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Using the Husimi quasiprobability distribution, we investigate the phase space signatures of excited-state
quantum phase transitions (ESQPTs) in the Lipkin-Meshkov-Glick and coupled top models. We show that the
ESQPT is evinced by the dynamics of the Husimi function, that exhibits a distinct time dependence in the
different ESQPT phases. We also discuss how to identify the ESQPT signatures from the long-time averaged
Husimi function and its associated marginal distributions. Moreover, from the calculated second moment and
Wherl entropy of the long-time averaged Husimi function, we estimate the critical points of the ESQPT in both
models, obtaining a good agreement with analytical (mean field) results. We provide a firm evidence that phase
space methods are both a new probe for the detection and a valuable tool for the study of ESQPTs.
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I. INTRODUCTION

The pioneering works of Weyl [1] and Wigner [2] paved the
way to the development of the so-called phase space methods
in quantum mechanics [3-8]. In this approach, a quantum
state is described by a quasiprobability distribution, defined
in classical phase space, instead of by a density matrix in
Hilbert space [2,9-13]. Consequently, the expectation value
of quantum operators are obtained as average of their classical
counterpart over the classical phase space in novel algebraic
ways. From this point of view, quantum mechanics is a sta-
tistical theory on the classical phase space [14,15]. Phase
space methods are specially valued due to the insights into
the correspondence between quantum and classical systems
they offer [16,17]. As an alternative formulation of quantum
mechanics, phase space methods have numerous applications
in many areas of physics, e.g., quantum optics [18], atomic
physics [19,20], quantum chaos [21,22], condensed matter
physics [23,24], and quantum thermodynamics [25-27]. In
particular, recent studies have shown that phase space meth-
ods are a powerful tool for the understanding of quantum
phase transitions in many-body systems [28—35].

Following this path, our aim is to show that excited-state
quantum phase transitions (ESQPTs) can be characterized
making use of phase space methods. To this end, making use
of the Husimi quasiprobability distribution, we analyze the
phase space signatures of ESQPTs in two different quantum
many-body models. As a generalization of the well-known
ground-state quantum phase transition [36], an ESQPT is
characterized by the nonanaliticity of the density of states at
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certain critical energy value, E. [37-39]. ESQPTs have been
identified in different quantum systems [40—48]. Moreover,
ESQPT’s experimental signatures have also been found in
various many-body systems [49-53]. Many of these works
pay heed to ESQPT effects over nonequilibrium properties of
quantum many-body systems [54—64]. Such studies have, in
turn, suggested new ways for detecting ESQPTs making use
of nonequilibrium quantum dynamics in many-body systems
[65-68], paving the way to the access to ESQPTs through
current experimental technologies [69]. In addition, the
relationship between ESQPTSs and the onset of chaos, thermal
phase transitions, or exceptional points in non-Hermitian
systems have also received a great deal of attention [70-74].
For a recent and complete review on the subject of ESQPTs,
see Ref. [75].

In spite of these developments, we still lack a com-
plete understanding of ESQPTs. In the present work, we
focus on the phase space signatures of ESQPTs in two
well-known quantum many-body systems. Specifically, we
use the Husimi quasiprobability function and its associated
marginal distributions to characterize the ESQPTs in the
Lipkin-Meshkov-Glick (LMG) and coupled top (CT) models.
On the one hand, we consider the dynamics of the Husimi
function following a sudden quench process and, on the other
hand, we focus on the properties of the long-time averaged
Husimi function and its marginal distributions. Our main re-
sult is the remarkable changes in the time evolved Husimi
function once the quench parameter straddles the critical ES-
QPT energy. Therefore, an ESQPT can be clearly identified by
the dynamics of the Husimi function. This is further reflected
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in sharp changes in the long-time averaged Husimi function
and its marginal distributions due to the ESQPT. In addition
to these two main issues, we also discuss how to estimate
the ESQPT critical energy using the second moment and the
Wherl entropy of the long-time averaged Husimi function,
obtaining a fine agreement between numerical and analytical
results. Hence, from our analysis it can be deduced that phase
space methods are a useful and convenient tool for the study
of ESQPTs.

The article is organized as follows. In Sec. II, we introduce
the Husimi function and its marginal distributions, as well as
the definitions of their second moment and Wehrl entropy.
In Sec. III, we present, respectively, the Hamiltonians of the
LMG and CT models together with a brief outline of their
basic features, mainly focusing on their associated ESQPTs
and in Sec. IV we report the obtained results for both models.
Finally, we summarize our results together with some con-
cluding remarks in Sec. V.

II. HUSIMI FUNCTION

As the Gaussian smoothing of the Wigner function, the
Husimi quasiprobability distribution, also known as Q func-
tion, is a positive-definite function defined as follows [7,9,76]:

O(p, q) = (¢ (p. Plels (p, q)), (D

where p = [{)(Y| is a quantum state of the system under
study and |¢(p, g¢)) denotes a minimal uncertainty (coherent)
state centered in the phase space point (p, g), with p and ¢
the canonical momentum and position, respectively. From the
well-known fact that a coherent state | (p, g)) covers a phase
space region centered at (p, g) with volume 7, the Husimi
function can be considered as the probability of observing
the system in that phase space region [77]. Hereafter, for
simplicity’s sake, we set 1 = 1.

For spin systems, such as the ones studied in this work,
the Husimi function can be calculated by using the so-called
SU(2) spin-j coherent states (Bloch states) [78,79]

12) = (1+ 12T e, — ), )

where ¢ € C, J,. = J, + ify is the spin raising operator, and
|j, —j) is the eigenstate of J. with eigenvalue —j, that is,
J\j, —j) = —jlj, —j), and f{x,y,z} are the components of the
spin angular momentum operator. The set of coherent states is
an overcomplete set—this is the reason why the Husimi func-
tion is a quasiprobability distribution instead of a probability
distribution—and it satisfies the closure relation

2j—|—1/ d*¢
S 3
- Rz'““'(1+|z|2)2 (3

where d?¢ = dRe(¢)dIm(¢) is the integration measure on C.
To visualize the Husimi function in phase space (p, g), we
parametrize ¢ in terms of the canonical variables g and p as
[63,80]

q—ip

’ = 4
¢(p.q) NS )

with p? 4+ ¢*> < 4. Then it is straightforward that the closure
relation in phase space Eq. (3) can be rewritten as
2j+1
47

fQ 1< (p, ))& (p, @ldpdg =1, ©)

where the integration area Q is defined by p?> + ¢> < 4.
Hence, the normalization condition of the Husimi function
Eqg. (1) in phase space is given by
2j+1
47

/Q O(p.q)dpdq = 1. (6)

Many features of a system can be derived from the mo-
ments of the Husimi function [23,28-31,76,81]. Among all
moments, an important and very useful one is the second
moment (also known as the generalized inverse participation
ratio), which quantifies the degree of localization of a quan-
tum state in phase space, and read as
My — 2j+1

4

/Q 0*(p, 9)dpdgq. (7

In the case of an extremely extended state, p = |¥)(¥|,
the phase space would be uniformly covered and Q(p, g) ~
1/(2j + 1). In this case, one can find that M, ~ 1/(2j + 1)
which tends to zero as j — oo. Hence, the smaller is the
value of M,, the higher is the degree of delocalization of
state |Y) in phase space. However, if the state p = |¢) (] is
concentrated in one phase space point (py, qo), then we expect
O(p, q) ~ expl—(g — q0)*/(20,) + (p — po)*/(25,)], in ac-
cordance with the normalization condition, 0,0, =2/(2j +
1). In the classical limit j — oo, one can see in this second
case, Q(p, q) shrinks to the point (po, go), as expected and
the second moment of Husimi function for this maximally
localized state is M, ~ 1/2. Therefore, M, € [0, 1/2] with the
maximum value associated with a maximum localization state
in phase space.

Besides the second moment of the Husimi function, an-
other quantity that has been employed in various studies
to characterize the properties of the Husimi function is the
Wehrl entropy [28-32,82]. As the classical counterpart of the
quantum von Neumann entropy, the Wehrl entropy is defined
as [83]

2j+1
W=-—— /Q O(p, ) In[Q(p. ¢)1d pdq. )

Here, it is worth pointing out that the second moment M,
in Eq. (7) can be considered as a linearized version of the
Wehrl entropy. Therefore, the Wehrl entropy also provides
a measurement of the degree of localization of a quantum
state in phase space. However, in contrast with M, the de-
gree of delocalization increases for increasing W values.
For the fully extended states, we have Wy,x ~ In(2j + 1).
In addition to this, the Lieb conjecture shows that the mini-
mum Wehrl entropy is Wiy = j/(j + 1), so that Wiy, — 1 as
Jj — oo [84].

It is worth emphasizing that both localization measures, M,
and W, are related to the Rényi-Wehrl entropy, defined as [85]

1 2j+1
So= {m[ / / dpdqQ*(p. q)]}, ©)
—a 4 Q
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where Q(p, q) is the Husimi function Eq. (1) and o > 0 is
the Rényi index. It has been shown that the exponential of S,
acts as an useful indicator of the degree of localization of the
system in phase space, from which the Rényi volume of order
« term has been coined [86]. In our work, we can see that S,
tends to W as @ — 1, while M, = exp(—S).

An extra insight into the phase space features of a quantum
state can be obtained from the marginal distributions of the
Husimi function in position and momentum space, respec-
tively. For a spin-j coherent state, they are defined as

27+ 1
0(g) =/ ’4+ / 0(p, @)dp,
JT
27
o=, 1 / 0(p. 9.

with a normalization condition

27 +1 27 +1
VEE o= 22 [omap=1. an
T 4

Accordingly, the second moment and the Wehrl entropy of the
marginal distributions are defined as

27i+1
My =22 [ @,
27i+1
wo = JHE] / 0() IN[Q(W)d .

where u = p, q.

The marginal distributions Q(q) and Q(p) of the Husimi
function are not equal to the density functions |(g|¥)|? and
|(pl¥)|?, in sharp contrast to what happens in the case of
the Wigner distribution. In fact, they are Gaussian smeared
density distributions in position and momentum spaces, re-
spectively [28,87]. Note further that, in general, |M, —
MPMP | =6M, #0 and |W — [WP + W@D]| =W £0,
where §M, and §W decrease as the system size increases
except in the vicinities of some singular points, e.g., quantum
critical points [23,28,87].

We proceed now explaining the main features of the LMG
and CT models to continue exploiting the properties of the
Husimi function given above to explore the ESQPT signatures
in both models.

(10)

12)

III. MODELS

A. Lipkin-Meshkov-Glick model

The Lipkin-Meshkov-Glick (LMG) model describes N
spin-1/2 particles interacting through infinite range interac-
tions plus an external magnetic field. It was first introduced as
a toy model, to explore phase transitions in nuclear systems
[88] and, since then, it has been exploited as a paradigmatic
model in the study of quantum phase transitions [§9-94]. As
the LMG model has broad applications in different fields of
physics, it has attracted a great deal of attention from both a
theoretical [95-98] and an experimental [99—104] perspective
in recent years.

By using collective operators J, = Ziv 6¢/2, {a =x,y,z}
where 6 is the ath component of the kth spin Pauli matrix,

the LMG model Hamiltonian can be written as
41 —«k) 5 ~ N

k(4 3). (13)
where « denotes the strength of the external magnetic field.
The total spin operator »= J2 +J2 +J2 with eigenvalue
j(j + 1) commutes with the Hamlltoman and, therefore, j
is a constant of the motion. In our study, we select the spin
sector with j = N/2, with a dimension of the Hamiltonian
matrix equal to Dy, , = N + 1. Moreover, the Hamiltonian
also commutes with the parity operator ITjyg = e™U+™,
wherem € {—j, —j + 1, ..., j}is the eigenvalue of J,. There-
fore, the Hamiltonian matrix is further split into even- and
odd-parity blocks, with dimensions Dy = N/2+1 and
Dy o = N/2, respectively. We focus on the even-parity
block, which includes the ground state of the system.

The LMG model undergoes a second-order ground-state
quantum phase transition from the paramagnetic phase with
k < k. to the ferromagnetic phase with x > k. at the criti-
cal point k. = 4/5 [91-93]. The ground-state quantum phase
transition of the Lipkin model has been studied extensively in
numerous works [91-96,105,106]. In particular, the ground-
state quantum phase transition of the LMG model has been
explored using the Husimi quasiprobability distribution in
Ref. [30]. Our aim is to analyze, using the Husimi function,
the signatures of the ESQPT of the LMG model in phase
space. Such ESQPT happens at a critical energy E. = 0 for
control parameter values « < «. [38,55], and it is evinced
by the singular behavior of the density of states wy mg(E) =
>, 8(E — E,) at the critical energy.

In Fig. 1(a), we plot the correlation energy diagram of
the LMG model with j = N/2 = 20 as a function of . We
can see that energy levels exhibit an obvious collapse around
E. =0 for ¥ < k.. This explains the appearance of a sharp
density of states peak in the neighborhood of E, = 0. Indeed,
as can be seen from Fig. 1(b), both numerical and semiclas-
sical results [55] show that, at the critical energy E. = 0,
wpmc(E) displays a cusp-type singularity which turns into a
logarithmic divergence as j = N/2 — oo [39,89].

Hivg = —

B. Coupled top model

The second model considered is the coupled top (CT)
model, also known as the Feingold-Peres model [107-111].
It describes the interaction between two large spms whose re-
spectlve angular momentum operators are J; = (Jh, le, le)

and J, = (s, Jzy, J».), and the Hamiltonian takes the form
Her = Ji, + o, + %jlelx» (14)

where £ is the coupling strength between both spins. Here-
after, we assume that the two spins have identical magnitude,
therefore the eigenvalues of j% and j% are j(j+ 1). In this
case, the dimension of the Hilbert space is Dy, = (2j +
1)2. However, as the Hamiltonian in Eq. (14) remains in-
variant under the permutation of the two spins (2) and
under parity [ep = e™@Hm+m) where my, my € {—j, —j +
1,..., j} are the eigenvalues of flz and sz, the Hilbert space
can be further decomposed into four subspaces according to
the eigenvalues of 2 and fICT. On what follows, we focus
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FIG. 1. (a) Energy spectrum (arbitrary units) of the LMG model
as a function of « with j = N/2 =20. (b) Rescaled density of
states, @pmg(E) = wmg(E)/j, for the LMG model with x = 0.4
and j = N/2 = 500. The red solid line is the semiclassical result
and the horizontal blue dashed line denotes the critical energy
E/(2j) =E./(2j) = 0. (c) Energy spectrum (arbitrary units) of the
CT model as a function of & with j = 7. (d) Rescaled density of
states, @cr(E) = wer(E)/j?, of the CT model with £ =3 and j =
70. The red solid line denotes the semiclassical result. (e) Derivative
of wcr(E) for the CT model with & = 3 and j = 70. Two vertical
green dot-dashed lines in panels (d) and (e) indicate the critical
energy values E/j = E./j = 2 for the ESQPTs in the CT model.
The axes in all panels are dimensionless.

on the subspace identified by & = +1, Ilcr = +1, denoted
by Vi, which includes the system ground state. We also
restrict to integer j values, thus the dimension of V.. is
Dy = (j + D [110].

The CT model has been studied extensively in diverse
fields of physics [109—113]. It is known that its ground state
displays a second-order quantum phase transition at a critical
control parameter value £, = 1, which separates a ferromag-
netic phase (¢ < &.) from a paramagnetic phase (§ > &)
[109,111]. In addition to this, it has been found that the CT
model undergoes an ESQPT at critical energies E./j = £2
for & > &, = 1. This ESQPT differs from the one in the LMG
model; the ESQPTs in the CT model are identified by a non-
analyticity in the first derivative of the density of states at the
critical energies. This can be explained due to the fact that the
number of effective degrees of freedom in this model is f = 2
and, for a nondegenerate critical point, the nonanaliticity is
expected to appear in the f — 1th derivative of the energy
level density [43,75]. The difference between this case and
the LMG case (f = 1) is obvious comparing the LMG and
CT density of states in Figs. 1(b) and 1(d).

The correlation energy diagram for the CT model, de-
picting the energy as a function of control parameter &, is
plotted in Fig. 1(c) for j = 7. It can be easily appreciated
how the energy spectrum becomes more complex as the value
of £ increases. However, as explained above, in this case the
energy levels do not pile up around the critical energy as in
the LMG model [cf. Fig. 1(a)]. The density of states of the CT
model, denoted by wcr(E), is a continuous function of energy
for & > &, as shown in Fig. 1(d) for numerical and semi-

classical results [111]. As expected, the CT model ESQPTs
are evinced through the singular behavior of the first deriva-
tive of wcr(E). In Fig. 1(e), we plot the first derivative of
wocr(E) = a)CT(E)/j2 as a function of E,,/j with j = 70. As
it can be seen, docr(E)/dE develops a cusp-type singularity
at the critical energy values. Both singularities are expected to
become logarithmic divergences in the thermodynamic limit,
Jj — 00 [39,43]. In the following, we will only consider the
critical energy values E./j = —2, as the obtained results can
be trivially extended to the E./j = 2 case.

IV. RESULTS AND DISCUSSIONS

In this section, we discuss how to identify the signatures
of ESQPT from the perspective of quantum phase space by
means of the Husimi function in the two aforementioned mod-
els. We consider the impact of the ESQPT on the dynamical
features of the Husimi function, using a quantum quench
protocol and paying heed to the properties of the long-time
averaged Husimi function.

A. Husimi function of the LMG model

In the LMG model case, the quantum quench protocol
starts with the model initially prepared in the ground state,
[Y0), of Hamiltonian ﬂLMG with 0 < k < k.. Att =07, we
suddenly add an external magnetic field along z direction with
strength 7, and let the model evolve under the Hamiltonian
I-?I{MG = Himg + 7](fZ + N/2). This procedure is akin to the
transfer of energy onto the system, leading to a final rescaled
quenched energy E mg(k, n) = (womeGhﬁo)/ Jj. Obviously,
Ema(k, n) depends on both the « and n values. Eventually,
for a fixed « value, there exists a particular value of 1 which
takes & v (K, n) to the critical energy of ESQPT in the LMG
model [56]. Therefore, we define the 1 parameter value which
leads the system to the critical energy as the critical quench
strength, 1., whose value, obtained through the semiclassical
(or coherent state) approach (see Appendices A and B for
more details), is given by [54-56]

ne=2-3x, (15)

with 0 <k < k.. We stress that the critical strength 1,
to bring the system to the ESQPT critical energy is less
than the quench strength which drive the model through
the ground-state quantum phase transition [55]. The ESQPT
phase diagram in the LMG model is depicted in Fig. 2. At
a given k value, by varying the parameter 1, we can access
energy values, & mc(k, 1), below, at, and above the critical
energy. This means that, depending on the quench strength,
the system will explore the different ESQPT phases.

The time dependence of the quantum state is given
by p(1) = YD) (¥ (1)] = e~ Mot p(0)e e’ with p(0) =
[Y0)(¥o|. Hence, the Husimi function at time ¢ can be
written as

O:(p, @) = (¢ (P, Pl (p; @)

2

=D E (P DIENE)| . (16)

n
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FIG. 2. Schematic demonstration of the LMG model excited
state phase diagram. The system is initialized in the Hiyg model
ground state with 0 < k < 4/5, and an external magnetic field along
the z axis with n strength is suddenly applied to the model. This
sudden quantum quench process gives rise to two different phases,
separated by the critical line n, = 2 — 5k /2, plotted with a white
dashed line: For n < n. (n > n.), the quenched system energy is less
(greater) than the critical ESQPT energy, & mg(k, n) < E./j=0
[Eimc(k, n) > E./j = 0]. The quenched system energy equals the
ESQPT critical energy along the critical line. In addition, two phases
are also manifested in the classical dynamics of a particle in a
double-well potential, which exhibits either a localized (n < n.) or
a delocalized (n > n.) behavior. Further details are given in the
main text and the Appendices B and C. The axes in the figure are
dimensionless.

where |E,) is the nth eigenstate of ﬁ{MG with eigenvalue E,,.
Thus, O, (p, q) is strongly dependent on the overlaps between
the initial state and the PAI{MG eigenstates.

t=20

t=4

t =40

In Fig. 3, we plot the Husimi function of the LMG
model at different time steps for several values of 1, with
k = 0.4 and N =400. The critical quench strength given
by Eq. (15) is n. =1 in this case. We first note that the
ground state in the even-parity sector can be correctly
described by the so-called even coherent states [30,93,114],
1£(p. @)+ = Ni(p. DU, @) +16(=p, —9))],  where
Ni(p,q) = 1//2{1 +[1 — (p* + ¢*)/2]%} is a normaliza-
tion constant. As a result, the Husimi function of the initial
state is represented by two symmetrically-localized wave
packets in phase space, as seen in the first column of Fig. 3.
As time passes, the Husimi function behavior is qualitatively
different depending on the n value being below, at, or above
the critical value n. = 1. Specifically, as can be observed
in the top row of Fig. 3, the Husimi function displays two
distinct localized wave packets in its time evolution for
n < n.. At the critical point n = . [shown in the panels
of the second row in Fig. 3], the evolution of the Husimi
function implies a larger extension of phase space than in
the previous case and, in particular, the initially disconnected
maxima are fused in a single maximum. Finally, in the n > 5,
case, the two initially separated wave packets again merge
into a single one with a zero value in the origin, as illustrated
in the last row of Fig. 3. The strikingly distinct behaviors in
the dynamics of Husimi function on both sides of the ESQPT
suggests that the underlying transition has nontrivial impacts
on the model dynamics. Moreover, the particular dynamical
behavior of the Husimi function at n = 1. may be used as a
probe to test the occurrence of an ESQPT.

The different features observed in Fig. 3 can be understood
from the dynamics of a classical counterpart of the LMG
model. As shown in the insets of Fig. 2, in a semiclassical ap-
proach the LMG model Hamiltonian for the parameter range
0 < k < k. can be described as a classical particle confined
within a double well potential (an explicit derivation of this

t="170 t =100

FIG. 3. Snapshots of the rescaled spin Husimi function Q, (p, q¢) = Q,(p, ¢)/Q}", with Q" being the maximum value of Q, (p, ¢), at different

t

time steps for the LMG model with n = 0.4, 1, 1.7 (from top to bottom). All panels: j = N/2 = 200 and x = 0.4. The axes in all panels are

dimensionless.

034119-5



QIAN WANG AND FRANCISCO PEREZ-BERNAL

PHYSICAL REVIEW E 104, 034119 (2021)

point is provided in Appendix C). In this case, the initial state,
being the system ground state, is initially located at the points
corresponding to the potential minima. The sudden quench of
n leads to the particle gaining an energy & mc(x, n). Hence,
the particle dynamics is governed by the energy difference
between & Mgk, n) and the relative height of the central
barrier, which is equal to the critical ESQPT energy. For
n < n. EK,n) < E./j =0, and the particle, without enough
energy to go through the central barrier, is kept confined
within the wells. In this case, the classical dynamics in phase
space consists of two disconnected and localized regions. On
the contrary, for n > n., £(k, n) > E./j, and the particle is
able to straddle both wells freely. Thus, the two previously
disconnected regions of the phase space merge into a single,
delocalized, one. At n = 7., the quenched energy and the
critical energy are equal. In this case, the particle classically
could be as close as possible to the top of the central barrier
and, as a consequence, the disconnected regions at n < 1,
start to fuse. Further details on the classical dynamics and
phase space structures of the LMG model are provided in
Appendix C.

Additional ESQPT signatures can be revealed through the
long-time averaged Husimi function

O(p, q) = (& (P, DIPIE (P, @), a7

where p is the long-time averaged state of the model, defined
as

1 T
b:mn?A/MML (18)

For the LMG model, it is straightforward that the explicit
expression of the long-time averaged Husimi function is

Ouva(P @) = Y 1E(p, DIENPUEL V). (19)

Again, the overlap between the initial state, |), and the nth
eigenstate of H{MG plays a crucial role in determining the

long-time averaged values O yig(p, ).

In the upper panels of Fig. 4, we depict Qg (p, g) for
three different values of n: one below the critical value [n =
0.4, Fig. 4(a)], for the critical value [n. = 1, Fig. 4(b)], and
one above the critical value [n = 1.8, Fig. 4(c)]. The structure
of Q1 mg(p. q) changes drastically as n goes through the crit-
ical point. For n < 1., Oy mg(p. q) consists of two localized
and disconnected parts. As 7 increases, The surface of the two
disconnected parts increases and they joinonce n = n, = 1. If
the n value increases beyond 7., then the two parts are merged
into a single one. It is worth to emphasize that O i (p, ¢) has
a rather larger degree of delocalization at = 7. The features
of O; mc(p, q) are more visible in its marginal distributions,
Oimc(q) and Opmg(p) [cf. Eq. (10)]. Both are plotted for
several values of 5, in Figs. 4(d) and 4(e), where it is made
clear how the width of Q) yg(g) and Q) y(p) increases for
increasing 7 values, in good agreement with the extension of
O1mc(p. @) in phase space shown in the upper panels of the
same figure. Moreover, the particular shape of the marginal
distributions at . = 1 evidences that these quantities, and in
particular Oy y(¢), may be valid ESQPT indicators. Here, we
should point out that the long-time averaged Husimi function

FIG. 4. Rescaled long-time averaged Husimi function
Quma(P, ) = Qv (P, 9/ Qv of the LMG  model  for
(a) =04, b) n=1, and (c) n = 1.8 with j = N/2 =200 and
« = 0.4. Here Qg denotes the maximum value of Q) yg(p, 9).
Panels (a—c) use the same color scale employed in Fig. 3. Marginal
distributions of O yg(P, 9), Ormc(q), and O yg(p), for several
values of n are plotted in panels (d) and (e), respectively. All
quantities are unitless.

provides the skeleton of the evolved Husimi function, such as
the long-time averaged Wigner function does [115].

To further elucidate the ESQPT signatures in the proper-
ties of Oy (P, q), We evaluate the second moment of this
quantity, M2,LMG [see Eq. (7)], and the Wehrl entropy, WimG
[see Egs. (8)]. In Figs. 5(a) and 5(b), MZ,LMG and W yg are
depicted as a function of n for several x values. Both the
second moment and the Wehrl entropy reach extremal values
(minimum and maximum, respectively) at the corresponding
critical 1), value. This indicates that once the quenched system
reaches the critical ESQPT energy the extension of the result-
ing quantum state is maximal. Moreover, the extrema in the
second moment and Wehrl entropy, denoted as M;LMG and

177C . . . .
WM increase for increasing system size values, N. In the

insets of Figs. 5(a) and 5(b), we show how M} | i and W g
vary with N for several values of 7.

We find that M;LMG follows a power-law scaling
M;LMG ~ N7 regardless of the value of n.. However, in

all cases, W, exhibits a logarithmic scaling of the form
Wine ~ vw In(N).

The values of the scaling exponents y), and yy are depicted
in Fig. 5(c) as a function of the 7, value, making clear how yy;
and yyw decrease for raising n. values. Therefore, the position
of the M;LMG and Wy extrema are valid candidates for
the estimation of the ESQPT critical point. To check this,
we compare the numerically obtained critical points with the
analytical ones from Eq. (15). We obtain a fine agreement
between both approaches, as can be observed in Fig. 5(d).
These results suggest that the Q) yi(p, ¢) second moment and
Wehrl entropy are reliable probes able to detect the ESQPT in
the LMG model.
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FIG. 5. (a) Second moment of Q;yg(p, q) as a function of 5
for several « with j =N/2 =200 (solid lines) and j=N/2 =
400 (dashed lines). Inset: Critical second moment, M, 2IMG =
Mz wmc(ne), as a function of N for n. = 1.5 (triangles), n. =1
(equares) and n. = 0.5 (diamonds). Red dashed lines are of the form
M2 v ~ N7 (b) Wehrl entropy of Oy yig(p, ¢) as a function of
for various k with j = N/2 = 200 (solid lines) and j = N/2 = 400
(dashed lines). Inset: Critical Wehrl entropy, W g = Wimc (1), as
a function of N for 1, = 1.5 (triangles), . = 1 (squares) and n. =
0.5 (diamonds). Red dotted lines are of the form WLMG ~ Yw ln(N ).
(c) Values of the finite-size scaling exponents of M, 2.1mg and WLMG
for several 5. with j = N/2 =200. (d) Critical values 1., nc.w
estimated from the extrema of M. 2..mc and WG, respectively, for
different values of ¥ with j = N/2 = 400. The dot-dashed is the ana-
lytical result from Eq. (15). The axes in all figures are dimensionless.

For the sake of completitude, we also study the dependence
with n of the second moment and Wehrl’s entropy of the long-
time averaged marginal distributions, O} mg(¢) and Oy (p)
for several values «. The obtained results are shown in Fig. 6,
where it can be appreciated how the ESQPT induces a remark-
able change in the behavior of the marginal quantities. We
further note that the extension of the quantum state in position
direction is larger than that in momentum direction consistent
with the behaviors of the marginal distributions observed in
Figs. 4(d) and 4(e).

B. Husimi function of the CT model

To analyze the ESQPT in the CT model we propose the
following quench protocol. We prepare initially the system
in the ground state, |W,), of Hep with & = & > 1. Then,
we suddenly change the coupling strength from & to & and
consider the evolution of the system, governed by Hamil-
tonian I-7CT(§1). As it has been already pointed out in the
LMG model, the sudden quench process increases the sys-
tem energy, resulting in a final rescaled energy Ecr(&o, §1) =
(\IJO|I-7CT|\IJO)/j. The dependence of Ect(&y, &1) on &, for a
fixed & value, implies that different ESQPT phases can be
accessed by the variation of &;. As seen in Fig. 7, depending
on the & and &; values, the final energy Ect(&p, &1) will be
such to drive the system to one of the two possible ESQPT
phases. For a given &, value, the critical quench strength,

0 0.5 1 1.5 2
n

FIG. 6. Second moment (upper panel) and Wehrl entropy (bot-
tom panel) of the marginal distributions of Q; y;g(p, g) as a function
of n for several k values with j = N/2 = 200. The vertical green
dashed lines in both panels mark the critical values 7. for each
corresponding «. The axes in all panels are dimensionless.

denoted as &{, can be identified making the final energy equals
to the critical ESQPT energy: Ecr(&o, &1) = E./j = —2. By
using the semiclassical approach (see Appendix B), one can
find that &{ is given by

_ 28y
g+ 1

(20)

E(&,&1) < Ee/

1B & <& |
E(&,&) > Ee/j = -2
0.5 |
0 I I I I I
1 1.5 2 2.5 3 3.5 4
&o

FIG. 7. Schematic illustration of the excited state phase diagram
of the CT model. The ground state of Her at & > 1 is quenched
to &, which results in two different phases with critical line takes
place at & = 2&,/(§, + 1). For & > &, the quenched system has
energy less than the critical energy of ESQPT, Ecr(§y, §1) < E./j =
—2, while the quenched energy is greater than E£./j = —2 when &, >
&f. At the critical quench & = &/, the quenched energy equals to the
critical energy of ESQPT. In addition, two phases are also identified
in the different classical dynamics of a classical particle in a double
well potential, which exhibits the localized behaviors for & > &f,
whereas it displays delocalized behaviors as long as & > &{. The
white dashed line indicates the critical line &{. Further details are
discussed in the main text. The axes in the figure are dimensionless.
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FIG. 8. Snapshots of the rescaled spin Husimi function Q,(p1, 1) = Q,(p1, 1)/ Q) (p1, q1) with Q7 (p1. ¢1) being the maximum value of
0 (p1, q1), at different time steps for the CT model with &, = 2.5, 1.5, 0.5 (from top to bottom). Other parameters are: j = 30 and &, = 3. The
color scale of Fig. 3 has been used. The axes in all figures are dimensionless.

with & > 1. The critical coupling of the ESQPT depends on
the value of &) and is always larger than the critical value of
the control parameter for the ground-state QPT, &, = 1.

Once evolvgtd, the state of the model is p, (&) =
|, ) (W, | = e E po (&)™ D with py(§) = [Wo) (Wol. As
the phase space of the coupled top model has four dimensions,
the Husimi function, expressed in terms of p,(§), takes the
form

0:(p,q) = (Y(p, Dl EDIT(P, qQ)), 21
where  p=(p1,p2), q=1(q1,92), and |Y(p,q)) =
[Z(p1, q1)) ® [ (P2, q2)) with

C(prs qr) = w, k=1,2.

4—(p; +a;)

The normalization condition for Q;(p, q) reads

. 2
(2’ “) / 0. qdpdq=1,  (22)
47 Q JQ0

where Qi € {(p1,g)|p7 +¢7 < 4} and @ € {(p2, ¢2)Ip3 +
g < 4.

The four-dimensional Husimi function Q; (p, q) is difficult
to visualize. Therefore, we consider the projection of the
Husimi function over the space (py, q1), so that Q,(p1, q1) ~
[ dp>dq>0:(p. q). As the coherent states | (p2, g2)) in the
space (p2, g») fulfill the normalization condition [cf. Eq. (3)],
the projected Husimi function adopts the form

O:i(p1,q1) = (£(p1. qDIPTEDIC (1, q1)), (23)

with a normalization condition

2j+1
J4 / O:(p1,q1)dprdqy = 1.
TT Q

Here p} (&) = Tra[p;(&1)] is the reduced density matrix of the
first spin.

In Fig. 8, we plot snapshots of the evolution of the CT
model Husimi function at several time steps for & = 3 and
& =0.5, 1.5, 2.5. The critical &; value in this case is §{ = 1.5
[cf. Eq. (20)]. The ground state of the coupled top model has
even-parity and even coherent states provide a good approx-
imation. The Husimi function at the initial time consists of
two distinct wave packets, symmetrically placed in the phase
space, as seen in the first column of Fig. 8. As time increases,
the Husimi function of the CT model follows an evolution
very similar the one observed in the LMG model case [cf.
Fig. 3]. Namely, two different wave packets can be distin-
guished in the evolution of the Husimi function until §; = &7,
when the two separated wave packets finished merging. If the
value of &; is further decreased, then the two disconnected
wave packets finish merging into a single packet at large time
values. Therefore, as in the LMG model, the ESQPT in the CT
model can also be identified through the particular dynamics
of the Husimi function.

As in the LMG model case, the essentials of the dynamical
behavior of the CT model shown in Fig. 8 can be captured by a
simple classical model involving only one degree of freedom.
In the classical limit, the CT model dynamics for a single
degree of freedom is described by a classical particle, with
coordinate g, confined by a one-dimensional double well
potential, Vir(q1) (see Appendix C for more details). Then,
as we have already discussed in the LMG model and as shown
in the insets of Fig. 7, for & > &{ the resulting energy is
Ecr(éo, &1) < E./j and the particle does not have enough en-
ergy to surpass the central barrier. Thus it remains trapped in
one of the two wells, depending on its initial configuration and
the phase space in this case consists of two disconnected and
symmetrical components. Conversely, for £ < &, the energy
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FIG. 9. Rescaled long-time averaged Husimi function

Qer(p1, q1) = Qcr(p1, 1)/ Qcr.n of the CT model for (a) § = 2.5,
(b) & = 1.5, and (c) & = 0.5. By Qc¢r,, we denote the maximum
value of QCT(pl, q1). The color scale in Fig. 3 has been employed
for panels (a—c). Marginal distributions QCT(ql) (d) and QCT(pl)
(e) of Qcr(p1, q1) for several values of £, (see legend). All panels:
Jj =30 and & = 3. The axes in all panels are dimensionless.

is larger thant the critical energy value, Ect(&o, &) > E./J,
and the classical particle has enough energy go from one well
to the other through the origin. This leads to the merging of the
previousely disconnected two phase space regions into a sin-
gle one. At & = &{, the system energy is Ecr(&o, &1) = Ec/ ],
and the particle starts straddling both wells for the first time.
At this energy, the motion of particle starts the fusing of the
two distinct phase space regions. More details of the classical
dynamics for one degree of freedom of the CT model are given
in Appendix C.

We can now check if more conspicuous CT model ESQPT
signatures are revealed in the features of long-time averaged
Husimi function Eq. (17). In this case, the long-time averaged
function can be written as

Ocr(p1.q1) = € (p1, qDIPLEDIC(P1, q1)),  (24)
where (&) = Tra[p(&1)] with

I
pte) = Jim = [ pienar

In the eigenstates of the post-quench Hamiltonian Her(&),
denoted by {|E,)}, it is then straightforward that Qc1(p1, q1)
can be calculated as

Ocr(pi, q1)
= Z {OlEN X (¢ (pry gDIp EDIC(p1, q1)),  (25)

where p\" (&) = Tra(|E,) (E,|). As we found in the LMG
model, Qcr(p1, q1) for the coupled top model depends on
the transition probability between the initial state and the
eigenstates of I-7CT(§ 1).

FIG. 10. (a) Second moment of Qcr(p1, g1) as a function of &,
for different system sizes, j, with §, = 3 and &{ = 1.5 [see Eq. (20)].
Inset: MZ,CT as a function of j at & = 0.3 (blue squares), & = 1.5
(red circles), and &, = 2.7 (green diamonds). Dashed lines are func-
tions of the form M, cr ~ j~". (b) Wehrl entropy of Qcr(p1, 1) as
a function of &, for different j with &, = 3. Inset: Wer as a function
of j for & = 0.3 (blue squares), & = 1.5 (red circles), and &, = 2.7
(green diamonds). Dotted lines have a dependence W¢r ~ vy In(j).
(c) Finite-size scaling exponents vy, and vy as a function of £
with & = 3. (d) Estimated critical points &f,,, &, obtained from
the minima in dvyw,/d&;, as a function of &,. The dot-dashed line
denotes the analytical result from Eq. (20). All quantities are unitless.

In Figs. 9(2)-9(c), we plot Ocr(pi, q1) for & =3, & =
0.5,1.5,2.5 and a system size j = 30. For decreasing £
values, the Husimi function undergoes a noticeable change
when &; goes through its critical value & = 1.5. The ESQPT
at & = 1.5 is clearly associated with a significant extension
of the phase space surface covered by the Husimi function.
The changes of Qcr(p1, q1) in phase space for decreasing &
value can be better appreciated in the marginal distributions,
depicted in Figs. 9(d) and 9(e). Consequently, the occurrence
of the ESQPT in the CT model is marked by a significant
increase of the extension of the Husimi function in phase
space, as observed in the LMG model.

To provide further insight into the ESQPT phase space sig-
natures in the CT model, we consider the second moment and
the Wehrl entropy of Qcr(p1, ¢1). In Figs. 10(a) and 10(b), we
plot A_dz,CT and Wer, respectively, as a function of &; with §y =
3 for two different system sizes, j = 30, 40. The critical value
of & for & = 3 is & = 1.5. The significant change in M2,CT
and Wer as & passes through the critical value is clearly
visible. For §; < & = 1.5, the Husimi function has maximum
extension and A_dz,CT Wer) is roughly constant at a minimum
(maximum) value and decreases (increases) for increasing j
values. However, in the & > &[ case, we observe that Mlm
(Wer) increases (decreases) as & increases. These results
suggest that the largest extension of the Husimi function in
phase space can be considered a key ESQPT signature. We
further find that M, cr follows a power-law scaling with the
system size of the form My ct ~ j" with a scaling exponent
vy that depends on the value of &, as shown in the inset of
Fig. 10(a). However, the Wehrl entropy exhibits a logarith-
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FIG. 11. Second moment (upper panel) and Wehrl entropy (bot-
tom panel) of the marginal distributions of Qcr(p1, ¢1) as a function
of & for different j with § =3 and & = 1.5. All quantities are
unitless.

mic scaling with the system size, Wer ~ vy In( J), where vy
varies with & [see inset in Fig. 10(b)]. The dependence of
vy and vy with & is shown in Fig. 10(c), where it is clear
how both quantities behave differently in the two phases. In
particular, they both reach a maximum, followed by a rapid
decrease, at the critical point; suggesting that it is possible
to identify the ESQPT critical point as the location of the
minima points in the derivatives of vy, and vy with respect
to £;. Our numerically estimated critical points, together with
the analytical ones obtained from Eq. (20), are plotted in
Fig. 10(d), with a fine agreement between the results obtained
with both approaches.

In Fig. 11, we depict the second moment and the Wehrl
entropy of the marginal distributions of the Husimi function
as a function of & for &, = 3 and system size j = 30, 40. As
expected, the marginal quantities undergo a sudden change as
the system goes through the &; value that corresponds with
the ESQPT critical point. Moreover, as observed in the LMG
model, the Husimi function of the CT model also exhibits a
more significant extension in the position marginal than in the
momentum marginal.

V. CONCLUSIONS

We have studied the phase space signatures of the ESQPT
in two different models, the Lipkin-Meshkov-Glick and cou-
pled top models, by means of the Husimi quasiprobability
distribution. Both models exhibit an ESQPT associated with
a second-order ground-state QPT, but due to their different
effective degrees of freedom, the ESQPT in the LMG model
results in a cusp-like nonanaliticity in the density of states,
while in the CT model the ESQPT presence is revealed in
the first derivative of the density of states. We have showed
that phase space signatures of the ESQPT in these two models
can be identified through different properties of their Husimi
functions and the marginal distributions. We have found that
the different ESQPT phases can be identified by a distinct dy-
namical behavior of the Husimi function. In fact, the dynamics

of the Husimi function allows for the detection of the ESQPT
presence in both models. We have also demonstrated that the
long-time average of the Husimi function exhibits distinct
features in different phases of ESQPT. The transition of the
long-time averaged Husimi function from two symmetrically
localized wave packets to a single extended wave packet is
the main signature of the occurrence of an ESQPT in phase
space. To quantify the phase space spreading of the long
time averaged Husimi function, we further investigated the
properties of the second moment and the Wherl entropy of the
long-time averaged Husimi function and its marginal distribu-
tions. The singular features observed in these two quantities,
the second moment and the Wherl entropy, represent a visible
manifestation of ESQPT. In turn, we have employed these
two singular features to estimate the location of the critical
energy of the ESQPT, obtaining a very satisfactory agreement
between numerical estimations and analytical results.

Our findings confirm that phase space methods are a
powerful tool in the understanding of ESQPTs in many-
body quantum systems, extending the results published in
the literature, that focus mainly in the phase space signatures
of ground-state quantum phase transitions. As the kind of
ESQPTs studied in this work are quite general [75], other
systems like the Rabi [44] and Dicke models [40,41] are
expected to exhibit similar signatures in phase space. It is an
interesting future prospect to systematically explore the phase
space signatures of ESQPTSs in various many-body systems.
Another appealing extension of the present work would be
to explore the phase space signatures of ESQPTSs associated
with a first-order ground-state QPT [43]. Finally, given that
the Husimi function has been measured in several experiments
[116-119], and that it is possible to obtain realizations of
the two models studied in this work in quantum simulators
[52,100,109,120], we expect that the present results can be
experimentally tested.
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APPENDIX A: CLASSICAL LIMIT OF THE LMG
AND CT MODELS

The classical limit of the LMG and CT models can be
achieved in the limit j — oo, and the corresponding classical
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equations of motions (EOMs) are obtained from the semiclassical approach. To see this, we first employ the relations

2j¢* 2j¢ . |§|2—1>
Jill) = ———, J_[g) = . J:I¢) = ; Al
(¢1J+18) e (¢1J-1¢) e (¢1J:18) ]<|§|2+1 (Al)

where J4 = J, & iJ,. Then, it is straightforward to find the rescaled expectation value of the LMG and CT Hamiltonians in the
coherent state are, respectively, given as

(¢ |Hima ) E+&t (1P =1 )
H = —=-2(1 — 1 A2
MG ($) ) ( K)<|§|2+1>+KJ(|§|2+1 +1), (A2)
(61 alHerl61. &) _ .[|cl|2—1 L -1, @+ 00+ 5) ]
' IGP+1 1P+ 1 " A+ 1P +16P )

By replacing the the Bloch parameter ¢ with the classical canonical variables (p, q) [cf. Eq. (4) in main text], the explicit form
of the corresponding classical Hamiltonians read

Her(81, &) = (A3)

. K 1 —« . 1 1 &
Hivg =50+ )+ =@ +a) =20 -0, Her=5P1+aD+ 33 +a) =2+ 70190910, (A4)
where G| = V4 — (p7 + ¢3) and G, = V4 — (p3 + ¢3). Finally, the classical EOMs of the LMG model take the form
. OHS . oHS
G= #MG =kp+ (1 —K)pg’, p= —#MG =@ —=50)g — (1 —)p’qg — 2(1 — K)q’, (AS)
while the classical EOMs of the CT model are
. OHer £G, . OH¢r £G, , &
q1 = o p1 4G, 9192p1, P11 = b q1 + 1C, 92497 491%6[2,
) OHEr £G, ) OHer &G, &
= — = —_ — s = - = — _— —_ - . A6
q2 o9, 2] 4G, qQ192p2, P2 oy q + 0 9195 49192611 (A6)

(

APPENDIX B: ESQPT CRITICAL QUENCH PARAMETERS and CT models are given by
IN THE LMG AND CT MODELS

o Euva (k. n) = Lua{WolHi yg | Wolma/j. (B4)
In the classical limit, the ground state of a quantum system
can be represer}ted by the flxed points that minimize the clas- Ecr(&y, €1) = o1 (Wo| ﬁgT|lIJ0)CT /] (B5)
sical Hamiltonian. By setting VH¢ = 0 for the LMG and CT - R R R R
models, the fixed points of these models are given by where H}\,; = Huvg + n(J; + N/2) and Her = Her(§1)- By
inserting Egs. (B1)—(B3) into the equations given above, and
0.0) fork > K using Eq. (Al), after some algebra, one can find that the
(Prs 4 IMG = ’ - e (B1) energy of the quenched state can be expressed as follows:
£af (O, + 241_5K for0 < k < K,
;or f( _;) Euma(k, 1) Ma—Se) (=) (B6)
K, = - >
(pquf)CT: (p17p27q17q2)CT LMG ’7 4(1—K) 8(1_K)
(6o — DI[28 — &1 (5o + 1]
B (0,0,0,0) for& <1, - Ecr(Eo, £1) = 0 0 _ 1(&0 _9 (B7)
(00,420 5 €Y porg 1. PP &

As an ESQPT is identified by the critical energy E., the
critical quench parameter is, therefore, obtained when the
energy of the quenched state reaches E.. By setting Eqs. (B6)
and (B7) equal to the critical energy of the LMG model

The ground states of both models can be written as

[Wolrma = ISPy, qr)), and CT model, respectively, we finally find the values of the
critical parameters 7. and &{,
[Woler = [¢(p1. 4)) ® [¢ (13- 43))- (B3) !
5 . 2&
nc=2—§/<, & = T (B3)
As pointed out in the main text, we initialize the LMG and §o +
CT models in the ground state with 0 < ¥ < k. and & > 1, with 0 < k < k. and &y > 1. These expressions have already
respectively. been given in the main text [cf. Egs. (15) and (20)].
In our study, the sudden change of the control parameter Therefore, the ESQPT in LMG and CT models sits at the

leads to the variation of the energy of system. As the system saddle point of their classical double well potential [59]. This
is initially in the ground state of the initial Hamiltonian, larger =~ leads to fundamental differences in the particle dynamics in
quenches transfer a larger amount of energy onto the system. the different ESQPT phases, as we have already discussed
The rescaled energy of the final quenched state for the LMG in the main text. This will be further demonstrated by means
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FIG. 12. In the classical limit, both LMG and CT models can be described as a particle (green dot) in a double well potential V¢(x) with
x = q (for the LMG model) and x = ¢, (for the CT model). The particle’s energy is indicated by a violet dashed line. If the quantum quench
leads to a particle with an energy lower than the top of the potential barrier [panel (a)], then the particle stays confined into either the left or
right well. In the critical quench case [panel (b)], the energy of the particle equals the height of the central barrier, and the particle is able to
explore the origin for the first time. In case that after the quench the particle’s energy is larger than the central barrier [panel (c)], the particle
can surpass the central barrier and it moves periodically between the two wells. Panels (d)—(f): Snapshots of the classical dynamics of the
LMG model for different 7, a maximum time # = 200, and ¥ = 0.4. Blue dots correspond to an initial condition with ¢ < 0, while red dots
correspond to an initial condition with ¢ > 0. Panels (g—i): Snapshots of the classical dynamics of the CT model for different &, a maximum
time t = 700, and &, = 3. As in the LMG model, blue and red dots in each panel correspond to different initial conditions, ¢; < 0 (blue) and

q1 > 0 (red). All quantities are unitless.

of the classical dynamics. In particular, we show in the next
Appendix that the separatrix in the phase space marks the
ESQPT.

APPENDIX C: CLASSICAL DYNAMICS
OF THE LMG AND CT MODELS

The dynamical features in the different phases of an ES-
QPT can be captured by an effective model that describes a
classical particle confined within a double well potential.

For the LMG model, by setting p =0 in its classical
Hamiltonian, one can find the potential can be written as

l—«x , 4-5« ,
2 ¢ 2 1

Vime(@) = (C1)

The potential Viy,;(¢) has a symmetric double-well shape
when 0 < k < k., withminima atg = ++/(4 — 5¢)/(2 — 2«)
and a local maximum at ¢ = 0. The double-well potential for
the CT model is also derived from its classical Hamiltonian by
letting p; = p» = 0. Moreover, as the fixed points for £ > 1
satisfy g» = —¢q; [cf. Eq. (B2)], we further set g¢» = —q;,
which allows us to express the potential exclusively as a
function of g, as

Vér(q) = %q‘f — (- Dgi — (C2)

For & > 1, the shape of Vi (q1) again has a symmetric
double-well shape, with minima at g; = +£4/2(§ — 1)/§ and
a local maximum at g; = 0. Hence, the potential Vr(q1)
structure is completely equivalent to the structure of potential
Vima(9). The ESQPT critical energy in the LMG and CT
models is defined as the difference between the potential value
at the central maximum and its minimum value [59].

As initially the system is in the ground state, one can
assume that the classical particle is located at one of the
fixed points, either the left one or the right one. The quantum
quench provoked by the variation of the control parameter is
akin to a sudden increase in the energy of the classical particle.
Therefore, the final energy of the quenched particle and the
relative height of the potential barrier determine the dynamics
of the classical particle. Whenever the quenched particle has
an energy lower than the critical energy, the particle cannot
straddle the central barrier and remains confined either in the
left or the right well, as shown in Fig. 12(a). In the critical
quench case, as the energy of the particle matches the critical
energy, the particle overcomes the central barrier for the first
time [Fig. 12(b)]. Finally, once the energy of the quenched
particle lies above the barrier, the particle surpasses the bar-
rier and moves periodically between both wells, as seen in
Fig. 12(c).

The resulting classical dynamics for the LMG and CT
models for distinct quenches are plotted in the second and
third rows of Fig. 12, respectively. They are obtained by
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solving the classical EOMs in Egs. (A5) and (A6) with initial
conditions given by Appendix B. In both models, the confined
motion of the particle for the case with a quenched parti-
cle energy below the critical value can be clearly identified
by the existence of two disconnected phase space regions.
These two regions start to merge once the quenched particle
energy reaches the critical value, which allows the particle
to overcome the central barrier. Moreover, for both models,

the phase space separatrix is clearly visible at the critical
energy of ESQPT. As soon as the quenched particle en-
ergy is larger than the critical value, the particle visits both
wells, and the two disconnected regions merge into a sin-
gle one. Finally, it is worth to emphasize the remarkable
agreement that exists between the classical dynamics and the
time evolution of the Husimi functions discussed in the main
text.
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