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Abstract: Organisms modify their geographical distributions in response to changes in environmental
conditions, or modify their affinity to such conditions, to avoid extinction. This study explored the
altitudinal shift of Abies pinsapo Boiss. in the Baetic System. We analysed the potential distribution of
the realised and reproductive niches of A. pinsapo populations in the Ronda Mountains (Southern
Spain) by using species distribution models (SDMs) for two life stages within the current populations.
Then, we calculated the species’ potential altitudinal shifts and identified the areas in which the pro-
cesses of persistence and migration predominated. The realised and reproductive niches of A. pinsapo
are different to one another, which may indicate a displacement in its altitudinal distribution owing
to changes in the climatic conditions of the Ronda Mountains. The most unfavourable conditions
for the species indicate a trailing edge (~110 m) at the lower limit of its distribution and a leading
edge (~55 m) at the upper limit. Even though the differences in the altitudinal shifts between the
trailing and leading edges will not cause the populations to become extinct in the short term, they
may threaten their viability if the conditions that are producing the contraction at the lower limit
persist in the long term.

Keywords: ecological niche; leading edge; migration; persistence; trailing edge

1. Introduction

Organisms modify their geographical distributions in response to changes in en-
vironmental conditions, or modify their affinity (through ecological plasticity or adap-
tation) to such conditions, to avoid extinction [1–4] One aspect that has aroused great
interest in recent decades is the extent of species migration as a consequence of climate
change [5–9]. Numerous studies have explored the latitudinal shifts exhibited by different
organisms [7,10–12], while others have identified variations in the distributions of their al-
titudinal shifts [5,13–17]. The majority of these studies, as well as the tools for anticipating
these changes, are based on the principle of equilibrium between the species’ distribution
and the climatic conditions to which they are subjected [18]. However, the principle of
equilibrium between plants and climate does not always apply to studies in which the
vegetation dynamics are different to the climate dynamics [18,19], particularly in sessile
organisms with long lifecycles.

Migration speed, i.e., the speed at which plant species follow the effects of climate
change, might drive the survival of plant populations, particularly in species with restricted
distributions [20]. Additionally, reproductive success is rarely taken into account in studies
of species’ distributions [21], so the models often fail to reflect the optimal conditions under
which a species can establish itself and develop until it has completed its lifecycle [22,23].
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Assuming that species establish themselves under the optimal climatic conditions that de-
fine their reproductive niches, the distributions of the different life stages will differ if there
are variations in the climatic conditions over a certain period of time [13]. Consequently,
the presence of younger life stages (e.g., seedling and sapling) would define the species’
reproductive niche and indicate the presence of optimal conditions for the establishment of
the species in the present [21]. Similarly, the presence of more mature life stages would
define the realised niche (where species can persist in presence of interacting species) and
indicate the presence of optimal conditions for the species’ establishment at some stage
in the past [24]. Moreover, the presence of such groups would be compatible with the
conditions under which the species is demonstrating resilience in the present [13].

In accordance with these premises, discrepancies in distribution between life stages
may serve as an indicator of climate change’s effects [10,13]. The absence of reproductive
success in the realised niche may be a result of the deterioration of the conditions under
which the species was able to establish itself, and it may manifest in the form of persistence
phenomena that give rise to a trailing edge in the displacement of the species’ distribu-
tion [10,13,19,25]. Conversely, the reproductive niche, revealed by the presence of young
individuals, indicates the existence of suitable conditions for establishment. Its prepon-
derance over mature individuals would indicate the existence of colonisation phenomena
during the species’ migration and would therefore constitute the leading edge in the dis-
placement of its distribution [10,13,19,25]. The differences in the rates of extinction and
colonisation of the leading and trailing edges explain the different geographical patterns in
the displacement of the species’ distribution, and also condition their survival [19]. This
dynamic is revealed in geographical terms by identifying the areas where the phenomena
of persistence and migration dominate [26].

This study explored the altitudinal displacement of Abies pinsapo Boiss. in the Baetic
System. A. pinsapo Boiss. is an endemic tree species whose distribution is limited to three
unconnected locations in the Ronda Mountains (Figure 1). Fires, fungal and insect pest
and recently the effects of drough in lower altitude have led to include it on the IUCN Red
List of Threatened Species and classed in 2010 as “Endangered” [27]. Under Andalusian
law, this taxon is categorised as “At risk of extinction”, and it is the focus of the Pinsapo
Recovery Plan [28]. Its endemic nature and restricted distribution make it possible to
study the biogeographical dynamics of its populations as a whole, as well as the relative
tendencies between its different life stages.
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The changes that the climate has undergone in recent decades in the form of tem-
perature increases suggest that the populations of A. pinsapo must have undergone an
altitudinal displacement [29], which, in turn, must have left its mark on the population
dynamics through the geographical differentiation of the various life stages. The working
hypothesis is that the realised niche of A. pinsapo is different to its reproductive niche. Both
of them are displaced from one another, creating an area of persistence and an area of
migration, thereby indicating the presence of a leading edge and a trailing edge.

In this study, we analysed the potential distribution of the realised and reproductive
niches of A. pinsapo in the Ronda Mountains by using species distribution models (SDMs)
for two life stages in the existing populations. We calculated the potential altitudinal
displacement and identified the areas in which the processes of persistence and migration
predominated, thereby giving rise to the populations’ respective leading and trailing edges.
By analysing these factors, we were able to assess the viability of the populations in the
medium and long term in the face of continued changes in climatic conditions.

2. Materials and Methods

To test our hypothesis, we obtained distribution models for two life stages (“sapling”
and “mature”) of A. pinsapo in the Ronda Mountains, with the aim of revealing their
geographical differences and on the assumption that these differences would correspond to
variations in the optimal conditions for the establishment of each generation, as a response
to climate change.

2.1. Species

A. pinsapo is an endemic species which, as all the firs included in the section Piceaster,
is characterised by rigid needles and bracts smaller than ovuliferous scales. This species
is an evergreen conifer growing up to 30 m in height, with straight trunk and pyramidal
crown that later turns to flat-topped. Their leaves are spirally arranged, although can
become somewhat pectinate in lower shaded shoots; 2 cm length and 3 mm width (mm),
apex obtuse or acute; stomata above in several rows, below in two bands separated by
a midrib. The male strobili are crowded, with red or purple microsporophylls on the
lower branches. The female cones are cylindrical, erect, 9–14 cm long, arranged on the
upper branches of the tree, with tector bracts that do not protrude from the seminiferous
scales. The seeds are winged, about 8 mm [30].The trees occupy about 2870 ha on the
north facing slopes of high mountains in Baetic in an altitudinal range of 900 to 1600 m.
In Sierra de las Nieves and Sierra de Grazalema, on dolomitic soils, they form dense,
pure forests above 1100 m, but below this altitude they form mixed communities in
dense forest with Quercus rotundifolia Lam. and Quercus faginea Lam. In Sierra Bermeja, on
serpentine soils, A. pinsapo occurs with Quercus suber L. and with other conifers such as
Pinus pinaster Aiton [27,31].

We have excluded from our analysis the taxon Abies marocana Trab., typical of the Rif
mountains, whose taxonomic status in relation to A. pinsapo has been long discussed [32–35].

2.2. Area of Study

After reviewing the reference materials for the distribution of A. pinsapo [36], the
operational scope of the Abies pinsapo Recovery Plan was considered adequate to frame the
study [28]. The area of study encompasses the Ronda Mountains in their entirety, extending
to the Gorda de Loja mountain range in the east and the Cordoban Subbaetic mountain
range in the northeast; between the following geographical coordinates: 35◦40′ N–37◦30′ N
and 4◦10′ W–6◦25′ W. For the purposes of the analysis and projection of results, the area of
study was determined using UTM coordinates (zone 30, datum ETRS89) with the limits X:
195,000–395,000 and Y: 3,950,000–4,150,000 (Figure 1).



Forests 2021, 12, 1451 4 of 14

2.3. Observations of Presence

The presence of A. pinsapo was verified in sampling campaigns that took place in 2012
and 2013. A total of 141 stands of natural origin were sampled, in wich the presence of
the different life stages was recorded. Three datasets were arranged for the SDM analysis,
based on the presence of the life stages of interest. Two of those groups consisted of
stands including individuals at either extreme of the age distribution (i.e., “sapling” and
“mature”), while the third included all of the stands recorded (i.e., “whole”); these were
defined as follows:

• Sapling: stands that included the presence of young individuals whose height did not
exceed 40 cm; n = 41.

• Mature: stands that included the presence of individuals whose diameter at 130 cm
above the ground (dbh) exceeded 20 cm; n = 134.

• Whole: included all of the stands of natural origin, regardless of the life stages they
included; n = 141.

2.4. Predictor Variables

To serve as predictors, we selected three climate variables that defined the habitat of
A. pinsapo, according to previous studies [31,37,38]: the growing degree days (GDD, ◦C·day),
the values of which decrease with altitude and are a good predictor for species that
inhabit the high mountains [39]; annual precipitation (AP, mm), which makes it possible to
assess the species’ affinity for humid Bioclimates; and the warmest quarter precipitation
(WQP, mm), which enabled us to characterise the Mediterranean nature of the species [40].
These variables were calculated using the monthly values available at a resolution of 100 m
from the Andalusian Environmental Information Network (REDIAM, 2012) [41]:

GDD = ∑ d ·max [0 ◦C, Tm − 5 ◦C] (1)

AP = ∑ Pm (2)

WQP = Pmx + Pmx+1 + Pmx+2|max[(Tmx + Tmx+1 + Tmx+2), . . . ] (3)

where d is the number of days in the month m; Tm is the average temperature for the
month m in degrees Celsius; Pm is the monthly precipitation for the month m in mil-
limetres; Pmx is the precipitation for the month mx; and mx, mx+1, and mx+2 denote three
consecutive months.

With these data source and resolution, the correlation (Pearson) for each pair of
variables was always less than 0.7 (Table A1).

The altitude was obtained from topographical variables derived from a digital ele-
vation model (DEM) from the Food and Agriculture Organization of the United Nations
(http://www.fao.org/soils-portal/, accessed on 9 February 2015).

2.5. Species Distribution Models

The potential distribution of A. pinsapo was modelled via MAXENT and BIOCLIM using
the dismo package for the R statistical computing environment [42–45]. MAXENT, short
for “maximum entropy”, is a machine-learning algorithm, while BIOCLIM is a so-called
“envelope” algorithm. Both algorithms only require sets of presences, although MAXENT

needs a background dataset for calibration, which is used to characterise the environmental
conditions of the area of study and is created using points selected at random from within
the defined area [46]. All the models were calibrated parameters default setting.

Using BIOCLIM and MAXENT, SDMs were generated in the area of the Ronda Moun-
tains for the three groups chosen for the analysis (i.e., “sapling”, “mature”, and “whole”).
To calibrate the models, we randomly selected 70 sampling points from among the
141 that were taken over the course of the sampling campaign. For the points selected, the
presences in each age group were used to calibrate the respective habitat suitability models
(the numbers of presences that were randomly obtained in each iteration are shown in

http://www.fao.org/soils-portal/
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Additional Table A2). From the remaining sampling points, we selected another 70 that
were used to evaluate the models generated for the respective life stages. In this case,
10 iterations were performed for each algorithm and dataset (i.e., “sapling”, “mature”, and
“whole”). The models were evaluated using the Area Under the ROC (Receiver Operating
Characteristic) Curve (AUC), in which the AUC values of the 10 iterations for each model
and dataset were averaged [47].

The habitat suitability models for the “sapling” and “mature” life stages were con-
verted into potential distribution maps of a binary type (suitable/not suitable habitat) using
a suitability threshold specifically defined for each algorithm (i.e., MAXENT and BIOCLIM).
The threshold selected was the value that maximised the sum of the true positive rate and
true negative rate in each case.

2.6. Altitudinal Distribution Curves

To analyse the potential altitudinal distribution of the two life stages (“sapling”
and “mature”), we randomly selected 10,000 points within the area of suitability on
each projected map and used their locations to obtain the altitude from the DEM. The
100,000 altitude values obtained for each age group (10 iterations × 10,000 points per pro-
jection) define the altitudinal distribution density in the area occupied by the age group in
question. With regard to the altitudinal distribution, the 0.05 quantile indicates the lower
limit of the altitudinal distribution (eliminating the outlier values) and the 0.95 quantile
indicates the upper limit. The differences between the lower limits for the “mature” and
“sapling” life stages indicate the altitudinal displacement at the lower limit, while the dif-
ferences between the upper limits for the two groups indicate the altitudinal displacement
at the upper limit. This analysis was performed for the models generated via MAXENT as
well as for those generated via BIOCLIM.

2.7. Persistence/Migration Map

To obtain suitability maps for each age group, the 10 iterations models for each group
and algorithm were averaged, thereby creating a consensus map with continuous values.
The averaged suitability map for the “whole” group was converted into a binary distri-
bution map (suitable/not suitable habitat for the species) using the maximum of the sum
of the sensitivity and specificity as the threshold for discrimination. Using the suitability
maps for the “sapling” and “mature” life stages, we constructed a “persistence/migration”
map for each algorithm, in which we identified the predominant trends (persistence and
migration) with regard to population dynamics. The areas of persistence were defined as
those where the suitability of the habitat was higher for individuals in the “mature” group
than for those in the “sapling” group; conversely, in the areas of migration, the suitability
was higher for the “sapling” group than for the “mature” group. In each instance, the
distribution was delimited by the coverage of the binary map for the “whole” age group,
which corresponds to the potential habitat of A. pinsapo.

3. Results
3.1. Species Distribution Models

The evaluation of the models produced AUC values (the average of the 10 iterations
per algorithm and dataset) over 0.9, except for the sapling models built via BIOCLIM

(Table 1). The MAXENT models generally produced better results than the BIOCLIM models.
The variables’ response curves reveal a trend towards lower GDD values in the sapling

group than in the mature group. In other words, compared to the mature specimens,
saplings tend to be found in areas with lower temperatures. By contrast, the precipitation
variables (annual and summer) reveal a trend towards higher values for saplings than for
mature specimens (Figure 2). The variable that made the greatest percent contribution to
the MAXENT models was GDD, with values over 90%, followed by AP, with values of
around 5%. Lastly, the values contributed by the WQP rarely exceeded 1%.
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Table 1. Average evaluation (10 iterations) of the distribution models for the different life stages:
whole, mature, and sapling.

AUC

Whole Mature Sapling

MAXENT 0.9819 0.9815 0.9880
BIOCLIM 0.9201 0.9234 0.8483

AUC: area under the curve.
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The predictions generated by BIOCLIM and MAXENT regarding the optimal habitat of
A. pinsapo were very similar. The models predicted its optimal distribution in the area that
the species currently occupies within the Ronda Mountains and expanded the suitability
of its distribution towards the east of the study area, in the direction of the Camarolos,
Gorda de Loja, and Cordoban Subbaetic mountain ranges (Figure 3). The MAXENT models
concentrated the highest suitability values in the areas that the species currently occupies
(i.e., the higher parts of the Sierra de las Nieves and Grazalema mountain ranges), while
BIOCLIM distributed the suitability values across a somewhat larger area.

The habitat suitability predictions presented differences between the life stages. The
suitability prediction for the “mature” group was very similar to that for the “whole”
group, owing to the low number of sampling points where no mature individuals were
recorded. The distribution for the “sapling” group was associated with the higher altitudes
in the Ronda Mountains, with a slight contraction of the optimal area compared to that for
the “mature” group (Figure 3).
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3.2. Altitudinal Distribution Curves

The models for the “sapling” group provided evidence of displacement towards
higher altitudes (Figure 4), in comparison to those for the “mature” group. BIOCLIM and
MAXENT both revealed this pattern, although the curves generated by BIOCLIM occupied
lower altitudes than those generated by MAXENT. The analyses also revealed that the
lower limit for the projected distribution of A. pinsapo in the Ronda Mountains lay between
540 and 780 m, while the upper limit lay between 1281 and 1423 m. The lower distribution
limit for the “sapling” group was 128 m above the lower limit for the “mature” group with
MAXENT, and 91 m with BIOCLIM. In terms of the upper distribution limit for A. pinsapo,
the “sapling” group was 55 m above the “mature” group in the projections generated by
MAXENT, and 54 m in those generated by BIOCLIM (Table 2).
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Figure 4. Altitudinal distributions of the “sapling” and “mature” life stages. The density curves show
the distributions of both groups throughout the altitudinal gradient, which were obtained using the
potential habitats projected by the models (MAXENT and BIOCLIM). The 0.95 and 0.05 quantiles were
identified as the upper and lower limits, respectively. The altitudinal displacement of the upper and
lower limits was calculated based on the difference between the quantiles (∆Q) of the two life stages.

Table 2. Altitudinal limits of the projections (MAXENT and BIOCLIM) for Abies pinsapo Boiss. in the
Baetic System.

MAXENT BIOCLIM

Mature Sapling ∆Q Mature Sapling ∆Q

Q.05 652 780 128 540 631 91
Q.95 1368 1423 55 1281 1335 54

Elevation (masl). Q.05: 0.05 quantile in the altitudinal distribution; Q.95: 0.95 quantile in the altitudinal distribu-
tion. ∆Q: difference between life stages limits (0.05, lower limit; 0.95, upper limit).

There were greater differences between the lower limits for the life stages than there
were between the upper limits: 73 m in the case of MAXENT and 37 m in the case
of BIOCLIM.

3.3. Persistence/Migration Map

The binary distribution of the “mature” age group is very similar to that of the
“whole” group. Moreover, the suitability values for the “mature” age group are higher
than those for the “sapling” age group in the majority of the optimal habitats for A. pinsapo
(Figure 5). This is the area that represents the species’ tendency towards persistence under
changing climatic conditions (at least as defined by the predictor variables selected). The
suitability values for the “sapling” age group are higher than those for the “mature” age
group only in the highest parts of the optimal habitat for A. pinsapo. These parts of the
habitat represent the areas in which the tendency towards migration predominates in the
population dynamics under changing environmental conditions. The areas of migration are
unconnected, with variations in the projections generated via MAXENT and BIOCLIM, and
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are located in the Grazalema, Sierra de las Nieves, Bermeja, Torcal de Antequera, Gorda de
Loja, and Cordoban Subbaetic mountain ranges (Figure 5).
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green) are those where the suitability of the habitat is greater for the “sapling” group than it is for the
“mature” group.

4. Discussion

The SDMs reveal differences in the habitat distributions for different life stages of
A. pinsapo. The distribution of the “mature” age group is indistinguishable from that of
the species as a whole; therefore, the species’ realised niche can be considered equivalent
to that of this age group. The projected species’ optimal habitat comprises the areas it
currently occupies and extends to the baseline areas of the Ronda Mountains, eventually
attaining geographical continuity among the locations studied, which are currently frag-
mented. Likewise, the species’ potential habitat is projected to include the Gorda de Loja
and Cordoban Subbaetic mountain ranges in the east of the area of study. The predicted dis-
tribution of the “sapling” group, which corresponds to the species’ reproductive niche [21],
reveals a contraction of the optimal area in comparison to the realised niche. The models
geographically isolate the locations, meaning that the saplings’ potential distribution is
restricted to the higher altitudes.

Today, the baseline areas no longer possess optimal conditions for the establishment
of the species. This has resulted in populations that are suffering from structural dise-
quilibrium, where mature individuals are prevailing and there is a lack of recruitment.
Differences in growth and mortality in the populations of A. pinsapo throughout the alti-
tudinal gradient have been attributed to variations in the water balance and the strong
competition for water resources in the lower areas [48–52]. The bands of vegetation located
in the lower areas constitute the trailing edge in the migratory dynamic and occupy the
bottom 90–130 m of the altitudinal gradient, depending on the model. In the higher areas,
where the temperatures are lower and the annual water balance is higher, colonisation
may occur as a result of conditions that are increasingly conducive to the establishment of
A. pinsapo. This leading altitudinal edge comprises the top 55 m of the population. How-
ever, colonisation above the upper limit for the species may be hindered by a multitude
of factors (e.g., damage by frost and winter desiccation, heat flux or radiative warm-
ing of rooting zone) [53]. Even though the altitudinal displacement of populations of
A. pinsapo has been proposed before as a consequence of a better energy balance at high
altitudes [48], the speed of the altitudinal displacement of these populations has not yet
been described in the manner that it has been carried out in other specific studies on species
distribution displacement [5,7,11,15–17,54].

In the majority of their current geographical distribution, the populations of A. pinsapo
consist of forests that are dominated by mature individuals, where the stability of the
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system may hinder the recruitment. In the models, the suitability of the “mature” group
is higher than that of the “sapling” group throughout most of the species’ distribution,
thereby demonstrating a tendency towards persistence, rather than migration. In areas of
higher altitude, the forests are less dense, and in the more exposed areas, the individual
specimens are smaller [50,55]. Such conditions are conducive to the establishment of
younger individuals, and the models reveal them to be more suitable for the “sapling”
group than the “mature” group. Geographically, these areas are associated with the
processes of migration. Even though the areas identified as “migration” differ in size
depending on the model used (Figure 5), their presence indicates the location of forests
that have a better structure of different life stages.

Even though an increasing number of studies have linked the altitudinal displacement
of the plants’ distribution with climate change, the detected changes—in both the leading
and trailing edges—may be the result of other factors (sampling and data limitations, use
soil or successive changes, silvicultural practices, presence of wild herbivores) [2,12,54].
Actually, even though the design of the sampling process was significantly conditioned
by the prior knowledge of the presence of mature individuals (which could therefore
have led to population bias at the sampling points), the results demonstrate an unequal
distribution on the altitudinal gradient for saplings, suggesting a tendency for this group to
occupy higher elevations. Moreover, although higher survival rates have been described for
seedlings that grow in clearings [56,57], the presence of young specimens located far away
from consolidated A. pinsapo forest was invariably observed in the samples as the result of
planting. That suggests that it may be due to the Allee effect, in which establishment (i.e.,
the sapling group) is conditioned by the degree of persistence (i.e., the mature group) [58].

The powerful effect of persistence in the baseline areas of the distribution of A. pinsapo
may be reinforced by the presence of numerous individuals and small, isolated copses that
are left over from previous wildfires from which the forest was unable to recover. In fact,
from 1968 to 2013, more than 110 ha of A. pinsapo forest have been lost due to wildfires,
most of them in their lower areas on peridotites [59]. These areas at low altitude in which
there is hardly any regeneration were included in the sampling. The effect on A. pinsapo
of the recent wildfire in Sierra Bermeja (September 2021) has not yet been evaluated.
Additionally, the actions that have been taken to preserve the species since the middle of
the last century have significantly shaped the formation of coeval forests in the baseline
areas, where the density—and the competition between individuals—has led to decay and
high mortality and impeded recruitment [49,50]. Moreover, drough and competition affect
the susceptibility of A. pinsapo to infestation by pests, and especially by the basidiomycete
Heterobasidion annosum (Fr.) Bref. [60].

Finally, the optimal habitat of A. pinsapo in the Ronda Mountains lies between altitudes
of 650 m and 1350 m. The most unfavourable conditions for the species indicate a trailing
edge in the lower 110 m of its distribution. There, the species is persisting under unsuitable
conditions, giving rise to what has been called “time-delayed extinction in a situation of
disequilibrium” [24]. In the upper 55 m of its distribution, we find the leading edge of an
altitudinal migration that is limited by the height of the Ronda Mountains themselves The
differences in the altitudinal shifts between the trailing and leading edges demonstrate a
population dynamic in which the leading edge is smaller than the trailing edge, resulting
in a so-called “lean pattern” [26].

5. Conclusions

The realised niche of A. pinsapo is different to its reproductive niche, which indicates
that the current environmental conditions do not allow the species to complete its lifecycle
in all of the areas in which it is currently present. These differences may indicate an
altitudinal displacement in its distribution owing to the changing climatic conditions in the
Ronda Mountains.
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Even though this pattern will not cause the populations to become extinct in the short
term, it may threaten their viability if the conditions that are producing the contraction at
the lower limit persist over time.
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Appendix A

Table A1. Correlations between environmental variables (Pearson). GDD: growing degree days; AP:
annual precipitation; WQP: warmest quarter precipitation.

GDD AP WQP

GDD 1
AP −0.209 1

WQP −0.296 0.531 1

Table A2. Number of presences in the life stages (mature and sapling) selected in each of the
10 iterations of the SDMs. Of the 141 sampling points recorded in the Baetic System, 70 samples
were randomly selected to calibrate the model in each iteration, while a further 70 were chosen for
the evaluation.

Training Evaluation

Subset Mature Sapling Mature Sapling

1 66 19 67 22
2 68 21 65 20
3 68 23 65 18
4 67 23 66 18
5 65 21 68 19
6 67 23 66 18
7 67 23 66 18
8 65 22 68 19
9 64 17 69 24
10 68 19 65 22
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