
applied
sciences

Article

Phishing Webpage Classification via Deep Learning-Based
Algorithms: An Empirical Study

Nguyet Quang Do 1, Ali Selamat 1,2,3,4,* , Ondrej Krejcar 4 , Takeru Yokoi 5 and Hamido Fujita 6,7,8

����������
�������

Citation: Do, Q.N.; Selamat, A.;

Krejcar, O.; Yokoi, T.; Fujita, H.

Phishing Webpage Classification via

Deep Learning-Based Algorithms: An

Empirical Study. Appl. Sci. 2021, 11,

9210. https://doi.org/10.3390/

app11199210

Academic Editors: Sławomir

Nowaczyk, Mohamed-Rafik

Bouguelia and Hadi Fanaee

Received: 18 August 2021

Accepted: 29 September 2021

Published: 3 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur,
Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; milkydove83@gmail.com

2 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia,
Johor Bahru 80000, Johor, Malaysia

3 Media and Games Center of Excellence (MagicX), Universiti Teknologi Malaysia, Skudai,
Johor Bahru 81310, Johor, Malaysia

4 Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec
Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; ondrej.krejcar@uhk.cz

5 Tokyo Metropolitan College of Industrial Technology, Tokyo 140-0011, Japan; takeru@metro-cit.ac.jp
6 Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of

Granada, 18001 Granada, Spain; HFujita-799@acm.org
7 i-SOMET Incorporated Association, Morioka 020-0000, Japan
8 Regional Research Center, Iwate Prefectural University, Iwate 028-4211, Japan
* Correspondence: aselamat@utm.my

Abstract: Phishing detection with high-performance accuracy and low computational complexity
has always been a topic of great interest. New technologies have been developed to improve the
phishing detection rate and reduce computational constraints in recent years. However, one solution
is insufficient to address all problems caused by attackers in cyberspace. Therefore, the primary
objective of this paper is to analyze the performance of various deep learning algorithms in detecting
phishing activities. This analysis will help organizations or individuals select and adopt the proper
solution according to their technological needs and specific applications’ requirements to fight
against phishing attacks. In this regard, an empirical study was conducted using four different deep
learning algorithms, including deep neural network (DNN), convolutional neural network (CNN),
Long Short-Term Memory (LSTM), and gated recurrent unit (GRU). To analyze the behaviors of
these deep learning architectures, extensive experiments were carried out to examine the impact of
parameter tuning on the performance accuracy of the deep learning models. In addition, various
performance metrics were measured to evaluate the effectiveness and feasibility of DL models in
detecting phishing activities. The results obtained from the experiments showed that no single DL
algorithm achieved the best measures across all performance metrics. The empirical findings from
this paper also manifest several issues and suggest future research directions related to deep learning
in the phishing detection domain.

Keywords: phishing detection; deep learning (DL); deep neural network (DNN); convolutional
neural network (CNN); long short-term memory (LSTM); gated recurrent unit (GRU)

1. Introduction

In the past few years, deep learning (DL) techniques have proven to be an effective
solution among applications across multiple disciplines, including Internet of Things (IoT),
intrusion detection system (IDS), ransomware detection, etc. [1–5]. Numerous researchers
in cyber security have shifted their attention towards DL algorithms. Notably, researchers
and security experts have also recognized its significance in the phishing detection do-
main [6–8]. During the last few years, website phishing has become one of the most
common phishing attacks in cyberspace. Therefore, various anti-phishing solutions have
been developed to detect phishing threats early to minimize the security risks and protect

Appl. Sci. 2021, 11, 9210. https://doi.org/10.3390/app11199210 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9746-8459
https://orcid.org/0000-0002-5992-2574
https://orcid.org/0000-0002-2694-7564
https://orcid.org/0000-0001-5256-210X
https://doi.org/10.3390/app11199210
https://doi.org/10.3390/app11199210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11199210
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11199210?type=check_update&version=3

Appl. Sci. 2021, 11, 9210 2 of 32

the end-users. Among them, website phishing detection based on DL algorithms has
caught much attention in recent studies. Security strategies based on DL mechanisms
have become increasingly popular to deal with evolving phishing attacks [9–11]. There are
numerous types of DL techniques designed to solve a specific problem or meet a system’s
particular requirement; each has its advantages and disadvantages [2,12,13].

Hence, choosing the right approach best fitted to a target application is not an easy
task. Especially when phishers keep changing their attacking tactics to leverage the systems’
vulnerabilities and the users’ unawareness, selecting an inappropriate algorithm would
lead to unpredicted outcomes, resulting in a waste of effort and eventually affecting the
model’s accuracy and efficiency [14]. Therefore, choosing an effective phishing detection
model, high in performance accuracy and low in computational power, is a challenging task.
The fine-tuning process of DL architectures is another issue that needs to be considered.
Motivated to solve this problem, this paper adopted an empirical approach to explore the
performance of several DL algorithms, such as deep neural network (DNN), convolutional
neural network (CNN), Long Short-Term Memory (LSTM), and gated recurrent unit (GRU).
This paper also identified the parameter settings for each DL model and investigated the
effects of changing these parameters on the model’s performance accuracy. The final goal
of this paper was to choose the best DL algorithm with the neural network architecture
that produced the maximum accuracy with the minimum computational consumption.
The findings from the empirical analysis of this paper also highlight the overlooked issues
and future perspectives that encourage researchers to solve these problems.

This paper continues our previous research work that described a systematic literature
review on phishing detection and machine learning [15]. One of the findings from this work
suggested that DL algorithms appeared to be an effective solution for detecting phishing
attacks, yet they have not been fully exploited. In this regard, an empirical analysis
was conducted in this study to explore the most recent DL techniques used for phishing
detection. In this paper, the following contributions were made via the empirical study:

• We exploited the state-of-the-art DL algorithms and compared their performance
using numerous evaluation metrics;

• We identified the most common parameters and examined their influences on the
performance of four DL models;

• We highlighted several issues based on the findings from the empirical experiments
and recommended possible solutions to address these issues.

The remainder of this paper is structured as follows. Section 2 provides a short
description of four different DL architectures, and reviews previous studies on these
algorithms in the phishing detection domain. The methodology used to conduct this
research is presented in Section 3, including experiment setup, website features, DL models,
and parameter optimization. Section 4 summarizes the findings, highlights the issues
observed from the obtained results, and suggests possible solutions for future research
directions. Finally, the conclusion and future work of this research is given in Section 5.

2. Literature Review

This section provides a general overview of four different DL algorithms, including
DNN, CNN, LSTM, and GRU. Previous research on these four types of DL architectures in
the phishing detection domain is also discussed. In each study, we analyzed the neural
network architecture, parameter optimization, and performance metrics to achieve a
comprehensive understanding of each DL model’s design, implementation, and evaluation.
Finally, the novelty of this research work compared with other related studies in the same
research area is also highlighted.

2.1. Deep Neural Network (DNN)

Deep neural network (DNN) is one of the most common types of DL algorithm widely
used in the cybersecurity domain. DNN is well-known among DL architectures due to
its success in a wide range of applications [13], its ability to express complex functions

Appl. Sci. 2021, 11, 9210 3 of 32

with fewer parameters, and its capability to facilitate feature extraction and representation
learning [16]. However, DNN requires a substantial amount of labeled data for training.
In addition, it still suffers from insufficient parameter selection techniques [17], and the
learning process is time-consuming [13]. Despite its disadvantages, several research works
have been conducted to examine the effectiveness of applying DNN in detecting phishing
webpages. Table A1 in Appendix A summarizes previous studies related to DNN for
phishing detection, in the literature.

As a single classifier, DNN was used in [18–20] to train the classification system for
the detection of phishing websites. Instead of using DNN as a stand-alone classifier, the
authors in [21,22] combined it with other DL algorithms to build a model to differentiate
between malicious and benign URLs. It was observed that among these DNN-based
models, parameters settings play an essential role in determining the system’s performance
accuracy. Nevertheless, some studies [21,22] did not mention any of the hyper-parameters
in the design of the neural network architecture, while other papers [19,20] only specified
a few of them without performing parameter optimization. The authors in [18] made
additional effort in fine-tuning the parameters, but not all were included.

Moreover, the performance metric is another crucial factor that needs to be considered
when analyzing and evaluating a phishing detection system. Previous studies have shown
a limited number of metrics were used to assess the performance of DL models in detecting
phishing websites. For example, only two metrics were used in [19], and three were
measured in [21]. More metrics were used in the studies [18,22], yet only the selected ones
were utilized to benchmark with other machine learning classifiers.

2.2. Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is another popular type of DL technique in
the field of cybersecurity. CNN is well-fitted to multi-dimensional data and specializes
in image and signal processing [1,23]. In addition, CNN can extract features from raw
data more efficiently and can solve complicated tasks. It is also more scalable and requires
less training time [4]. Nevertheless, CNN architecture needs high computational power
and a big dataset when dealing with image data [13]. Although CNN has achieved
tremendous success with computer vision, it has also been applied in the cybersecurity
domain. Table A2 from Appendix A provides a summary of previous research works on
CNN in the field of phishing detection.

CNN was used as a single classifier in numerous research to distinguish between
phishing and legitimate websites [7,8,20,24–28]. It can also be used in combination with
other DL techniques to form an ensemble model and to improve phishing detection
accuracy [10,11,29–36]. The difference between the architectures of CNN and DNN is the
use of convolutional layers and kernels. Realizing the important role of these elements in
determining the performance accuracy of phishing detection models, most researchers paid
more attention to specifying these parameters, not others such as learning rate, dropout
rate, epoch, or batch size. While this problem was avoided in [10], details of optimizing
these parameters were not provided in the paper. Similarly, the authors of [24,28,29,32]
described the optimization process, but only on certain parameters, for example, the
number of convolutional layers, number of kernels, and kernel size. Additionally, in terms
of performance metrics, it was observed that accuracy, precision, recall, and F1-score were
the most common measures [7,24,28,30–32,34,35,37,38]. Other evaluation metrics were
training time, detection time, GPU memory requirement, etc. [7,24,28,32–34].

2.3. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN)
that involves a loop structure between neurons in each layer [12]. LSTM is suitable for
sequential or time-series data since it can maintain the continuity of information [39]. LSTM
is more popular than the original RNN because the vanishing or exploding gradient and
long-term dependency problems in traditional RNN have been overcome in LSTM [1,3,4].

Appl. Sci. 2021, 11, 9210 4 of 32

LSTM takes a significantly long time to train, despite these advantages, compared to other
DL algorithms [1]. In addition, LSTM only considers the forward information and does not
consider the backward information. This issue, however, can be resolved in Bidirectional
LSTM [40]. LSTM has caught much attention among researchers, and some of their research
works in the phishing detection domain are shown in Table A3 (Appendix A).

Similar to DNN and CNN, LSTM can be implemented individually [20,41–45], in-
corporated with traditional machine learning techniques [46,47], or combined with other
DL algorithms in a hybrid model for an improved performance in detecting malicious
websites [10,11,31,33,35,36]. Among the studies of LSTM-based phishing detection models,
a majority of them specified the parameter settings for neural network architecture, number
of epochs, and learning rate; but ignored the dropout rate and batch size [31,41,42,44,47].
Moreover, only certain parameters were optimized during the fine-tuning process [32,42].
To evaluate the overall performance of LSTM models, four popular metrics were used, be-
ing accuracy, precision, recall, and F1-score [31,35,41,44,45]. Other measures training time,
detection time, error rate, detection cost, number of epochs per second, etc. [33,42,46,47].

2.4. Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is another variant of RNN and is a lightweight version
of LSTM [23]. While working on small datasets, the performance of GRU is similar to
LSTM [48]. Some of the previous studies that implemented GRU in their phishing detection
models are provided in Table A4 (Appendix A).

There are a limited number of studies on the implementation of GRU for phishing
detection. GRU and Bidirectional GRU can be employed as a single classifier [41,48], or
as a replacement to the max-pooling layer in a CNN model [34]. Similar to LSTM, in
implementing GRU-based phishing detection models, only neural network architecture,
learning rate, and epoch were specified, but not batch size and dropout rate [41,48]. Plus,
none of the reviewed papers on GRU included parameter optimization in their experiments.
Regarding the performance metrics, all three studies [34,41,48] used accuracy, precision,
recall, and F1-score to assess the effectiveness of the DL algorithm. Additional metrics
involved GPU memory requirement and parameter set size [34,48].

2.5. Hyper-Parameters

One of the factors that affects the performance of DL algorithms is the selection
of hyper-parameters during training. Their values can be fine-tuned to optimize the
performance accuracy of phishing detection models. These parameters include, but are
not limited to, the number of layers in the neural networks, number of neurons (units)
in each layer, learning rate, dropout rate, number of epochs, batch size, etc. [17]. A
basic understanding of each parameter will assist in selecting its value in the design and
implementation of various DL architectures.

Learning rate. Learning rate is one of the essential factors in the parameter settings
of DL models to determine how proper the network can be trained or how fast the model
can converge [22,42]. As the learning rate is associated with the convergence speed of the
DL algorithm, a more significant learning rate (0.5 to 1) results in a faster convergence
speed [49]. A higher learning rate guarantees not only good performance but also causes
low stability. However, this only happens at the early stage; after a certain period, the
model’s performance will slow down and eventually stop before reaching optimality.
Meanwhile, a smaller learning rate (0.0001 to 0.01) can guarantee the model’s stability,
yet it delays the speed of convergence, and hence, a longer time is needed to train the
DL algorithm.

Dropout rate. Dropout is one of the regularization techniques used to avoid overfitting
problems in deep neural network architectures [23]. Overfitting usually happens when
the DL model performs well on the training dataset but does not perform well on the
validation set. This causes the training accuracy to be much higher than the validation
accuracy. The dropout rate is a probability coefficient at which neurons in a particular layer

Appl. Sci. 2021, 11, 9210 5 of 32

of deep neural networks are discarded during the training process [33]. For instance, when
a dropout rate of 0.2 is applied to a specific layer, 20% of the total number of neurons in
that particular layer will be dropped. Dropout strategy is usually used in CNN, LSTM, and
GRU architectures to prevent overfitting issues [10,30,34].

Batch size. In implementing a DL algorithm, a dataset consisting of numerous samples
is used and split into two parts, namely training and testing. In the training phase, instead
of passing the whole set of samples to the DL model, training data is divided into batches,
in which each batch contains a small amount of data. The size of this subset of data is
known as batch size [50]. The normal range of batch size is from 16 [37] to 2048 [32],
depending on the size of the dataset. Small datasets generally use small batch sizes, while
big datasets use larger batch sizes.

Epoch. Epoch is the number of iterations for training after the DL model has been
built and compiled. It is essential to select the appropriate number of training iterations
since it can affect the performance accuracy of the phishing detection model [22]. The
detection accuracy can increase as the number of epochs goes higher; however, it also
requires longer training of the deep neural network. As a result, to determine the number
of epochs that give the best performance, one can increase the number of training iterations
until reaching the minimum loss. With the growing number of epochs, the model loss will
continue to decrease to a specific minimum value and then fluctuate [42]. At this point,
training should be stopped since the model accuracy remains stagnant for a further higher
number of iterations.

Number of layers. Network layers refer to the hidden layers in DNN, the convolu-
tional layers in CNN, the LSTM/GRU layers in LSTM/GRU architecture, the Restricted
Boltzmann Machine (RBM) layers in Deep Belief Network (DBN), the number of Autoen-
coders (AE) in the Stacked Autoencoder (SAE) model, etc. [22]. An increase in the number
of layers in neural network architecture will increase network complexity and slow down
the training process. Consequently, it is advisable to slowly raise the number of layers
while observing the model’s performance accuracy. Further increase in layers might result
in additional processing time while the best performance cannot be guaranteed [42].

Number of neurons/units per layers. In addition to network layers, the number
of neurons or units in each layer can also significantly impact the performance of the
DL algorithm. Similarly, increasing the number of neurons in the hidden layers of the
Deep Neural Network or the number of LSTM units in the LSTM layers might cause low
detection accuracy and long training time [42]. Therefore, researchers need to fine-tune
these values to ensure an effective and efficient DL model for phishing detection without
compromising its performance accuracy.

Number of kernels. Instead of the number of neurons in the hidden layers of DNN,
in CNN architecture, the number of kernels or filters in the convolutional layers can
significantly influence the success rate at which phishing websites are detected. Kernels, or
filters, are used mainly in CNN models to convolve the input data into numerous feature
maps [22]. Different kernels were used in previous research works, ranging from 8 [11]
to 512 [42], depending on the number of input features, size of the dataset, or the neural
network architecture.

Kernel size. Kernel size, or window size, is another parameter that needs to be fine-
tuned in CNN models. Kernel size is the size of a one-dimensional window, which is
convolved sequentially in the convolutional layers and depends on the number of input
features [42]. Different kernel sizes have been utilized in previous studies, with typical
values from 1 to 10 [28,29,35]. The optimal kernel size that produces the best performance
is determined based on the model’s loss and accuracy.

Optimizer. While training deep neural networks, the loss function or error is calculated
to evaluate the effectiveness and efficiency of the DL algorithm. This loss function can be
optimized, and the weights can be updated by using optimizers [34,42]. Popular methods
of optimization include Root Mean Square Propagation (RMSProp), Gradient Decent (GD),

Appl. Sci. 2021, 11, 9210 6 of 32

Adam, AdaGrad, AdaDelta, etc. [26]. GD and Adam are the most common optimization
techniques in classification problems to optimize the error and adjust the weights [37].

Activation function. The activation function is represented by a mathematical equation
that defines an output of a neuron based on given inputs [13]. It is considered one of the
important parameters in DL architectures that determines the training model’s output,
accuracy, and efficiency. In the neural network, neurons of the same layer usually use the
same activation function [6]. Rectified Linear Unit (ReLU), Softmax, sigmoid, and Tanh are
examples of frequently-used activation functions for DL models.

2.6. Performance Metrics

To evaluate the performance of a typical DL model, several metrics can be used.
The most common is the confusion matrix which comprises four basic measures: True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN), as shown
in Figure 1. In addition, Precision, Recall, F1-Score, Area Under the Curve, and Accuracy
are also important metrics that are required in the performance evaluation of phishing
detection models. The formula of these metrics can be defined as Equations (1)–(6). In any
phishing detection model, the primary purpose is to identify phishing attacks; therefore,
a phishing sample is often regarded as a positive instance while a legitimate sample is
considered as a negative instance [3,41,51].

Figure 1. Confusion matrix.

• True Positive (TP) is the number of positive instances that the model has correctly clas-
sified or the number of samples that have accurately been labeled as phishing [2,52,53].

• True Negative (TN) represents the number of negative instances that the model has
correctly predicted or the number of samples that have accurately been categorized as
legitimate [2,52,53].

• False Positive (FP) denotes the number of negative instances that have been incorrectly
recognized as positive or the number of legitimate samples that have been misclassified
as phishing [2,52,53].

• False Negative (FN) refers to the number of positive instances that have been wrongly
labeled as negative, or the number of malicious samples that have been misidentified
as benign [2,52,53].

False Positive Rate (FPR), also known as False Alarm Rate (FAR) or Fall-Out, is defined
as the ratio of FP instances to the total number of predicted negative samples. In other
words, it is the number of legitimate instances incorrectly classified as phishing over the
total number of legitimate samples [2,46], and is measured as follows:

FPR =
FP

FP + TN
(1)

False Negative Rate (FNR) is defined as the ratio of FN instances to the total number
of predicted positive samples, or the percentage of phishing instances wrongly marked as
legitimate in all the phishing samples [2,46], and is calculated as:

FNR =
FN

FN + TP
(2)

Appl. Sci. 2021, 11, 9210 7 of 32

Precision (PR) is the fraction of predicted positive instances that are positive [1], or the
proportion of phishing samples correctly classified as phishing over the total number of
actual phishing samples [46,52]. PR indicates the confidence level of the phishing detection
model, i.e., how many are malicious out of all the phishing instances detected [18]. PR can
be used as a valuable measure for situations in which an unbalanced dataset is involved,
in cases when accuracy fails to indicate how well the DL model performs, or in scenarios
where the accuracy score alone is insufficient for security experts to make a decision [1].
High precision indicates how accurately the model can detect phishing attacks. PR can be
computed using the following formula:

PR =
TP

TP + FP
(3)

Recall (RC), also known as True Positive Rate (TPR), Sensitivity, or Probability of
Detection (PD) [54], represents the percentage of positive instances in all predicted positive
samples. It shows the proportion of phishing instances accurately recognized as phishing
over the total number of predicted phishing samples [46]. RC can sometimes be named as
detection rate [3], which reflects the model’s ability to identify phishing activities, and is
mathematically given by:

RC =
TP

TP + FN
(4)

F1-Score (F1), or F-Measure, is a harmonic means of precision and recall, representing
the balance of both these measurements. F1-Score is a good indication of how well the
model has performed [1]. A high F1 value means the model can detect malicious attacks
while ensuring that FP and FN are minimized. F-Measure signifies the model’s resilience
and effectiveness [32,55]. Thus, it can be used to estimate the overall performance of the
DL model and is given by the following equation:

F1 = 2.
PR.RC

PR + RC
(5)

Area Under the Curve (AUC) is measured as the total area under a Receiver Operating
Characteristic (ROC) curve, which is a graph plotted with the FPR as x-axis and TPR as
y-axis [54]. It describes the model’s classification ability while varying the classification
thresholds and typically ranges between 0.5 and 1.0 [51]. AUC closed to 1.0 is an ideal
scenario with perfect classification capability, whereas AUC less than 0.5 indicates an
inferior detection performance. In other words, the higher the AUC value, the better
the classifier.

Accuracy (ACC) is one of the most essential and popular metrics to assess the perfor-
mance of a DL algorithm [1]. In the context of phishing detection, it shows how effectively
and efficiently a classifier can distinguish between phishing and legitimate. ACC measure
can be used as a good indicator of how well a DL model is trained and described as the
overall effectiveness of the classification model [2]. There are certain limitations with
accuracy when it comes to unbalanced datasets. However, valuable insight can be derived
from accuracy measures when the classes are balanced [54]. ACC is calculated as the ratio
of correctly classified instances (both phishing and legitimate) to the total input samples
(the whole dataset). The equation used for the measurement of accuracy is as follows:

ACC =
TP + TN

TP + TN + FP + FN
(6)

2.7. Research Novelty

This section highlights the novelty of this empirical study, which is viewed from
three perspectives: specification of parameter settings in neural network architectures,
optimization process of hyper-parameters for DL algorithms, and performance metrics for
phishing detection model evaluation.

Appl. Sci. 2021, 11, 9210 8 of 32

Even though DL offers various advantages, one of its major drawbacks is manual
parameter tuning. There is no standard and holistic guideline for selecting these hyper-
parameters to achieve the highest performance accuracy. Table 1 shows some of the
previous research works utilizing DL for phishing detection. These studies are categorized
into four groups according to their level of specifying the parameter settings in the neural
network architecture. The four categories include Not Specified (NS), Rarely Specified
(RS), Partly Specified (PS), and Fully Specified (FS). Studies belonging to the first group
(NS) applied DL algorithms without mentioning any hyper-parameters, while those in the
second group (RS) only specified one or two. The third group (PS) showed the highest
number of studies, yet not all of the parameters were specified or described. Unlike
previous research, our study specified all of the hyper-parameters in DL architectures and
described the tuning process step-by-step, as provided in Section 3.4.

Table 1. Frequency of parameter settings for DL architectures.

Category Algorithm
Frequency

Reference
NS 1 RS 2 PS 3 FS 4

Single DNN - 1 - - [19]
MLP 1 - 2 - [6,56,57]
CNN - - 4 - [7,8,25,27]
LSTM - 1 1 - [44,45]
BiLSTM 1 - - - [58]
BiGRU - - 1 - [48]

Dual CNN, CNN - - 1 - [37]
CNN, LSTM 1 - 4 - [30,31,33,59,60]
CNN, BiLSTM 3 - 1 - [10,36,40,61]
CNN, GRU - - 1 - [34]

Multiple CNN, RNN, MLP - - 1 - [11]
DNN, DBM, SAE 1 - - - [21]
DNN, CNN, LSTM - - 1 - [20]
LSTM, GRU, BiLSTM, BiGRU - - 1 - [41]
DNN, CNN, LSTM, GRU - - - 1 Our study

Total 7 2 18 1
1 Not Specified. 2 Rarely Specified. 3 Partly Specified. 4 Fully Specified.

In addition, the previous studies were also categorized based on the number and type
of DL algorithms used. Some studies employed only one technique, while others applied
dual or multiple methods. The authors of [41] used four different DL algorithms, but they
belonged to the same type of machine learning (unsupervised). Our research covers the
highest number of DL techniques, and from various categories, such as supervised (CNN),
un-supervised (LSTM, GRU), and hybrid (DNN), to provide more comprehensive research
on numerous DL algorithms.

Table 2 provides a more in-depth analysis of the parameter optimization process in
the related studies. Most studies focused on describing how to achieve the parameter
settings for neural network architecture and learning rate, while dropout rate, batch size,
and the number of epochs were neglected. Unlike the previous works from Table 1, those
in Table 2 described in detail how to obtain some of the hyper-parameters, including the
neural network architecture, learning rate, dropout rate, batch size, and epoch. In contrast,
our study described the step-by-step process of fine-tuning all the parameters above, to
further investigate how these hyper-parameters can affect the performance accuracy of a
phishing detection model.

Table 3 shows a list of performance metrics frequently used by previous authors in their
studies. The most common metrics adopted by researchers to evaluate the performance
of DL-based phishing detection models were ACC, PR, RC, and F1-Score. Other metrics,
such as FPR, FNR, training time, and testing time, were measured by only some authors.
Meanwhile, GPU memory requirement, parameter size, number of URLs per second, epoch

Appl. Sci. 2021, 11, 9210 9 of 32

per second, detection cost, etc., were seldom used. Unlike previous studies that measured
only some of the performance metrics, our study covered most of them. In addition to
the four common measurements (ACC, PR, RC, F1), other metrics, including FPR, FNR,
and AUC, are important indicators of the DL model’s effectiveness in detecting phishing
attacks. Furthermore, time complexity (training and testing time) and memory constraints
(parameter size and GPU storage) are also crucial factors that need to be considered when
assessing the feasibility of DL phishing detection models. As a result, all of these metrics
were included in the evaluation process of this empirical study.

Table 2. Related works on parameter optimization for DL algorithms.

Reference Algorithm
Parameters

Learning
Rate

Network
Architecture Dropout Rate Batch Size Epoch

[9] SAE x x

[18] DNN x x

[49] DBN x x

[50] GAN x x x

[24] CNN x x x

[28] CNN, CNN x x x x

[22] DBN, DNN x x

[32] CNN, BiLSTM x x

[42] DNN, CNN, LSTM x x

[29] CNN, RNN, BiLSTM x x x x

Our study DNN, CNN, LSTM,
GRU

Table 3. Performance metrics used in the previous studies and our research work.

Reference
Performance Metrics

FPR FNR ACC PR RC F1 AUC Training
Time

Testing
Time Other

[7]

[10]

[11]

[24]
GPU memory requirement

Parameter set size, Loss
Number of URL per second

[28] Parameter size

[32]

[33] Detection cost, Epoch/s

[34] Parameter size

[41] Parameter size

[48] Model storage
spaceParameter size

Our study GPU memory
stageParameter size

3. Research Methodology

This section briefly describes the empirical experiments carried out in this study, the
website features used as input vectors, the DL models, and the parameter optimization for
four different DL architectures.

Appl. Sci. 2021, 11, 9210 10 of 32

3.1. Experiment Setup

Figure 2 shows a theoretical workflow of the experimental setup for this empirical
study. The entire process was divided into four stages: input URL (Uniform Resource
Locator), data pre-processing and feature engineering, deep learning, and classification. In
the first stage, a publicly available dataset was obtained from the University of California
Irvine Machine Learning Repository (UCI), consisting of 11055 URLs. This dataset was
comprised of both phishing and legitimate websites (4898 and 6157 URLs, respectively) [62].
In the second stage, the dataset went through a data cleaning and data transformation
process in the pre-processing phase. Meanwhile, URL features were converted into feature
vectors that acted as inputs to the DL model. The dataset was then split into two parts
with a ratio of 8:2 (80% as training dataset and 20% as testing dataset). In the third stage,
several DL algorithms were built, compiled, and evaluated. Finally, the webpage URL
was classified as legitimate or phishing, and a set of performance metrics was measured to
assess the performance of four DL models in detecting phishing websites.

Figure 2. Theoretical workflow.

In this research, Google Colaboratory, Python, and Tensorflow were used to build
several DL models. Instead of running on a local machine and using local GPU, all four DL
algorithms were trained using GPU on Google Colaboratory, with a capacity of 11.441MB.
The programming language was written in Python code with the help of the TensorFlow
package. The use of cloud servers allowed users to leverage the power of Google’s hardware
to execute the codes and run Tensorflow operations. The dataset and source code used in the
experiments are available on https://github.com/quangdn83/WebsitePhishingDetection
(accessed on 21 September 2021) [63].

3.2. Website Features

In the experiment, website features were converted to feature vectors and used as
inputs to DL models. Table 4 shows a list of 30 features used in this study. Each feature has
three possible values: −1, 0, and 1 (−1 is phishing, 0 is suspicious, and 1 is benign). The
last feature, named “class”, is the classification of the URL.

Figure 3 is the heatmap displaying the correlation matrix of these features. A standard
range of correlation is from −1 to +1, where −1 is the lowest negative correlation, and +1
is the highest positive correlation. A negative correlation is displayed in the brighter color
range, while a positive correlation is displayed in the darker color range. Particularly in this
dataset, the mapping of two different features, named Favicon and popUpWindow, showed
the darkest color, meaning they are highly or positively correlated. Positive correlations
mean one feature marks the URL as phishing, and so does the other. Whereas negative
correlations mean one feature marks the URL as malicious, while the other does not [6].

https://github.com/quangdn83/WebsitePhishingDetection

Appl. Sci. 2021, 11, 9210 11 of 32

Table 4. List of phishing website features.

Type No Feature Name Description Value

Address
bar-based

1 IP address UsingIP Having IP address in URL −1, 1
2 URL length LongURL Long URL to hide the suspicious part −1, 0, 1
3 Shortening service ShortURL Using URL shortening services “TinyURL” −1, 1
4 @ Symbol Symbol@ URL’s having @ symbol −1, 1
5 “//” redirecting Redirecting// Having “//” within URL path for directing −1, 1
6 Prefix suffix PrefixSuffix Adding prefix or suffix separated by (-) to the domain −1, 1
7 Sub domain SubDomains Sub domain and multi sub domain −1, 0, 1
8 SSL final state HTTPS Existence of HTTPS and validity of the certificate −1, 0, 1
9 Domain registration DomainRegLen Expiry date of domains/Domain registration length −1, 1

10 Favicon Favicon Favicon loaded from a domain −1, 1
11 Port NonStdPort Using non-standard port −1, 1
12 HTTPS token HTTPSDomainURL The existence of HTTPS token in the domain part of URL −1, 1

Abnormal-based

13 Request URL RequestURL Request URL within a webpage/Abnormal request −1, 1
14 URL of anchor AnchorURL URL within <a> tag/Abnormal anchor −1, 0, 1
15 Links in tags LinksInScriptTags Links in <Meta>, <Script> and <Link> tags −1, 0, 1
16 SFH ServerFormHandler Server Form Handler −1, 0, 1
17 Email InfoEmail Submitting information to E-mail −1, 1
18 Abnormal URL AbnormalURL Host name is included in the URL/Whois −1, 1

HTML and
JavaScript-based

19 Redirecting WebsiteForwarding Number of times a website has been redirected 0, 1

20 On mouseover StatusBarCust On mouse over changes status bar/Status bar
customization −1, 1

21 Right click DisableRightClick Disabling right click −1, 1
22 Pop-up window UsingPopupWindow Using Pop-up window −1, 1
23 Iframe redirection IframeRedirection Using Iframe −1, 1

Domain-based

24 Age of domain AgeofDomain Minimum age of a legitimate domain is 6 months −1, 1
25 DNS record DNSRecording Existence of DNS record for the domain −1, 1
26 Website traffic WebsiteTraffic Being among top 100,000 in Alexa rank −1, 0, 1
27 Page rank PageRank Having a page rank greater than 0.2 −1, 1
28 Google index GoogleIndex Website indexed by Google −1, 1
29 Link reference LinksPoitingToPage Number of links pointing to a page −1, 0, 1
30 Statistical report StatsReport Top 10 domain and top 10 Ips from PhishTank −1, 1

Result class Phishing or legitimate −1, 1

3.3. Deep Learning Models

This empirical study built four phishing detection models using four different DL
algorithms: DNN, CNN, LSTM, and GRU. The general architecture of a typical DL-based
phishing detection model consists of an input layer, one or more middle layers, and
one output layer. Inputs to each DL model are website features that have already been
converted to feature vectors. A total of 30 features were used in this study and hence,
there were 30 neurons in the input layer of the neural network architecture. Different
DL algorithms were used in the middle layers to build the phishing detection models,
including DNN, CNN, LSTM, and GRU. Finally, only one neuron was used with a sigmoid
activation function in the output layer to classify the web page as malicious or benign.

DNN. A DNN structure consists of an input layer, an output layer, and one or more
hidden layers [18], as shown in Figure 4a. Each node or neuron in one layer is connected to
the other nodes in the next layer to form a dense or fully-connected layer [19]. The number
of hidden layers and neurons in each hidden layer can vary. The activation functions used
in the hidden layers and the output layer are ReLU and sigmoid, respectively. Researchers
need to fine-tune these parameters to find the optimal values that provide the highest
detection accuracy.

CNN. The architecture of a CNN model generally consists of three basic layers: a
convolutional layer, a pooling layer, and a fully connected layer [37]. Firstly, a convolutional
layer is used for feature extraction and consists of multiple convolutional kernels or
filters that divide the input vectors into small blocks. Then, a series of feature maps
are generated by performing convolutional operations on the input vectors with the chosen
kernels [10]. Secondly, a pooling layer is utilized for dimensional reduction by reducing
the dimensionality of the feature maps. The pooling layer has two functions: accelerate the
network operation and improve the performance of the entire convolutional network [24].
Thirdly, a fully connected (FC) layer is responsible for classification purposes. FC layer is a

Appl. Sci. 2021, 11, 9210 12 of 32

traditional neural network that uses extracted features from previous layers to perform
the final classification task [29]. To avoid overfitting problems, batch normalization and
dropout strategies are used between CNN layers (Figure 4b). ReLU is utilized as an
activation function in the convolutional and FC layers, while sigmoid is implemented in
the output layer.

Figure 3. Correlation matrix of website features.

LSTM. LSTM is a variant of RNN which involves memory cell structure. The memory
cell of a typical LSTM unit is comprised of three gates: an input gate, a forget gate, and an
output gate [10]. Unlike a feedforward neural network, the output of a neuron in LSTM
architecture at a particular instant can become input to the same neuron. There can be more
than one LSTM layer in the LSTM-based phishing detection model, in which a dropout
function is used in one layer after another to prevent overfitting issues as illustrated in
Figure 5a. The LSTM and dense layers use ReLU, while the output layer uses Sigmoid as
their activation functions.

GRU. Similar to LSTM, GRU is constructed with gates and memory cells. Yet, it is
simpler in implementation and computation [41]. Instead of a three-gate structure such
as LSTM, there are only two gates in the GRU memory cell: input and forget gates. The
overall architecture of GRU-based phishing detection models is similar to that of LSTM.
Each GRU unit is replaced by an LSTM unit, as shown in Figure 5b.

Appl. Sci. 2021, 11, 9210 13 of 32

Figure 4. Neural network architecture for (a) DNN and (b) CNN.

Figure 5. Neural network architecture for (a) LSTM and (b) GRU.

Appl. Sci. 2021, 11, 9210 14 of 32

3.4. Parameter Optimization

In designing and implementing four DL architectures, selecting a set of parameters
that produce the best performance accuracy is essential. This process is called parameter
tuning and was conducted through a series of experiments described as follows.

Experiment 1: Optimizing the learning rate. Firstly, a set of parameters (including
the number of layers, number of neurons, number of kernels, kernel size, dropout rate,
batch size, and number of epochs) was randomly selected for each DL algorithm. This set
of parameters remained throughout the experiments, while the learning rate changed from
0.0001 to 0.1 to determine the value that yielded the highest detection accuracy.

Experiment 2: Optimizing the dropout rate. Using the learning rate found in the
previous experiments, the impact of the dropout rate on the performance of various DL
models was investigated. Different values of dropout rate were tested (from 0.1 to 0.5),
and the rate with the best performance accuracy was recorded and used in the following
experiments.

Experiment 3: Optimizing the neural network architecture. Since different network
architectures might produce different results in detection accuracy, changing the structure
of neural networks while keeping the learning rate and dropout rate constant was the next
step in the parameter optimization process. Different layers, number of neurons per layer,
number of kernels, and kernel sizes were examined to find the optimal set that offered the
highest accuracy measure.

Experiment 4: Optimizing the batch size. With the learning rate, dropout rate, and
deep neural network architecture obtained from the previous experiments, various values
of batch size (from 8 to 1024) were tested, and their corresponding detection accuracies
were measured. The batch size with the highest accuracy was used in the next experiment
as part of parameter settings.

Experiment 5: Optimizing the number of epochs. The final step in the parameter tun-
ing process was to optimize the number of epochs. The optimized value was determined by
increasing the training iteration from 50 to 700. At this point, the optimal set of parameters
that produced the best detection accuracy had been obtained. A list of parameters that
affected the performance of four DL algorithms is recorded in Table 5.

Table 5. List of parameters in various DL models.

DL
Algorithm

Number of
Layers

Number of
Units

Number of
Kernels

Kernel
Size

Learning
Rate

Dropout
Rate Batch Size Number of

Epochs

DNN

CNN

LSTM

GRU

Optimizer and activation functions. The parameters above vary according to the num-
ber of input features, the size of datasets, the type of DL algorithms, and the architecture of
neural networks. Therefore, different authors in previous studies used different settings
for their DL models. However, the common factor among them was the use of optimizer
and activation functions. Most of the related studies utilized Adam as an optimizer, ReLU
as an activation function for hidden or dense layer, and sigmoid as an activation function
for the output layer.

Similarly, the same settings were used in the experimental setup of this empirical
study without the need to fine-tune as in other hyper-parameters. Particularly, Adam was
chosen because it proved to be the best optimizer among other optimization techniques.
ReLU was selected as an activation function in the hidden layers of DNN, convolutional
and fully connected layers in CNN, or LSTM/GRU layer in LSTM/GRU models. Finally,
sigmoid was used as an activation function at the output layer because sigmoid function

Appl. Sci. 2021, 11, 9210 15 of 32

produces values in the range of 0 to 1. Thus, it is more suitable and adaptable for the
phishing detection model [32] since phishing detection is a binary classification problem in
which the output of the classifier is either 0 (phishing) or 1 (legitimate).

4. Results and Discussion

This section presents and discusses the results obtained from numerous experiments
to examine the impact of hyperparameter tuning on the performance accuracy of four DL
models. Various issues that arose from these experimental results are also highlighted to
manifest the overlooked problems that need to be resolved. Moreover, this section also
discusses the perspectives that motivate researchers to explore new directions in phishing
detection and DL.

Results obtained from Experiment 1 to 5 described in Section 3.4 are provided in
Appendix A as listed in Table 6 below.

After conducting a series of experiments, the optimal set of parameters with the
highest performance accuracies for various DL models was summarized in Table 7. In
the experiment setup, 30 website features were used as input vectors, hence, there were
30 neurons in the input layer of all four DL architectures. Furthermore, since phishing
detection is a binary classification problem, only one neuron in the output layer could
classify the URL as either legitimate or phishing.

Table 6. List of experiments for parameter optimization in Appendix A.

Experiment Description Parameter
DL Algorithm

DNN CNN LSTM GRU

1 Optimizing the
learning rate Learning rate Table A5 Table A9 Table A16 Table A21

2 Optimizing the
dropout rate Dropout rate - Table A10 Table A17 Table A22

3
Optimizing the
neural network
architecture

Number of layers/
Number of neurons
per layer

Table A6 Table A13 Table A18 Table A23

Number of kernels - Table A12 - -
Kernel size - Table A11 - -

4 Optimizing the
batch size Batch size Table A7 Table A14 Table A19 Table A24

5 Optimizing the
number of epochs Epoch Table A8 Table A15 Table A20 Table A25

Table 7. An optimal set of parameter settings for various DL algorithms.

DL
Algorithm

No of
Layers

Number of
Neurons

Number of
Kernels

Kernel
Size

Learning
Rate

Dropout
Rate

Batch
Size

No of
Epochs

DNN 5 (30 16 4 2 1) - - 0.001 - 32 500
CNN 4 (30 16 1) 16 3 0.005 0.5 32 50
LSTM 3 (30 128 1) - - 0.0005 0.5 32 700
GRU 4 (30 128 128 1) - - 0.001 0.5 32 200

4.1. Results with DNN

For the DNN algorithm (Figure 6), the neural network with three hidden layers and
neurons of (16 4 2) (16 neurons in the first hidden layer, 4 neurons in the second hidden
layer, and 2 neurons in the third hidden layer) achieved higher accuracy than other DNN
architectures. Other parameters such as learning rate, batch size, and epoch were set to
0.001, 32, and 500, respectively. The highest accuracy recorded for this set of parameters was
97.29%. These results were achieved after a series of experiments provided in Appendix A
(Tables A5–A8).

Appl. Sci. 2021, 11, 9210 16 of 32

Figure 6. Optimal DNN architecture.

4.2. Results with CNN

Similar to the DNN algorithm, CNN also achieved the best detection accuracy with
a batch size of 32. However, the CNN structure was different from that of DNN since
the CNN model consisted of convolutional layers with a different number of kernels and
kernel size (Figure 7). From the experiment, 16 kernels of size three (3) were found to have
the highest accuracy of 96.56%. Other parameters, including learning rate, dropout rate,
and epoch, were set to 0.005, 0.5, and 50, respectively. Results obtained from this set of
experiments are provided in Appendix A (Tables A9–A15).

Figure 7. Optimal CNN architecture.

4.3. Results with LSTM

Likewise, different sets of parameters were tested for the LSTM model and provided
in Appendix A (Tables A16–A20). The obtained results indicated that the same dropout
rate (0.5) and batch size (32) were acquired to produce the highest performance accuracy
(97.20%). Nevertheless, only one LSTM layer was needed in the network architecture
(Figure 8) because the LSTM algorithm took longer to train. Therefore, adding more layers
into the neural network only caused a high computation problem, which compromised the
efficiency of the phishing detection system.

Appl. Sci. 2021, 11, 9210 17 of 32

Figure 8. Optimal LSTM architecture.

4.4. Results with GRU

Last but not least, parameter settings for the GRU algorithm were set to (30 128 128 1)
(Figure 9), learning rate = 0.001, dropout rate = 0.5, batch size = 32, and epoch = 200. The
highest accuracy that the model could achieve with this set of parameters was 96.70%.
Detailed experiments of how to achieve this optimal set of parameters are provided in
Appendix A (Tables A21–A25). Similar to LSTM, GRU also required a long duration
of training time. As a result, a more complex network architecture with more layers or
neurons only increased the computational cost and reduced the model efficiency.

Figure 9. Optimal GRU architecture.

The loss and accuracy versus the number of epochs for different DL algorithms during
training and validation are shown in Figure 10; as the number of epochs increased, the
performance accuracy increased while the loss function decreased.

The performance metrics of four DL models are displayed in Table 8 and Figure 11. It
is observed from the experiments that the accuracy of the DNN model was slightly higher
than that of the other three DL algorithms. In addition, the amount of time required to train
and test the DNN model was relatively low. DNN also had the smallest parameter size and
occupied the least memory storage. In contrast, CNN had the lowest measure for accuracy
compared with the other three DL mechanisms, yet it required the shortest duration for
model training and testing. The parameter size for CNN was more significant than that for
DNN, but CNN consumed the most computational power in terms of GPU storage.

Meanwhile, to achieve an almost equivalent accuracy level as DNN, many iterations
were involved in the training phase of LSTM and GRU models, which made their training
time longer than the others. As the number of neurons in LSTM and GRU models was
higher, their parameters were also more significant. However, the GPU capacity require-
ment for LSTM and GRU was less than that for CNN. To sum up, no DL algorithm provided
the best measure across all performance metrics. Each DL technique has its pros and cons;

Appl. Sci. 2021, 11, 9210 18 of 32

therefore, selecting an appropriate DL approach is a challenging task that can affect the
outcomes of a phishing detection model.

Figure 10. Accuracy and loss of four DL algorithms.

Table 8. Performance metrics of four DL algorithms.

DL
Algorithm

Performance Metrics

FPR
(%)

FNR
(%)

ACC
(%) PR (%) RC (%) F1(%) AUC

(%)

Training
Time
(min)

Testing
Time (s)

Parameter
Size

Memory
Storage

(MB)

DNN 3.01 2.47 97.29 97.53 97.53 97.53 99.40 8.38 0.470 1507 172
CNN 3.50 3.39 96.56 96.61 97.09 96.85 99.51 0.9 0.263 3745 325
LSTM 1.80 3.55 97.20 96.45 98.63 97.53 99.11 169.17 0.804 66,689 184
GRU 2.48 3.94 96.70 96.06 98.03 97.04 98.79 55.07 1.447 149,505 184

Appl. Sci. 2021, 11, 9210 19 of 32

Figure 11. Performance metrics of four DL algorithms.

In Table 9, results obtained from the empirical analysis of this study are compared
with those attained from other authors using the same dataset. In previous studies, the
authors used only one type of DL algorithm, such as DNN, CNN, or MLP (multi-layer
perceptron). However, four different DL architectures from various categories (supervised,
unsupervised, and hybrid) were implemented in our research work. Moreover, dropout
rate and batch size, which were not specified in some studies [6,18,28], were included in
our empirical analysis. In addition, it is also observed from the table that although different
authors used the same algorithm, their optimal set of parameters and accuracy results were
not the same. This implies that researchers still had to perform manual parameter tuning
to obtain the optimal parameter settings for their DL models. The authors in [64] suggested
that this process could be optimized using swarm intelligence (Bat, Hybrid Bat, and Firefly
Algorithm). Yet, their accuracy measures were either equivalent or lower than other authors.
Meanwhile, the accuracies obtained from our study are almost as high as other authors.
Moreover, we also measured additional metrics to obtain a more comprehensive analysis
of different DL algorithms’ performance in detecting phishing websites.

Table 9. Comparison of parameter settings with other studies using the same dataset.

Reference DL
Algorithm

Parameter Settings
ACC
(%)Learning

Rate
Input
Layer

Hidden
Layer

Output
Layer

Number
of Kernels

Kernel
Size

Dropout
Rate

Batch
Size Epoch

[18] DNN 0.01 30 (20 10 5) 2 - - - - 200 97.50
[28] CNN - 30 (64 64) 1 64/64 12/6 - - 220 97.20
[6] MLP - - (100 100) - - - - - - 96.65

[64] DNN.BA 1 0.0185 30 (50 30) 2 - - - 44 155 95.76
DNN.HBA 2 0.0462 30 (42 30) 2 - - - 101 135 95.00
DNN.FA 3 0.0053 30 (50 30) 2 - - - 37 192 96.65

Our
study

DNN
CNN
LSTM
GRU

0.001
0.005
0.0005
0.001

30
30
30
30

(16 4 2)
(16)
(128)

(128 128)

1
1
1
1

-
16
-
-

-
3
-
-

-
0.5
0.5
0.5

32
32
32
32

500
50
700
200

97.29
96.56
97.20
96.70

1 Parameter settings for DNN using Bat Algorithm. 2 Parameter settings for DNN using Hybrid Bat Algorithm. 3 Parameter settings for
DNN using Firefly Algorithm.

Table 10 provides a comparison of various performance metrics between our research
work and previous studies using the same dataset. Compared with [64], our study achieved
higher accuracy and F1-Score for DNN and included various metrics not measured in [64].
Since MLP is a subset of DNN, MLP results from [6] could be compared with DNN from
our empirical analysis. The obtained results showed that our DNN model outperformed

Appl. Sci. 2021, 11, 9210 20 of 32

the MLP algorithm in all four metrics: ACC, PR, RC, and F1-Score. In addition, although
DNN and CNN accuracies in [18,28] demonstrated slightly better results than ours, some
of the performance metrics were not calculated in these studies. In [18], for instance, AUC,
time complexity, and memory constraints were not included in the evaluation process.
Even though training time, testing time, and parameter size were measured in [28], other
metrics (FPR, FNR, AUC, and memory storage) were not reported.

Table 10. Comparison of performance metrics with other studies using the same dataset.

Ref.
DL

Algorithm

Performance Metrics

Conventional Additional

FPR
(%)

FNR
(%)

ACC
(%)

PR
(%)

RC
(%)

F1
(%)

AUC
(%)

Training
Time
(min)

Testing
Time

(s)

Parameter
size

Memory
Storage

(MB)

[18] DNN 1.80 3.30 97.50 97.70 96.70 97.20 - - - - -
[28] CNN - - 97.20 96.90 98.10 97.50 - 10.67 0.472 27,985 -
[6] MLP - - 96.65 96.65 96.65 96.65 - - - - -

[64]
DNN.BA 1 - - 95.76 - - 95.70 - - - - -

DNN.HBA 2 - - 95.00 - - 94.93 - - - - -
DNN.FA 3 - - 96.65 - - 96.61 - - - - -

Our
study

DNN 3.01 2.47 97.29 97.53 97.53 97.53 99.40 8.38 0.470 1,507 172
CNN 3.50 3.39 96.56 96.61 97.09 96.85 99.51 0.9 0.263 3,745 325
LSTM 1.80 3.55 97.20 96.45 98.63 97.53 99.11 169.17 0.804 66,689 184
GRU 2.48 3.94 96.70 96.06 98.03 97.04 98.79 55.07 1.447 149,505 184

1 Parameter settings for DNN using Bat Algorithm. 2 Parameter settings for DNN using Hybrid Bat Algorithm. 3 Parameter settings for
DNN using Firefly Algorithm.

On the contrary, our study provided a complete set of performance metrics for four dif-
ferent DL algorithms. Conventional metrics (FPR, FNR, ACC, PR, RC, F1, and AUC) were
used to evaluate the effectiveness of the DL mechanism in detecting phishing websites. In
contrast, additional metrics (training time, testing time, parameter size, and memory usage)
were utilized to assess the computational complexity of the phishing detection model.

4.5. Issues and Perspectives

Parameter Tuning. It can be observed from the experiments that parameter tuning is
the common problem among all four DL algorithms. The parameters in the DL models
consist of the number of layers in the neural networks, number of neurons (units) in each
layer, number of kernels and kernel size (for CNN), learning rate, dropout rate, number of
epochs, batch size, etc. [17]. There is no standard and specific guideline for setting these
parameters so that the highest performance accuracy can be achieved. Manual fine-tuning
and conducting a series of experiments through trial and error are standard practices
among researchers who work with DL models. However, this process is tedious, time-
consuming, and labor-intensive. One possible solution to overcome the problem of manual
parameter tuning is to use optimization techniques to fine-tune the parameters and shorten
the tuning process [64].

Accuracy Deficiency. Accuracy deficiency is another widespread issue among DL
models, as accuracy is one of the most critical metrics that are used to evaluate the per-
formance of the selected DL algorithm. Several factors affect the accuracy of a phishing
detection model, including the quality of the dataset, the extracted features, the chosen
classifier, the parameter settings, etc. Some of the current studies in the literature focused on
solving the problem of accuracy deficiency by applying the existing DL algorithms [6,7,43].
In contrast, other researchers combined multiple DL techniques in an ensemble model to
enhance the detection accuracy [11,31,37]. Ensemble DL (EDL) models are formed by stack-
ing various DL algorithms in parallel and are divided into two categories: homogeneous
and heterogeneous. A homogeneous EDL architecture is constructed by combining DL
algorithms of the same type (CNN-CNN, LSTM-LSTM, GRU-GRU, etc.). In contrast, a
heterogeneous EDL model incorporates DL mechanisms of different kinds (CNN-LSTM,

Appl. Sci. 2021, 11, 9210 21 of 32

CNN-GRU, LSTM-GRU, etc.). By doing so, the strengths of individual algorithms are
merged while their weaknesses are resolved.

Computation Complexity. Computational complexity is another factor that needs
to be considered in the design and implementation of DL architecture. Computational
complexity can be divided into time complexity and memory constraints. Time complexity
involves training and testing, while memory constraints refer to the parameter size and
GPU storage capacity. DL generally requires a massive amount of data and substantial
training time [65]. Although DL performs better than traditional machine learning on larger
datasets, training with a large amount of data is also challenging and time-consuming.
Since big datasets might consist of millions of instances, a longer time is needed to train
the neural network to achieve high-performance accuracy.

Moreover, limited processing and storage facilities might also cause a delay in the
training duration of a DL model [2]. Therefore, selecting an appropriate DL algorithm
that can produce maximum accuracy with a minimum amount of time and computational
consumption is essential. Plus, reducing the complexity of neural network architecture
is also an alternative that can be applied to decrease training time. Last but not least, big
data or cloud-based technologies can be integrated with DL to enhance the processing and
storage capabilities, leading to a more robust and efficient model for phishing detection.

5. Conclusions and Future Works

In conclusion, many different DL algorithms exist, which numerous researchers in
previous studies have implemented to detect phishing websites. However, choosing the
right approach best suited for a specific application or dataset is a challenging task. To solve
this problem, an empirical study was conducted in this paper, based on some of the most
frequently-used DL techniques, such as DNN, CNN, LSTM, and GRU. Different neural
network architectures were tested for each of these DL algorithms to find the optimal
set of parameter settings that produce the highest performance accuracy. The empirical
experiments were performed on the UCI dataset, consisting of 11055 phishing and benign
URLs with 30 website features. Various performance metrics were measured to evaluate
the effectiveness and the feasibility of the DL-based phishing detection model. The results
obtained from the experiments indicated that among the four DL techniques, there was no
single algorithm that produced the best measures in all performance metrics. Researchers
and developers need to select the best suited to their particular applications or according
to specific requirements. They can also combine different DL algorithms in a hybrid or
ensemble model to join their advantages and cure their disadvantages.

As part of our future work, we plan to experiment with other DL algorithms that are
relatively new and have not been fully explored in the phishing detection domain, such
as Autoencoder (AE), Generative Adversarial Network (GAN), or Deep Reinforcement
Learning (DRL). In addition to homogeneous EDL models, we will also implement hetero-
geneous EDL architectures by integrating multiple DL algorithms of different genres. Plus,
we plan to use a more significant and unbalanced dataset in the experiment set up to reflect
real-life scenarios, as we live in a big data era and phishing is an imbalanced classification
problem, where the number of phishing URLs is much smaller than legitimate URLs.

Author Contributions: Conceptualization, N.Q.D. and A.S.; methodology, N.Q.D. and A.S.; software,
N.Q.D. and A.S.; validation, N.Q.D. and A.S.; formal analysis, N.Q.D. and A.S.; investigation,
N.Q.D. and A.S.; resources, N.Q.D. and A.S.; data curation, N.Q.D. and A.S.; writing—original draft
preparation, N.Q.D.; writing—review and editing, N.Q.D., A.S., O.K., T.Y. and H.F.; visualization,
N.Q.D.; supervision, A.S.; project administration, A.S.; funding acquisition, A.S. and O.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported/funded by the Ministry of Higher Education under the Fun-
damental Research Grant Scheme (FRGS/1/2018/ICT04/UTM/01/1). The authors sincerely thank
Universiti Teknologi Malaysia (UTM) under Research University Grant Vot-20H04, Malaysia Research
University Network (MRUN) Vot 4L876, for the completion of the research. Faculty of Informatics
and Management, University of Hradec Kralove, SPEV project Grant Number: 2102/2021.

Appl. Sci. 2021, 11, 9210 22 of 32

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: https://www.kaggle.com/isatish/phishing-dataset-uci-ml-csv (accessed on
5 May 2021).

Acknowledgments: We are grateful for the support of Michal Dobrovolny and Sebastien Mambou
in consultations regarding application aspects from Hradec Kralove University, Czech Republic.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Previous research works on DNN.

Reference Dataset Dataset
Size

Number of Neurons Learning
Rate Batch Size Epoch

Input Hidden Output

[18] UCI 11,055 30 20/10/5 2 0.01 - <200

[19]
PhishTank

73,575 - 20/40 - - - 100Yandex

[22]
UCI 17,700 - - - - - -

DMO 10,000

[42]
PhishTank 2119

10 19/100/200/300 1 0.0001 - 6000Alexa 1407

[21]

PhishTank 17,000

- - - - - -DMOZ 20,000
PageRank 480
WHOIS 480

[64]
PhishTank

Yahoo
Own dataset

11,055 30 20/10/5 2

0.001 32 150
1353 9 - 2

58,645 111 - 2
88,657 111 - 2

[20] PhishTank
Alexa 3000 10 20/100/200/300/

400/500 1 0.001 3100

Table A2. Previous research works on CNN.

Reference Dataset Dataset Size Number of
Kernels

Kernel
Size

Pooling
Size Stride Learning rate Dropout

Rate
Batch
Size Epoch

[37] NA 2000 - 5 - - - - 16 -

[7]

PhishTank 318,642

256 3 3 - - 0.5 128 20
Com Crawl 73,575

Yandex 83,857
Alexa 82,888

[8]

PhishTank

2456 64
32

16
16

- - - - - -Millersmiles
Yahoo

Starting point

[10] PhishTank 21,303 - 128 3 1 0.001 0.5 64 10Alexa/Amazon 24,800

[11]
PhishTank

4,820,940
32

3 × 1 2 3 × 1 0.0001 0.5 - -Openphish 16
Alexa 8

[25] DMOZ
Own dataset 3816

32
3 × 3 (2,2) - - - 32 6132

64

[26] ILSVRC-2012-
CLS 12 - - - - 0.01 - 32 5000

[30] PhishTank 2,585,146 64 2 - - - 0.2
64 364 3 0.5

[42] PhishTank 2119 32/64/64/128/
128/264/512

- 2 1 0.001 - - 200Alexa 1407

[31] Alexa, DMOZ,
etc., Sophos 611,894124,574 64 5 4 - 0.001 - - 500

[29] PhishTank 13,652
8/16/32/64/84 1/3/5/7/9 - - - - - -

Crawler 10,000

https://www.kaggle.com/isatish/phishing-dataset-uci-ml-csv

Appl. Sci. 2021, 11, 9210 23 of 32

Table A2. Cont.

Reference Dataset Dataset Size Number of
Kernels

Kernel
Size

Pooling
Size Stride Learning rate Dropout

Rate
Batch
Size Epoch

[24] PhishTank 10,604 - 2 2 2
0.1
0.01

0.001
0.0005

0.5 45 15
Common Crawl 10,604

[32] PhishTank 245,385 - 5/6/7 - - 0.01 0.9 2048 32
Alexa 245,023

[27] PhishTank 43,984 - 5 - - - - 10 505000 Best
Websites 45,000

[33] PhishTank 1,021,758 - - - - - - 64 20/45/64DMOZ 989,021

[35]
PhishTank 97,400

256 5/6/7 4 - 0.0001 - 32 200Virus Total
Yandex 97,400

[28] UCI 11,055 8/16/32/64
10

2 - - - - 2205

[34] Own dataset
340,000 128 2 - - 0.01 0.5 100 3065,000 128 4

[38]
PhishTank

206,200 200 2 2 1 - - - -MalwarePatrol
DMOZ, Alexa

Table A3. Previous research works on LSTM.

Reference Dataset Dataset
Size

Number of
Layers

Number of
Units

Learning
Rate

Dropout
Rate

Batch
Size Epoch

[41]
PhishTank

1.5 million
1

128 0.0001 - - 25Common
Crawl 2

[46]
PhishTank 153,788

1 100 0.001 0.2 64 30Openphish 7212
Alexa 170,552

[42]
PhishTank 2119 - 4 0.001 - - 700Alexa 1407

[31] Alexa, DMOZ,
etc., Sophos

611,894
124,574 1 70 0.001 - - 500

[44]
Vaderetro 2000

1 - - - - 200Alexa 1,000,000

[43]
PhishTank 2000

5 128 0.001 - 128 -
Yahoo

Directory 2000

[33]
PhishTank 1,021,758 - - - - 64

20/140/
256/578DMOZ 989,021

[35]
PhishTank 97,400

1 32 0.0001 - 32 200Virus Total
Yandex 97,400

[10]
PhishTank 21,303

1 128 0.001 0.5 64 10Alexa/Amazon 24,800

[11]
PhishTank

4,820,940 2 128 0.0001 0.5 - -Openphish
Alexa

[47] UCI 2456

1

-

0.001

- -

200
2 0.0001 600
3 0.0001 800
4 0.01 900
5 0.0001 1000

[45] PhishTank 450,176 1 10 - 0.2 - 10

[36] OpenPhish
Alexa 52,000 - - - - - -

Appl. Sci. 2021, 11, 9210 24 of 32

Table A4. Previous research works on GRU.

Reference Dataset Dataset
Size

Number of
Layers

Number of
Units

Learning
Rate

Dropout
Rate

Batch
Size Epoch

[41] PhishTank
Common Crawl 1.5 million 1

2 128 0.0001 - - 25

[34] Own dataset 340,000
65,000 1 64 0.01 0.5 100 30

[48] PhishTank
Common Crawl 759,361 2 60 0.001 - 256 20

Table A5. Performance metrics of DNN at different learning rate. (Architecture = (30 16 1), batch size = 32, epoch = 50).

Experiment
(Exp.)

Learning
Rate FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(s)

D1-1 0.0001 6.65 7.22 92.78 94.62 93.69 98.21 93.03 43
D1-2 0.0005 8.24 5.16 94.84 93.63 94.23 98.47 93.49 26
D1-3 0.001 5.11 4.63 95.37 96.06 95.71 98.97 95.16 45
D1-4 0.005 3.80 6.20 93.80 97.19 95.46 99.12 94.80 54
D1-5 0.01 6.95 4.32 95.68 94.27 94.97 98.58 94.48 53
D1-6 0.05 5.20 7.88 92.12 96.50 94.26 98.57 93.17 53
D1-7 0.1 6.35 7.76 92.24 94.98 93.59 98.01 92.85 54

Table A6. Performance metrics of different architectures of DNN. (Learning rate = 0.001, batch size = 32, epoch = 50).

Exp. Hidden
Layer

Neurons in
Each Hidden

Layer

FPR
(%)

FNR
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

AUC
(%)

Accuracy
(%)

Time
(s)

D2-1
1

(30 20 1) 5.88 5.96 94.04 95.35 94.69 99.00 94.08 53
D2-2 (30 16 1) 5.11 4.63 95.37 96.06 95.71 98.97 95.16 45
D2-3 (30 8 1) 5.86 4.40 95.60 95.67 95.64 98.85 94.98 52
D2-4

2

(30 20 16 1) 6.47 5.07 94.93 94.77 94.85 98.53 94.30 53
D2-5 (30 20 8 1) 5.69 4.38 95.62 95.30 95.46 99.06 95.02 51
D2-6 (30 20 4 1) 10.17 2.44 97.56 91.21 94.28 99.06 93.85 49
D2-7 (30 16 8 1) 6.61 3.63 96.37 94.66 95.51 99.03 95.03 36
D2-8 (30 16 4 1) 4.59 4.47 95.53 96.17 95.85 98.93 95.48 32
D2-9 (30 8 4 1) 7.69 4.22 95.78 93.49 94.62 98.89 94.17 50

D2-10

3

(30 20 16 8 1) 4.67 4.32 95.68 96.23 95.95 98.95 95.52 53
D2-11 (30 20 16 4 1) 10.08 2.72 97.28 91.12 94.10 98.83 93.71 53
D2-12 (30 20 16 2 1) 3.81 6.27 93.73 97.19 95.43 98.77 94.75 53
D2-13 (30 20 8 4 1) 4.68 5.43 94.57 96.47 95.51 98.82 94.89 23
D2-14 (30 20 8 2 1) 4.61 5.77 94.22 96.68 95.44 98.64 94.71 53
D2-15 (30 20 4 2 1) 9.82 3.21 96.79 91.89 94.27 98.74 93.71 53
D2-16 (30 16 8 4 1) 4.01 5.62 94.38 96.91 95.63 99.19 95.07 53
D2-17 (30 16 8 2 1) 3.64 5.17 94.83 97.27 96.03 99.11 95.48 53
D2-18 (30 16 4 2 1) 3.89 4.35 95.65 97.16 96.39 98.53 95.84 47
D2-19 (30 8 4 2 1) 7.55 3.00 97.00 93.47 95.20 99.04 94.84 52

Appl. Sci. 2021, 11, 9210 25 of 32

Table A7. Performance metrics of DNN at different batch size. Architecture = [30 16 4 2 1], learning rate = 0.001, epoch = 50.

Experiment
(Exp.)

Batch
Size FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(s)

D3-1 8 4.23 5.40 94.60 96.63 95.60 99.00 95.12 124
D3-2 16 10.25 3.03 96.97 91.64 94.23 98.42 93.62 54
D3-3 32 3.89 4.35 95.65 97.16 96.39 98.53 95.84 47
D3-4 64 6.94 4.96 95.04 94.51 94.78 98.24 94.17 3
D3-5 128 4.52 5.87 94.13 96.50 95.30 98.33 94.71 3
D3-6 256 5.58 6.67 93.33 95.56 94.43 97.93 93.80 3
D3-7 512 6.20 6.67 93.33 95.22 94.27 98.56 93.53 3
D3-8 1024 7.57 7.06 92.94 93.93 93.44 96.52 92.72 3

Table A8. Performance metrics of DNN at different epochs. Architecture = [30 16 4 2 1], learning rate = 0.001, batch size = 32.

Experiment
(Exp.)

Number
of Epochs FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(s)

D4-1 50 3.89 4.35 95.65 97.16 96.39 98.53 95.84 47
D4-2 100 5.33 3.07 96.93 95.84 96.38 98.97 95.93 103
D4-3 150 3.29 5.43 94.57 97.48 96.00 98.97 95.48 153
D4-4 200 3.55 3.10 96.90 97.13 97.01 98.95 96.70 203
D4-5 250 2.63 4.92 95.08 97.96 96.50 99.08 96.07 253
D4-6 300 6.72 2.52 97.48 94.78 96.11 98.28 95.61 303
D4-7 500 3.01 2.47 97.53 97.53 97.53 99.40 97.29 503
D4-8 700 3.73 3.69 96.31 97.09 96.70 98.48 96.29 703

Table A9. Performance metrics of CNN at different learning rates. (Number of kernels = 16, kernel size = 3, dropout
rate = 0.5, batch size = 32, epoch = 50).

Experiment
(Exp.)

Learning
Rate FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(s)

C1-1 0.0001 5.23 6.65 93.35 96.18 94.75 98.31 93.94 52
C1-2 0.0005 5.18 5.75 94.25 96.32 95.27 98.92 94.48 53
C1-3 0.001 4.57 5.96 94.04 96.66 95.33 99.04 94.62 53
C1-4 0.005 3.50 3.39 96.61 97.09 96.85 99.51 96.56 54
C1-5 0.01 3.25 8.04 91.96 97.66 94.72 98.94 93.89 54
C1-6 0.05 16.34 3.94 96.06 85.13 90.27 97.32 89.78 53

Table A10. Performance metrics of CNN at different dropout rates. (Number of kernels = 16, kernel size = 3, learning
rate = 0.005, batch size = 32, epoch = 50).

Experiment
(Exp.)

Dropout
Rate FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(s)

C5-1 0.1 5.31 2.98 97.02 95.40 96.21 99.36 95.93 54
C5-2 0.2 5.37 3.32 96.68 95.57 96.12 99.45 95.75 53
C5-3 0.3 3.53 5.36 94.64 97.20 95.90 99.21 95.43 81
C5-4 0.4 3.96 4.23 95.77 96.93 96.34 99.27 95.88 54
C5-5 0.5 3.50 3.39 96.61 97.09 96.85 99.51 96.56 54

Appl. Sci. 2021, 11, 9210 26 of 32

Table A11. Performance metrics of CNN for different kernel sizes. (Number of kernels = 16, learning rate = 0.005, dropout
rate = 0.5, batch size = 32, epoch = 50).

Experiment
(Exp.)

Kernel
Size FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(s)

C2-1 1 8.24 12.60 87.40 94.07 90.61 94.85 89.15 54
C2-2 2 6.00 9.81 90.19 95.50 92.77 97.81 91.77 53
C2-3 3 3.50 3.39 96.61 97.09 96.85 99.51 96.56 54
C2-4 4 3094 5.19 94.81 97.02 95.90 99.19 95.34 54
C2-5 5 6.42 3.50 96.50 94.96 95.72 99.30 95.21 53
C2-6 6 6.26 4.46 95.54 94.66 95.10 99.10 94.71 53

Table A12. Performance metrics of CNN for the different number of kernels. (Kernel size = 3, learning rate = 0.005, dropout
rate = 0.5, batch size = 32, epoch = 50).

Experiment
(Exp.)

Number of
Kernels FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(s)

C3-1 8 3.41 6.61 93.39 97.51 95.41 98.81 94.71 54
C3-2 16 3.50 3.39 96.61 97.09 96.85 99.51 96.56 54
C3-3 32 4.87 5.29 94.71 96.31 95.50 99.24 94.89 54
C3-4 64 4.44 4.19 95.81 96.51 96.16 99.46 95.70 53
C3-5 128 3.01 5.70 94.30 97.73 95.99 99.28 95.43 153
C3-6 256 10.93 1.95 98.05 90.38 94.06 99.13 93.67 199
C3-7 512 6.56 4.56 95.44 94.57 95.00 98.96 94.53 253

Table A13. Performance metrics of different architectures of CNN. (Kernel size = 3, learning rate = 0.005, dropout rate = 0.5,
batch size = 32, epoch = 50).

Exp. Conv.
Layer

Number
of Kernels

FPR
(%)

FNR
(%)

Precision
(%)

Recall
(%)

F1-
Score(%)

AUC
(%)

Accuracy
(%)

Time
(s)

C6-1

1

64 4.44 4.19 95.81 96.51 96.16 99.46 95.70 53
C6-2 32 4.87 5.29 94.71 96.31 95.50 99.24 94.89 54
C6-3 16 3.50 3.39 96.61 97.09 96.85 99.51 96.56 54
C6-4 8 3.41 6.61 93.39 97.51 95.41 98.81 94.71 54
C6-5

2

(64 64) 0.83 10.97 89.03 99.43 93.94 99.05 92.90 108
C6-6 (64 32) 4.09 8.50 91.50 97.13 94.23 98.61 93.26 104
C6-7 (64 16) 2.63 10.71 89.29 97.97 93.43 98.34 92.63 104
C6-8 (64 8 5.13 7.42 92.58 96.22 94.37 98.63 93.53 103
C6-9 (32 32) 2.57 9.13 90.87 98.11 94.35 98.89 93.53 91

C6-10 (32 16) 6.14 8.06 91.94 95.25 93.57 98.34 92.76 104
C6-11 (32 8) 11.34 5.76 94.24 91.27 92.73 97.84 91.77 54
C6-12 (16 16) 6.22 8.37 91.63 94.87 93.22 97.97 92.58 53
C6-13 (16 8) 6.75 8.39 91.61 94.76 93.16 97.71 92.31 54
C6-14 (8 8) 8.42 10.02 89.98 93.81 91.85 96.58 90.64 54

Table A14. Performance metrics of CNN for different batch sizes. (Number of kernels = 16, kernel size =3, learning
rate = 0.005, dropout rate = 0.5, epoch = 50).

Experiment
(Exp.)

Batch
Size FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(s)

C7-1 8 4.34 6.08 93.92 96.67 95.27 98.81 94.66 166
C7-2 16 3.64 5.63 94.37 97.26 95.79 99.19 95.21 85
C7-3 32 3.50 3.39 96.61 97.09 96.85 99.51 96.56 54
C7-4 64 4.94 6.05 93.95 96.04 94.99 98.83 94.44 54
C7-5 128 3.26 6.11 96.74 97.59 95.70 99.15 95.07 14
C7-6 256 3.31 4.95 95.05 97.50 96.26 99.29 95.75 8
C7-7 512 3.89 6.11 93.89 96.97 95.41 98.96 94.84 3
C7-8 1024 3.37 6.43 93.57 97.50 95.49 98.94 94.84 4

Appl. Sci. 2021, 11, 9210 27 of 32

Table A15. Performance metrics of CNN for different number of epochs. (Number of kernels = 16, kernel size =3, learning
rate = 0.005, dropout rate = 0.5, batch size = 32).

Experiment
(Exp.)

Number
of Epochs FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(s)

C8-1 50 3.50 3.39 96.61 97.09 96.85 99.51 96.56 54
C8-2 100 4.81 4.62 95.38 96.43 95.90 99.30 95.30 103
C8-3 150 2.93 5.18 94.82 97.70 96.24 99.32 95.79 153
C8-4 200 5.17 3.84 96.16 95.85 96.00 99.34 95.57 204
C8-5 250 3.63 4.97 95.03 97.13 96.07 99.29 95.61 254
C8-6 300 3.41 5.66 94.34 97.40 95.85 99.22 95.30 302
C8-7 500 4.57 4.16 95.84 96.31 96.08 99.28 95.66 503
C8-8 700 3.91 6.53 93.47 97.23 95.31 99.06 94.53 704

Table A16. Performance metrics of LSTM at different learning rates. (Number of layers = 1, units = 128, dropout rate = 0.5,
batch size = 32, epoch = 50).

Experiment
(Exp.)

Learning
Rate FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(min)

L1-1 0.0001 19.16 7.27 92.73 83.77 88.02 95.56 86.97 6.80
L1-2 0.0005 5.49 6.96 93.04 95.77 94.38 98.19 93.67 5.90
L1-3 0.001 14.82 6.64 93.36 87.12 90.13 97.01 89.42 6.72

Table A17. Performance metrics of LSTM at different dropout rates. (Number of layers = 1, units = 128, learning rate = 0.0005,
batch size = 32, epoch = 50).

Experiment
(Exp.)

Dropout
Rate FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(min)

L2-1 0.1 8.28 8.12 91.88 93.86 92.86 97.24 91.81 6.23
L2-2 0.2 8.28 5.00 95.00 93.40 94.19 98.39 93.53 5.30
L2-3 0.3 7.84 6.33 93.67 93.59 93.63 98.13 92.99 6.75
L2-4 0.4 11.53 6.97 93.03 90.62 91.81 97.59 90.95 5.95
L2-5 0.5 5.49 6.96 93.04 95.77 94.38 98.19 93.67 5.90

Table A18. Performance metrics of different architectures of LSTM. (Learning rate = 0.0005, dropout rate = 0.5, batch
size = 32, epoch = 50).

Exp. No of
Layer

Units per
Layer

FPR
(%)

FNR
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

AUC
(%)

Accuracy
(%)

Time
(min)

L3-1

1

256 3.82 1047 89.53 97.34 93.27 98.27 92.13 19.78
L3-2 128 5.49 6.96 93.04 95.77 94.38 98.19 93.67 5.90
L3-3 64 12.42 5.34 94.66 88.74 91.61 97.32 91.18 3.40
L3-4 32 9.01 10.73 89.27 93.02 91.11 95.68 90.00 2.57
L3-5 16 12.57 14.32 85.68 90.10 87.83 93.85 86.43 2.57
L3-6

2

(128 128) 4.37 8.18 91.82 96.75 94.22 98.06 93.40 13.08
L3-7 (128 64) 6.88 7.57 92.43 95.00 93.70 97.79 92.72 10.97
L3-8 (128 32) 5.17 8.23 91.77 95.95 93.81 97.98 93.08 10.97
L3-9 (128 16) 9.61 5.93 94.07 91.82 92.93 98.22 92.36 8.87

L3-10

3

(128 128 128) 10.87 6.92 93.08 91.03 92.04 96.78 91.27 22.38
L3-11 (128 128 64) 6.46 7.27 92.73 95.06 93.88 98.06 93.08 20.40
L3-12 (128 128 32) 9.37 5.19 94.81 93.20 94.00 97.79 93.03 18.92
L3-13 (128 128 16) 12.17 6.80 93.20 89.96 91.55 97.33 90.73 15.92
L3-14 (128 64 64) 11.71 7.48 92.52 90.41 91.45 97.27 90.59 14.27
L3-15 (128 64 32) 8.70 7.05 92.95 93.10 93.03 97.62 92.22 14.73
L3-16 (128 64 16) 3.28 9.20 90.80 97.65 94.10 98.02 93.17 13.53
L3-17 (128 32 32) 3.48 9.19 90.81 97.61 94.09 98.25 93.03 12.48
L3-18 (128 32 16) 6.29 6.84 93.16 95.13 94.13 98.17 93.40 10.13
L3-19 (128 16 16) 4.66 8.17 91.83 96.63 94.17 97.95 93.26 10.50

Appl. Sci. 2021, 11, 9210 28 of 32

Table A19. Performance metrics of LSTM for different batch sizes. (Number of layers = 1, units = 128, learning rate = 0.0005,
dropout rate = 0.5, epoch = 50).

Experiment
(Exp.)

Batch
Size FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(min)

L4-1 8 6.70 6.03 93.97 94.44 94.21 98.35 93.67 18.53
L4-2 16 8.07 5.86 94.14 93.76 93.95 98.08 93.17 12.32
L4-3 32 5.49 6.96 93.04 95.77 94.38 98.19 93.67 5.90
L4-4 64 11.33 6.28 93.72 90.42 92.04 97.14 91.36 5.07
L4-5 128 4.10 15.08 84.92 97.31 90.70 96.34 88.92 4.22
L4-6 256 2.81 19.89 80.11 98.36 88.30 95.09 85.62 3.38

Table A20. Performance metrics of LSTM for the different number of epochs. (Number of layers = 1, units = 128, learning
rate = 0.0005, dropout rate = 0.5, batch size = 32).

Experiment
(Exp.)

Number
of Epochs FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(min)

L5-1 50 5.49 6.96 93.04 95.77 94.38 98.19 93.67 5.90
L5-2 100 5.47 6.74 93.26 95.77 94.50 98.71 93.80 13.40
L5-3 150 3.86 8.51 91.49 97.15 94.23 98.05 93.40 20.42
L5-4 200 3.77 3.91 96.09 96.96 96.53 99.29 96.16 41.12
L5-5 250 3.28 4.90 95.10 97.49 96.28 99.23 95.79 54.23
L5-6 300 5.91 7.44 92.56 95.43 93.96 98.23 93.22 65.07
L5-7 500 2.97 4.18 95.82 97.75 96.77 98.54 96.34 120.27
L5-8 700 1.80 3.55 96.45 98.63 97.53 99.11 97.20 169.17

Table A21. Performance metrics of GRU at different learning rates. (Number of layers = 1, units = 128, dropout rate = 0.5,
batch size = 32, epoch = 50).

Experiment
(Exp.)

Learning
Rate FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(min)

G1-1 0.0001 14.64 7.21 92.79 88.14 90.40 95.99 89.37 5.45
G1-2 0.0005 6.36 7.51 92.49 95.00 93.73 98.39 92.99 6.40
G1-3 0.001 5.85 5.50 94.50 95.49 94.99 98.76 94.35 5.40
G1-4 0.005 4.90 9.03 90.97 96.18 93.50 97.74 92.72 6.42
G1-5 0.01 9.06 7.82 92.18 92.85 92.51 96.98 91.63 5.40

Table A22. Performance metrics of GRU at different dropout rates. (Number of layers = 1, units = 128, learning rate = 0.001,
batch size = 32, epoch = 50).

Experiment
(Exp.)

Dropout
Rate FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(min)

G2-1 0.1 3.83 8.26 91.74 97.00 94.30 98.66 93.62 5.40
G2-2 0.2 7.61 5.55 94.45 93.91 94.18 98.81 93.53 6.42
G2-3 0.3 7.36 5.45 94.55 93.76 94.15 98.77 93.67 6.42
G2-4 0.4 7.72 6.01 93.99 94.22 94.10 98.50 93.26 5.40
G2-5 0.5 5.85 5.50 94.50 95.49 94.99 98.76 94.35 5.40

Appl. Sci. 2021, 11, 9210 29 of 32

Table A23. Performance metrics of different architectures of GRU. (Learning rate = 0.001, dropout rate = 0.5, batch size = 32,
epoch = 50).

Exp. No of
Layer

Units per
Layer

FPR
(%)

FNR
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

AUC
(%)

Accuracy
(%)

Time
(min)

G3-1

1

256 5.18 6.27 93.73 95.89 94.80 98.94 94.21 10.40
G3-2 128 5.85 5.50 94.50 95.49 94.99 98.76 94.35 5.40
G3-3 64 6.05 7.61 92.39 95.09 93.72 98.02 93.08 4.42
G3-4 32 4.91 11.06 88.94 96.63 92.63 97.82 91.32 3.42
G3-5 16 7.61 5.86 94.14 93.76 93.95 98.11 93.35 2.98
G3-6

2

(128 128) 5.04 5.17 94.83 96.00 95.41 98.99 94.89 24.40
G3-7 (128 64) 6.01 5.78 94.22 95.29 94.75 98.80 94.12 22.40
G3-8 (128 32) 7.19 5.62 94.38 94.07 94.22 98.70 93.67 23.42
G3-9 (128 16) 5.32 6.37 93.63 95.97 94.78 98.71 94.08 22.42
G3-10

3

(128 128 128) 7.43 5.56 94.44 94.22 94.33 98.19 93.62 33.43
G3-11 (128 128 64) 10.23 3.60 96.40 91.71 94.00 98.61 93.35 32.87
G3-12 (128 128 32) 4.19 8.05 91.95 96.93 94.37 98.73 93.53 33.42
G3-13 (128 128 16) 7.76 5.72 94.28 94.13 94.20 98.67 93.40 34.43
G3-14 (128 64 64) 3.96 7.46 92.54 97.23 94.83 98.68 93.94 35.82
G3-15 (128 64 32) 4.07 7.05 92.95 96.90 94.88 98.92 94.21 33.32
G3-16 (128 64 16) 3.15 6.67 93.33 97.65 95.44 98.95 94.80 34.43
G3-17 (128 32 32) 6.12 6.33 93.67 95.33 94.49 98.67 93.76 12.43
G3-18 (128 32 16) 2.94 8.51 91.49 97.90 94.59 98.39 93.71 10.45
G3-19 (128 16 16) 9.84 4.34 95.66 91.67 93.62 98.77 93.08 11.45

Table A24. Performance metrics of GRU for different batch sizes. (Number of layers = 1, units = [128 128], learning
rate = 0.001, dropout rate =0.5, epoch = 50).

Experiment
(Exp.)

Batch
Size FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(min)

G4-1 8 8.16 4.19 95.81 93.24 94.51 98.89 93.98 35.42
G4-2 16 2.28 10.51 89.49 98.35 93.71 98.67 92.76 17.42
G4-3 32 5.04 5.17 94.83 96.00 95.41 98.99 94.89 24.40
G4-4 64 1.63 12.26 87.74 98.83 92.96 98.93 91.86 11.43
G4-5 128 5.03 7.16 92.84 96.05 94.42 98.79 93.76 8.42
G4-6 256 4.59 6.99 93.01 96.50 94.72 98.36 94.03 6.42

Table A25. Performance metrics of GRU for a different number of epochs. (Number of units = [128 128], learning rate = 0.001,
dropout rate = 0.5, batch size = 32).

Experiment
(Exp.)

Number
of Epochs FPR (%) FNR

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
AUC
(%)

Accuracy
(%)

Time
(min)

G5-1 50 5.04 5.17 94.83 96.00 95.41 98.99 94.89 24.40
G5-2 100 3.54 4.69 95.31 97.37 96.33 98.84 95.79 16.42
G5-3 150 3.58 4.44 95.56 97.25 96.40 98.67 95.93 35.43
G5-4 200 2.48 3.94 96.06 98.03 97.04 98.79 96.70 55.07
G5-5 250 7.97 5.79 94.21 94.35 94.28 98.41 93.31 58.15
G5-6 300 5.80 4.75 95.25 95.63 95.44 98.79 94.80 83.43
G5-7 500 16.00 8.51 91.49 87.38 89.39 94.58 88.10 140.43
G5-8 700 50.70 42.55 57.45 73.51 64.50 48.79 55.09 205.00

References
1. Ahmad, R.; Alsmadi, I. Machine learning approaches to IoT security: A systematic literature review. Internet Things 2021, 14,

100365. [CrossRef]
2. Amanullah, M.A.; Habeeb, R.A.A.; Nasaruddin, F.H.; Gani, A.; Ahmed, E.; Nainar, A.S.M.; Akim, N.M.; Imran, M. Deep learning

and big data technologies for IoT security. Comput. Commun. 2020, 151, 495–517. [CrossRef]
3. Liu, H.; Lang, B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Appl. Sci. 2019, 9, 4396.

[CrossRef]

http://doi.org/10.1016/j.iot.2021.100365
http://doi.org/10.1016/j.comcom.2020.01.016
http://doi.org/10.3390/app9204396

Appl. Sci. 2021, 11, 9210 30 of 32

4. Asharf, J.; Moustafa, N.; Khurshid, H.; Debie, E.; Haider, W.; Wahab, A. A Review of Intrusion Detection Systems Using Machine
and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions. Electronics 2020, 9, 1177. [CrossRef]

5. Bello, I.; Chiroma, H.; Abdullahi, U.A.; Gital, A.Y.; Jauro, F.; Khan, A.; Okesola, J.O.; Abdulhamid, S.M. Detecting ransomware
attacks using intelligent algorithms: Recent development and next direction from deep learning and big data perspectives. J.
Ambient Intell. Humaniz. Comput. 2020, 12, 8699–8717. [CrossRef]

6. Al-Ahmadi, S. PDMLP: Phishing Detection Using Multilayer Perceptron. Int. J. Netw. Secur. Its Appl. 2020, 12. SSRN:3624621.
Available online: https://papers.ssrn.com/abstract=3624621 (accessed on 12 May 2021). [CrossRef]

7. Aljofey, A.; Jiang, Q.; Qu, Q.; Huang, M.; Niyigena, J.-P. An Effective Phishing Detection Model Based on Character Level
Convolutional Neural Network from URL. Electronics 2020, 9, 1514. [CrossRef]

8. Al-Milli, N.; Hammo, B.H. A Convolutional Neural Network Model to Detect Illegitimate URLs. In Proceedings of the 2020
11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020; pp. 220–225.
[CrossRef]

9. Feng, J.; Zou, L.; Nan, T. A Phishing Webpage Detection Method Based on Stacked Autoencoder and Correlation Coefficients. J.
Comput. Inf. Technol. 2019, 27. [CrossRef]

10. Feng, J.; Zou, L.; Ye, O.; Han, J. Web2Vec: Phishing Webpage Detection Method Based on Multidimensional Features Driven by
Deep Learning. IEEE Access 2020, 8, 221214–221224. [CrossRef]

11. Huang, Y.; Yang, Q.; Qin, J.; Wen, W. Phishing URL Detection via CNN and Attention-Based Hierarchical RNN. In Proceedings
of the 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE
International Conference on Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August 2019;
pp. 112–119. [CrossRef]

12. Chen, Z. Deep Learning for Cybersecurity: A Review. In Proceedings of the 2020 International Conference on Computing and
Data Science (CDS), Stanford, CA, USA, 1–2 August 2020; pp. 7–18.

13. Naway, A.; LI, Y. A Review on The Use of Deep Learning in Android Malware Detection. arXiv 2018, arXiv:181210360. Available
online: http://arxiv.org/abs/1812.10360 (accessed on 3 April 2021).

14. Sarker, I.H. Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective. SN Comput.
Sci. 2021, 2, 154. [CrossRef]

15. Quang, D.N.; Selamat, A.; Krejcar, O. Recent Research on Phishing Detection Through Machine Learning Algorithm. In Advances
and Trends in Artificial Intelligence. Artificial Intelligence Practices; Fujita, H., Selamat, A., Lin, J.C.-W., Ali, M., Eds.; Springer
International Publishing: Cham, Switzerland, 2021; pp. 495–508.

16. Wu, Y.; Wei, D.; Feng, J. Network Attacks Detection Methods Based on Deep Learning Techniques: A Survey. Secur. Commun.
Netw. 2020, 2020, e8872923. [CrossRef]

17. Mahdavifar, S.; Ghorbani, A.A. Application of deep learning to cybersecurity: A survey. Neurocomputing 2019, 347, 149–176.
[CrossRef]

18. Mahdavifar, S.; Ghorbani, A.A. DeNNeS: Deep embedded neural network expert system for detecting cyber attacks. Neural
Comput. Appl. 2020, 32, 14753–14780. [CrossRef]

19. Sahingoz, O.K.; Işılay Baykal, S.; Bulut, D. Phishing detection from urls by using neural networks. In Computer Science &
Information Technology (CS & IT); AIRCC Publishing Corporation: Chennai, India, 2018; pp. 41–54. [CrossRef]

20. Khan, M.F.; Al, E. Detection of Phishing Websites Using Deep Learning Techniques. Turk. J. Comput. Math. Educ. TURCOMAT
2021, 12, 3880–3892. [CrossRef]

21. Sountharrajan, S.; Nivashini, M.; Shandilya, S.K.; Suganya, E.; Bazila Banu, A.; Karthiga, M. Dynamic Recognition of Phishing
URLs Using Deep Learning Techniques. In Advances in Cyber Security Analytics and Decision Systems; Shandilya, S.K., Wagner,
N., Nagar, A.K., Eds.; EAI/Springer Innovations in Communication and Computing; Springer International Publishing: Cham,
Switzerland, 2020; pp. 27–56, ISBN 978-3-030-19353-9. [CrossRef]

22. Selvaganapathy, S.; Nivaashini, M.; Natarajan, H. Deep belief network based detection and categorization of malicious URLs. Inf.
Secur. J. Glob. Perspect. 2018, 27, 145–161. [CrossRef]

23. Aldweesh, A.; Derhab, A.; Emam, A.Z. Deep learning approaches for anomaly-based intrusion detection systems: A survey,
taxonomy, and open issues. Knowl.-Based Syst. 2020, 189, 105124. [CrossRef]

24. Wei, W.; Ke, Q.; Nowak, J.; Korytkowski, M.; Scherer, R.; Woźniak, M. Accurate and fast URL phishing detector: A convolutional
neural network approach. Comput. Netw. 2020, 178, 107275. [CrossRef]

25. Liu, D.; Lee, J.-H.; Wang, W.; Wang, Y. Malicious Websites Detection via CNN based Screenshot Recognition. In Proceedings of
the 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA), Tainan, Taiwan, 30 August–1
September 2019; pp. 115–119. [CrossRef]

26. Phoka, T.; Suthaphan, P. Image Based Phishing Detection Using Transfer Learning. In Proceedings of the 2019 11th International
Conference on Knowledge and Smart Technology (KST), Phuket, Thailand, 23–26 January 2019; pp. 232–237. [CrossRef]

27. Xiao, X.; Zhang, D.; Hu, G.; Jiang, Y.; Xia, S. CNN–MHSA: A Convolutional Neural Network and multi-head self-attention
combined approach for detecting phishing websites. Neural Netw. 2020, 125, 303–312. [CrossRef] [PubMed]

28. Yerima, S.Y.; Alzaylaee, M.K. High Accuracy Phishing Detection Based on Convolutional Neural Networks. In Proceedings of the
2020 3rd International Conference on Computer Applications Information Security (ICCAIS), Riyadh, Saudi Arabia, 19–21 March
2020; pp. 1–6. [CrossRef]

http://doi.org/10.3390/electronics9071177
http://doi.org/10.1007/s12652-020-02630-7
https://papers.ssrn.com/abstract=3624621
http://doi.org/10.5121/ijnsa.2020.12304
http://doi.org/10.3390/electronics9091514
http://doi.org/10.1109/ICICS49469.2020.239536
http://doi.org/10.20532/cit.2019.1004702
http://doi.org/10.1109/ACCESS.2020.3043188
http://doi.org/10.1109/TrustCom/BigDataSE.2019.00024
http://arxiv.org/abs/1812.10360
http://doi.org/10.1007/s42979-021-00535-6
http://doi.org/10.1155/2020/8872923
http://doi.org/10.1016/j.neucom.2019.02.056
http://doi.org/10.1007/s00521-020-04830-w
http://doi.org/10.5121/csit.2018.81705
http://doi.org/10.17762/turcomat.v12i10.5094
http://doi.org/10.1007/978-3-030-19353-9_3
http://doi.org/10.1080/19393555.2018.1456577
http://doi.org/10.1016/j.knosys.2019.105124
http://doi.org/10.1016/j.comnet.2020.107275
http://doi.org/10.1109/ICEA.2019.8858300
http://doi.org/10.1109/KST.2019.8687615
http://doi.org/10.1016/j.neunet.2020.02.013
http://www.ncbi.nlm.nih.gov/pubmed/32172140
http://doi.org/10.1109/ICCAIS48893.2020.9096869

Appl. Sci. 2021, 11, 9210 31 of 32

29. Wang, H.; Yu, L.; Tian, S.; Peng, Y.; Pei, X. Bidirectional LSTM Malicious webpages detection algorithm based on convolutional
neural network and independent recurrent neural network. Appl. Intell. 2019, 49, 3016–3026. [CrossRef]

30. Rasymas, T.; Dovydaitis, L. Detection of phishing URLs by using deep learning approach and multiple features combinations.
Balt. J. Mod. Comput. 2020, 8, 471–483. [CrossRef]

31. Srinivasan, S.; Vinayakumar, R.; Arunachalam, A.; Alazab, M.; Soman, K. DURLD: Malicious URL Detection Using Deep Learning-
Based Character Level Representations. In Malware Analysis Using Artificial Intelligence and Deep Learning; Stamp, M., Alazab,
M., Shalaginov, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 535–554, ISBN 978-3-030-62582-5.
[CrossRef]

32. Wang, W.; Zhang, F.; Luo, X.; Zhang, S. PDRCNN: Precise Phishing Detection with Recurrent Convolutional Neural Networks.
Secur. Commun. Netw. 2019, 2019, e2595794. [CrossRef]

33. Yang, P.; Zhao, G.; Zeng, P. Phishing Website Detection Based on Multidimensional Features Driven by Deep Learning. IEEE
Access 2019, 7, 15196–15209. [CrossRef]

34. Yang, W.; Zuo, W.; Cui, B. Detecting Malicious URLs via a Keyword-Based Convolutional Gated-Recurrent-Unit Neural Network.
IEEE Access 2019, 7, 29891–29900. [CrossRef]

35. M, Y.V.; Janet, B.; Reddy, S. Anti-phishing System using LSTM and CNN. In Proceedings of the 2020 IEEE International Conference
for Innovation in Technology (INOCON), Bangluru, India, 6–8 November 2020; pp. 1–5. [CrossRef]

36. jaysinha. Available online: https://jaysinha.me/files/phishx_preprint.pdf (accessed on 18 September 2021).
37. Al-Ahmadi, S. A Deep Learning Technique for Web Phishing Detection Combined URL Features and Visual Similarity. Soc.

Sci. Res. Netw. 2020. SSRN:3716033. Available online: https://papers.ssrn.com/abstract=3716033 (accessed on 10 March 2021).
[CrossRef]

38. Zhang, Q.; Bu, Y.; Chen, B.; Zhang, S.; Lu, X. Research on phishing webpage detection technology based on CNN-BiLSTM
algorithm. J. Phys. Conf. Ser. 2021, 1738, 012131. [CrossRef]

39. Chen, D.; Wawrzynski, P.; Lv, Z. Cyber security in smart cities: A review of deep learning-based applications and case studies.
Sustain. Cities Soc. 2021, 66, 102655. [CrossRef]

40. Elnagar, S.; Thomas, M. A Cognitive Framework for Detecting Phishing Websites. In Proceedings of the International Conference
on Advances on Applied Cognitive Computing (ACC 2018), Las Vegas, NV, USA, 30 July–2 August 2018; pp. 60–61.

41. Feng, T.; Yue, C. Visualizing and Interpreting RNN Models in URL-based Phishing Detection. In Proceedings of the 25th ACM
Symposium on Access Control Models and Technologies, Barcelona, Spain, 10–12 June 2020; pp. 13–24. [CrossRef]

42. Somesha, M.; Pais, A.R.; Rao, R.S.; Rathour, V.S. Efficient deep learning techniques for the detection of phishing websites. Sādhanā
2020, 45, 165. [CrossRef]

43. Su, Y. Research on Website Phishing Detection Based on LSTM RNN. In Proceedings of the 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June 2020; Volume 1, pp. 284–288.
[CrossRef]

44. Torroledo, I.; Camacho, L.D.; Bahnsen, A.C. Hunting Malicious TLS Certificates with Deep Neural Networks. In Proceedings of
the 11th ACM Workshop on Artificial Intelligence and Security; Association for Computing Machinery: New York, NY, USA, 2018;
pp. 64–73. [CrossRef]

45. Afzal, S.; Asim, M.; Javed, A.R.; Beg, M.O.; Baker, T. URLdeepDetect: A Deep Learning Approach for Detecting Malicious URLs
Using Semantic Vector Models. J. Netw. Syst. Manag. 2021, 29, 21. [CrossRef]

46. Rao, R.S.; Vaishnavi, T.; Pais, A.R. PhishDump: A multi-model ensemble based technique for the detection of phishing sites in
mobile devices. Pervasive Mob. Comput. 2019, 60, 101084. [CrossRef]

47. Wang, S.; Khan, S.; Xu, C.; Nazir, S.; Hafeez, A. Deep Learning-Based Efficient Model Development for Phishing Detection Using
Random Forest and BLSTM Classifiers. Complexity 2020, 2020, e8694796. [CrossRef]

48. Yuan, L.; Zeng, Z.; Lu, Y.; Ou, X.; Feng, T. A Character-Level BiGRU-Attention for Phishing Classification. In Information and
Communications Security; Zhou, J., Luo, X., Shen, Q., Xu, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2020;
pp. 746–762. [CrossRef]

49. Yi, P.; Guan, Y.; Zou, F.; Yao, Y.; Wang, W.; Zhu, T. Web Phishing Detection Using a Deep Learning Framework. Wirel. Commun.
Mob. Comput. 2018, 2018, e4678746. [CrossRef]

50. Robic-Butez, P.; Win, T.Y. Detection of Phishing websites using Generative Adversarial Network. In Proceedings of the 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3216–3221. [CrossRef]

51. Sohn, I. Deep belief network based intrusion detection techniques: A survey. Expert Syst. Appl. 2021, 167, 114170. [CrossRef]
52. Alotaibi, R.; Al-Turaiki, I.; Alakeel, F. Mitigating Email Phishing Attacks using Convolutional Neural Networks. In Proceedings

of the 2020 3rd International Conference on Computer Applications Information Security (ICCAIS), Riyadh, Saudi Arabia, 19–21
March 2020; pp. 1–6. [CrossRef]

53. Fang, Y.; Zhang, C.; Huang, C.; Liu, L.; Yang, Y. Phishing Email Detection Using Improved RCNN Model With Multilevel Vectors
and Attention Mechanism. IEEE Access 2019, 7, 56329–56340. [CrossRef]

54. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A Survey of Deep Learning Methods for Cyber Security. Information 2019,
10, 122. [CrossRef]

http://doi.org/10.1007/s10489-019-01433-4
http://doi.org/10.22364/bjmc.2020.8.3.06
http://doi.org/10.1007/978-3-030-62582-5_21
http://doi.org/10.1155/2019/2595794
http://doi.org/10.1109/ACCESS.2019.2892066
http://doi.org/10.1109/ACCESS.2019.2895751
http://doi.org/10.1109/INOCON50539.2020.9298298
https://jaysinha.me/files/phishx_preprint.pdf
https://papers.ssrn.com/abstract=3716033
http://doi.org/10.5121/ijcnc.2020.12503
http://doi.org/10.1088/1742-6596/1738/1/012131
http://doi.org/10.1016/j.scs.2020.102655
http://doi.org/10.1145/3381991.3395602
http://doi.org/10.1007/s12046-020-01392-4
http://doi.org/10.1109/ITNEC48623.2020.9084799
http://doi.org/10.1145/3270101.3270105
http://doi.org/10.1007/s10922-021-09587-8
http://doi.org/10.1016/j.pmcj.2019.101084
http://doi.org/10.1155/2020/8694796
http://doi.org/10.1007/978-3-030-41579-2_43
http://doi.org/10.1155/2018/4678746
http://doi.org/10.1109/BigData47090.2019.9006352
http://doi.org/10.1016/j.eswa.2020.114170
http://doi.org/10.1109/ICCAIS48893.2020.9096821
http://doi.org/10.1109/ACCESS.2019.2913705
http://doi.org/10.3390/info10040122

Appl. Sci. 2021, 11, 9210 32 of 32

55. Chatterjee, M.; Namin, A.-S. Detecting Phishing Websites through Deep Reinforcement Learning. In Proceedings of the 2019 IEEE
43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI, USA, 15–19 July 2019; Volume 2,
pp. 227–232. [CrossRef]

56. Odeh, A.; Keshta, I.; Abdelfattah, E. Efficient Detection of Phishing Websites Using Multilayer Perceptron International Association
of Online Engineering. 2020, pp. 22–31. Available online: https://www.learntechlib.org/p/217754/ (accessed on 10 March 2021).

57. Saha, I.; Sarma, D.; Chakma, R.J.; Alam, M.N.; Sultana, A.; Hossain, S. Phishing Attacks Detection using Deep Learning Approach.
In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli,
India, 20–22 August 2020; pp. 1180–1185. [CrossRef]

58. Ya, J.; Liu, T.; Zhang, P.; Shi, J.; Guo, L.; Gu, Z. NeuralAS: Deep Word-Based Spoofed URLs Detection AgaIInst Strong Similar
Samples. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July
2019; pp. 1–7. [CrossRef]

59. Adebowale, M.A.; Lwin, K.T.; Hossain, M.A. Deep Learning with Convolutional Neural Network and Long Short-Term
Memory for Phishing Detection. In Proceedings of the 2019 13th International Conference on Software, Knowledge, Information
Management and Applications (SKIMA), Island of Ulkulhas, Maldives, 26–28 August 2019; pp. 1–8. [CrossRef]

60. Digwal, H.N.; Kavya, N.P. Detection of Phishing Website Based on Deep Learning. Int. J. Res. Eng. Sci. Manag. 2020, 3, 331–336.
61. Pooja, A.S.S.V.L.; Sridhar, M. Analysis of Phishing Website Detection Using CNN and Bidirectional LSTM. In Proceedings of the

2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7
November 2020; pp. 1620–1629. [CrossRef]

62. Kaggle. Available online: https://www.kaggle.com/isatish/phishing-dataset-uci-ml-csv (accessed on 12 April 2021).
63. Github. Available online: https://github.com/quangdn83/WebsitePhishingDetection (accessed on 21 September 2021).
64. Vrbančič, G.; Fister, I.; Podgorelec, V. Parameter Setting for Deep Neural Networks Using Swarm Intelligence on Phishing

Websites Classification. Int. J. Artif. Intell. Tools 2019, 28, 1960008. [CrossRef]
65. Chen, S.; Fan, L.; Chen, C.; Xue, M.; Liu, Y.; Xu, L. GUI-Squatting Attack: Automated Generation of Android Phishing Apps.

IEEE Trans. Dependable Secure Comput. accepted. [CrossRef]

http://doi.org/10.1109/COMPSAC.2019.10211
https://www.learntechlib.org/p/217754/
http://doi.org/10.1109/ICSSIT48917.2020.9214132
http://doi.org/10.1109/IJCNN.2019.8852416
http://doi.org/10.1109/SKIMA47702.2019.8982427
http://doi.org/10.1109/ICECA49313.2020.9297395
https://www.kaggle.com/isatish/phishing-dataset-uci-ml-csv
https://github.com/quangdn83/WebsitePhishingDetection
http://doi.org/10.1142/S021821301960008X
http://doi.org/10.1109/TDSC.2019.2956035

	Introduction
	Literature Review
	Deep Neural Network (DNN)
	Convolutional Neural Network (CNN)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)
	Hyper-Parameters
	Performance Metrics
	Research Novelty

	Research Methodology
	Experiment Setup
	Website Features
	Deep Learning Models
	Parameter Optimization

	Results and Discussion
	Results with DNN
	Results with CNN
	Results with LSTM
	Results with GRU
	Issues and Perspectives

	Conclusions and Future Works
	
	References

