M.; Toranzo, I.V.; Dehesa, J.S. Entropic functionals of Laguerre and Gegenbauer polynomials with large parameters. J.
Phys. A Math. Gen. 2017, 50, 215206. [CrossRef]

35. Temme, N.M. Asymptotic Methods for Integrals; World Scientific: Singapore, 2015.
36. Yáñez, R.J.; Van Assche, W.; Dehesa, J.S. Position and momentum information entropies of the D-dimensional harmonic oscillator

and hydrogen atom. Phys. Rev. A 1994, 50, 3065. [CrossRef]
37. Nieto, M.M. Existence of bound states in continuous 0 < D < ∞ dimensions. Phys. Lett. A 2001, 293, 10.
38. Dehesa, J.S.; López-Rosa, S.; Martínez-Finkelshtein, A.; Yáñez, R.J. Information theory of D-dimensional hydrogenic systems:

Application to circular and Rydberg states. Int. J. Quant. Chem. 2010, 110, 1529. [CrossRef]
39. Dong, S.H. Wave Equations in Higher Dimensions; Springer: Berlin/Heidelberg, Germany, 2011.
40. Aquilanti, V.; Cavalli, S.; Coletti, C.; Domenico, D.D.; Grossi, G. Hyperspherical harmonics as Sturmian orbitals in momentum

space: A systematic approach to the few-body Coulomb problem. Int. Rev. Phys. Chem. 2001, 20, 673. [CrossRef]
41. Avery, J.; Avery, J. Generalized Sturmians and Atomic Spectra; World Sci. Publ.: New York, NY, USA, 2006.
42. Coletti, C.; Calderini, D.; Aquilanti, V. d-Dimensional Kepler-Coulomb Sturmians and hyperspherical harmonics as complete

orthonormal atomic and molecular orbitals. Adv. Quantum Chem. 2013, 67, 73.
43. Fock, V.A. The hydrogen atom and non-Euclidean geometry. Z. Phys. 1935, 98, 145. [CrossRef]
44. Podolsky, B.; Pauling, L. The momentum distribution in hydrogen-like atoms. Phys. Rev. 1929, 34, 109. [CrossRef]
45. Hey, J.D. On the momentum representation of hydrogenic wave functions: Some properties and an application. Am. J. Phys. 1993,

61, 28. [CrossRef]
46. Luke, Y.L. The Special Functions and Their Approximations; Academic Press: New York, NY, USA, 1969; Volume 2.
47. Drake, G.W.F.; Swainson, R.A. Expectation values of rP for arbitrary hydrogenic states. Phys. Rev. A 1990, 42, 1123. [CrossRef]
48. Andrae, D. Recursive evaluation of expectation values for arbitrary states of the relativistic one-electron atom. J. Phys. B At. Mol.

Opt. Phys. 1997, 30, 4435. [CrossRef]
49. Tarasov, V.F. Exact numerical values of diagonal matrix elements < rk >nl, as n ≤ 8 and −7 ≤ k ≤ 4, and the symmetry of

Appell’s function F2(1, 1). Int. J. Mod. Phys. B 2004, 18, 3177.
50. Varshalovich, D.A.; Karpova, A.V. Radial matrix elements and the angular momentum technique. Opt. Spectrosc. 2015, 118, 1.

[CrossRef]
51. Perrey-Debain, E.; Abrahams, I.D. A general asymptotic expansion formula for integrals involving high-order orthogonal

polynomials. SIAM J. Sci. Comput. 2009, 31, 3884. [CrossRef]
52. Van Assche, W.; Yáñez, R.J.; González-Férez, R.; Dehesa, J.S. J. Math. Phys. 2000, 41, 6600. [CrossRef]
53. Toranzo, I.V.; Martínez-Finkelshtein, A.; Dehesa, J.S. Heisenberg-like uncertainty measures for D-dimensional hydrogenic systems

at large D. J. Math. Phys. 2016, 57, 082109. [CrossRef]
54. Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172.

[CrossRef]
55. Kennard, E.H. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 1927, 44, 326. [CrossRef]
56. Sánchez-Moreno, P.; González-Férez, R.; Dehesa, J.S. Improvement of the Heisenberg and Fisher-information-based uncertainty

relations for D-dimensional central potentials. New J. Phys. 2006, 8, 330. [CrossRef]
57. Angulo, J.C. Information entropy and uncertainty in D-dimensional many-body systems. Phys. Rev. A 1994, 50, 311. [CrossRef]
58. Angulo, J.C. Generalized position-momentum uncertainty products: Inclusion of moments with negative order and application

to atoms. Phys. Rev. A 2011, 83, 062102. [CrossRef]
59. Guerrero, A.; Sánchez-Moreno, P.; Dehesa, J.S. Upper bounds on quantum uncertainty products and complexity measures. Phys.

Rev. 2011, 84, 042105. [CrossRef]
60. Sobrino-Coll, N.; Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Complexity measures and uncertainty relations of the high-

dimensional harmonic and hydrogenic systems. Stat. Mech. Theory Exp. 2017, 2017, 083102. [CrossRef]
61. Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Heisenberg and Entropic Uncertainty Measures for Large-Dimensional Harmonic

Systems. Entropy 2017, 19, 164. [CrossRef]
62. Rényi, A. On Measures of Entropy and Information. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and

Probability; University of California Press: Berkeley, CA, USA, 1961; Volume 1, p. 547.
63. Aczel, J.; Daroczy, Z. On Measures of Information and Their Characterizations; Academic Press: New York, NY, USA, 1975.
64. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379. [CrossRef]
65. Bialynicki-Birula, I. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 2006, 74, 052101.

[CrossRef]

http://dx.doi.org/10.1007/BF00641720
http://dx.doi.org/10.1016/j.amc.2013.07.076
http://dx.doi.org/10.1002/qua.25977
http://dx.doi.org/10.1063/1.5006569
http://dx.doi.org/10.1088/1751-8121/aa6dc1
http://dx.doi.org/10.1103/PhysRevA.50.3065
http://dx.doi.org/10.1002/qua.22244
http://dx.doi.org/10.1080/01442350110075926
http://dx.doi.org/10.1007/BF01336904
http://dx.doi.org/10.1103/PhysRev.34.109
http://dx.doi.org/10.1119/1.17405
http://dx.doi.org/10.1103/PhysRevA.42.1123
http://dx.doi.org/10.1088/0953-4075/30/20/008
http://dx.doi.org/10.1134/S0030400X15010233
http://dx.doi.org/10.1137/080736740
http://dx.doi.org/10.1063/1.1286984
http://dx.doi.org/10.1063/1.4961322
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1007/BF01391200
http://dx.doi.org/10.1088/1367-2630/8/12/330
http://dx.doi.org/10.1103/PhysRevA.50.311
http://dx.doi.org/10.1103/PhysRevA.83.062102
http://dx.doi.org/10.1103/PhysRevA.84.042105
http://dx.doi.org/10.1088/1742-5468/aa7df4
http://dx.doi.org/10.3390/e19040164
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1103/PhysRevA.74.052101


Entropy 2021, 23, 1339 16 of 16

66. Zozor, S.; Portesi, M.; Vignat, C. Some extensions of the uncertainty principle. Phys. A Stat. Mech. Appl. 2008, 387, 4800.
[CrossRef]

67. Bialynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975,
44, 129. [CrossRef]

http://dx.doi.org/10.1016/j.physa.2008.04.010
http://dx.doi.org/10.1007/BF01608825

	Introduction
	Position and Momentum Probability Densities of Multidimensional Hydrogenic States
	Heisenberg-like Measures of High-Dimensional Hydrogenic States
	Position Space
	Momentum Space
	Heisenberg-like Uncertainty Relations

	Rényi and Shannon Entropies of High-Dimensional Hydrogenics States
	Position Space
	Momentum Space
	Entropic Uncertainty Relations

	Conclusions
	References

