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Abstract: Coffee plays a key role in the generation of rural employment in
Colombia. More than 785,000 workers are directly employed in this activity,
which represents the 26% of all jobs in the agricultural sector. Colombian
coffee growers estimate the production of cherry coffee with the main aim of
planning the required activities, and resources (number of workers, required
infrastructures), anticipating negotiations, estimating, price, and foreseeing
losses of coffee production in a specific territory. These important processes
can be affected by several factors that are not easy to predict (e.g., weather
variability, diseases, or plagues.). In this paper, we propose a non-destructive
time series model, based on weather and crop management information, that
estimate coffee production allowing coffee growers to improve their manage-
ment of agricultural activities such as flowering calendars, harvesting seasons,
definition of irrigation methods, nutrition calendars, and programming the
times of concentration of production to define the amount of personnel
needed for harvesting. The combination of time series and machine learning
algorithms based on regression trees (XGBOOST, TR and RF) provides very
positive results for the test dataset collected in real conditions for more than a
year. The best results were obtained by the XGBOOST model (MAE = 0.03;
RMSE= 0.01), and a difference of approximately 0.57% absolute to the main
harvest of 2018.

Keywords: Cherry coffee; production estimation; learner; approaches; time
series; weather data; crop management data

1 Introduction

Smart or Precision Agriculture (PA) refers to information and technology-based agricultural
management systems (e.g., remote sensing, geographic information systems, global positioning
systems, or robotics) for a more efficient soil and crop management based on their identified
or estimated conditions [1]. The application of PA can be beneficial at all scales and levels of
agricultural development [2]. Crop yield prediction is a key objective of PA to achieve a more
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precise and accurate use of operations and resources considering georeferenced information, and
monitored characteristics of soil, plant, and climate, thus reducing costs and waster, and increasing
the quality of the final product. Recent advances in sensor technologies, Big Data, Internet of
Things (IoT), Artificial Intelligence (AI) and machine learning approaches has shown a great
potential to advance PA and achieve accurate predictions [3–5].

According to the International Coffee Organization (ICO) [6], coffee is the second most con-
sumed beverage worldwide after water. Currently, Brazil, Vietnam and Colombia are the biggest
exporters of coffee in the world [6]. In Colombia, coffee plays a priority role in the generation of
rural employment (there are more than 547 thousand coffee growers and 853 thousand hectares
of coffee planted [7]). The importance of coffee production is evidenced in the economic and
social level. For instance, in Colombia around 540,000 families depend on coffee production as
income source [6,7]. In addition to the indirectly related sectors such as commerce, finance and
the informal economy that revolves around this activity. The department of Cauca is one of the
most relevant regions in coffee production, with more than 93,000 coffee growing families and
generating 65,500 agricultural jobs [8].

Due to the importance of coffee crops in Colombia, coffee growers must estimate the produc-
tion of cherry coffee beans to support decision-making in planning activities, number of workers
required, necessary infrastructure, anticipated negotiations, and losses of coffee production in a
given territory [8]. Accurate predictions of crop yield are critical for developing effective agricul-
tural and food policies at the regional and global scales. Currently, Colombian coffee growers
estimate cherry coffee production based on direct field measurements [9], which may cause losses
in their production and generate extra costs for the collection of samples. Usually, the sampling
process consists of selecting 60 coffee trees per hectare, from which the coffee beans are extracted
and subsequently weighted [9]. Due to the complexity and costs of the sampling process, only
a very reduced number of samples and corresponding data corpora are available, which leads to
inaccurate measures with high error rates in cherry coffee production estimation. The cherry coffee
beans that constitute the sample are discarded from the coffee production chain, which generates
additional losses to the coffee growers, and so we refer to this approach as “destructive”.

Different approaches have been proposed to estimate crop production by means of machine
learning approaches in tomato, sugar cane, wheat, corn crops, etc. [4,5,10]. However, these propos-
als exclude weather and crop management information, besides they are focused on crops different
than coffee. In this paper, we propose a non-destructive model for the estimation of cherry coffee
production based on sensor variables, time series and machine learning (ML) algorithms. Weather
and crop management information sources are considered to improve the accuracy of the estima-
tors. The evaluation results show that that the algorithms based on regression trees (XGBOOST,
TR and RF) provide accurate crop yield estimations for a realistic test dataset collected in real
conditions, thus providing a solution within the framework of precision agriculture to develop
expert systems to estimate cherry coffee production.

The remainder of the paper is structured as follows. Section 2 describes related approaches
to crop production estimation. Section 3 presents our proposal for estimating cherry coffee pro-
duction and the combination of variables, machine learning approaches and dataset used to learn
the proposed models. Sections 4 and 5 describe the evaluation process and the results obtained.
Finally, Section 6 presents the conclusions and suggests some future work guidelines.
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2 State of the Art

Farmers have traditionally relied on their own experiences and past historical data (e.g., crop
yields and weather) to make decisions to increase short-term profitability and long-term sustain-
ability [11–13]. During the last years, machine learning approaches have emerged as a key element
in precision agriculture for farmers and agronomists’ to make better informed choices [2,11]. This
section describes the main ML approaches related to the estimation of production in different
crops, the main methods that are proposed, and key conclusions extracted.

The model proposed in [14] used two datasets collected from 1983 to 2013 with the weather
characteristics (temperature, rainfall, and humidity) and the production of the rice crop of three
coastal districts belonging to the region of Odisha in India. The AdaBoost algorithm is proposed
to predict rice production by means of the combination of the results obtained by a set of
statistical models: linear, lasso, crest, and support vector regression (SVR) machines. The MAE
(Mean Absolute Error), MSE (Mean Squared Error), MAD (Mean Absolute Deviation) and
R-Squared errors are considered to estimate the predictive quality of the proposed methods.

Gonçalves et al. [4] proposed a multiple linear regression (MLR) model to estimate sug-
arcane production in the state of São Paulo (Brazil). Their proposal is based on time series
considering meteorological and agroclimatic data. The proposed model uses variables related to
planted area, normalized difference vegetation index (NDVI) and water requirement satisfaction
index (WRSI), which presented correlation coefficients around 0.90. In addition, the results of the
evaluation showed a directly proportional relationship between sugarcane production and NDVI,
and inversely proportional to WRSI.

Qader et al. [5] combined MODIS (Moderate Resolution Imaging Spectroradiometer Spec-
trum Radiometer) satellite imagery data with crop production information to develop a statistical
model to forecast winter wheat and barley production in Iraq. From the satellite image informa-
tion, the authors calculated the vegetation indices (NDVI and EVI, enhanced vegetation index).
The best result was obtained with the NDVI vegetation index.

Fernández-Mensaque et al. [15] presented an approach for olive crop forecasting based on
airborne olive pollen counts, meteorological observations and agronomic practices. This study
was conducted in Campiña Alta, Córdoba (Spain). Data from different information sources was
combined and four linear regression were obtained to forecast the crop 6 months with varying
degrees of reliability. The equation Y = −1.90 ∗ 104+ 2.35X + 53.94Z was the one with the best
results obtained by the authors; where Y denotes the olive production, X the pollen count of the
olive tree, and Z the rainfall before flowering.

Garg et al. [16] used historical wheat yield data from the Odisha University of Agriculture
and Technology in India to forecast wheat yield from mathematical equations of degree from 1
to 4. They classified the wheat yield variable into 7 fuzzy intervals (very poor yield, poor yield, not
so good yield, average yield, good yield, very good yield, excellent yield). The authors obtained
the lowest MSE (Mean Squared Error) with a third-degree cubic equation (MSE = 180.98).

Sujatha et al. [17] proposed an architecture for crop yield prediction that includes an input
module for considering the farmer’s opinion. The input module considers the crop name, land
area, soil type, soil pH, pest details, climate, water level, seed type. The selection module selects
the subsets for each attribute. Then, a crop yield prediction model is used to predict plant growth
and plant diseases. After entity selection, a classification rule is used to group similar contents.
A regression model for yield prediction is used with variables related to the variety, crop area,
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soil type, soil pH, pest control, water level, seed type. Finally, they perform variable selection by
grouping climatic data and crop parameters.

Ramesh [18] described two techniques for crop prediction (MLR multiple linear regression
and DBC density-based clustering). These models were evaluated in the East Godavari district of
Andhra Pradesh (India). The following input variables were considered for the models: year (date
of data capture), rainfall, sowing area, yield, fertilizer (nitrogen, phosphorus, potassium) and crop
yield. The results obtained showed a 2% difference between the actual value and the predicted
values.

Oliveira et al. [19] presented a machine learning-based system that uses data from multiple
sources to perform soybean and corn yield forecasts. The system consists of a recurrent neural
network (RNN) trained with variables of rainfall, temperature, soil and historical soybean or
corn production. The proposal was evaluated in regions of Brazil and USA. The coefficient of
determination was defined as evaluation measure, obtaining values from 0.55 to 0.75 with the
proposed system.

Zhang et al. [20] predicted wheat yield in several regions of China using linear regressions
from land cover data, production data (wheat, corn, soybean and rice yields), NDVI, auxiliary
information (administrative boundaries, crop calendar and geographical distribution). Analytical
indicators are extracted from the NDVI of the time series. Then, linear regressions with the rest of
features. The prediction error is lower than 8% and they also obtain a coefficient of determination
of 86.6%.

Kerdiles et al. [21] presented a tool called CST (Crop Statistics Tool), which allows predicting
crop yields using historical crop management data and meteorological or remote sensing data,
from multiple regression analysis or scenario analysis (attempts to identify the most similar years
to the current one). The results of the evaluation showed that maize yields in Ethiopia are highly
correlated with vegetation rainfall in the region of Oromiya. The tool obtained an R2-adjusted
value for 4 zones close to or above 90%.

Sun et al. [22] implemented simple linear models using remote sensing data to forecast rice
crop yield in Hubei (China). They compared the actual crop yield from statistical data with the
model results. The results indicated that the error ranges from −14.38% to 11.31% compared with
the actual data, and the correlation coefficient was 0.87.

Lee et al. [23] presented a nonparametric regression model for agricultural yield forecasting,
that was evaluated on apple crops in Korea. The model is based on 33 years of monthly climate
data (maximum temperature, minimum temperature, average temperature, rainfall, and sunshine
hours) and crop production data. The model obtained a Mean Absolute Percentage Error (MAPE)
of 5.71e-12 and an R-squared of 1 for the prediction of the crop production for a specific month.

A gray model (GM) and an autoregressive integrated moving average (ARIMA) model are
implemented in [24] to predict grain crop yields from yield data for the years 1998 to 2008. They
performed the predictions for the years from 2009 to 2013 and obtained an average error of 7.88%
(GM) and 12.32% (ARIMA), and an average accuracy of 92.12% and 87.68% respectively. The
GM model provided the best results for grain crop yield prediction.

Rale et al. [25] described the use of several linear and nonlinear regression models with
cross-validation to predict wheat yield in different counties in the United States. The dataset used
involved 2 years of county geolocation variables, climate data, vegetation indices and the target
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variable wheat yield. The best results were obtained using the Random Forest model, with an R2

value of 0.83, an RMSE of 5.30, and a mean absolute percentage error of 5%.

Gamboa et al. [3] predicted cocoa crop yield through a set of photosynthetic, morphological,
climatic, chemical and physical variables (obtained from 2015 to 2017). Two models were eval-
uated: Generalized Linear Model (GLM) and Support Vector Machines (SVM). The results of
the evaluation of these models at La Suiza research center in Rio Negro, Santander (Colombia)
showed that the trunk diameter, phosphorus, magnesium, radiation, temperature, humidity, and
accumulated rainfall were the more significant variables to explain the yield of the cocoa crop.
The model providing the highest accuracy was the Generalized Linear model, which obtained a
R2 value of 0.13, RMSE of 1,708.29 and MAE of 1,028.78.

Mayer et al. [26] predicted crop production of macadamia nuts in six regions of Australia.
A set of crop variables (tree age, variety, region, and tree spacing) and climatic variables (max-
imum and minimum temperature, evaporation, solar radiation, rainfall, modeled transpiration
efficiency, water stress and modeled soil-water index) was considered for the study. Cross-validation
was used to demonstrate that LASSO regression models with MAE errors <10% outperformed
general linear models and partial least squares regression (PLS regression).

The combination of the previously described ML techniques and deep learning methodologies
have been proposed when labeled training data are scarce. Tedesco-Oliveira et al. [27] have recently
developed an automated system with convolutional networks (CNN) for cotton yield prediction
from using color images taken by a smartphone. The proposed models have been trained with
images acquired at different times during the day. Three scenarios (low, medium, and high demand
computational resources) are defined for the evaluation. The proposed system obtains an error of
17.86% in predicting performance using 205 images from the test partition.

There are few studies describing the estimation of production in coffee crops, since all the
research that has been done so far is focused on the detection of diseases, such as rust [28]. Ramos
et al. [29] developed a computer vision system for counting coffee beans on tree branches. The
authors used a dataset of 1,018 images of coffee tree branches at different stages of maturation.
The system was validated in four plots of Castillo variety coffee, at different stages of development
and different densities, with a correlation higher than 90% in the early stages of crop development.

Rodríguez et al. [30] have recently proposed a computer vision approach to detect cherry
coffee beans in crops. Their proposal is based on images captured by a mid-range smartphone
in an uncontrolled environment. The image set used in this study contained images of the entire
coffee plant of 3 coffee varieties (caturra, bourbon, and castle). The system achieved the best
results for bourbon coffee plants with a 0.59 accuracy and 67% of the total relevant cherry beans
correctly classified.

Kouadio et al. [31] evaluated an Extreme Learning Machine (ELM) model to analyze soil
fertility properties (soil organic matter, potassium, boron, sulfur, zinc, phosphorus, nitrogen,
exchangeable calcium, magnesium, and pH) and generate an accurate estimate of robusta coffee
yield. Compared to Multiple Linear Regression and Random Forest models, the ELM model
contributes to the proper selection of the significant soil properties that can be used in coffee
yield. The proposed ELM model considering organic matter, potassium and sulfur characteristics
as predictor variables generated the most accurate coffee yield.

With this review it has been possible to identify that crop estimation is one the main problems
linked to production, for which different artificial intelligence techniques and learner algorithms
have been proposed to calculate estimates. The research proposals described in this section are
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focused on yield or production estimation in different crops (corn, cotton, rice, etc.) considering
different information sources and artificial intelligence techniques (computer vision, machine learn-
ing, deep learning, etc.). However, the reduced number of proposals described for coffee crops can
be considered just initial approximations to the estimation of coffee production.

3 Materials and Methods

This section describes the dataset, the time series and the learners used to create the non-
destructive time series model.

3.1 Dataset
Crop management information and weather data were used to build time series models. Below,

dataset and data preprocessing are explained.

3.1.1 Crop Management

The coffee crop dataset was provided by Supracafé,1 from the farm “Los Naranjos” located
in Cajibio, Colombia (21◦35′08′′N, 76◦32′53′′W). The farm is composed by 38 plots (Fig. 1). Each
plot contains the following information: plot ID, coffee variety, crop age, density, control activities,
fertilization activities, cleaning activities, geolocation (latitude, longitude, altitude), altitude above
sea level, and cherry coffee production during the years 2012, 2013, 2014, 2016, 2017, and 2018.
The year 2015 was not considered due missing values presented in crop management variables.

Figure 1: Plot distribution of the Naranjos farm [32]. Numbers in white color correspond to
plot ID

3.1.2 Weather Data

The weather data was provided by Meteoblue2 (Meteorological Service created at the Univer-
sity of Basel, Switzerland, in cooperation with the National Oceanic and Atmospheric Admin-
istration of the United States and the National Centers for Environmental Prediction) during

1 https://www.supracafe.com/ (Last access: March 2021).
2 https://www.meteoblue.com (Last access: March 2021).

https://www.supracafe.com/
https://www.meteoblue.com
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2012 to 2018. Due to the missing values presented in crop management variables for 2015, the
weather data for 2014 was discarded because weather data influence the coffee harvest of following
year. Weather data consists of 4 variables with hourly time scale: temperature, relative humidity,
precipitation, and solar radiation.

3.2 Time Series
The datasets of crop management and weather were merged and subsequently, we defined

three time series based on expert knowledge by agronomists of TECNICAFE.

3.2.1 Monthly Time Series (MTS)
The crop management variables as control, fertilization and cleaning were defined in the most

influential periods of the main coffee harvest, i.e., for the months November, December, and
February as Tab. 1 shows.

Table 1: Crop management features

Features Type Description

Control (November) Nominal Control activities in the plot in November
Control (December) Nominal Control activities in the plot in December
Fertilization (November) Nominal Fertilization activities in November
Fertilization (February) Nominal Fertilization activities in February
Cleaning (November) Nominal Cleaning activities in the plot in November
Cleaning (December) Nominal Cleaning activities in December

In addition, we added the monthly temperature of the maximum (Max_Temp), minimum
(Min_Temp) and mean (Avg_Temp) values from 6 am to 6 pm. The STM time series were built
for each plot, for a total of 37 models.

3.2.2 Monthly Coffee Variety Time Series (MCVTS)
MCVTS was sorted by coffee variety. Six models (Tab. 2) were trained with around 20–536

instances and the same variables of the MTS.

Table 2: Proposed models for the MCVTS time series

Time Series Models Features Instances

MCVTS Caturra 54 536
Castillo 20
Típica 36
Marag-típica 40
Bourbon 80
Tabi 20
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3.2.3 Weekly Time Series (WTS)
WTS corresponds to weekly data (318 variables and 107 instances). Additional data was

integrated from weekly by the entire farm. For instance, the production of cherry coffee for MTS
contains the amount in kg collected by month. In WTS, cherry coffee production represents the
amount in kg collected by week. Therefore, we approximately increase instances of the dataset
from 1 to 4. New crop management attributes were generated according to the information
provided by agronomist from the coffee farm.

MTS variables of crop management (control, fertilization, and cleaning) were processed to
calculate new attributes, such as weeds control, disease control, pest control, renewal, and fertil-
ization. In addition, crop management variables were modified from nominal to numerical values;
they were computed as the number of occurrences per control management category performed
during that week, as shown in Tab. 3.

Table 3: Complete set of WTS features used for the experiments

Features Type Description

Year Numeric Yearly observations of the cherry coffee production
Month Nominal Monthly observations of the cherry coffee production
Week Numeric Weekly observations of the cherry coffee production
Plot Numeric Plot identification
Coffee_variety Nominal Coffee variety
Control_weeds (Nov.) Numeric Plot weeds control in Nov. of the year before the main

harvest
Control_weeds (Dec.) Numeric Plot weeds control in Dec. of the year before the main

harvest
Control_weeds (Feb.) Numeric Plot weeds control in Feb. of current year of the main

harvest
Control_disease (Dec.) Numeric Plot disease control in Dec. of the year before the main

harvest
Control_pest (Dec.) Numeric Plot pest control in December of the year before the

main harvest
Control_pest (Jan.) Numeric Plot pest control in January of current year of the main

harvest
Fertilization (Nov.) Numeric Plot fertilization in November of the year before the

main harvest
Fertilization (Feb.) Numeric Plot fertilization in February of current year of the

main harvest
Renewal (Aug.-Sep.) Numeric Plot renewal activities in Aug. and Sep. of the year

before the main harvest
Avg_temp Numeric Average temperature from 6 am to 6 pm
Min_temp Numeric Minimum temperature from 6 am to 6 pm
Max_temp Numeric Maximum temperature from 6 am to 6 pm
Rainfall Numeric Accumulated precipitation
Solar_radiation Numeric Accumulated solar radiation
Relative_humidity Numeric Percentage of relative humidity
Production Numeric Cherry coffee production (kilograms)
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3.3 Learners
This section describes the learners used for the estimation of cherry coffee production. We

used six learners: Tree Regression (TR), Linear Regression (LR), Artificial Neural Networks
(ANN), Extreme Gradient Boosting (XGBOOST), Random Forest (RF) and Support Vector
Regression (SVR).

In addition, two additional feature selection methods were used to improve the results: a
Pearson Correlation filter method (PC) and Recursive Feature Elimination [33]. The PC filter
method uses Pearson’s correlation to select the best subset of variables from highest absolute value
of correlation between an independent and dependent variable. We define a Pearson correlation
<= 0.2 as threshold. RFE selects a subset of variables starting with all features in the training
dataset and successfully eliminating features until the best quality prediction is achieved. The
XGBOOST algorithm was used for RFE.

4 Evaluation

This section presents the experiments performed using the three-time series described in
Section 3.2. Six experiments were defined from processed dataset and feature selection methods
as Tab. 4 shows. The E-01 experiment considers all the features of the MTS with monthly time
scale. To increase the number of instances and features in the dataset, the MCVTS time series was
constructed to perform the E-02 experiment with the implementation of the learners considering
all the features. For the E-03 experiment, we used WTS time series which organizes the data on
a weekly time scale. E-03 and WTS increases the number of instances (107) and features (318)
used in previous experiments. Due to the poor results obtained in E-01 and E-02 experiments
with the LR algorithm, it was decided that the LR algorithm should be discarded in the following
experiments, and the XGBOOST and RF algorithms were added.

Table 4: Set of experiments completed

Experiment Time series Learner Feature selection

E-01 MTS TR, LR, ANN, SVR All features
E-02 MCVTS TR, LR, ANN, SVR All features
E-03 WTS TR, ANN, XGBOOST, SVR, RF All features
E-04 WTS TR, ANN, XGBOOST, SVR, RF Pearson correlation
E-05 WTS TR, ANN, XGBOOST, SVR, RF Pearson correlation +

Normalized target
class

E-06 WTS TR, ANN, XGBOOST, SVR, RF Recursive feature
elimination +
normalized target
class

In the E-04 experiment, we applied a feature selection method with aim to decrease the dataset
high dimensionality. A Pearson correlation criterion was used to select the relevant of features
based on highest correlation between each dependent variable and the independent variable. From
experiment E-04, to reduce the values of the evaluation metrics, the target variable was normalized
to complete the E-05 experiment (i.e., the production of cherry coffee is transformed in such a way
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that the values are between 0 and 1); this ensures that the target variable is within a range. Finally,
the E-06 experiment further decreases the dimensionality of the data set by considering the
normalized objective variable. For feature selection, the Recursive Feature Elimination technique
succeeded in reducing the set of features to only 51.

5 Results and Discussion

This section presents the results obtained for the set of experiments described in the previous
section. The evaluation measures used to validate the models were [34]: Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Relative Squared Error (RSE). In addition, the
tests carried out for E-01, and E-02 experiments were with the information of the years 2012–
2014, 2016, as a training set and the year 2017 as a test suite. Instead, for E-03, E-04, E-05, and
E-06 experiments, the training set was l to information from the years 2012–2014, 2016, 2017, and
the test suite was the year 2018.

5.1 Experiment E-01
Tab. 5 shows the results of the evaluation metrics for the first experiment (E-01). The best

results were obtained by the TR algorithm due to the small sample size of the data set. Regression
trees perform better than the rest of algorithms.

Table 5: Results of the evaluation metrics for the E-01 experiment

Plot ID Learner MAE RMSE RSE Cherry coffee production (kg)

Real Estimation

23 SVR 557.35 646.46 72.12 5,877 6,056.81
28 ANN 553.77 615.86 68.70 7,459 7,425.33
29 TR 439.55 490.63 99.36 6,421 6,412.48

Fig. 2 shows the best result obtained by the TR algorithm for the plot 29. The difference of
the actual total production of the 2017 main crop with respect to the estimated one was only
of 8.5 kg. However, the values of the estimated production for each month present a greater
difference.

5.2 Experiment E-02
For the E-02 experiment, the TR and ANN algorithms provided the best results compared

to the SVR and LR algorithms (Tab. 6). The models created for the bourbon and castle varieties
increased the samples, which made the TR algorithm to obtain satisfactory results for these
metrics. The use of ANN models also provided satisfactory results even for the models trained
with few samples (Tabi, Marag-typica). As Fig. 3 shows, the best result for this experiment was
obtained with the ANN algorithm in the time series of the caturra variety for plot 28. The
difference between the estimate and the actual production of each month decreased with respect to
the E-01 experiment. However, when calculating the total harvest, the total difference was greater
(33.60 kg).

The XGBOOST and RF algorithms did not improve the results described for the E-01 and
E-02 experiments in subsections 5.1 and 5.2.
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Figure 2: Estimation of coffee production by means of the E-01 experiment. On the x-axis are the
months corresponding to the main coffee harvest of the year 2017. And on the y-axis the amount
in kg of cherry coffee production

Table 6: Results of the evaluation metrics for the E-02 experiment

Coffee variety Plot ID Learner MAE RMSE RSE Cherry coffee production (kg)

Real Estimation

Castillo 3 TR 3,136.74 3,443.45 370.76 5,595 18,141.96
Tipica 7 ANN 491.10 627.93 186.53 2,098 2,093.51
Marag-tipica 9 ANN 1,360.98 1,658.43 172.00 5,624 6,239.32
Caturra 28 ANN 531.53 536.32 35.90 7,459 7,425.33
Bourbon 29 TR 961.41 1,185.21 78.19 6,421 6,412.47
Tabi 37 ANN 921.15 1,115.83 104.86 6,246 6,524.41

Figure 3: Estimation of coffee production by means of the E-02 experiment. On the x-axis are the
months corresponding to the main coffee harvest of the year 2017. And on the y-axis the amount
in kg of cherry coffee production
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5.3 Experiment E-03
The XGBOOST and RF algorithms were evaluated in the E-03 experiment given their

widespread use for similar tasks. The LR algorithm was discarded due to its weak results obtained
in the E-01 and E-02 experiments. Tab. 7 shows that the XGBOOST and RF algorithms provide
the smallest difference of the estimation of the actual total production.

Table 7: Results of the evaluation metrics for the E-03 experiment

Learner MAE RMSE RSE Cherry coffee production (kg)

Real Estimation

TR 3,068.50 94,165,500.33 0.05 180,672 263,234
ANN 4,760.39 52,139,096.81 0.47 180,672 214,668
XGBOOST 2,752.00 46,149,548.01 0.53 180,672 194,585
SVR 2,815.06 128,383,997.75 −0.29 180,672 339,838
RF 3,043.87 39,196,021.92 0.60 180,672 224,419

Fig. 4 shows the estimates provided by the XGBOOST and RF algorithms, which are more
similar to the main harvest curve for 2018. The ANN and SVR algorithms, on the other hand,
provide results that are higher than the expected values of coffee production. Finally, the TR
algorithm provides results below the curve.

Figure 4: Estimation of coffee production by means of the E-03 experiment. On the x-axis are the
months corresponding to the main coffee harvest of the year 2018. And on the y-axis the amount
in kg of cherry coffee production
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5.4 Experiment E-04
The E-04 experiment uses a reduced number of features of the initial set. The results of

the evaluation metrics for the XGBOOST and RF algorithms are also better than the results
provided by the rest of algorithms. However, the MAE, RMSE and RSE errors are still very
high (Tab. 8). In addition, the TR algorithm improved its results using fewer features than in
the previous experiment. Fig. 5 shows that the estimates of the algorithms improve regarding
the E-03 experiment. In addition, less information is needed for their training. However, the
estimates generated by XGBOOST and RF still provide the best results for the main 2018 harvest
productions.

Table 8: Results of the evaluation metrics for the E-04 experiment

Learner MAE RMSE RSE Cherry coffee production (kg)

Real Estimation

TR 6,147.00 178,105,397.43 −0.80 180,672 332,117
ANN 4,760.39 52,139,096.81 0.47 180,672 214,668
XGBOOST 2,845.28 45,467,185.29 0.54 180,672 189,918
SVR 5,566.33 104,603,881.97 −0.05 180,672 322,695
RF 3,257.40 39,889,453.89 0.60 180,672 231,913

Figure 5: Estimation of coffee production by means of the E-04 experiment. On the x-axis are the
months corresponding to the main coffee harvest of the year 2018. And on the y-axis the amount
in kg of cherry coffee production
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5.5 Experiment E-05
The values of the evaluation metrics decreased considerably in the E-01, E-02, E-03 and

E-04 experiments. However, the XGBOOST and RF algorithms also outperform the rest of
learner techniques in the E-05 experiment. The estimates of the 5 learner algorithms (except SVR)
improve regarding the previous experiments. The results obtained by the XGBOOST algorithm are
very close to the real production considered in the main harvest of 2018 (Fig. 6) and decreases
the errors (Tab. 9).

Figure 6: Estimation of coffee production by means of the E-05 experiment. On the x-axis are the
months corresponding to the main coffee harvest of the year 2018. And on the y-axis the amount
in kg of cherry coffee production

Table 9: Results of the evaluation metrics for the E-05 experiment

Learner MAE RMSE RSE Cherry coffee production (kg)

Real Estimation

TR 0.06 0.01 0.26 180,672 244,951
ANN 0.06 0.01 0.47 180,672 214,594
XGBOOST 0.03 0.01 0.58 180,672 179,992
SVR 0.09 0.03 −0.43 180,672 357,395
RF 0.04 0.01 0.60 180,672 232,854

5.6 Experiment E-06
Tab. 10 shows that the results for the evaluation metrics for the E-06 experiment are very

similar to the results described for the previous experiments. The XGBOOST and RF algorithms
provide the closest estimation to the real coffee production. There is a difference of approxi-
mately 1 thousand kilograms for XGBOOST and 55 thousand kilograms for RF. As previously
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mentioned, the difference between the estimated value and the real one is quite large because the
models do not consider variables of coffee beans loss at the harvest stage of the coffee value
chain. According to a CENICAFE study [35], the average loss in traditional harvesting is 4.46
coffee beans per tree. However, a coffee crop has approximately from 5 thousand to 10 thousand
coffee trees per hectare. In addition, 1 kilogram of mature coffee (cherry) has an average of
555 coffee beans.

Table 10: Results of the evaluation metrics obtained for the E-06 experiment

Learner MAE RMSE RSE Cherry coffee production (kg)

Real Estimation

TR 0.07 0.03 −0.80 180,672 395,208
ANN 0.09 0.03 −0.66 180,672 214,668
XGBOOST 0.05 0.01 0.46 180,672 186,110
SVR 0.06 0.01 0.55 180,672 264,720
RF 0.04 0.01 0.56 180,672 213,317

Specifically, the case study farm has an average of 4.57 thousand trees per hectare and a total
of 38 plots at each hectare. If we calculate the loss of coffee beans per tree, we will obtain 20.40
thousand lost beans per hectare and 775.35 thousand for the complete farm. If we convert this
amount to kilograms, we obtain 1.39 thousand kilograms (approximately 1.40 tons) of loss for the
complete farm. Finally, it would be also important to consider the loss of coffee beans generated
during the transport from the crop to the collection center.

Figure 7: Estimation of coffee production by means of the E-06 experiment. On the x-axis are the
months corresponding to the main coffee harvest of the year 2018. And on the y-axis the amount
in kg of cherry coffee production
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With regard the estimations provided by the different algorithms for the coffee production in
the 2018 harvest, they are quite close to the real value (Fig. 7). However, the difference of the
best result obtained by the XGBOOST algorithm is higher than the corresponding value obtained
for the E-05 experiment. Fig. 7 shows that the XGBOOST and RF algorithms provide satisfactory
results also considering that the number of features has decreased considerably.

The 6 experiments described in this section uses different time series configured according
to the time scale (monthly and weekly) and different methods of selection of characteristics
to estimate the production of cherry coffee. As previously described the best results have been
obtained for the E-05 and E-06 experiments given that the target class was normalized to reduce
the errors observed in the E-01, E-02, E-03, and E-04 experiments.

We have also analyzed the RMSE and MAE errors in the E-05 and E-06 experiments. The
TR, ANN, XGBOOST and RF algorithms provide the lowest values for the RMSE error in the E-
05 experiment (Fig. 8a). However, in both experiments the XGBOOST and RF algorithms provide
low errors regardless of the feature selection method used in the evaluation process.

Figure 8: Evaluation measures for the E-05 and E-06 experiments (x-axis: learner algorithms, y-
axis: value of the evaluation measure
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A similar behavior can be concluded for the MAE error (Fig. 8b). The XGBOOST and RF
algorithms provide the lowest values for this measure. The results obtained for the RSE error
(Fig. 8c) show that the TR algorithm obtained the lowest errors were for E-05 experiment and
the XGBOOST algorithm for the E-06 experiment.

6 Conclusions and Future Work

The estimation of cherry coffee production allows coffee growers to plan the required activ-
ities and resources, anticipate negotiations, prices and losses of coffee production, and offer a
high-quality product considering the number of factors that can affect the production and are
not easy to predict. However, as it has been described in the paper, there is a reduced number of
research proposals estimating crop yields using statistical methods. This number is even smaller
for cherry coffee estimation.

In this paper we have presented a proposal for coffee yield estimation based on the combina-
tion of time series and a set of learner models. The detailed evaluation of these models show that
the algorithms based on regression trees (XGBOOST, TR and RF) provides very good results for
the test dataset collected in real conditions for more than a year. In addition, the model proposed
in this research work allows estimating the possibilities of negotiating and complying with the
committed delivery terms based on a non-destructive model, unlike the methods currently used
by coffee growers.

As a future work, we plan to extend the evaluation considering additional variables of cherry
coffee production that are currently being collected and annotated, such as vegetation indices,
which can also have a high correlation with crop production. We also want to use alternative deep
learning techniques to extend the evaluation.
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