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Abstract: A proposal is made to employ stochastic models, based on diffusion processes, to represent
the evolution of the SARS-CoV-2 virus pandemic. Specifically, two diffusion processes are proposed
whose mean functions obey multi-sigmoidal Gompertz and Weibull-type patterns. Both are con-
structed by introducing polynomial functions in the ordinary differential equations that originate the
classical Gompertz and Weibull curves. The estimation of the parameters is approached by maximum
likelihood. Various associated problems are analyzed, such as the determination of initial solutions
for the necessary numerical methods in practical cases, as well as Bayesian methods to determine
the degree of the polynomial. Additionally, strategies are suggested to determine the best model to
fit specific data. A practical case is developed from data originating from several Spanish regions
during the first two waves of the COVID-19 pandemic. The determination of the inflection time
instants, which correspond to the peaks of infection and deaths, is given special attention. To deal
with this particular issue, point estimation as well as first-passage times have been considered.

Keywords: COVID-19; diffusion processes; multi-sigmoidal curves; inference in diffusion processes;
first-passage times

1. Introduction

There can be no doubt that the outbreak of the global pandemic caused by the SARS-
CoV-2 virus has produced a strong shock worldwide, the repercussions of which are still far
from being seen. Obviously, the main concern is to contain the spread as soon as possible,
thus putting a stop to the interminable trickle of deaths left in its wake. The data provided
in real time by Johns Hopkins University [1] quantify the number of the infected, as of
22 July 2021, at around 192 million, while the deceased amount to more than 4.1 million.
Fortunately, vaccination campaigns are beginning to bear fruit, although there is still a long
way to go, especially in developing countries. To add to the problem, severe economic
losses are being felt as a result of the pandemic. It is still too early to evaluate their full
impact, although some studies are already looking into the matter (see for example [2]).

Since the beginning of the pandemic, multiple efforts have been made to model its
evolution and understand its behavior. Knowledge of applicable models can help, on the
one hand, to make correct decisions to mitigate the spread of the virus and, on the other, to
design actions against future health crises of the same nature. For this reason, the scientific
community is making strenuous efforts to apply existing techniques and develop new ones
capable of modeling and predicting the evolution of the epidemic.
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In this regard, compartmental epidemiological models have been a main focus of
attention. Among them, SIR models stand out, which are based on the assumption that the
population can be classified into three independent compartmentalized groups (susceptible,
infected, and recovered). The number and type of compartmentalized groups can be
modified to better reflect the specific dynamics of the disease, giving way, for example, to
SEIR models (susceptible, exposed, infected, and recovered). In both cases, the models
represent how individuals can progress from one compartmentalized group to the next
(see [3] for more details about the compartmental models).

Although such models have been widely applied, the specifics of the present pandemic
has led researchers to explore how certain modifications can be introduced in the models.
For example, Gounane et al. [4] developed a non-linear SIR model that includes the effect
of social distancing imposed by governments around the world. Khan et al. [5] introduced
the so-called SQUIDER model in which new compartments are incorporated; specifically
infected and undetected cases (U), undetected recovered cases (E), quarantined cases af-
fected by social distancing (Q), and deaths from contagion (D). Furthermore, Ianni et al. [6]
introduced temporal dependence on the parameters of the classical SIR model, thus affect-
ing the behavior of the basic reproductive number R0 over time. This is intended to take
into account containment measures, such as lockdowns, social distancing, and limitations
on commercial activities. The resulting models are called SIR-T and SIRD-T. While all the
efforts mentioned above address compartmental models from a deterministic point of view,
some research has looked into the development of stochastic models, including fractional
versions of the same (see for instance [7]).

Apart from these epidemiological models, several authors have considered other
approaches. Among others we can cite the work of Maleki et al. [8] in which they con-
sidered ARMA processes based on two-piece scale mixture normal distributions; Ünlu
and Namb [9] used machine learning techniques and addressed various epidemiological
models from a Bayesian perspective. Special mention must be made of functional data
techniques, which have been applied to several lines of research. For example, Ref. [10]
used principal component analysis to discover patterns of pandemic progression as well as
to identify the countries that better represent these archetypes. Similarly, Acal et al. [11]
proposed a principal components multiple function-on-function regression model for the
imputation of missing data in the COVID-19 hospitalized and intensive care curves of
several Spanish regions.

The evolution dynamics of the current pandemic, as in previous ones, point at the
importance of considering models based on growth curves, mainly those of the sigmoidal
type. Some of them, such as the Richards curve, have already been used in previous
situations of this nature (Hsi et al. [12], Wang et al. [13]). Concerning COVID-19 specifically,
mention must be made of Català et al. [14], where the authors employed the Gompertz
curve; and of Li et al. [15], a comparative study performed using the Richards, logistic,
Von Bertalanffy, and Gompertz curves, among others. However, such curves present a
fairly rigid behavior, so it is necessary to resort to more flexible models. In this sense,
Tovissodé et al. [16] have used the generic growth model introduced by Turner et al. [17]. A
fundamental aspect that must be taken into consideration is that practically all the studies
in this line of research focus on modeling the first wave of the pandemic. This is due
to these curves presenting a sigmoidal behavior with only one inflection point. Sadly,
this does not allow for a more in-depth analysis of the evolution of the pandemic as a
whole. Therefore, if more complex behaviors are to be modeled, it becomes necessary to
consider multi-sigmoidal curves. Likewise, a large part of the studies have been carried
out from a deterministic point of view, so they do not take into account possible random
fluctuations as well as influences external to the system. The fact that growth curves have
their origin, for the most part, in the solution of an ordinary differential equation naturally
leads to the consideration of stochastic differential equations whose solutions are, under
certain conditions, diffusion processes. Some works have recently been published which
combine both aspects, that is, the multi-sigmoidal and the stochastic character of the model.
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Román-Román et al. [18] considered a diffusion process associated with a plurisigmoidal
Gompertz curve, while Di Crescenzo et al. [19] proposed two growth and death processes
and a diffusion process whose mean functions are logistic curves that present several
inflection points.

In summary, the starting motivations of the present work can be summarized as:

• The need for the broadest possible knowledge of the evolution dynamics of the pan-
demic, focusing on determining points of contagion peaks, inflections in its evolution,
duration, and the succession of waves.

• The need to consider models that reproduce the observed multi-sigmoidal behavior
of the pandemic.

• The need to consider stochastic models that allow the aspects mentioned above to be
studied from a probabilistic perspective.

With these ideas in mind, the present paper is a proposal to employ diffusion processes,
whose mean functions are multi-sigmoidal curves, in order to model the evolution of the
pandemic through various waves by considering both the number of infected individuals
and the number of deaths. Specifically, the Gompertz process introduced in [18] is consid-
ered, as well as a version of the generalized Weibull-type process that was proposed by
Barrera et al. [20]. In both cases, the processes are obtained by including polynomial-type
functions in the ordinary differential equations that give rise to the Gompertz and Weibull
curves, respectively. Both processes can be viewed from a common perspective such as
that provided by the inhomogeneous lognormal diffusion process. Stochastic diffusion
processes provides advantages over other commonly-used models for the study of epidemi-
ological phenomena, such as SIR models based on differential equations. The probabilistic
nature of the model allows the researcher to evaluate the variability of the model estimates,
considering, for example, confidence intervals for the estimates and predictions made. In
addition, in the specific case of diffusion processes such as the ones considered in this paper,
they can be used to study several temporary variables of notable interest. Specifically, in
the present case the determination of the time instants in which the infection and death
peaks are reached can be approached by calculating first-passage times, which provides a
valuable probabilistic tool for its study and analysis.

Under these general considerations, this paper is structured as follows: Section 2
is dedicated to introducing the multi-sigmoidal Gompertz and Weibull curves, while
Section 3 introduces the processes associated with each of the previous curves, based on
the inhomogeneous lognormal diffusion process. These two sections cover both models in
a unified way, which will help simplify the expressions to be derived later on. Section 4
is dedicated to the estimation of the parameters of the models being considered, which
is carried out by maximum likelihood. This section includes some strategies aimed at
the selection of initial solutions for the numerical methods necessary for the estimation,
and describes a strategy for the selection of the optimal polynomial in each case. Finally,
Section 5 uses both processes to model pandemic-related data originating from several
Spanish regions during the first two waves of infection, and proposes a strategy for selecting
the model that best fits the observed data. For the selected model, a study of the inflection
times is considered, which determine the infection and deaths peaks in each wave. This
analysis is carried out from the point estimation of said instants and from the study of the
first-passage times of the process through the values where inflections occur. Finally, some
conclusions are drawn.

2. Gompertz and Weibull Multi-Sigmoidal Curves

In this section, we introduce two multi-sigmoidal versions of the Gompertz and
Weibull curves. Both are obtained through the inclusion of polynomial functions in the ordi-
nary differential equations whose solutions are said curves. More in detail, let
Qβ(t) = ∑

p
`=1 β`t` be a polynomial of degree p > 0, where β =

(
β1, . . . , βp

)T is a real
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parametric vector such that βp > 0. Let us consider t ≥ 0 and define the multi-sigmoidal
Gompertz function as

fθ̄g
(t) = kg exp

(
−αg exp

(
−Qβg(t)

))
, θ̄g =

(
αg, βT

g

)T
, (1)

and the multi-sigmoidal Weibull functions as

fθ̄w
(t) = kw − αw exp

(
−Qβw(t)

)
, θ̄w =

(
αw, βT

w

)T
, (2)

where αg, αw > 0 and the parameters kg, kw > 0 are the asymptotic values of every curve,
i.e., the carrying capacity of every model. Here we denote with g and w those expressions
related to the Gompertz and Weibull models, respectively. Each of such functions can be
viewed as the solution of the Malthusian-type linear differential equation

d
dt

fθ(t) = hθ(t) fθ(t), θ = θ̄g, θ̄w, (3)

where the key function hθ is defined as follows:

hθ(t) =

αgPβg(t)e
−Qβg (t) if θ = θ̄g,

αwPβw(t)e
−Qβw (t)(kw − αw exp

(
−Qβw(t)

))−1 if θ = θ̄w.

Here, Pβg(t) is the polynomial satisfying d
dt Qβg(t) = Pβg(t) for all t (analogously for

the Weibull case with βw). From the definition of hθ it follows that the growth periods of
the curves are related with the roots of Pβg and Pβw . Indeed, at every root the derivative
vanishes and the process stops growing. This is also directly related with the inflection
points of the curves, which are discussed at the end of this section.

Other differential equations can be derived from (3) by taking into account the original
expressions (1) and (2) for Gompertz and Weibull multi-sigmoidal models, respectively. Indeed,

d
dt

fθ(t) =


(

log kg − log fθ̄g
(t)
)

fθ̄g
(t)Pβg(t) if θ = θ̄g,(

kw − fθ̄w
(t)
)

Pβw(t) if θ = θ̄w,

leads to solutions, provided the initial condition fθ(t0) = f0 > 0 for all θ,

fθ(t) =

exp
(

log kg

(
1− e−Qβg (t)−Qβg (t0)

)
+ log f0 e−Qβg (t)−Qβg (t0)

)
if θ = θ̄g,

kw − (kw − f0) exp(−αw
(
Qβw(t)−Qβw(t0)

)
) if θ = θ̄w.

By taking limits when t goes to infinity, such functions tend to values (the carrying
capacity) which do not depend on the initial values. This is the main difference with respect
to the model solution of Equation (3). As a matter of fact, by considering fθ(t0) = f0 for
t ≥ t0 ≥ 0, Equation (3) leads to curves

fθ(t) =


f0 exp

(
−α
(

e−Qβg (t) − e−Qβg (t0)
))

if θ = θg,

f0
η−exp(−Qβw (t))
η−exp(−Qβw (t0))

if θ = θw,
(4)

where θg =
(

α, βT
g

)T
and θw =

(
η, βT

w
)T for α = αg and η = kw/αw. Note that, provided

such reformulation, the Weibull model now has one less parameter. From now on, all
definitions depending on θ will be considered for values θg and θw, instead of θ̄g and θ̄w.
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Related with the above equations, note that the expression of hθ is simplified after the
reformulation, being now

hθ(t) =

αPβg(t)e
−Qβg (t) if θ = θg,

Pβw(t)e
−Qβw (t)(η − exp

(
−Qβw(t)

))−1 if θ = θw.
(5)

Furthermore, note that the limit value of such models depends on initial values t0 and
f0, that is,

lim
t→∞

fθ(t) =


f0 exp

(
αe−Qβg (t0)

)
if θ = θg,

f0
η

η−exp(−Qβw (t0))
if θ = θw.

The use of the latter models is justified in the cases of phenomena with multiple
sample paths of observations, each starting at different points and having different limit
values. Due to this more general character, in what follows we will consider the expressions
of fθ given in (4).

As mentioned above, inflection points are of great importance in studying the behavior
of this type of curves. As such points make the second derivative of the curve vanish,
expressions can be obtained by differentiating (3) and taking into account expressions of hθ.
Therefore, in the case of the multi-sigmoidal Gompertz function, condition d2

dt2 fθg(t) = 0
leads to equation

d
dt

Pβg(t) = P2
βg
(t)
(

1− α exp
(
−Qβg(t)

))
,

whereas, in the case of the multi-sigmoidal Weibull function, it follows that

d
dt

Pβw(t) = P2
βw
(t).

The solutions of these equations are the inflection points of the curves. Many growth
phenomena usually present at least one inflection, representing the moment when the
growth rate changes. Multi-sigmoidal models may have multiple inflection points, and are
therefore useful in modeling such types of growth phenomena.

In order to illustrate the behavior related with inflection points, Figure 1 shows multi-
sigmoidal Gompertz and Weibull curves for different values of the polynomial coefficients
when p = 3, f0 = 5, α = log 2 and η = 2, as well as its first and second derivatives, all
according to the values of Table 1.

Table 1. Polynomial coefficients for examples in Figure 1.

Number of Inflections βg βw

0 (0.4,−0.005, 0.0002) (0.3,−0.003, 0.0001)
1 (0.01, 0.003, 0.001) (0.001, 0.0005, 0.001)
2 (0.025,−0.005, 0.0015) (0.03,−0.003, 0.0005)



Mathematics 2021, 9, 2409 6 of 29

0 5 10 15 20

5
6

7
8

9
10

t

Multi−sigmoidal Gompertz

0 5 10 15 20

0.
0

0.
5

1.
0

t

1st. derivative
2nd. derivative

Multi−sigmoidal Gompertz

0 5 10 15 20

5
6

7
8

9
10

t

Multi−sigmoidal Weibull

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0
1.

5

t

1st. derivative
2nd. derivative

Multi−sigmoidal Weibull

0 5 10 15 20

5
6

7
8

9
10

t

Multi−sigmoidal Gompertz

0 5 10 15 20

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

t

1st. derivative
2nd. derivative

Multi−sigmoidal Gompertz

0 5 10 15 20

5
6

7
8

9
10

t

Multi−sigmoidal Weibull

0 5 10 15 20

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

t

1st. derivative
2nd. derivative

Multi−sigmoidal Weibull

Figure 1. Cont.
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Figure 1. Examples of multi-sigmoidal curves and their inflections. Next to every curve, its first and second derivatives are shown. The first two columns correspond to the multi-sigmoidal
Gompertz model, and the others to the multi-sigmoidal Weibull. The rows show, from top to bottom, the cases with no inflection, one and two inflections, respectively, (marked with a red
vertical dashed line in the plot of the derivatives).
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3. Gompertz and Weibull Multi-Sigmoidal Diffusion Processes

The aforementioned deterministic models are useful to describe growth phenomena
in their most basic terms. However, in order to build a more precise model able to take into
account other factors and uncertainties, their stochastic counterparts are recommended.
Random fluctuations appear in every dynamical behavior, whether as a result of the nature
of the phenomenon under study or as the uncertainty derived from observation and
measurement instruments. They must therefore be included in any model attempting to
describe the growth phenomena in any significant depth.

A traditional way to build stochastic models is including a random term (usually a
white noise) in an ordinary differential equation. Nevertheless, such approach may lead to
intractable models due to the potentially high complexity of the deterministic base model.

For this reason, it might be useful to consider other approaches, such as adding a
random perturbation to a parametric function. In this case, following (3), it is possible to
introduce a white noise ζ(t) with spectral density σ2, where σ > 0 will be the diffusion
coefficient of the stochastic model, in order to randomly perturb function hθ(t) (from (5))
and to obtain a function hθ(t) + ζ(t). Please note that, for the sake of clarity and following
the unified notation of the previous section, from now on we will omit the subscript in the
expression for θ.

After replacing hθ(t) with hθ(t) + ζ(t) in (3), such expression becomes a stochastic
differential equation; concretely

dX(t) = hθ(t)X(t)dt + σX(t)dW(t), (6)

where W(t) is the standard Wiener process, independent of initial value X(t0) for t ≥ t0.
Here, t0 ≥ 0 is the initial time and t ∈ [t0, T] where [t0, T] is the parametric space of the
process.

Taking into account that hθ is continuous in t ∈ [t0, T], Equation (6) verifies the
conditions for the existence and uniqueness of a solution. Said solution is a stochastic
diffusion process, known as inhomogeneous lognormal diffusion process, taking values on
R+ and characterized by infinitesimal moments A1(x, t) = hθ(t)x and A2(x) = σ2x2. In
addition, a closed-form expression for the solution can be provided. In fact, by considering
initial condition X(t0) = X0, being X0 a random variable whose distribution must be either
degenerate or lognormal (as further explained later in this section), we have

X(t) = X0 exp(Hθ̃(t0, t) + σ(W(t)−W(t0))), θ̃ =
(

θT , σ2
)T

,

where function Hθ̃ is defined, for t0 ≤ s < t ≤ T, as

Hθ̃(s, t) =
∫ t

s
hθ(u)du− σ2

2
(t− s).

Note that parameter θ̃ takes the form θ̃g or θ̃w when θ = θg or θ = θw, respectively,

where θ̃g =
(

θT
g , σ2

)T
and θ̃w =

(
θT

w, σ2)T .
Function Hθ̃ depends on the integral of function hθ, defined in the previous section.

Such integral can be computed easily for every multi-sigmoidal model, leading to

Hθ(s, t) =
∫ t

s
hθ(u)du =


−αe−Qβ(θ)(t) + αe−Qβ(θ)(s) if θ = θg,

log
(

η − e−Qβ(θ)(t)
)
− log

(
η − e−Qβ(θ)(s)

)
if θ = θw.

where parameter β depends on θ in the sense that β(θg) = βg and β(θw) = βw.
Such results can be expressed in a more compact form as

Hθ(s, t) = ψθ

(
e−Qβ(θ)(t)

)
− ψθ

(
e−Qβ(θ)(s)

)
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where function ψθ is defined as

ψθ(r) =

−αr if θ = θg,

log(η − r) if θ = θw.
(7)

The inhomogeneous lognormal process has been the subject of many studies, theo-
retical as well as applied. In particular, Román and Torres [21] analyzed their versatility
when modeling phenomena governed by growth curves such as those considered here
(for example Richards [22] and Hubbert [23], among other curves). Gutiérrez et al. [24]
carried out a detailed analysis of that process from the perspective of SDE as well as from
the point of view of Kolmogorov’s partial differential equations, including the study of
the distribution of the process and characteristics of interest, such as the moment and
percentile functions.

As regards the distribution of the process, if X0 is either degenerate or lognormal,
then the finite-dimensional distributions of the process are distributed according to a
lognormal law. Indeed, random vector (X(t1), . . . , X(tn))

T , where t1 < · · · < tn for
all n > 0, has an n-dimensional lognormal distribution Λn[ε, Σ] where ε is a vector of
elements εi = µ0 + Hθ̃(t0, ti) and Σ is a matrix of elements σij = σ2

0 + σ2(min(ti, tj)− t0
)
,

for i, j = 1, . . . , n. Here, µ0 and σ2
0 are the parameters of the initial distribution Λ1

[
µ0, σ2

0
]
.

Note that, if X0 > 0 is degenerate at a point x0, i.e., X0 = x0 a.s., then µ0 = x0 and σ2
0 = 0

in the previous expressions.
The transition probability distribution is particularly useful for inferential purposes.

From the two-dimensional distributions (X(s), X(t))T , s < t, the transitions of the process
can be obtained, which are also lognormal. Concretely,

X(t)|X(s) = y ∼ Λ1

[
log y + Hθ̃(s, t), σ2(t− s)

]
.

Once the distribution of the process has been established, different characteristics
associated with it can be calculated, including the mean and conditioned mean functions,
whose expressions are

E(X(t)) = E(X0)
exp

(
ψθ

(
e−Qβ(θ)(t)

))
exp

(
ψθ

(
e−Qβ(θ)(t0)

))
and

E(X(t)|X(t0) = x0) = x0

exp
(

ψθ

(
e−Qβ(θ)(t)

))
exp

(
ψθ

(
e−Qβ(θ)(t0)

)) .

In addition, taking into account (4) and (7) it can be verified that

exp
(

ψθ

(
e−Qβ(θ)(t)

))
exp

(
ψθ

(
e−Qβ(θ)(t0)

)) =
fθ(t)
fθ(t0)

,

thus the two mean functions are of the type considered in the previous section. This
supports the use of the processes introduced to model phenomena whose behavior is of the
multi-sigmoidal type. This provides good reason to study the inference of the processes,
which is the subject of the next section.

4. Inference

In this section, the maximum likelihood estimation of the parameters of the two
multi-sigmoidal processes is discussed, following the general methodology suggested by
Román-Román et al. [25].
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Let us now consider a discrete sampling of d paths observed at times tij for i = 1, . . . , d
and j = 1, . . . , ni. For the sake of simplicity, we will consider ti1 = t0 for all i, i.e., all the
paths are observed at the same time instants. Furthermore, let XT

i =
(
X(ti1), . . . , X(tini )

)
be

the vector corresponding to the i-th sample path (i = 1, . . . , d). Then, X =
(
XT

1 | · · · |XT
d
)T .

Let us assume a lognormal initial distribution, i.e., X0 ∼ Λ1
[
µ1, σ2

1
]
. Then, for a fixed

value x ∈ X, the log-likelihood function is

log Lx(ζ, θ̃) =− (n + d) log(2π)

2
−

d log σ2
1

2
− n log σ2

2

−
d

∑
i=1

log xi1 −
1

2σ2
1

d

∑
i=1

(log xi1 − µ1)
2 − 1

2σ2 (Z1 + Φθ̃− 2Γθ̃) (8)

where n = ∑d
i=1(ni − 1), ζ =

(
µ1, σ2

1
)T is the vector containing the parameters of the initial

distribution and

Z1 =
d

∑
i=1

ni

∑
j=2

∆−1
i,j−1,j

(
log

xij

xi,j−1

)2

,

Φθ̃ =
d

∑
i=1

ni

∑
j=2

∆−1
i,j−1,j H2

θ̃
(ti,j−1, tij),

Γθ̃ =
d

∑
i=1

ni

∑
j=2

∆−1
i,j−1,j log

xij

xi,j−1
Hθ̃(ti,j−1, tij),

where ∆i,j−1,j := tij − ti,j−1 (note that, in the case of equidistant times, this term be-
comes constant).

Provided the functional independence of parametric vectors ζ and θ̃, the estimate of
the former is

µ̂1 =
1
d

d

∑
i=1

log xi1, σ̂2
1 =

1
d

d

∑
i=1

(log xi1 − µ̂1)
2,

while the estimate of θ̃ is obtained from the solution of the system of equations (see [25]
for details)

Ξθ +
σ2

2
Ωθ = 0,

σ2
(

n + σ2Z2/4
)
− Xθ

1 + 2Xθ
2 − Z1 = 0, (9)

where

Ξθ =
d

∑
i=1

ni

∑
j=2

∆−1
i,j−1,j

(
log

xij

xi,j−1
−Hθ(ti,j−1, tij)

)
∂

∂θ
Hθ(ti,j−1, tij),

Ωθ =
d

∑
i=1

ni

∑
j=2

∂

∂θ
Hθ(ti,j−1, tij), Xθ

1 =
d

∑
i=1

ni

∑
j=2

∆−1
i,j−1,jH

2
θ(ti,j−1, tij),

Xθ
2 =

d

∑
i=1

ni

∑
j=2

∆−1
i,j−1,j log

xij

xi,j−1
Hθ(ti,j−1, tij), Z2 =

d

∑
i=1

ni

∑
j=2

∆i,j−1,j.
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The maximum-likelihood equations use the vector derivative ofHθ, which is done by
the following expressions, according to the compact form presented previously:

∂

∂θ
Hθ(ti,j−1, tij) =


M0

θ(tij)−M0
θ(ti,j−1)

M1
θ(tij)−M1

θ(ti,j−1)
...

Mp
θ(tij)−Mp

θ(ti,j−1)


where, for k = 0, . . . , p,

Mk
θ(t) = 1{θ=θw}

(
tke−Qβ(θ)(t)

)1−δ0k ∂ψθ(r)
∂η

∣∣∣∣∣
r=e

−Qβ(θ)(t)
− 1{θ=θg}(αtk)1−δ0k

∂ψθ(r)
∂α

∣∣∣∣∣
r=e

−Qβ(θ)(t)
,

where 1{·} and δ·· are the indicator function and the Kronecker delta, respectively. Note
that, provided the degree p of the polynomial, that is, the number of parameters of the

curve, then
∂

∂θ
Hθ ∈ Rp+1.

The system of Equation (9) can not be solved explicitly, and it is therefore necessary to
use numerical methods for which an initial solution is required. However, it is not possible
to carry out a general study of the system of equations in order to check the conditions of
convergence of the chosen numerical method, since the system is dependent on sample
data which may therefore lead to unforeseeable behavior. One alternative would be using
optimization procedures on the log-likelihood (8), for which it is usually necessary to
bound the parametric space. These two questions will be covered in Section 4.2.

4.1. About [t0, T]

Before applying the inference procedure, it is necessary to discuss a modification in-
volving the time interval where the processes are considered. Although such processes have
been defined on a generic interval [t0, T], two main reasons motivate the standardization
of such interval to [0, 1]. The first one is the analytical complexity of the multi-sigmoidal
lognormal model. When t0 = 0, many exponential functions turn to 1, making calculus
more tractable than the general case t0 6= 0. The second reason is the numerical precision of
computational operations. When T = 1, fluctuations of the objective function (derived from
the log-likelihood function) allow for a good performance of the numerical algorithms.

Such standardization does not, nevertheless, modify the nature of the process. Indeed,
the two multi-sigmoidal lognormal diffusion processes being considered remain the same
when the parametric space is transformed from [t0, T] to [0, 1]. In particular, infinitesi-
mal moments fully characterizing the process are equal up to a term coming from the
standardization procedure. A more formal explanation is shown in Appendix A.

4.2. Initial Solutions

As mentioned earlier, the use of numerical methods to solve the system of Equation (9),
or of optimization methods in the case of maximizing (8), requires having initial solutions
in the first case or limiting the parametric space in the second.

In order to obtain initial solutions, we propose a simple linear regression. Taking
t0 = 0 in agreement with the remark made in the previous subsection, from (4) it follows,
for the Gompertz case, that

log log
kg

fθg(t)
= log α−Qβg(t), (10)

where kg = f0 eα, whereas for the Weibull case it has

log
(

η − fθw(t)
f0

(η − 1)
)
= −Qβw(t),
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which, taking into account relation η =
(

1− f0
kw

)−1
, becomes

log
kw − fθw(t)

kw − f0
= −Qβw(t). (11)

Both Equations (10) and (11) can be viewed as linear regression models over (t, zg), and
(t, zw), where t is the time vector and zg is the vector of elements zg

i = log log(k̃g/mg
i ) for

the Gompertz case, and zw the vector of elements zw
i = log

(
(k̃w −mw

i )/(k̃w −mw
1 )
)

for the
Weibull case (i = 1, . . . , d). Here, k̃g, mg

i , k̃w, mw
i are the final and i-th observed value of the

sample mean, respectively, to be modeled by Gompertz and Weibull processes. With all
of this, initial values of polynomial parameters βθg and βθw follow from linear regression.
The initial values for α and η are obtained from the relationships between these parameters
and limit values kg and kw.

A similar procedure can be applied to obtain an initial value of σ2. The equation for the
regression comes from having a lognormal distribution. Indeed, it is known that, given a
random sample from a lognormal distribution Λ1[η, δ], the quotient between the arithmetic
mean and the geometric one provides an estimation of δ. By applying this to the distribution
of X(t), we obtain, for each ti, an estimate of σ2

0 + σ2 ti; that is, σ2
i = 2 log(mi/gi), being

mi ∈ {m
g
i , mw

i } and gi ∈ {g
g
i , gw

i } the geometric mean at time ti for Gompertz and Weibull
cases. The initial value of σ2 is calculated by performing a simple linear regression of the
σ2

i values against ti. Note that if X0 is a degenerate distribution, then σ2
0 = 0. Otherwise,

σ2
0 is previously estimated from the values of the sample paths at t0.

Regarding the maximization of the likelihood function, not all specialized software
requires bounding the parametric space. However, for those that do, we suggest the
following procedure:

• Since high values of σ2 lead to sample paths with great variability around the mean of
the process, we consider 0 < σ2 < 1, so that the multi-sigmoidal behavior is advisable.

• For the Gompertz case, we propose considering confidence intervals provided by
the linear regression previously performed in order to find the initial solutions. It is
advisable to use a high level of confidence, i.e., 0.999.

• For the Weibull case, we consider the confidence intervals for parameters β j, whereas

for η, and since it is verified that η =
(

1− f0
kw

)−1
, we suggest taking interval

(a, b), where

a := min
1≤i≤d

(
1− xi,1

xi,ni

)−1
, and b := max

1≤i≤d

(
1− xi,1

xi,ni

)−1
.

4.3. Degree of Polynomial

The choice of the degree of the polynomial included in the infinitesimal mean of the
multi-sigmoidal Gompertz and Weibull models must obviously be based on the data. Thus,
we propose setting a high degree of polynomial in advance, q, and selecting:

• For the multi-sigmoidal Gompertz model, the optimal polynomial regression model
in Mg for the data set (t, zg) being Mg the class of polynomial regression models of
degree less than or equal to q;

• For the multi-sigmoidal Weibull model, the optimal polynomial regression model in
Mw for the data set (t, zw) being Mw the class of polynomial regression models of
degree less than or equal to q without the intercept term.

In order to do this, we will employ the usual Bayesian procedure for variable selection
in normal regression models using intrinsic priors for model parameters and the uniform
prior for models (see Moreno et al. [26–28] for details). The optimal model will be the one
having the highest posterior probability.
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A slight adaptation of the Bayesian procedure for variable selection is required
in our case:

• For the multi-sigmoidal Gompertz model, by Mj we denote the polynomial regression
model of degree j, j = 0, . . . , q.
Given data set (t, zg), which comes from a model in Mg, the posterior probability of
model Mj is given by

P(Mj|t, zg) =
Bj0(t, zg)π(Mj)

∑
q
i=0 Bi0(t, zg)π(Mi)

where π(Mi) = 1/(q + 1) and

Bi0(t, zg) =
2
π
(i + 2)i/2

∫ π/2

0

sini ϕ (n + (i + 2) sin2 ϕ)(n−i−1)/2

(nBi0 + (i + 2) sin2 ϕ)(n−1)/2
dϕ

is the Bayes factor for comparing models Mi and M0 for the intrinsic priors, which
depends on Bi0, the ratio of the square sum of the residuals of models Mj and M0.

• For the multi-sigmoidal Weibull model, by Mj we denote the polynomial regression
model of degree j without the intercept term, j = 1, . . . , q.
Given data set (t, zw), which comes from a model in Mw, the posterior probability of
model Mj becomes

P(Mj|t, zw) =
Bj1(t, zw)π(Mj)

∑
q
i=1 Bi1(t, zw)π(Mi)

where π(Mi) = 1/q and

Bi1(t, zw) =
2
π
(i + 1)(i−1)/2

∫ π/2

0

sini−1 ϕ (n + (i + 1) sin2 ϕ)(n−i)/2

(nBi1 + (i + 1) sin2 ϕ)(n−1)/2
dϕ

is the Bayes factor for comparing models Mi and M1 for the intrinsic priors, which
depends on Bi1, the ratio of the square sum of the residuals of models Mj and M1.

5. Application to the Description of the Evolution of the COVID-19 Pandemic

In this section, the stochastic models introduced earlier will be used to describe the
evolution of COVID-19 in Spain during the first two waves of the pandemic. For the
purposes of this analysis, which comprises two successive periods of infection, multi-
sigmoidal models become particularly necessary.

5.1. About the Data

Since the beginning of the pandemic, the National Epidemiology Center (CNE), de-
pendent on the Carlos III Health Institute, coordinates information related to the evolution
of the disease in Spain. The CNE works at the service of public health, contributing to
the control of diseases and risks in collaboration with the autonomous communities, the
Ministry of Health, Consumer Affairs, and Social Welfare, and the rest of the national
administrations with health-related attributions. Through the National Epidemiological
Surveillance Network, this center collects the data obtained from the epidemiological
survey that each Spanish autonomous community completes upon the identification of a
COVID-19 case.

As is well known, keeping count of the number of positive cases posed many problems
during the early stages of the epidemic because there was insufficient capacity for detection,
mainly due to the shortage of diagnostic tests and the administrative chaos resulting from
the collapse of the healthcare system. For this reason, the studies initially carried out were
mostly based on data concerning hospitalizations and deaths, and such data were used
to estimate the number of infected. This made it difficult to carry out a detailed analysis
of the real evolution of the disease, and also to determine the occurrence of certain key
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moments such as the peak of infection. As time went by, the protocols to determine infected
cases were improved, so that the data reported for the second and successive waves can be
considered more reliable than those reported in the first.

The data considered are based on the number of infected and deceased individuals
reported every 4 days by 15 Spanish regions between 8 March and 21 December 2020, a
period that covers the first two waves of the pandemic as officially reported. Data have been
extracted from https://cnecovid.isciii.es/covid19/#documentacion-y-datos (last accessed
on 24 July 2021). Each data series was modified by dividing by the value observed at the
first time instant, so that the data processed represent, at each t, how many times the value
of confirmed cases and deaths multiplies the value initially observed.

Figure 2 shows the data. Note that the average value of the data (the solid black line)
exhibits a multi-sigmoidal-type growth.
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Figure 2. Number of infected individuals (left) and deaths (right) corresponding to the first two waves of the pandemic in
Spain. The solid black lines represent the sample means.

5.2. Fitting the Number of Infected Individuals

This section presents the application of the models introduced to adjust the data on
the number of infected individuals. In the developed application we have addressed the
following issues in sequence:

1. The choice of the degree of the polynomials included in the infinitesimal mean of the
multi-sigmoidal Gompertz and Weibull models.

2. The maximum likelihood estimation of the parameters of the models.
3. The determination of the best model.
4. The study of the inflection time instants.

Results are presented next for each of these issues, according to the methodology
described in previous sections. Likewise, and following the comments made in Section 4.1,
the time instants have been rescaled to the [0, 1] interval.

5.2.1. The Choice of the Degree of Polynomials

This subsection follows the methodology presented in Section 4.3. For the Gompertz
model, and after choosing a maximum degree q = 8, Table 2 summarizes the posterior
probabilities of the polynomial regression model of degree j, j = 0, . . . , 8, given data
set (t, zg) coming from a model in Mg. The highest posterior probability is 0.8167759,
corresponding to the polynomial regression model of degree 5.

https://cnecovid.isciii.es/covid19/#documentacion-y-datos
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Table 2. Study of infected: Posterior probabilities of the polynomial regression model of degree less
than or equal to 8 for the multi-sigmoidal Gompertz model.

Degree Posterior Probability

0 8.150422× 10−80

1 1.392585× 10−60

2 1.652217× 10−46

3 1.092432× 10−7

4 7.498777× 10−9

5 8.167759× 10−1

6 9.750507× 10−2

7 7.297665× 10−2

8 1.274224× 10−2

In the same way, for q = 8 in the multi-sigmoidal Weibull model, Table 3 summarizes
the posterior probabilities of the polynomial regression model of degree j without intercept
term, j = 1, . . . , 8, given data set (t, zw) coming from a model in Mw. Again, the optimal
regression polynomial model is that of degree 5, which presents a posterior probability
of 0.9349964.

Table 3. Study of infected: Posterior probabilities of the polynomial regression model of degree less
than or equal to 8 for the multi-sigmoidal Weibull model.

Degree Posterior Probability

1 2.690540× 10−67

2 3.882898× 10−50

3 1.321680× 10−21

4 1.125084× 10−2

5 9.349964× 10−1

6 3.856249× 10−2

7 1.366770× 10−3

8 1.382346× 10−2

5.2.2. The Maximum Likelihood Estimation of the Parameters in Each Model

We address now the maximum likelihood estimation of the multi-sigmoidal Gompertz
and Weibull models. In agreement with the conclusions drawn earlier, in both cases a
polynomial of degree 5 will be considered in the infinitesimal mean of each process.
Although in both cases an attempt has been made to solve the non-linear system of
likelihood equations, arithmetic overflows in the calculus have prevented the likelihood
equations for the multi-sigmoidal Gompertz process to be established. For this reason, in
this case we have chosen to directly maximize the log-likelihood function.

The estimation process has provided the following results, where β
g
i and βw

i are the
elements of vectors βg and βw, respectively:

• By using the spectral projected gradient method, implemented in the spg R func-
tion of the BB R-package [29], the values of the parameters that maximize the loga-
rithm of the likelihood for the multi-sigmoidal Gompertz model are: α̂ = 8.0267883,
β̂

g
1 = 15.550577, β̂

g
2 = −71.903013, β̂

g
3 = 147.217478, β̂

g
4 = −135.119470, β̂

g
5 = 49.005728,

and σ̂2 = 0.480871.
• Applying the Newton method, implemented in the nleqslv R function of the nleqslv

R-package [30], in order to solve the non-linear system of likelihood equations for the
multi-sigmoidal Weibull model, the following estimates of the model parameters have
been obtained: η̂ = 1.0003498, β̂w

1 = 1.1278246, β̂w
2 = −6.1992975, β̂w

3 = 19.1664358,
β̂w

4 = −30.4880009, β̂w
5 = 20.0609318, and σ̂2 = 0.5562937.
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5.2.3. Determination of the Best Model

Once the models have been estimated from the observed data, the question arises
of determining which of the two models is the most appropriate to describe the global
behavior of the phenomenon under study. Figure 3 displays, for each model, the sample
and estimated mean functions and the 95% confidence band for the mean function together
with the sample paths.
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Figure 3. Study of infected: Sample and estimated mean functions (left) and 95% confidence band for the mean func-
tion together with the sample paths (right) for (a) the multi-sigmoidal Gompertz model and (b) the multi-sigmoidal
Weibull model.

In view of the plots in Figure 3, it is not easy to decide on one model or another,
although we must point out that, while the multi-sigmoidal Weibull model does not
replicate the data trend very well at the beginning, the multi-sigmoidal Gompertz model
does. However, the confidence band plots also indicate that both models have difficulties
in fitting the data at the beginning.

A global measure of how well the sample mean is fit by the mean of the estimated
model is the absolute relative error given by
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RAE =
1
n

n

∑
i=1

|mi − E(X̂(ti))|
mi

.

This measure presents values 0.06537265 and 0.2657263, respectively, for the multi-
sigmoidal Gompertz and Weibull models. In this sense, the first model appears to be
more suitable.

Another relevant question is which of the two models provides a better estimate
of the sample distribution at each instant of time. This can be done by determining the
resistor-average distance [31] between the sample and estimated distributions at each
time instant.

The resistor-average distance is a symmetrized Kullback–Leibler distance defined as
the harmonic sum (half the harmonic mean) of the component Kullback–Leibler distances,
that is,

DRA( fs|| fe) =
DKL( fs|| fe)DKL( fe|| fs)

DKL( fs|| fe) + DKL( fe|| fs)

where DKL( fs|| fe) denotes the Kullback–Leibler distance between the sample distribution
( fs) and that of the estimated model ( fe).

For the models under consideration, the component Kullback–Leibler distances at
time instant ti are given by

DKL( fs|| fe) =
1
2

log
(

σ̂2(ti − t0)

σ̂i
2

)
+

σ̂i
2

σ̂2(ti − t0)
+

(
log gi − log Ê(X0)− Hθ̃(t0, ti)

)2

σ̂2(ti − t0)
− 1


and

DKL( fe|| fs) =
1
2

log

(
σ̂i

2

σ̂2(ti − t0)

)
+

σ̂2(ti − t0)

σ̂i
2 +

(
log gi − log Ê(X0)− Hθ̃(t0, ti)

)2

σ̂i
2 − 1


where σ̂i

2 = 2 log(mi/gi), being mi and gi, respectively, the sample mean and sample
geometric mean at ti.

The values of resistor-average distances allow us to appreciate the time periods in
which the estimated distribution moves away or approaches the sample distribution, and
how close or far it is from said distribution. Furthermore, measures such as the mean or
median of the resistor-average distances values allow us to globally assess the goodness of
fit and select the best model.

For the estimated models, Figure 4 shows the resistor-average distance between
sample and estimated distributions as a function of time. An initial period of time is
observed in which the Weibull model estimates the sample distributions much worse than
the Gompertz model, and only at a later time does the Weibull model estimate the sample
distributions somewhat better than the Gompertz model.

Table 4 collects some measures of interest to summarize the values of resistor-average
distances. All such measures point at the multi-sigmoidal Gompertz model as the best choice.

Table 4. Study of infected: Measures of interest from the values of resistor-average distances for
each model.

Minimum Mean Median Maximum Variance

Gompertz model 0.0000031 0.1406574 0.0288676 1.1691629 0.0554912
Weibull model 0.0000914 0.4240050 0.0349878 13.7878014 3.2147742
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Figure 4. Study of infected: Resistor-average distance between sample and estimated distributions
as a function of time for the two estimated models.

5.2.4. The Study of Inflection Time Instants

A matter of great interest when describing the behavior of a set of growth-related
data is to establish when the growing pattern changes, which is revealed by the inflection
time instants. In the specific case that we are considering, these instants of time mark the
moments in which infection peaks are reached in each wave.

Once we have determined and estimated an appropriate model X̂(t) to explain the
evolution of the COVID-19 data, inflection times can be estimated using the inflection
points of the estimated mean function of the selected model, m̂(t) = E(X̂(t)).

By setting
d2

dt2 m̂(t) = 0, we have been able to estimate three inflection time instants.

Table 5 contains the estimated values of the inflections times, t̂I,j, together with values
Sj = m̂(t̂I,j) for j = 1, 2, 3. We can conclude that changes in the average growth pattern
occur on 2 April, 30 May, and 6 November.

Table 5. Study of infected: Estimated inflection time instants.

t̂I,j Sj

0.08893562 120.8690
0.28901782 271.8643
0.84546491 1925.691

Figure 5a depicts the second derivative of the estimated mean function. The vertical
lines are located on the estimated inflection time instants. Figure 5b locates the estimated
inflection time instants (vertical lines) on the graph of the estimated mean function. The
horizontal lines are placed on the values of the estimated mean function at those time
instants. It should be noted that the second inflection moment obtained does not seem to
correspond to a peak of infection proper. Indeed, Figure 2 shows how between instants
0.2 and 0.4 (corresponding to the dates between 4 May and 30 June, approximately) the
evolution of the pandemic slowed down considerably, in such a way that a plateau is
observed on the graph. In that period of time, and despite fitting the observed average quite
well, the estimated average shows a very slight decrease that motivates the appearance
of this new inflection, without it being linked to a new wave of infection. Regarding the
other two dates, they can be related to actions promoted by the Spanish government as
well as the governments of the different autonomous communities. Indeed, on 14 March
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a state of alarm and nationwide lockdown and quarantine were imposed to control the
spread of the virus, which meant that around 14 days later the peak of the first wave was
reached. Similarly, around the third week of October an increase in the number of infected
was observed. The reason for this must be found in the holidays that occurred in Spain on
the occasion of the celebration of the National Day (12 October) and the mobility that this
motivated among the population. For this reason, government actions took place, such as
restricting attendance at university teaching, the closure of activities related to nightlife,
and the limitation of opening hours for bars and restaurants. Again, around 14 days later,
the peak of infection in this second wave was observed.

Furthermore, and regarding each of the inflection points, we can consider the first-
passage-time variable, defined as the time required for data to reach the mean growth at
the inflection point for the first time. By studying the distribution of this random variable
we may determine, for example, the probability that the change in the growth pattern
occurs in a certain period of time as well as the average or most frequent time instant in
which the growth pattern changes.

The first-passage-time variable associated with each inflection time instant can be
approximated by the first-passage-time variable defined as the time required for the
estimated model to reach its mean growth at the estimated inflection point for the first
time, that is, the time variable

TSj = inf
t≥t0

{
t : X̂(t) > Sj

}
.

The probability density function of the first-passage-time variable can be obtained as
the solution of a Volterra integral equation of the second kind (see Gutiérrez et al. [32,33]).
Nevertheless, and apart from some particular processes and boundaries, closed-form
solutions for the integral equation are not available, as is the one we are considering in this
application. For this reason, for these cases numerical procedures are needed. The most
usual methods are based on numerical quadrature procedures, as the composite trapezoid
method (see [34,35]).
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Figure 5. Study of infected: Estimated inflection time instants from (a) the second derivative of the estimated mean
function and (b) the estimated mean function for the multi-sigmoidal Gompertz model. The vertical lines are located on the
estimated values.

Considering the comment made earlier about the second inflection time obtained, we
will now focus on the other two, for which we will obtain the first-passage-time variables
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using the fptdApprox R-package [36–38]. Figure 6 contains the density functions of random
variables TSj , j = 1, 3, (note that we have kept the same notation used in the point estimation
of the inflection time points).
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Figure 6. Study of infected: Probability density functions of TS1 (a) and TS3 (b) corresponding to the first-passage times of
the estimated multi-sigmoidal diffusion process through the constant boundaries S1 and S3 shown in Table 5.

The approximation procedure of the density functions provided the following infor-
mation about changes in the growth pattern of the COVID-19 data:

• The first change occurs, with a probability of 0.999, in [0.055306, 0.185625], that is,
between 23 March and 30 April.

• The second relevant change (remember the above remark) happens in time interval
[0.251004, 1], that is, between 19 May and 21 December, with a probability of 0.656171.
It should be noted that in this case there is a part of the range of the first-passage-time
variable that exceeds the temporal limits considered in the data (see Figure 6b), which
means that the complete probability mass is not confined to this interval. This is
due to the fact that some regions reached the established level of contagion after
21 December.

Table 6 summarizes some of the main numerical characteristics of variables TSj , j = 1, 3,
concretely the mean, variance, and mode, as well as some of the most relevant percentiles
of the distributions. Note that in the case of variable TS3 , neither the mean nor the variance
have been calculated since the observation interval does not contain the complete probabil-
ity mass. The percentiles falling into said interval are shown. From the values taken by
these characteristics we can draw some conclusions, namely:

• The first change in the growth pattern of the COVID-19 data happened, on average, at
time instant 0.091806, that is, on 3 April, and more frequently at time instant 0.086358,
that is, on 1 April. Of all regions, 50% reached the peak of infection before 2 April,
while by 4 April they had already exceeded the peak by around 75%.

• Regarding the second relevant change, it occurs more frequently at time instant
0.801248, that is, on 24 October, while 50% of regions peaked before 17 November.
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Table 6. Study of infected: Numerical characteristics of the inflection time random variables for the
COVID-19 data.

TS1 TS3

Mean 0.091806
Variance 0.000305
Modes 0.086358 0.801248
0.1% 0.065957 0.551516
2.5% 0.072643 0.645670
25% 0.082497 0.778273

Median 0.089167 0.883515
75% 0.097491

97.5% 0.122761
99.9% 0.214438

5.3. Fitting the Number of Deaths

Next we show the results about the fitting of the number of deaths, for which the same
methodology that has been considered with the number of infected has been followed. The
study of the number of deaths has shown to be of great interest to epidemiologists. Indeed,
as mentioned above, the collection of data on those infected during the first waves of the
epidemic, especially during the first, has presented quite a few drawbacks meaning that
the data collected does not show, most likely, the reality of the number of infected. This
has given rise to an extensive literature in which procedures are shown to approximate the
data of infected from that of deceased.

Since the methodology and procedures used have been described in detail in the
previous application, below we summarize the main results obtained. Note that in this
case it has not been necessary to rescale the time space associated with the process.

Regarding the degree of the polynomial, the selection method chooses degree 7 for
both the Gompertz and Weibull models as can be deduced from Table 7.

Table 7. Study of deceased: Posterior probabilities of the polynomial regression model of degree less
than or equal to 8.

Posterior Probability

Degree Gompertz Model Weibull Model

0 7.389174× 10−106

1 1.476089× 10−92 2.685957× 10−98

2 1.831829× 10−87 1.682021× 10−94

3 2.687253× 10−59 2.830093× 10−70

4 1.356825× 10−56 3.805252× 10−60

5 4.724887× 10−16 3.222198× 10−36

6 1.365893× 10−10 2.136724× 10−6

7 9.999999× 10−1 8.852732× 10−1

8 1.592107× 10−34 1.147246× 10−1

Once the degree of the polynomial has been selected, the estimation of the parameters
of both models provide the following results:

• for Gompertz model, α̂ = 2.869936, β̂
g
1 = 6.346708× 10−2, β̂

g
2 = −1.361939× 10−3,

β̂
g
3 = 1.641620× 10−5, β̂

g
4 = −1.227131× 10−7, β̂

g
5 = 5.733615× 10−10, β̂

g
6 = −1.527834

×10−12, β̂
g
7 = 1.774433× 10−15 and σ̂2 = 7.484960× 10−4,

• for Weibull model, η̂ = 1.059529, β̂w
1 = 1.862481× 10−2, β̂w

2 = −2.421367× 10−4, β̂w
3

= 1.866785× 10−6, β̂w
4 = −1.656611× 10−8, β̂w

5 = 1.368341× 10−10, β̂w
6 = −5.895702

×10−13, β̂w
7 = 9.569781× 10−16 and σ̂2 = 7.48496× 10−4,
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from which the mean functions are estimated as well as the 95% confidence bands, whose
graphs can be seen in Figure 7.

Regarding the selection of the optimal model, the results provided by the resistor-
average distance (see Figure 8 and Table 8) indicate that both models fit the variable of
interest quite well, although the Gompertz multi-sigmoidal model offers a better fit in the
initial phase, which makes the measurements calculated from the resistor-average distance
bias the decision towards said model.
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Figure 7. Study of deceased: Sample and estimated mean functions (left) and 95% confidence band for the mean func-
tion together with the sample paths (right) for (a) the multi-sigmoidal Gompertz model and (b) the multi-sigmoidal
Weibull model.

Table 8. Study of deceased: Measures of interest from the values of resistor-average distances for
each model.

Minimum Mean Median Maximum Variance

Gompertz model 0.000424 0.041400 0.011593 0.274669 0.004803
Weibull model 0.000121 0.060799 0.011898 1.223415 0.027666
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Figure 8. Study of deceased: Resistor-average distance between sample and estimated distributions
as a function of time for the two estimated models.

Regarding the determination of the death peaks, the point estimation determines that
these were reached on 31 March and 22 November, respectively. Finally, the probability
density functions of the first-passage time of the process through the barriers defined by
the value of the mean estimated in said time instants (S1 = 2.476951 and S2 = 14.392886,
respectively) have been approximated. Figure 9 shows the graph of such density functions.

4 5 6 7 8 9 10

0.0

0.1

0.2

0.3

0.4

0.5

Time

Mean
Mode
Median

100 200 300 400

0.000

0.002

0.004

0.006

0.008

Time

Mode
Median

(a) (b)

Figure 9. Study of deceased: Probability density functions corresponding to the first-passage times of the estimated
multi-sigmoidal Gompertz diffusion process through the constant boundaries S1 (a) and S2 (b).

Finally, by applying the proposed methodology, we can deduce the following:

• The first-passage-time variable through S1 is quite symmetric. In fact, it can be
seen how the mean coincides with both the mode and the median. This leads to
establishing 31 March as the date on which the peak of deceased was reached with
a high probability. Furthermore, the variable is quite concentrated, observing that
on 1 April, 75% of the regions had already reached the peak, while 97.5% did so on
2 April.
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• Regarding the second peak, which more frequent date is 20 November, while 50% of
regions peaked before 27 November. Furthermore, at the end of the observed period,
64.4% of the regions have reached the peak.

6. Conclusions

In real phenomena governed by growth curves there are situations in which the
maximum level of growth is reached after successive stages, in each of which there is a
slowdown followed by an exponential explosion. A clear example of this is provided by
the evolution of pandemics, as is the case of the current one caused by the SARS-CoV-2
virus, where the appearance of successive waves of infection has been (and continues to be)
observed. This motivates the use of sigmoidal curves with more than one inflection point.

In this work, two stochastic diffusion processes are presented, their main characteristic
being that their means are multi-sigmoidal growth curves derived from classical curves
such as the Gompertz and the Weibull. In both cases, these curves have been generated by
introducing polynomial functions in their classic expressions.

Starting from a global formulation for both processes, this paper studied the problem
of estimation using the method of maximum likelihood. Parameter estimates have been
obtained by solving the system of likelihood equations as well as by direct maximization of
the likelihood function. This entails analyzing how to obtain initial solutions in the first case
and the delimitation of the parametric space in the second. Determining the degree of the
polynomial before approaching the estimation of the parameters is a fundamental question
in real-world applications. To do this, a Bayesian approach to the model selection problem
has been considered based on the methodology derived from intrinsic prior distributions.

The stochastic models introduced here have been applied to data concerning the
evolution of the COVID-19 epidemic in Spain during the first two officially recognized
waves. For this, sample trajectories have been considered corresponding to the data of
infected and deceased individuals reported by 15 Spanish regions between 8 March and
21 December 2020. The method of selecting the degree of the polynomial leads to the choice
of degree 5 as optimal in the case of the number of infected, while for that of the deceased
the selected degree is 7. After estimating the models, we proceeded to select the optimal one
for the description of the evolution of the pandemic. Although the two diffusion processes
considered are good models to describe the phenomenon under study, one of them was
selected as the best choice. For this, two criteria were used: the absolute relative error
between the observed and the estimated mean, and the average resistor distance, which
measures the discrepancy between the sample and the estimated distributions. Both criteria
favor the choice of the model based on the multi-sigmoidal Gompertz curve for both the
number of infected and the number of deaths.

The study of the inflection times of the estimated mean function provides an estimate
of the moments when the peak of the epidemic was reached. Our conclusions were drawn
considering the total number of infected and death at the national level. By including in
our analysis data from several regions we can account for the variability derived from their
specific characteristics. Regarding the point estimation of the inflection instants, the results
indicate that, for the number of infected, the peak of the first wave was reached around
2 April, while the second peak occurred around 6 November. In the case of the number of
deaths, such values are around 31 March and 22 November, respectively

Making a comparison with the information provided by other studies, we can see
how the already refined statistics from the National Epidemiology Center (CNE) of Spain
indicate that the nation-wide first-wave infection peak occurred on 20 March, 6 days after
the national lockdown was implemented, and the cases of COVID-19 steadily decreased
after then (see [39] for details). Other studies place the peak on 26 March (Guirao, [40]),
while in the work of Mora et al. [41] an interval is established that goes from 29 March to
3 April. Since the first week of July, Spain experienced an increasing trend in the cumulative
incidence. The data provided by the CNE place the peak of the second wave around
27 October, two weeks after the National Day holidays (21 October), which led to a large
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increase in the mobility of the population. Regarding the number of deaths, the peak of the
first wave is placed on 30 March, whereas the corresponding to the second wave is placed
on 17 November.

Another perspective for the analysis of the tipping peaks is provided by studying the
time required for data to reach, for the first time, the mean growth values at an inflection
point. Our results indicate that 50% of regions reached the first peak of infection before
2 April, while by 4 April they had already exceeded the peak by around 75%. Regarding
the second peak it occurred more frequently on 24 October, with 50% of regions reaching
peak values before 17 November. In the case of the number of deaths, 50% of the regions
reached the first peak before 31 March, while on 2 April it was 97.5% the regions that had
reached it. On the other hand, 20 November is the most frequent date in which the regions
reached the second peak, with 26 November being the date on which 50% of the regions
had already reached it.

With the present work as a starting point, several lines of research can be suggested.
Among them, the models may be modified by introducing exogenous variables that repre-
sent the therapeutic and non-therapeutic actions promoted by the authorities, and thereby
explore their impact on the evolution of the pandemic. Other studies may look into how
the number of death and/or hospitalized can be introduced as exogenous variables with
the aim of improving the estimates of the real number of infected. Such research initiatives
may be undertaken by introducing temporal variables in the infinitesimal moments of the
diffusion processes being considered. Other research lines can be derived from the incor-
poration of this type of multisigmoidal curves to SIR-type models as well as considering
diffusion processes with delays.

Finally, it is important to highlight the fact that the models presented in this work have
allowed a good adjustment of both the number of infected and the number of deaths. This
is of special interest given the vast literature that has been generated around the estimation
of the number of infected from the number of deaths given the low quality of the data on
infected during, especially, the first wave.
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Appendix A. Standardization of [t0, T]

For a fixed u ∈ (0, T − t0), let us consider the diffusion process
{

Y(t′); t′ ∈
[
0, T−t0

u

]}
,

such that Y(t′) = X(t) a.s., where t′ ∈
[
0, T−t0

u

]
and X(t) is the multi-sigmoidal diffusion

process defined with t ∈ [t0, T]. Note that t′ = t−t0
u and then, t = t′u + t0.

https://cnecovid.isciii.es/covid19/#documentacion-y-datos
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Let AY
m(x, t′) be the infinitesimal moment of order m > 0 of Y(t′) evaluated in a state

x. Such moment can be expressed in terms of the moment of the process X(t):

AY
m
(

x, t′
)
= lim

h→0

1
h

E
[(

Y
(
t′ + h

)
−Y(t′)

)m
∣∣∣Y(t′) = x

]
= lim

h→0

1
h

E
[(

Y
(

t− t0

u
+ h
)
−Y

(
t− t0

u

))m∣∣∣∣Y( t− t0

u

)
= x

]
= lim

h→0

1
h

E
[
(X(t + hu)− X(t))m∣∣X(t) = x

]
= u lim

k→0

1
k

E
[
(X(t + k)− X(t))m∣∣X(t) = x

]
= u AX

m(x, t),

where k = hu. Now, by considering the relation between t and t′, it follows

AY
m
(
x, t′

)
= u AX

m
(
x, t′u + t0

)
.

Finally, if u = T − t0, then t′ ∈ [0, 1] and

AY
m
(
x, t′

)
= (T − t0) AX

m
(
x, t′(T − t0) + t0

)
.

Note that the computed moments may depend on initial values such as t0. In order
to avoid this, parametric and functional modifications could be performed in some cases.
In particular, the multi-sigmoidal processes with lognormal distributions are suitable to
achieve this.

Indeed, after the parametric transformation with u = T − t0, it can be defined a
differentiable function gθ′(t′) = fθ(t′(T − t0) + t0) for t′ ∈ [0, 1] and a new parametric
vector θ′. Then, by the Malthusian expression (3), it follows

d
dt′

gθ′(t
′) =

d
dt′

fθ(t′(T − t0) + t0)(T − t0) = fθ(t′(T − t0) + t0)hθ(t′(T − t0) + t0)(T − t0)

= gθ′(t
′)hθ(t′(T − t0) + t0)(T − t0) = gθ′(t

′)h′θ′(t
′)(T − t0) = gθ′(t

′)h′′θ′(t
′),

where h′θ′ is a suitable modification (involving the parameter and the function itself)
such that

h′θ′(t
′) = hθ(t′(T − t0) + t0),

and h′′θ′ is the new transformation in order to avoid the term T − t0, that is,

h′′θ′(t
′) = hθ(t′(T − t0) + t0)(T − t0).

The reason for the distinction made by the introduction of h′ and h′′ is that according to
the previous relation between infinitesimal moments, the process Y is then characterized by

AY
1 (x, t′) = h′θ′(t

′)(T − t0)x, AY
2 (x) = (T − t0)σ

2x2.

In order to avoid the term T − t0, the second infinitesimal moment can be easily
transformed by considering a new parameter σ2′ = (T − t0)σ

2. Analogously, the first
infinitesimal moment might be transformed to h′′θ′(t

′)x. Nevertheless, such transformation
is not always guaranteed and depends mainly in the functional form of h′ (or hence h).

As it has been said before, in the multi-sigmoidal case, such kind of transforma-
tion exists and can be obtained without modify the nature of the process (indeed, the
base curve).

In both the multi-sigmoidal Gompertz and Weibull cases, it is necessary to consider
the polynomial evaluated in the transformed parametric space. It follows that such function
is indeed a polynomial with independent term. Indeed, by taking t ∈ [t0, T] and t′ ∈ [0, 1]
related as t = t′(T − t0) + t0 and a polynomial Qβ(t) = ∑

p
k βktk of degree p, it follows
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Qβ(t) = Qβ(t′(T − t0) + t0) =
p

∑
k=1

βk
(
t′(T − t0) + t0

)k

=
p

∑
k=1

βk

k

∑
j=0

(
k
j

)
t′ j(T − t0)

jtk−j
0 = γ0 +

p

∑
m=1

γmt′m,

where

γ0 =
p

∑
j=1

β jt
j
0 = Qβ(t0), γm = (T − t0)

m
p

∑
j=m

β j

(
j

m

)
tj−m
0 , m = 1, . . . , p.

Let us denote Q′γ(t′) := ∑
p
m=1 γmt′m. Summarizing, the following relation holds:

Qβ(t) = γ0 + Q′γ(t
′).

Finally, the relation between the derivative polynomials follows easily from the
chain rule:

P′γ(t
′) =

d
dt′

Q′γ(t
′) =

d
dt′

Qβ(t′(T− t0)+ t0) = Pβ(t′(T− t0)+ t0)(T− t0) = Pβ(t)(T− t0),

where Pβ is the derivative of Qβ.
By applying these results to the Gompertz curve, it follows

fθg(t) = fθg(t
′(T − t0) + t0) = f0 exp

(
−α′

(
e−Q′γ(t′) − 1

))
= vθ′g(t

′),

where α′ = αe−γ0 and θ′g =
(
α′, γT)T . Then, from function hθg(t),

h′θ′g(t
′) = α′

P′γ(t′)
T − t0

e−Q′γ(t′),

thus
d

dt′
vθ′g(t

′) = vθ′g(t
′)hθ′g(t

′).

Analogously for the Weibull model, we have

fθw(t) = fθw(t
′(T − t0) + t0) = f0

η′ − e−Q′γ(t′)

η′ − 1
= vθ′w(t

′),

where η′ = ηeγ0 and θ′w =
(
η′, γT)T . Then, from function hθw(t),

h′θ′w(t
′) =

P′γ(t′)
T − t0

e−Q′γ(t′)

η′ − e−Q′γ(t′)
,

thus
d

dt′
vθ′w(t

′) = vθ′w(t
′)hθ′w(t

′).
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