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Abstract

Suppose M is a complete, embedded minimal surface in R3 with an infinite num-
ber of ends, finite genus and compact boundary. We prove that the simple limit ends of
M have properly embedded representatives with compact boundary, genus zero and with
constrained geometry. We use this result to show that if M has at least two simple limit
ends, then M has exactly two simple limit ends. Furthermore, we demonstrate that M is
properly embedded in R3 if and only if M has at most two limit ends if and only if M has
a countable number of limit ends.
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1 Introduction.

The Calabi-Yau conjectures refer to a series of conjectures concerning the nonexistence of a
complete, minimally immersed surface f : M → R3 whose image f(M) is constrained to be
contained in a particular region of R3 (see Calabi [2], page 212 in Chern [3], problem 91 in
Yau [45] and page 360 in Yau [46]). Calabi’s original conjectures [2] state that a complete,
nonflat minimal surface cannot be contained in the unit ball B(1) = {x ∈ R3 | |x| < 1}
or even in a halfspace of R3. Among the positive results on the Calabi-Yau conjectures, we
mention that the Strong Halfspace Theorem [17] implies the validity of the conjectures for
properly immersed minimal surfaces in a closed halfspace. A spectacular positive result by
Colding and Minicozzi [9] is that any complete, embedded minimal surface M in R3 with
finite topology is proper, and so the Halfspace Theorem (Hoffman and Meeks [17]) implies
that M cannot be contained in a halfspace unless it is a finite number of parallel planes. In
contrast to Colding and Minicozzi’s properness result for the finite topology embedded Calabi-
Yau problem, Ferrer, Martı́n, Meeks and Nadirashvili have conjectured that there is a particular
bounded domain Ω in R3 (see [14] for a description of Ω), which is smooth except at one
∗This material is based upon work for the NSF under Award No. DMS - 1309236. Any opinions, findings, and

conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect
the views of the NSF.
†Research partially supported by MINECO/FEDER grants no. MTM2014-52368-P and MTM2017-89677-P.

1

ar
X

iv
:1

80
6.

03
10

4v
1 

 [
m

at
h.

D
G

] 
 8

 J
un

 2
01

8



point and satisfies the following property: Every open surface with compact (possibly empty)
boundary whose ends have infinite genus admits a complete, proper minimal embedding into Ω.
We refer the reader to Section 2 for a brief elementary topological discussion of the notions of
end, the genus of an end, limit end, simple limit end and end representative for any noncompact
surface, terms we will use freely in this manuscript.

The theory developed in this paper represents the first step in resolving the following fun-
damental conjecture, which gives a strong converse to the just mentioned existence conjecture
of Ferrer, Martı́n, Meeks and Nadirashvili for open surfaces with compact boundary.

Conjecture 1.1 (Embedded Calabi-Yau Conjecture for Finite Genus) Every connected, com-
plete embedded minimal surface M ⊂ R3 of finite genus and compact (possibly empty) bound-
ary is properly embedded in R3.

Corollary 1 in [30] implies Conjecture 1.1 under the additional hypothesis that M is a
leaf of a minimal lamination L of R3, or equivalently, when M has locally bounded Gaussian
curvature in R3. As mentioned above, Colding and Minicozzi [9] have proved Conjecture 1.1
under the additional assumption that M has finite topology. In [36], Meeks and Rosenberg
proved that connected, complete embedded minimal surfaces in R3 with positive injectivity
radius are proper; their theorem is a generalization of the properness result of Colding and
Minicozzi since complete, embedded finite topology minimal surfaces in R3 have positive
injectivity radius.

These results, together with others by Bernstein and Breiner [1], Collin [11], Meeks and
Pérez [23] and Meeks and Rosenberg [35], imply that a complete, nonflat embedded minimal
surface M ⊂ R3 with finite topology has annular ends which are asymptotic to ends of planes,
catenoids or M has just one end which is asymptotic to the end of a helicoid. In all of these
cases, M is proven to be conformally a compact Riemann surface M punctured in a finite
number of points (in particular, M is recurrent for Brownian motion), and the embedding ofM
into R3 can be expressed analytically in terms of meromorphic data defined on M . In the case
that a complete embedded minimal surface M of finite topology in R3 has nonempty compact
boundary, a similar description of its conformal structure (∂M has full harmonic measure)
and of its asymptotic behavior (a few more asymptotic types arise than in the case without
boundary) hold, see [23] for details. Concerning conformal questions, one consequence of the
results in this paper is Corollary 1.8, which states that if a properly embedded minimal surface
in R3 has a limit end of genus zero, then it is recurrent; this can be viewed as a generalization
of our previous result [31] that any properly embedded minimal surface of finite genus in R3 is
recurrent.

Using the techniques developed by Colding and Minicozzi [5, 6, 7, 8, 9, 10], Meeks and
Rosenberg [36] and those in our papers [26, 28, 30, 31, 34], we shall prove here that if a
complete, embedded minimal surface of finite genus in R3 has a countable number of limit
ends, then it is properly embedded in R3 (see Theorem 1.3 below). By the main result of
Collin, Kusner, Meeks and Rosenberg in [12], any properly embedded minimal surface in R3

must have a countable number of ends, even if it does not have finite genus. More generally,
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the results in [12] imply that a properly embedded minimal surface with compact boundary in
R3 can have at most two limit ends, and that if it has empty boundary and two limit ends, then
it is recurrent.

Our first key partial result on Conjecture 1.1 is the following theorem, which is the main
result in Section 3 (see Remark 3.4).

Theorem 1.2 Let M ⊂ R3 be a complete embedded minimal surface of finite genus with
compact boundary and exactly one limit end. Then M is properly embedded in R3.

More generally, we have the following extension of the above result, which is proved in
Section 5.

Theorem 1.3 Suppose M ⊂ R3 is a complete, connected, embedded minimal surface of finite
genus, an infinite number of ends and compact boundary (possibly empty). Then:

1. M has at most two simple limit ends.

2. M has exactly one or two limit ends if and only if M is proper in R3.

3. Suppose M has a countable number of limit ends. Then:

3-A. M has one or two limit ends.

3-B. M is proper in R3.

3-C. If M has two limit ends, then its annular ends are planar.

3-D. If ∂M = Ø, then M has exactly two limit ends and M is recurrent for Brownian
motion.

3-E. If ∂M 6= Ø, then ∂M has full harmonic measure.

Remark 1.4 In contrast to item 3-D of Theorem 1.3, we note that Traizet [43] has constructed
a complete embedded minimal surface in R3 of infinite genus, with empty boundary, one limit
end and infinitely many catenoidal type ends.

The proof of Theorem 1.3 depends on Theorem 1.6 below, which describes the geometry,
topology and conformal structure of certain representatives of a simple limit end of genus
zero for a complete embedded minimal surface in R3; see Figure 1 for a suggestive picture
describing the key geometric features of such a representative.

Before stating Theorem 1.6, we will need the following definition.

Definition 1.5 Let E be a complete embedded minimal surface in R3 with nonempty compact
boundary ∂E. We define the flux vector of E as

FE =

∫

∂E
η ∈ R3, (1)

where η denotes the inward pointing unit conormal vector to E along ∂E.
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Figure 1: A graphical representation of the end representative E in Theorem 1.6.

Theorem 1.6 Suppose e is a simple limit end of genus zero of a complete, connected, em-
bedded minimal surface M ⊂ R3 with compact (possibly empty) boundary. Then e can be
represented by a subdomain E ⊂ Int(M) that is properly embedded in R3 and, after a trans-
lation, rotation and homothety of M , E satisfies the following statements:

1. The annular ends of E have nonpositive logarithmic growths.

2. E has genus zero and one limit end, which, in the natural ordering of the ends of E given
by the Ordering Theorem1 in [16], is the top end of E.

3. The boundary ∂E is a simple closed curve in the (x1, x2)-plane, and the flux vector FE of
E defined as in (1) is (h, 0, 1) for some h > 0. Furthermore, ∂E bounds a convex disk
DE ⊂ {x3 = 0} whose interior is disjoint from E, see Figure 1.

4. There exists an orientation preserving diffeomorphism f : R3 → R3 such that f(R+) = E,
where R+ is the top half of a Riemann minimal example2 with boundary circle in the
(x1, x2)-plane.

5. E has bounded Gaussian curvature.

6. E is conformally diffeomorphic to the closed punctured disk {z ∈ C | 0 < |z| ≤ 1} minus
a sequence of points converging to 0. In particular, ∂E has full harmonic measure.

1Observe that the Ordering Theorem stated in [16] also holds for properly embedded minimal surfaces in R3

with compact boundary.
2See [29, 33] for a discussion of the singly-periodic, genus-zero, Riemann minimal examples.
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Remark 1.7 If M ⊂ R3 is a properly embedded minimal surface of finite genus and infinite
topology, then M has exactly two limit ends e−∞, e∞ which are simple limit ends of genus
zero, and which admit representatives E−∞, E∞ that satisfy the conclusions of Theorem 1.6,
see [30, 31]. In this case where M has no boundary, then Theorem 8.1 in [33] implies that the
asymptotic behavior of each of its two limit ends can be described by the geometry of the ends
of a Riemann minimal example.

Crucial ingredients in the proof of Theorem 1.6 are the Limit Lamination Closure Theorem
(Theorem 1 in [36]), the Local Picture Theorem on the Scale of Topology (Theorem 1.1 in [27])
and Theorem 2.2 in [26] on the structure of certain possibly singular lamination limits of certain
sequences of minimal surfaces in R3. These ingredients, as well as many arguments in this
paper, rely heavily on Colding-Minicozzi theory.

Theorems 1.3 and 1.6 not only play an important theoretical role in our strategy to prove
Conjecture 1.1, but they also have important consequences for properly embedded minimal
surfaces, such as the one given in the next corollary; this corollary follows from the more
general result Corollary 6.1.

Corollary 1.8 If M ⊂ R3 is a properly embedded minimal surface with a limit end of genus
zero, then M is recurrent for Brownian motion.

Some of the results in this paper were announced by the authors at a conference in Paris
in 2004. Our proofs use results of Colding-Minicozzi theory that led us to develop a detailed
study of minimal laminations with singularities and subsequent applications. The present paper
can be considered as a culmination of a long term project in the understanding of complete
embedded minimal surfaces of finite genus in R3.

2 Preliminaries on the ends of a noncompact surface.

Given p ∈ R3 and R > 0, we denote by B(p,R) the open ball centered at p of radius R. When
p = ~0, we let B(R) = B(~0, R). If Σ ⊂ R3 is a surface and p ∈ Σ, then KΣ, dΣ, IΣ, BΣ(p,R)

and TpΣ respectively stand for the Gaussian curvature function of Σ, its intrinsic distance
function, its injectivity radius function, the intrinsic ball centered at p of radius R > 0 and the
tangent plane to Σ at p. Also, D = {z ∈ C : |z| ≤ 1} stands for the closed unit disk.

Throughout the paper, M ⊂ R3 will denote a connected, complete embedded minimal
surface with compact boundary (possibly empty).

We next recall the notion of end of M . Consider the set

A = {α : [0,∞)→M | α is a proper arc}.

In A, we define the equivalence relation α1 ∼ α2 if for every compact set C ⊂ M , α1, α2 lie
eventually (outside a compact subset of the parameter domain [0,∞)) in the same component
of M − C.
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Definition 2.1 Each equivalence class in E(M) = A/∼ is called an end of M . If e ∈ E(M),
α ∈ e is a proper arc and E ⊂ M is a proper connected subdomain with compact boundary
such that α([t0,∞)) ⊂ E for some t0 ≥ 0, then we say that E represents the end e.

The space E(M) has the following natural Hausdorff topology. For each proper subdomain
E ⊂ M with compact boundary, we define the basis open set B(E) ⊂ E(M) to be those
equivalence classes in E(M) which have representative proper arcs contained in E. With
this topology, E(M) is a totally disconnected compact space which embeds topologically as a
subspace of [0, 1] ⊂ R (see pages 288-289 of [24] for a proof of this property). In the sequel,
we will view E(M) as a subset of [0, 1] endowed with the induced metric topology.

Note that every simple end x of M (i.e., x is an isolated point of E(M)) with genus zero
can be represented by a proper annulus Ex ⊂M which is homeomorphic to S1 × [0,∞).

Next consider a simple limit end e of M , i.e., there exists a neighborhood O(e) ⊂ E(M)

such that O(e) − {e} consists of simple ends and e is a limit point of a sequence of simple
ends {xn}n ⊂ O(e)− {e}. Suppose that the simple limit end e has genus zero, i.e., e admits
a representative of genus zero. By the classification of genus-zero surfaces and after a possible
replacement by a smaller neighborhood O(e) of e in E(M), there exists a proper subdomain
E of M satisfying:

(A1) E is diffeomorphic to D(∗) = D− [
{

0} ∪ { 1
2n

}
n∈N]. Furthermore, ∂E ∩ ∂M = Ø.

(A2) E represents all the ends in O(e), and the equivalence class under ∼ of every proper arc
in E represents a unique end in O(e).

3 Simple limit ends of genus zero can be represented by properly
embedded surfaces.

We begin this section with several key notions that are closely tied to obtaining properness
results for minimal surfaces, including Theorem 1.2 which will be proved here.

Definition 3.1 1. An embedded surface with boundary (possibly empty) Σ ⊂ R3 is said to be
locally simply connected in R3 if for every p ∈ R3, there exists r = r(p) > 0 such that
the closure of each component of Σ ∩ B(p, r) that is disjoint from ∂Σ, is a compact disk
with boundary in ∂B(p, r). Σ has locally positive injectivity radius away from ∂Σ if for
every p ∈ R3, there exists r = r(p) > 0 such that the injectivity radius function IΣ of Σ

is bounded away from zero on the union of the components of Σ ∩ B(p, r) that are disjoint
from ∂Σ.

2. Let A ⊂ R3 be an open set and {Σn}n∈N ⊂ R3 be a sequence of embedded surfaces
(possibly with boundary). The sequence {Σn}n is called locally simply connected in A if
for every p ∈ A, there exists r = r(p) > 0 such that B(p, r) ⊂ A and for n sufficiently large,
B(p, r) intersects Σn in components that are disks with boundaries in ∂B(p, r). {Σn}n is
said to have locally positive injectivity radius in A, if for every p ∈ A, there exists εp > 0
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and np ∈ N such that for n > np, the restricted functions (IΣn)|Σn∩B(p,εp) are uniformly
bounded away from zero.

Remark 3.2 With the notation of item 2 of Definition 3.1, if the surfaces Σn have nonempty
boundaries and {Σn}n has locally positive injectivity radius in A, then for any p ∈ A there
exists εp > 0 and np ∈ N such that ∂Σn ∩ B(p, εp) = Ø for n > np, i.e., points in the
boundary of Σn must eventually diverge in space or converge to a subset of R3 −A.

By Proposition 1.1 in [9], if M ⊂ R3 is an embedded minimal surface, then the property
that M is locally simply connected in R3 is equivalent to the property that M has locally
positive injectivity radius away from ∂M . The same proposition gives that a sequence of
embedded minimal surfaces {Mn}n has locally positive injectivity radius in an open set A ⊂
R3 if and only if {Mn}n is locally simply connected in A.

Theorem 2 in [36] implies that if an embedded, complete, nonflat minimal surface in R3

(with empty boundary) has positive injectivity radius, then it is proper. Although not stated
explicitly in [36], the following result is an immediate consequence of the proof of Theorem 2
in [36] and other arguments therein.

Theorem 3.3 LetM ⊂ R3 be a complete, connected, embedded minimal surface with compact
boundary. If the injectivity radius function IM of M is bounded away from zero outside of
some intrinsic ε-neighborhood of ∂M , then M is proper in R3. Furthermore, if M has finite
topology, then IM is bounded away from zero outside of some intrinsic ε-neighborhood of ∂M ,
and so, M is proper in R3.

Remark 3.4 Theorem 3.5 below implies the main properness statement in Theorem 1.6. It
also implies Theorem 1.2 by the following reasoning. Suppose that M ⊂ R3 is a complete
embedded minimal surface of finite genus with compact boundary and exactly one limit end e,
which must therefore be a simple limit end. If E is the proper representative of e given in the
next theorem, then the surface M − Int(E) has finite topology and must therefore be proper by
Theorem 3.3; hence, M = E ∪ (M − Int(E)) is also proper in R3.

Theorem 3.5 Suppose that M ⊂ R3 is a complete embedded minimal surface with possibly
empty compact boundary. Every simple limit end e ∈ E(M) of genus zero can be represented
by a subdomain E ⊂ M with compact boundary whose injectivity radius is bounded away
from zero outside each compact neighborhood of its boundary. In particular, E is proper in
R3.

Proof. Let e ∈ E(M) be a simple limit end of genus zero. Consider a proper subdomain
E ⊂ M satisfying properties (A1) and (A2) stated in the preliminaries section. With a slight
abuse of notation, we identify E with the parameter domain D(∗) = D − [

{
0} ∪ { 1

2n

}
n∈N],

see property (A1). The proof of Theorem 3.5 will be divided into several statements; more
precisely, Lemmas 3.7 and 3.11 and Propositions 3.8 and 3.12. As the proof develops, we
will replace E by similar proper subdomains of E and O(e) by the open subset of ends of the
replaced E, but will continue to label these objects by the same letters.
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We first deal with the (simple) annular ends in E. For n ∈ N, let S1
n denote the circle of

center 0 ∈ C and radius 1
2n+1 . Let En be the proper subdomain of E bounded by ∂E ∪ S1

n.
Since En has finite topology and compact boundary, then Theorem 3.3 applied to En insures
that En is proper in R3. As each of the (finitely many) ends of En is an annular end, then
Collin’s theorem [11] implies that each end of En has finite total curvature and is asymptotic
to an end of a plane or catenoid. After a rigid motion in R3, we may assume that:

(B1) The annular ends of E are represented by graphs over their projections to {x3 = 0} with
logarithmic growth (which is zero when the end is asymptotic to the end of a plane).

The proof of Theorem 3.5 is by contradiction. Hence assume there is no end representa-
tive E of e which is a proper surface. By Theorem 3.3, the injectivity radius function IE of
every such a representative has the property that IE fails to be bounded away from zero outside
some small ε-neighborhood of ∂E. Therefore, there exists a sequence of points qn ∈ E such
that dE(qn, ∂E) is bounded away from zero and IE(qn) → 0 as n → ∞. Clearly, the qn
diverge in E. As IE becomes unbounded when approaching each of the simple ends of E, we
deduce that the qn converge to the origin when viewed inside D(∗).

Since E has genus zero, then the Local Picture Theorem on the Scale of Topology (see
Theorem 1.1, Proposition 4.20 and Remark 4.32 in [27]) implies that we can find a divergent
sequence of points pn ∈ E (called points of almost minimal injectivity radius for E) and
positive numbers εn → 0, such that dE(pn, qn)→ 0 as n→∞ and:

(C1) The closure Mn of the component of B(pn, εn) ∩ E that contains pn is compact with
boundary ∂Mn ⊂ ∂B(pn, εn). Furthermore, Mn is disjoint from ∂E for n large enough
(this follows from the fact that pn is divergent in E).

(C2) Let λn = 1/IMn(pn), where IMn denotes the injectivity radius function of E restricted
to Mn. Then, λnIMn ≥ 1− 1

n in Mn and λnεn →∞.

Furthermore, exactly one of the following two cases occurs after extracting a subsequence.

(C3) The surfaces λn(Mn − pn) have uniformly bounded Gaussian curvature on compact
subsets of R3. In this case, there exists a connected, properly embedded minimal surface
M∞ ⊂ R3 with ~0 ∈ M∞, IM∞ ≥ 1 and IM∞(~0) = 1, such that for any k ∈ N, the
surfaces λn(Mn − pn) converge Ck on compact subsets of R3 to M∞ with multiplicity
one as n→∞.

(C4) After possibly a rotation in R3, the surfaces λn(Mn−pn) converge to a minimal parking
garage structure3 of R3 consisting of a foliation F of R3 by horizontal planes, with
two columns l1, l2 such that the associated highly sheeted, double multivalued graphs
forming in λn(Mn − pn) around l1, l2 for n sufficiently large, are oppositely handed.
Furthermore, after relabeling, l1 intersects B(1) and l2 is at distance 1 from l1.

3 We refer the reader to Section 3 in [27] for the definition of parking garage structure of R3.
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In order to finish the proof of Theorem 3.5, we must find a contradiction in each of the
Cases (C3), (C4) above.

Suppose first that Case (C3) holds. As the λn(Mn− pn) all have genus zero, then M∞ has
genus zero as well. By classification results for properly embedded minimal surfaces of genus
zero (Collin [11], López-Ros [18], Meeks-Pérez-Ros [33]), M∞ is a catenoid or a Riemann
minimal example. Let γ ⊂ M∞ be the waist circle if M∞ is a catenoid, and in the case M∞
is a Riemann minimal example, then let γ be a simple closed planar curve (actually a circle)
which separates the two limit ends of M∞.

Remark 3.6 In the sequel, we will need the notion of flux vector of a minimal surface along a
closed curve Γ once we have chosen a unit conormal vector η along Γ; this flux is the vector
in R3 given by the integral of η along Γ, which clearly is defined up to a sign. This ambiguity
still lets us make sense of when this flux is nonzero, or when it is vertical.

Since γ has nonzero flux, then for n large, γ is approximated by the image by the compo-
sition of a translation by vector −pn with a homothety by λn of a simple closed planar curve
γn ⊂Mn also with nonzero flux.

Lemma 3.7 γ ⊂ M∞ has vertical flux. Furthermore, after choosing a subsequence, each
curve γn also has vertical flux.

Proof. It suffices to prove that for n large, γn ⊂ E has vertical flux. If the subdisk in D
bounded by γn does not contain 0 ∈ D, then γn is homologous to a finite number of loops
around the annular ends of E, and so, γn has vertical flux by property (B1). Otherwise, after
replacing by a subsequence, we may assume that γn is topologically parallel to γn+k and to
∂E in D − {0} for n, k ∈ N, n large. Hence for any k ∈ N, γn is homologous in E to the
union of γn+k with a finite number of loops around annular ends of E, and so, the flux along
γn is equal to a vertical vector minus the flux along γn+k. Since the flux along γn+k goes to
zero as k →∞ (because length(γn+k)→ 0), then the flux of E along γn is vertical. 2

Proposition 3.8 M∞ is not a Riemann minimal example.

Proof. Arguing by contradiction, assumeM∞ is a Riemann minimal example. Since γ ⊂M∞
has nonzero vertical flux by Lemma 3.7, then Theorem 6 in [30] implies that the planar ends of
M∞ are not horizontal.

LetQ be the plane passing through the origin in R3 that is parallel to the planar ends ofM∞
(equivalently, Q is the limit tangent plane at infinity of M∞). Observe that planes parallel to
Q at heights (with respect to Q) different from the heights corresponding to the planar ends of
M∞, intersectM∞ transversely in simple closed curves (actually in circles). Let Γ1,Γ2,Γ3,Γ4

be four such circles onM∞, chosen so that the cycles Γ1∪Γ2, Γ2∪Γ3 and Γ3∪Γ4 each bound
a noncompact subdomain Ω1,2,Ω2,3,Ω3,4 respectively of M∞, each containing exactly two
planar ends and such that Ω1,2 ∩ Ω2,3 = Γ2 and Ω2,3 ∩ Ω3,4 = Γ3, see Figure 2 top. Observe
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Γ4

Γ3

Γ2
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Ω1,2

Ω2,3

Ω3,4

γ2(n)

γ1(n)

converges after
rescaling

∆n = ∆n(1, 2)

Figure 2: Top: The (tilted) limit minimal example M∞. Below: compact portions ∆n of E
inside the shaded box which converges after expanding to a related compact portion of M∞.

that there exists a compact arc c : [1, 4] → M∞ such that c(i) ∈ Γi, i = 1, 2, 3, 4, and c
intersects transversely exactly once each of the curves Γi.

For n large, let γ1(n), γ2(n), γ3(n), γ4(n) be related simple closed planar curves in Mn, in
the sense that λn(γi(n) − pn) converges as n → ∞ to Γi, i = 1, 2, 3, 4. We can also assume
that the γi(n) are contained in planes parallel to Q. Similarly, c is the limit of related compact
arcs λn(cn−pn), where cn : [1, 4]→ E satisfies cn(i) ∈ γi(n), i = 1, 2, 3, 4, and cn intersects
exactly once each of the curves γi(n).

To proceed with the proof of Proposition 3.8, we will need two assertions.

Assertion 3.9 After possibly reindexing, there is a domain ∆n ⊂ E of finite topology such that
∂∆n = γ1(n) ∪ γ2(n).

Proof. When considered to be curves in D, the closed curves γi(n) all separate D. Therefore,
D − ∪4

i=1γi(n) consists of five components. As the compact arc cn([1, 4]) intersects exactly
three of these five components in open intervals of the form cn((j, j + 1)) (j = 1, 2, 3), then
at least two of these components are annuli disjoint from ∂D; of these two annuli, at least one,
called A, is disjoint from the limit end 0 of E. Hence, if we remove from A the annular ends
of E, then we obtain a planar domain with finite topology, which we take as ∆n. Now the
assertion follows. 2

For i = 1, 2, let γ′i(n) ⊂ E−∆n be planar curves (contained in planes parallel to Q) close
to and topologically parallel to γi(n), let Ai(n) ⊂ E −∆n be the open annulus with compact
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closure bounded by γi(n) ∪ γ′i(n), and let Di(n), D′i(n) ⊂ R3 be the corresponding compact
planar disks bounded by γi(n), γ′i(n) respectively. Finally, define Bi(n) to be the compact
domain in R3 with boundary Ai(n) ∪Di(n) ∪D′i(n), for i = 1, 2, see Figure 3.

Since ∆n has finite topology and compact boundary, then it is properly embedded in R3

(note that ∆n is not compact by the convex hull property). Without loss of generality, we may
assume that for i = 1, 2, each of the interiors of Di(n), D′i(n) intersects ∆n transversely in a
finite (possibly empty) collection of simple closed curves (recall that M∞ has been obtained
as a limit after an intrinsic blow-up procedure, rather than an extrinsic one). Let ∆1(n) denote
the closure of the component of ∆n ∩

[
R3 − (B1(n) ∪B2(n))

]
that contains ∂∆n. Since

Xn = R3− (B1(n)∪B2(n)) is simply connected and ∆1(n)−∂∆1(n) is properly embedded
in Xn, then ∆1(n)− ∂∆1(n) separates Xn into two subdomains. Let Fi(n) denote the planar
domain in Di(n) with boundary ∆1(n) ∩ Di(n) and let F ′i (n) denote the planar domain in
D′i(n) with boundary ∆1(n) ∩D′i(n), for i = 1, 2. Hence,

∆2(n) = ∆1(n) ∪ F1(n) ∪ F ′1(n) ∪ F2(n) ∪ F ′2(n)

is a properly embedded, piecewise smooth surface that bounds an open region Rn of R3 such
that the boundary of Rn is a good barrier for solving least-area problems in it (the smooth part
of ∂Rn is minimal and the interior angles are convex); see Figure 3.

Now choose a simple closed curve α ⊂ Ω1,2 ⊂M∞ which bounds one of the annular ends
of Ω1,2. For n sufficiently large, let αn denote a related simple closed curve on ∆n such that
the λn(αn − pn) converge smoothly to α as n→∞ and

αn ⊂ Int[∆1(n)] ⊂ ∆2(n) = ∂Rn.

We can also assume that the curves α and αn are chosen so that αn ∪D′1(n) ∪D′2(n) lies on
the boundary of its convex hull.

Assertion 3.10 Consider a (possibly empty) collection T of closed curves in

∪2
i=1(Di(n) ∪D′i(n)) ∩∆1(n).

Then, for n sufficiently large, αn ∪T does not bound a compact minimal surface in the closure
Rn of Rn.

Proof. Assume by contradiction that such a surface S exists. Since S is compact and minimal,
the convex hull property implies that S is contained in the convex hull of its boundary ∂S =

αn∪T ; thus S lies in the closed slab containing the disksD′1(n)∪D′2(n). Note that for n large,
there exists a path βn ⊂ ∆n−αn joining γ1(n) to γ2(n). After adding two arcs cn,1, cn,2 to βn
such that cn,i ⊂ Ai(n), we obtain an embedded arc β̂n that joins γ′1(n) to γ′2(n), see Figure 3
top. Let β̂′n be a path parallel and close to β̂n, lying outside Rn in R3, and with the same
end points as β̂n. Observe that β̂′n lies the closed slab containing D′1(n) ∪ D′2(n). Since β̂′n
does not intersect Rn, then β̂′n has zero intersection number with S. On the other hand, this
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A1(n)

A2(n) γ′2(n)

∆n

γ2(n) αn

γ1(n)

γ′1(n)

A1(n)

A2(n)

γ′2(n)
∆n

γ2(n) αn

γ1(n)

γ′1(n)

γ′2(n) = ∂D′
2(n) B2(n)

γ2(n) = ∂D2(n)
∆2(n)β̂n

B1(n)
γ′1(n) = ∂D′

1(n)

γ1(n) = ∂D1(n)

Rn

αn

Figure 3: Top: The portion of E inside the dotted box converges as n → ∞ to a compact
portion of a Riemann minimal example M∞; note that the limit tangent plane of M∞ is repre-
sented as horizontal in the figure. Bottom: Two topological configurations for the subdomain
with finite topology ∆n ⊂ E, depending on whether or not the curves γi(n) wind around the
limit end of E, i = 1, 2.
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intersection number can be computed (mod 2) as the sum of the linking numbers (mod 2) of
β̂′n with the boundary components of S. Since ∂S can be assumed to lie on the boundary of
a convex body disjoint from the end points of β̂′n, S is contained in this convex body, and β̂′n
does not link any of the curves in T but it has linking number one with αn, then β̂′n must have
odd intersection number with S, which is a contradiction. This proves Assertion 3.10. 2

Note that αn separates the planar domain ∆n into two closed components, where one of
these components S′n is a planar domain with ∂S′n = αn, see Figure 3. Also αn separates the
planar domain ∆1(n) into two closed components, where one of these components Sn satisfies
Sn ⊂ S′n. The boundary of Sn consists of αn together with a collection Tn of closed planar
curves in ∪2

i=1(Di(n)∪D′i(n))∩∆1(n). Let Sn(1) ⊂ Sn(2) ⊂ . . . be a compact exhaustion of
Sn by smooth connected subdomains with ∂Sn ⊂ ∂Sn(1) and let Ŝn(k) be an area-minimizing
compact surface in Rn with ∂Ŝn(k) = ∂Sn(k) in the relative Z2-homology class of Sn(k), for
all k ∈ N; Ŝn(k) is orientable since either Sn(k) ∪ Ŝn(k) is the piecewise-smooth boundary
of a connected compact region of R3, or else Sn(k) ∪ Ŝn(k) is the union of some components
of Sn(k) and a piecewise-smooth compact region of R3. A limit of some subsequence of
{Ŝn(k)}k produces a properly embedded, oriented stable minimal surface Ŝn(∞) ⊂ Rn with
boundary αn ∪Tn, see [37] for these standard arguments. By Assertion 3.10, αn ∪Tn does not
bound a compact minimal surface in Rn. Therefore, the component Sn(∞) of Ŝn(∞) which
contains αn is noncompact. Let Gn : Sn(∞)→ S2(1) be the Gauss map of Sn(∞).

Given n ∈ N, consider the dilation (i.e., the composition of a translation and a homothety)
fn(x) = λn(x − pn), x ∈ R3. Let R0 > 0, n0 ∈ N be sufficiently large so that the following
properties hold for all n ≥ n0:

1. fn(∂∆1(n)) ⊂ B(R0) and, without loss of generality, we may assume that the closed curves
fn(αn) ⊂ fn(∆1(n)) ∩ ∂B(R0) converge to α = M∞ ∩ ∂B(R0) as n→∞.

2. There exists an increasing sequence of numbers Rn > R0 that diverge to infinity and such
that for every n ∈ N, the component Σn of fn(∆1(n)) ∩ [B(Rn) − B(R0)] that contains
fn(αn) is a graph over its projection to the plane Q, and the Σn converge smoothly on
compact sets of R3 as n→∞ to the annular end of M∞ bounded by α.

Note that fn(Sn(∞))∩ [B(Rn)−B(R0)] is either contained in Σn, or it is disjoint from Σn. By
curvature estimates for stable minimal surfaces and after choosing a subsequence, the surfaces

1√
Rn

(
[Σn ∪ (fn(Sn(∞))] ∩

[
B(Rn)− B(R0)

])

converge to a minimal lamination L of R3 − {~0} with quadratic decay of curvature, which
contains the leafQ−{~0}. By the Local Removable Singularity Theorem (Theorem 1.1 in [34]),
L extends to a minimal lamination L of R3 with quadratic decay of curvature. As L contains
Q, Corollary 6.3 in [34] implies that all leaves of L are flat, and hence, they are planes parallel
to Q.

Back to the scale ofE, consider the compact subdomain S′n(∞) = Sn(∞)∩f−1
n (B(

√
Rn))

of Sn(∞). Then, the normal lines to the boundary of Sn(∞)− S′n(∞) make arbitrarily small
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R(n)R(n+ 1)

γn+1 γn

γn
γn+1

γn+k

R(n, k)
R(n)R(n+ 1)

γn+1 γn

Figure 4: Cases (D1) (left), (D2) (center) and (D3) (right) for Proposition 3.12.

angles with the normal line to the plane Q for n sufficiently large. Pick a component Kn of
Sn(∞)−S′n(∞) that intersects the boundary of Sn(∞)−S′n(∞). SinceKn is stable with finite
total curvature [15], then, for n sufficiently large, the Gaussian image ofKn must be arbitrarily
close to one of the two unit normal vectors ±VQ to Q, considered to be points of S2(1). As
Kn lies in the closure of a complement of E, then property (B1) implies that the planar and
catenoid-type ends of Kn have limiting Gaussian images contained in the set {(0, 0,±1)} ⊂
S2(1). But this last set is a positive distance from {±VQ}, which is a contradiction. This
contradiction completes the proof of Proposition 3.8. 2

Lemma 3.11 Case (C4) cannot occur.

Proof. Since Case (C4) forces the surfaces λn(Mn−pn) to have the appearance for n large of a
properly embedded, minimal planar domain with two limit ends, large curvature and fixed size
“horizontal” flux4 (see Traizet and Weber [44], or [25, 27]), the proof of this lemma follows
from a straightforward adaptation of the proof of Proposition 3.8. 2

Proposition 3.12 M∞ is not a catenoid.

Proof. Reasoning by contradiction, assume M∞ is a catenoid. By Lemma 3.7, M∞ has a
vertical axis and the simple closed curves γn ⊂ E defined just before Lemma 3.7 can be
chosen to be horizontal convex curves with vertical flux. For n large, we can choose a compact
unstable annulus Cn ⊂ E with γn ⊂ Int(Cn) so that Cn is arbitrarily close to a rescaling of
a fixed, large, compact unstable piece C of a vertical catenoid. We may also assume that ∂Cn
consists of two convex curves in horizontal planes. Let Dn ⊂ R3 denote the open convex
horizontal disk with ∂Dn = γn.

There are three different possible topological configurations for γn in E, after choosing a
subsequence (see Figure 4).

4By “horizontal flux” we mean the nonzero component of the flux vector of λn(Mn − pn) that is parallel to the
planes of the limit parking garage structure associated to Case (C4).
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(D1) Each γn is the boundary of a proper subdomain R(n) ⊂ E with a finite number of
annular ends greater than 1.

(D2) When considered to lie in D − {0}, each γn is homologous to ∂E. Hence, for k large,
the annular domain R(n, k) ⊂ E bounded by γn ∪ γn+k has a finite positive number of
annular ends.

(D3) Each γn bounds a proper annulus R(n) ⊂ E with ∂R(n) = γn.

The proof of Proposition 3.12 will be a case-by-case elimination of each of these three possi-
bilities (for n sufficiently large).

We first check that Case (D1) does not occur. In this case, γn bounds a proper, finite
topology domain R(n) ⊂ E with more than one end and vertical flux.

Assertion 3.13 The open planar disksD1(n), D2(n) ⊂ R3 bounded by the curves in ∂Cn, are
disjoint from R(n).

Proof. If not, the proper surface R(n) intersects the compact region Wn ⊂ R3 bounded by
Cn∪D1(n)∪D2(n) in a compact component Ω(n) with boundary inD1(n)∪D2(n). Observe
that Ω(n) intersects both D1(n) and D2(n) by the maximum principle for minimal surfaces.
Let Ŵn be the closure of the component of Wn−Ω(n) that contains Cn in its boundary. Since
∂D1(n) ∪ ∂D2(n) bounds the annulus Cn in Ŵn and ∂D1(n) is homotopically nontrivial in
Ŵn, then the Geometric Dehn Lemma for Planar Domains in Theorem 5 in [39] (as adapted in
the more general boundary setting of [40]) implies that ∂D1(n) ∪ ∂D2(n) is the boundary of
an embedded, least-area minimal annulus in Ŵn. But ∂D1(n) ∪ ∂D2(n) also bounds a stable
minimal annulus in the outer side of Cn, since Cn is a good barrier that is an unstable minimal
annulus. This contradicts Theorem 1.1 in [38] which states that a pair of convex curves in
parallel planes can bound at most one compact stable minimal annulus. This contradiction
proves Assertion 3.13. 2

Once we know that Di(n) ∩R(n) = Ø for i = 1, 2, then γn = R(n) ∩Dn, which implies
that R(n) ∪ Dn is a properly embedded surface in R3. Hence, R(n) ∪ Dn separates R3 into
two components. In this situation, for n large the standard López-Ros argument can be applied
to R(n) (since it is a complete embedded minimal surface with finite total curvature, vertical
flux and convex planar boundary which is the boundary of an open convex planar disk disjoint
from the surface, see Theorem 2 in [41] for a similar argument), to conclude that R(n) is an
annulus. Thus, Case (D1) does not occur.

We will use the following property when ruling out Cases (D2) and (D3).

Assertion 3.14 Suppose after choosing a subsequence, that {pn}n converges to some point
p∞ ∈ R3 and Case (D3) holds for γn for all n ∈ N. Then, the horizontal plane L(p∞) ⊂
R3 passing through p∞ satisfies that E ∩ L(p∞) = Ø, after removing any small compact
neighborhood of ∂E.
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Proof. Since we are in Case (D3), then γn bounds a proper annulusR(n) ⊂ E. After replacing
γn by one of the boundary curves of the almost perfectly formed catenoid Cn, we have that
the new annulus R(n) ⊂ E with ∂R(n) the replaced boundary curve, is disjoint from Int(Cn),
and thus, we can assume that the total absolute curvature of R(n) is arbitrarily small for n
sufficiently large. Since the Gauss map of R(n) is open, almost vertical along ∂R(n) (by
Lemma 3.7), the image of this Gauss map has a limiting value (0, 0,±1) at the end of R(n),
and the spherical image of the Gauss map of R(n) is arbitrarily small, then we deduce that
R(n) is the graph of a function defined on the projection of R(n) to the (x1, x2)-plane, and
this graph has arbitrarily small gradient.

As we can assume that γn → p∞ as n→∞, it follows that the graphical annuli R(n) con-
verge smoothly away from p∞ to the horizontal plane L(p∞) passing through p∞. To finish
the proof of the assertion, it only remains to show that Int(E) ∩ L(p∞) = Ø. Arguing by con-
tradiction, suppose that L(p∞) intersects E at an interior point. Since L(p∞) is not contained
in E, then L(p∞) intersects E transversely at some interior point of E. This implies that for n
sufficiently large, R(n) intersects E − R(n), which is impossible since E is embedded. Now
the assertion is proved. 2

We next check that Case (D2) does not occur for n large. Arguing by contradiction,
assume that n is large and (D2) holds. Notice that for n fixed and for k ≥ 1, the proper subdo-
mains R(n, k) bounded by γn ∪ γn+k give rise to an proper exhaustion of the representative of
the limit end of E whose boundary is γn. Rather than choosing γn near the waist circle of the
forming unstable compact catenoid piece Cn, we choose γn to be a curve contained in a hori-
zontal plane at a height so that for each k, the (noncompact) subdomain R(n, k) ⊂ E contains
two unstable, pairwise disjoint, compact almost-catenoidal pieces, also denoted by Cn, Cn+k,
near γn and γn+k respectively, so that Cn is an annular neighborhood of γn (resp. Cn+k is a
neighborhood of γn+k) in the new proper domainR(n, k). We may assume that both boundary
curves of Cn and of Cn+k are convex horizontal curves for all k. Also, n can be chosen so
that for all k sufficiently large, the almost-catenoid Cn+k is much smaller than the scale of the
almost-catenoid Cn, see Figure 5.

Given n ∈ N, let D′n ⊂ R3 be the horizontal open disk bounded by ∂Cn − γn (recall that
Dn is the horizontal open disk bounded by γn). We next analyze the intersection of R(n, k)

with Dn, D
′
n, Dn+k, D

′
n+k.

(D2-a) We may assume that Dn+k, D
′
n+k are disjoint from Cn (because the scale of Cn+k is

much smaller than the scale of Cn, and both Cn, Cn+k are inside E which is an embed-
ded surface).

(D2-b) An analogous reasoning as in the proof of Assertion 3.13 shows that both Dn+k, D′n+k

are disjoint from R(n, k). Observe that the boundary curve γn+k must be contained in
the compact region Wn ⊂ R3 bounded by Cn ∪Dn ∪D′n as in Figure 5 (otherwise the
arguments in the proof of Assertion 3.13 lead to a contradiction).

The maximum principle and the fact that the scale of Cn+k is much smaller than the scale of
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Figure 5: The boundary curve γn+k of R(n, k) must be contained in the compact region Wn ⊂
R3 bounded by Cn ∪Dn ∪D′n.
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Cn imply that Cn+k is contained in the interior ofWn. Therefore, the topological ballsWn can
be assumed to be concentric, in the following sense:

(?) After replacing by a subsequence and re-indexing, Wn+1 ⊂ Int(Wn).

Since the scales of the catenoids Cn are converging to zero as n → ∞, Property (?) implies
that the Wn converge to a point c∞ ∈ R3, which satisfies {c∞} =

⋂
n∈NWn ⊂ Int(W1).

Without loss of generality, we may assume that ∂E ∩W1 = Ø.
We next prove that the surface E(W1) := E ∩ [Int(W1) − {c∞}] has locally positive

injectivity radius in Int(W1) − {c∞}. Otherwise, there is a point q ∈ Int(W1) − {c∞} and
a sequence of points qj ∈ E(W1), j ∈ N, of almost minimal injectivity radius for E(W1)

in the sense of the Local Picture Theorem on the Scale of Topology, that diverge in E(W1)

but converge to q as j → ∞. After blowing up E(W1) around the points qj on the scale
of the injectivity radius, we find a limit which is a catenoid (i.e., the other possibilities given
by the Local Picture Theorem on the Scale of Topology are not possible by the arguments in
Proposition 3.8 and Lemma 3.11). In particular, the catenoid which is forming nearby qj inside
E(W1) for j large, is of one of the types (D1), (D2) or (D3); in this case we will simply say that
Case (D1), (D2) or (D3) holds for qj . Case (D1) for qj is not possible by our previous arguments
based on Assertion 3.13 and the López-Ros deformation. Also observe that Case (D2) cannot
occur at qj for j large, because the qj are converging to q 6= c∞, which implies that qj does
not lie in Wn for n large but fixed, in contradiction with Property (?). This implies that for
j large, Case (D3) holds for qj . Since the qj converge to q and Case (D3) holds for qj for
every j, then Assertion 3.14 insures that the horizontal plane L(q) passing through q in disjoint
from E after removing any small compact neighborhood of ∂E. This is impossible, since L(q)

intersects C1. This contradiction proves that E(W1) has locally positive injectivity radius in
Int(W1)− {c∞}.

Since E(W1) has locally positive injectivity radius in Int(W1) − {c∞}, Remark 2 in [36]
ensures that the closure of E(W1) in Int(W1)−{c∞} is a minimal lamination L of Int(W1)−
{c∞} that contains E(W1) as a subcollection of leaves.

We next prove that L has no limit leaves in some neighborhood of c∞. Otherwise, the sub-
lamination L′ of limit leaves of L is not empty, and L′ consists of stable leaves by Theorem 1
in [32]. By Corollary 7.1 in [34], L′ extends across c∞ to a lamination of Int(W1). Thus, there
exists a stable minimal surface L1 ⊂ Int(W1) passing through c∞ such that L1 − {c∞} is a
leaf of L′. Since L1 is stable and Cn is unstable, then L1 is disjoint from Cn for all n ≥ 2.
Therefore, for ε > 0 small enough, the ball B(c∞, ε) of center c∞ and radius ε intersects L1

in a component Ω1 which is a disk that separates B(c∞, ε). Take n ∈ N large enough so that
Wn ⊂ B(c∞, ε), which exists since {c∞} =

⋂
n∈NWn. As Ω1 contains c∞ ∈ Int(Wn) but

Ω1∩Cn = Ø andWn∩∂Ω1 = Ø, then Ω1∩(Dn∪D′n) is nonempty. Without loss of generality,
we may assume that Ω1 intersects Dn ∪ D′n transversely and so, there exists a simple closed
curve β in Ω1 ∩ (Dn ∪D′n). This contradicts the maximum principle applied to the subdisk of
Ω1 bounded by β. This contradiction proves that L has no limit leaves in some neighborhood
of c∞.

Since L has no limit leaves in some neighborhood of c∞, we may assume that in some
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small compact neighborhood N of c∞ in R3, L∩N = [E − {c∞}]∩N and [E − {c∞}]∩N
is a properly embedded minimal surface in N − {c∞} of genus zero. But properly embed-
ded minimal surfaces of finite genus in a punctured Riemannian ball extend smoothly across
the puncture (see for example, Corollary 2.7 in [28] for this minimal lamination extension re-
sult). This is clearly not possible because the Gaussian curvature of E is not bounded in any
neighborhood of c∞. This contradiction proves that Case (D2) does not occur for n large.

Finally we check that Case (D3) does not occur, which will finish the proof of Proposi-
tion 3.12. By Lemmas 3.7, 3.11 and Proposition 3.8 and from the previously considered cases,
we may assume that all local pictures Mn of E on the scale of topology (defined by proper-
ties (C1)-. . . -(C4)) produce, after blowing-up, limiting catenoids with vertical axes, and the
horizontal almost waist circles γn ⊂ E are in Case (D3) for all n ∈ N (after passing to a sub-
sequence). Consider the related sequences {Mn}n, {γn}n. We can assume that for all n, Mn

contains a compact piece of an almost perfectly formed unstable catenoid Cn containing γn,
where Cn is a shrunken image of a large compact portion of an almost-catenoid whose bound-
ary consists of simple closed convex horizontal planar curves. Since we are in Case (D3), then
γn bounds a proper annulus R(n) ⊂ E. After replacing γn by one of the boundary curves of
the almost perfectly formed catenoid Cn, we have that the new annulus R(n) ⊂ E bounded by
γn satisfies the following properties (see the proof of Assertion 3.14):

(E1) R(n) is the graph of a function defined on the projection of R(n) to the (x1, x2)-plane,
and this graph has arbitrarily small gradient.

(E2) Length(γn)→ 0 as n→∞.

We will next show that Assertion 3.13 holds in this new setting.

Assertion 3.15 After extracting a subsequence and possibly replacing E by another end rep-
resentative, for every n ∈ N, the open planar disksD1(n), D2(n) ⊂ R3 bounded by the curves
in ∂Cn, are disjoint from E.

Proof. Let Wn ⊂ R3 be the compact region bounded by Cn ∪D1(n)∪D2(n). After choosing
a subsequence and removing a small neighborhood of ∂E from E, we may assume that Wn ∩
∂E = Ø. Observe that E ∩ Int(Wn) is locally simply connected: otherwise, there exists some
point p∞ ∈ E ∩ Int(Wn) where Case (D3) holds for γm for all m ∈ N sufficiently large (m
larger than n); in this case, Assertion 3.14 ensures that the horizontal plane L(p∞) passing
through p∞ is disjoint from E after removing any compact neighborhood of ∂E, which is
impossible since L(p∞) ∩ Cn 6= Ø. Thus, E ∩ Int(Wn) is locally simply connected.

The arguments in the previous paragraph and Assertion 3.14 ensure that there exists an
open set U ⊂ R3 such that Cn ⊂ U and the restriction of the injectivity radius function of E
to E ∩ U is bounded away from zero. Therefore, the closure of E ∩ U relative to the open set
U is a minimal lamination of U . As E ∩ Int(Wn) is locally simply connected, the closure of
E∩Int(Wn) relative to Int(Wn) is a minimal lamination of Int(Wn). Consequently, the closure
of E ∩ [U ∪ Int(Wn)] is a minimal lamination of U ∪ Int(Wn). Since Cn is unstable, then Cn
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is not contained in a limit leaf of this lamination, which implies that the distance from Cn to
the closure E ∩ Int(Wn) of E ∩ Int(Wn) is positive.

AsCn is unstable, we can find a compact unstable subannulusC ′n ⊂ Int(Cn) such that ∂C ′n
consists of two convex horizontal curves that bound open planar disks D′1(n), D′2(n) ⊂ R3.
Let W ′n ⊂ Wn be the compact region bounded by C ′n ∪ D′1(n) ∪ D′2(n). It follows from the
previous paragraph that the closure of E∩ Int(Wn) relative to Int(Wn) is a minimal lamination
of Int(Wn), that is at a positive distance from Cn. In particular, the closure of E ∩ Int(Wn)

relative to Int(Wn) intersected with W ′n is a compact, possibly empty, set X in W ′n.
Suppose the assertion fails for some n, that is, E intersects D1(n) ∪ D2(n). Then, E ∩

Int(Wn) 6= Ø and thus, we can assume E ∩ Int(W ′n) 6= Ø by choosing C ′n sufficiently close
to Cn. In particular, X 6= Ø. As X is a compact union of minimal surfaces in W ′n, then
the maximum principle applied to x3 gives that each component of X intersects both disks
D′1(n), D′2(n). Since X is a good barrier for solving Plateau type problems in W ′n, and ∂C ′n
does not bound minimal disks in W ′n − X , then there exists a least area annulus A′ ⊂ W ′n
with boundary ∂A = ∂C ′n. This is impossible, by the same reasoning as in the proof of
Assertion 3.13. This completes the proof of Assertion 3.15. 2

Arguing by contradiction, assume that Case (D3) occurs for all n. By our earlier considera-
tions, there would exist an infinite collection of pairwise-disjoint almost-catenoids Cn forming
on E of the type described in Case (D3) and that satisfy the conclusions of Assertion 3.15.
Also, we can assume that the logarithmic growths of the associated graphs R(n) all have the
same sign, say negative.

Consider the piecewise smooth graphical planes Pn = D2(n) ∪ R(n), where D2(n) is
the lower open disk given in Assertion 3.15. Note that as D2(n) ∩ E = Ø, then E − R(n)

is contained in the component of R3 − Pn above Pn. It follows that the connected surface
E−∪nR(n) must lie above each of the Pn. By elementary separation properties, this situation
is not possible as it would imply that P1 lies above P2 and P2 lies above P1. This contradiction
completes the proof that Case (D3) does not occur. So, Proposition 3.12 is proved. 2

By Lemma 3.11, Propositions 3.8, 3.12 and the paragraph before Remark 3.6, we conclude
that the injectivity radius function IE is bounded away from zero outside of some (and thus,
every) intrinsic ε-neighborhood of ∂E. Therefore, Theorem 3.3 insures that E is properly
embedded in R3, which completes the proof of Theorem 3.5. 2

4 The proof of Theorem 1.6.

Let e be a simple limit end of genus zero of a complete, embedded minimal surface M ⊂ R3

with compact boundary (possibly ∂M = Ø). By Theorem 3.5, we can choose a representative
E of e such that E is properly embedded in R3. The arguments at the end of Section 2 show
that after relabeling, properties (A1), (A2) hold for E. As explained in the second paragraph
of the proof of Theorem 3.5, each simple end of E has and an annular end representative with
finite total curvature and is asymptotic to an end of a plane or catenoid, which after a fixed
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rotation of M in R3, is a graph over its projection to the (x1, x2)-plane. Since E is properly
embedded in R3, it follows from the Ordering Theorem [16] and Theorem 1.1 in [12] that the
limit end of E, after a possible rotation by π around the x1-axis, is the top end of E.

Lemma 3.6 in [12] implies that a limit end of a properly embedded minimal surface with
compact boundary in R3 cannot have a representative that lies above the end of a catenoid with
positive logarithmic growth. Therefore, since the limit end of E is its top end and the middle
ends of E are asymptotic to planes and catenoidal ends, none of the catenoidal ends in E have
positive logarithmic growth. This proves items 1 and 2 of Theorem 1.6.

Lemma 4.1 There exists a divergent sequence of points qn ∈ E such that IE(qn)
|qn| → 0 as

n→∞, where IE is the injectivity radius function of E.

Proof. Otherwise, there exists c > 0 such that IE(·) ≥ c | · | in E, away from a compact
neighborhood of ∂E. Since ∂E is compact, E is properly embedded and E does not have
finite total curvature, then Theorem 1.2 in [34] implies that there exists a divergent sequence of
points yn ∈ E such that KE(yn)|yn|2 → −∞ as n → ∞. Consider the sequence of positive
numbers σn = 1

|yn| → 0. Since

IσnE(σnx)

|σnx|
=
IE(x)

|x| ,

we conclude that the sequence of surfaces {σnE}n has locally positive injectivity radius in the
open set R3−{~0} in the sense of Definition 3.1, or equivalently, the sequence of compact genus-
zero minimal surfaces {(σnE) ∩ B(n)}n is locally simply connected in R3 − {0}, see the first
paragraph after Remark 3.2. Since the surfaces (σnE) ∩ B(n) have genus zero with compact
boundary and the Gaussian curvature of (σnE) ∩ B(n) at the point σnyn ∈ ∂B(1) diverges
as n → ∞, then item 2 of Theorem 2.2 in [26] implies that after passing to a subsequence,
{(σnE) ∩ B(n)}n converges to a minimal lamination L of R3 − {~0}, outside of a nonempty
singular set of convergence S(L) ⊂ L (this is the closed subset of points x ∈ L such that the
supremum of the absolute Gaussian curvature of (σnE) ∩ B(x, ε) is not bounded in n, for any
ε > 0), and the following property holds:

(F) The closure L of L in R3 is a foliation of R3 by planes, and the closure S(L) of S(L)

consists of one or two complete lines orthogonal to the planes in L.

Since the limit end of E is its top end and its annular ends are catenoidal with nonpositive
logarithmic growth, it follows thatL is contained in the closed upper halfspace {x3 ≥ 0}minus
the origin. This contradicts property (F) above, which completes the proof of Lemma 4.1. 2

Consider the divergent sequence {qn}n ⊂ E given by Lemma 4.1. We next apply a similar
rescale-by-topology argument as as we did in the proof of Theorem 3.5 just after property (B1),
but instead of using the Local Picture Theorem on the Scale of Topology as we did there, we
will use the following extrinsic argument. Given n ∈ N large so that the boundary of E lies in
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B(|qn|/2), consider the continuous, nonnegative function hn : B(qn, |qn|/2) ∩ E → R given
by

hn(x) =
distR3(x, ∂B(qn, |qn|/2))

IE(x)
.

hn vanishes at ∂B(qn, |qn|/2). Let pn be a maximum of hn. Observe that

hn(pn) ≥ hn(qn) =
|qn|

2IE(qn)
→∞,

and define
rn =

1

2
distR3 (pn, ∂B(qn, |qn|/2)) =

1

2
hn(pn)IE(pn).

Then, the sequence of embedded minimal surfaces of genus zero and compact boundary

Ẽn = λn
[
E ∩ B(pn, rn)− pn

]
(2)

is uniformly locally simply connected in R3, where λn = 1/IE(pn) (in fact, Ẽn has boundary
in the sphere centered at the origin with radius 1

2hn(pn) → ∞ and the injectivity radius func-
tion of Ẽn is at least 1/2 at points at least at distance 1/2 from its boundary). By Theorem 2.2
in [26] applied to this sequence of surfaces, we deduce that there exists a minimal lamination
L of R3 and a closed subset S(L) ⊂ L such that {Ẽn}n converges Cβ , for all β ∈ (0, 1), on
compact subsets of R3 − S(L) to L; here S(L) is the singular set of convergence of the Ẽn to
L. Furthermore, exactly one of the two following cases holds:

(G1) The surfaces Ẽn have uniformly bounded Gaussian curvature on compact subsets of R3.
In this case, S(L) = Ø and either L is a collection of planes (this case cannot occur since
the injectivity radius function of Ẽn at the origin is 1 for each n ∈ N), or L consists of
a single leaf M∞, which is properly embedded in R3 with genus zero. Furthermore, in
this last case Ẽn converges smoothly on compact sets in R3 to M∞ with multiplicity one
and exactly one of the following three cases holds for M∞:

(a) M∞ has one end and it is asymptotic to a helicoid (in this case, Theorem 0.1 in [35]
insures that M∞ is a helicoid). Again, this case cannot occur as the injectivity radius
function of Ẽn at the origin is 1 for each n ∈ N.

(b) M∞ has nonzero finite total curvature. In this case, M∞ is a catenoid by the main
result in [18].

(c) M∞ has two limit ends. In this case, M∞ is a Riemann minimal example by [33].

(G2) L has the structure of a limiting parking garage in the following sense: L is a foliation
of R3 by parallel planes and S(L) consists of one or two lines orthogonal to the planes
in L (called columns of the limiting parking garage structure), and as n → ∞, a pair
of highly sheeted multivalued graphs forms inside Ẽn around each of the lines in S(L).
Furthermore, if S(L) consists of two lines l, l′, then l intersects B(1), l′ is at distance 1
from l and the pairs of multivalued graphs inside the Ẽn around different lines are oppo-
sitely handed. In fact, S(L) cannot consist of a single line; a proof of this property can be
found by a direct adaptation of the second paragraph of the proof of Lemma 3.4 in [26].
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4.1 Finding horizontal planes Pn and “concentric” curves Γ̂(n) ⊂ E ∩ Pn.

Lemma 4.2 After possibly replacing E by another end representative, there exists a sequence
{Pn}n∈N∪{0} of horizontal planes with x3(Pn) < x3(Pn+1) and x3(Pn) → ∞, such that
each Pn intersects E transversely and Pn ∩ E contains a simple closed curve Γ̂(n) with the
following properties:

1. ∂E = Γ̂(0) ⊂ P0.

2. When viewed in D− {0}, each Γ̂(n) with n ∈ N is topologically parallel to ∂E.

3. Given n ∈ N, let Ωn ⊂ D(∗) be the finite topology subdomain whose boundary is
Γ̂(n) ∪ ∂E. Then, Ωn ⊂ Ωn+1 for all n.

4. When viewed in R3, Ωn lies below the plane Pn.

5. E lies locally above P0 along ∂E.

6. If Case (G1) occurs then:

(a) For each n ∈ N ∪ {0}, Γ̂(n) bounds a compact convex disk Dn ⊂ Pn whose
interior is disjoint from E. Furthermore, the Dn all lie in the same side of E.

(b) The limit tangent plane at infinity of M∞ is horizontal.

7. If Case (G2) occurs, then the planes in the limit parking garage structure are horizontal.

Proof. We first claim that if P is a horizontal plane such that ∂E ⊂ {x3 < x3(P )}, then P ∩E
contains exactly one compact component that is nonzero inH1(D−{0}) (P ∩E might contain
infinitely many compact components that bound disks in D−{0}, each one containing finitely
many annular ends ofE). To see this, note that P ∩E contains at least one compact component
that is nonzero in H1(D − {0}) since ∂E lies below P , the limit end of E is its top end and
E is connected. If P ∩ E contains two compact components both nonzero in H1(D − {0}),
then we can choose two of such components Γ,Γ′ satisfying that Γ ∪ Γ′ is the boundary of a
compact annulus A(Γ,Γ′) ⊂ D− {0} such that Int(A(Γ,Γ′)) ∩ x−1

3 (x3(P )) does not contain
components which are nonzero in H1(D− {0}) and when viewed in R3, A(Γ,Γ′) ∩E locally
lies above P along Γ ∪ Γ′. Observe that A(Γ,Γ′) contains finitely many (annular) ends of E,
each of which has nonpositive logarithmic growth. Therefore, A(Γ,Γ′) − x−1

3 (−∞, x3(P ))

is a parabolic surface with boundary, and x3|A(Γ,Γ′)−x−1
3 (−∞,x3(P )) is a bounded nonconstant

harmonic function with constant boundary values, which is impossible. This proves our claim.
Assume that Case (G2) occurs for the limit of the Ẽn. Recall that a limiting parking

garage structure in R3 with two oppositely handed vertical columns closely resembles geomet-
rically and topologically a Riemann minimal example with almost horizontal flux vector and
finite positive injectivity radius; we refer the reader to the paper [27] for further explanations.

Let l, l′ be the straight lines which are the columns of the limiting parking garage structure,
and let c̃n = λn(cn− pn) ⊂ Ẽn be a connection loop for the forming parking garage structure;
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this means that c̃n is a closed curve, which approximates arbitrarily well (for n large enough) a
path that starts at a point in the first column, travels on one level of the limiting parking garage
to the second column, goes “up” one level (remember that we do not know that the columns
l, l′ are vertical) and then travels back again on this level “over” the previous arc until arriving
at the first forming column, and then goes “down” one level until it closes up.

We claim that when viewed in D− {0}, cn cannot bound a disk; to see this, note that if cn
bounds a disk in D− {0}, then cn bounds a finite topology domain ∆n in E with vertical flux.
Since for n large the flux of Ẽn along c̃n is arbitrarily close to a nonzero vector orthogonal
to l, we conclude that l, l′ are horizontal. This implies that there are points in the interior of
∆n whose heights are strictly greater than the maximum height of cn. Since the ends of ∆n

are graphical with nonpositive logarithmic growth, we find a contradiction with the maximum
principle for x3|∆n . Therefore, our claim holds.

We next prove that l, l′ are vertical lines. Pick a plane P̃ in the limiting parking garage
structure, orthogonal to l, l′ and for n large, let Pn be a plane such that λn(Pn− pn) converges
to P̃ as n→∞, such that the height of Pn does not coincide with the height of any planar end
of E. Choose two connection loops cn, c′n ⊂ E lying at different sides of Pn. Since both cn, c′n
are homologically nontrivial in D − {0} by the last paragraph, then cn, c′n are topologically
parallel in D − {0} and thus, there exists an annular domain A(cn, c

′
n) ⊂ D − {0} bounded

by cn ∪ c′n. Observe that we can choose cn, c′n so that A(cn, c
′
n) contains annular ends of E

(by the convex hull property). If l, l′ were not vertical, then for n large A(cn, c
′
n) ∩ E would

contain interior points whose heights are strictly greater than the maximum height of cn ∪ c′n,
which is a contradiction as in the previous paragraph. Therefore, l, l′ are vertical lines, which
proves item 7 of the lemma.

We continue assuming that Case (G2) occurs. By Sard’s theorem, we can assume that Pn
intersects transversely E. Identifying A(cn, c

′
n) ∩ E with its image minimal surface in R3, we

deduce that the intersection set A(cn, c
′
n) ∩ x−1

3 (x3(Pn)) consists of a nonzero finite number
of Jordan curves contained in the interior of A(cn, c

′
n). By elementary separation properties,

there exists at least one component Γ̂(n) of A(cn, c
′
n) ∩ x−1

3 (x3(Pn)) which is topologically
parallel to cn in A(cn, c

′
n); in fact, Γ̂(n) is unique by the arguments in the first paragraph of

this proof. Thus, Γ̂(n) ⊂ E satisfies item 2 of the lemma.
Note that the curves Γ̂(n) can be chosen (after passing to a subsequence) so that the finite

topology domains Ωn ⊂ D(∗) bounded by Γ̂(n) ∪ ∂E satisfy Ωn ⊂ Ωn+1 for all n, so item 3
of the lemma holds by construction. Without loss of generality, we may assume that cn ⊂ Ωn.
Given n ∈ N ∪ {0} and k ∈ N, the annulus A(Γ̂(n), Γ̂(n + k)) ⊂ D − {0} bounded by
Γ̂(n) ∪ Γ̂(n + k) satisfies that A(Γ̂(n), Γ̂(n + k)) ∩ E is a finitely punctured annulus and
A(Γ̂(n), Γ̂(n+k))∩E lies below the horizontal plane at height max{x3(Γ̂(n)), x3(Γ̂(n+k))}
(by the maximum principle applied to x3|A(Γ̂(n),Γ̂(n+k))∩E , since the annular ends of E have
nonpositive logarithmic growth). As E contains points of arbitrarily large heights because the
limit end of E is its top end, we conclude that the heights of the planes Pn are not bounded
from above. After passing to a subsequence, we can assume that x3(Pn) < x3(Pn+1) and
x3(Pn) → ∞ as n → ∞. This implies that after replacing E by a representative of the same
limit end bounded by the curve Γ̂(0), we can assume that item 1 of the lemma holds provided
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that Case (G2) occurs.
Observe that the finite topology domain Ωn equals A(Γ̂(0), Γ̂(n)), hence item 4 holds by

the last paragraph. By transversality, this implies thatE−Ωn lies locally above Pn along Γ̂(n).
In particular, E lies locally above P0 = {x3 = x3(∂E)} along ∂E and item 5 of the lemma
holds provided that Case (G2) occurs. Thus, the proof of Lemma 4.2 is finished if Case (G2)
holds.

Next assume that Case (G1) occurs for the limit of the Ẽn with M∞ being a Riemann
minimal example. The previous arguments can be adapted to prove that:

• If c̃n = λn(cn−pn) ⊂ Ẽn converges to a circleC in the Riemann minimal exampleM∞,
then cn winds once around 0 in D− {0} (adapt the arguments in the fourth paragraph of
the present proof and use that if the flux of a Riemann minimal example is vertical, then
its planar ends are not horizontal).

• The limit tangent plane at infinity for M∞ is vertical (adapt the arguments in the fifth
paragraph of the present proof).

• There exists a sequence of horizontal planes Pn such that {λn(Pn − pn}}n converges to
{x3 = x3(C)}, and compact components Γ̂(n) of E ∩ Pn that are Jordan curves which,
when viewed in D−{0}, wind once around 0 (adapt the arguments in the sixth paragraph
above).

• The finite topology domain Ωn ⊂ D(∗) bounded by Γ̂(n) ∪ ∂E can be chosen so that
Ωn ⊂ Ωn+1 for all n ∈ N, and all of the remaining properties of Lemma 4.2 hold (follow
verbatim the arguments in the seventh paragraph of this proof).

Finally suppose that Case (G1) occurs for the limit of the Ẽn withM∞ being a catenoid.
Let P̃ , Pn ⊂ R3 be parallel planes so that P̃ intersects M∞ in its waist circle γ̃, and for each n
Pn∩E contains a convex Jordan curve γn such that {λn(γn−pn)}n converges to γ̃ as n→∞.

Claim 4.3 For n sufficiently large, γn is nonzero in H1(D− {0}).

Proof. Assume that γn bounds a disk ∆ in D − {0}. By the convex hull property, ∆ contains
a finite positive number of ends of E, all of which are annular with finite total curvature and
vertical (possibly zero) flux. As γn is convex, a standard application of the López-Ros de-
formation argument shows that ∆ contains exactly one end of E. This annular end of E has
negative logarithmic growth for n sufficiently large, as the flux of M∞ along γ̃ is nonzero.
The same reason gives that M∞ is a vertical catenoid, and thus, P̃ , Pn are horizontal planes.
For n sufficiently large, consider a compact annular neighborhood A(γn) of γn in E with the
following properties:

(H1) A(γn) is bounded by two compact, convex curves in horizontal planes and the lower
boundary curve of A(γn) bounds an annular end R(n) of E of catenoidal type (with
negative logarithmic growth).
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(H2) A(γn) is unstable and the sequence λn(A(γn)−pn) converges smoothly with multiplicity
one to a large compact piece of M∞ containing γ̃.

Let Dn (resp. D′n) be the compact horizontal disk in R3 whose boundary is the lower (resp.
upper) boundary component of A(γn). Thus, ∂Dn = ∂R(n). By the same arguments as in the
proof of Assertion 3.13, the compact region Wn ⊂ R3 bounded by A(γn)∪Dn ∪D′n, satisfies
that Wn ∩E = A(γn) (note that we can assume that n is sufficiently large so that ∂E does not
intersect Wn). As E is connected and proper, we deduce that E − R(n) is disjoint from the
piecewise smooth, properly embedded topological plane R(n) ∪Dn. As the limit end of E is
its top end, we deduce that E −R(n) lies entirely above R(n)∪Dn. In particular, R(n) is the
lowest end of E. As this can only happen once for the γn, this proves Claim 4.3. 2

We continue assuming that Case (G1) occurs with M∞ being a catenoid. By Claim 4.3,
we can assume that γn is nonzero in H1(D − {0}) for each n ∈ N. Let Ωn ⊂ D(∗) be the
subdomain with finite topology and ∂Ωn = ∂E ∩ γn. Adapting the arguments in the fifth
paragraph of this proof (with Ωn instead of A(cn, c

′
n)) we conclude that the catenoid M∞

is vertical, and thus, P̃ , Pn are horizontal planes. As for n large we can assume that ∂E lies
below Pn, the claim in the first paragraph of the proof of Lemma 4.2 shows that γn is the unique
compact component of Pn ∩ E that is nonzero in H1(D − {0}). We now define Γ̂(n) := γn.
Once here, items 1-6 in Lemma 4.2 are easy to prove by direct adaptation of the arguments in
paragraphs six and seven above. We leave the details to the reader. 2

For the remainder of this section, we will assume that E satisfies the properties stated in
Lemma 4.2.

Definition 4.4 Since E is proper, Theorem 3.1 in [12] implies that (x3|E)−1([t,∞)) is a
parabolic manifold with boundary, i.e., it has full harmonic measure on its boundary. In this
situation, the Algebraic Flux Lemma for parabolic manifolds (Meeks [21]) ensures that if we
define

VE :=

∫

{x3=t}

∂x3

∂η
∈ [0,∞], (3)

where η is the inward pointing conormal to (x3|E)−1([t,∞)), then VE is independent of t ≥
max(x3|∂E) = x3(P0), where P0 is the horizontal plane defined in Lemma 4.2. We call VE
the vertical flux component of E.

In what follows, we will use the notation

T = TH + TV (4)

for the decomposition of a vector T ∈ R3 in its horizontal and vertical components.

Corollary 4.5 (Flux Estimates) Let Ωn be the subdomains of E defined in Lemma 4.2, and
let βn ∈ (−∞, 0] be the sum of the (nonpositive) logarithmic growths of the simple ends of Ωn.
Let η denote the outward pointing conormal vector to Ωn along Γ̂(n) and define the associated
flux vector

F(Γ̂(n)) :=

∫

Γ̂(n)
η.
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Then, for each n ∈ N:

1. F (Γ̂(n)) = FE − 2πβne3, where FE is the flux of E given in (1) and e3 = (0, 0, 1).

2. F (Γ̂(n))H = (FE)H . Furthermore, after a normalization of E by replacing it by its
image under a rotation around the x3-axis, FE = (h, 0, τ) for some h, τ ∈ (0,∞),
where h = |(FE)H | and τ = |(FE)V |.

3. Case (G2) does not occur.

4. Let β∞ = lim
n→∞

βn ∈ [−∞, 0]. If β∞ is finite, then VE e3 = (FE)V − 2πβ∞e3, where
VE is defined in (3).

5. Case (G1-c) (i.e., M∞ is a Riemann minimal example) occurs if and only if β∞ is finite.
In this case, λ∞ = lim

n→∞
λn exists and is a positive number, and M∞ is the scaled Rie-

mann minimal example with horizontal limit tangent plane at infinity that has injectivity
radius 1 and flux vector λ∞(h, 0, τ − 2πβ∞).

6. Case (G1-b) (i.e., M∞ is a catenoid) occurs if and only if β∞ = −∞ (equivalently,
lim
n→∞

λn = 0).

Proof. Item 1 follows from the divergence theorem applied to the harmonic coordinate func-
tions of E, using the fact that the flux contributions for catenoidal ends of Ωn are all vertical
with negative logarithmic growth.

The first statement in item 2 follows from taking horizontal components in item 1; we next
prove the second statement in item 2. First suppose that Case (G1) holds. By item (6-a) of
Lemma 4.2, the boundary curves of Ωn are convex planar curves that bound horizontal disks
Dn whose interiors are disjoint from E, and the Dn all lie on the same side of E. Since for
n large Ωn is not an annulus, then if (FE)H = 0, then the López-Ros deformation argument
applied to Ωn would lead to a contradiction. The fact that (FE)V 6= 0 follows directly from
the maximum principle for x3, since E is not contained in a horizontal plane. This proves the
second statement in item 2 when Case (G1) holds. Thus item 2 will hold once we prove item 3.

In the case that (G2) holds, the connection loop cn ⊂ Ωn (defined in the proof of Lemma 4.2)
is homologous in D− {0} to ∂E. Since the planes in the limiting parking garage are horizon-
tal by item 7 of Lemma 4.2, then the ratio |F (cn)V |

|F (cn)H | of the length of the vertical component
F (cn)V over the length of the horizontal component F (cn)H of the flux vector F (cn) con-
verges to zero as n → ∞. As F (cn)H = (FE)H by the divergence theorem, then |F (cn)V |
tends to 0 as n → ∞. This is impossible, since the arguments in obtaining item 1 show that
|F (cn)V | ≥ |(FE)V | > 0. This contradiction gives that items 2 and 3 hold.

We next prove item 4. Taking vertical components in the equality of item 1 and using that
the limit β∞ of the βn is assumed to be finite, we have that limn F (Γ̂(n))V exists and equals
(FE)V − 2πβ∞e3. Hence it remains to show that

VE e3 = lim
n
F (Γ̂(n))V . (5)
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To see this, we will describe E ∩ Pn for n ∈ N given. Observe that if C is a noncompact
component of E ∩ Pn, then C is a noncompact embedded arc and each of the two ends of
C diverges to the same annular end of E, which is therefore a planar end asymptotic to Pn.
Hence, after moving slightly the height of Pn, we can assume that every component of E ∩Pn
is compact. Next consider a (compact) component C of E ∩ Pn. By item 4 of Lemma 4.2,
C ⊂ E − Int(Ωn). By the claim in the first paragraph of the proof of Lemma 4.2, either
C = Γ̂(n) or C bounds a disk in D− {0}.

Assume that E contains a planar annular end. By embeddedness of E, all annular ends
above E (with the ordering given by the Ordering Theorem) must be also planar. After replac-
ing E by another end representative of its limit end, we can assume that all the ends of E are
planar. In this case, E∩Pn = Γ̂(n) (otherwise, there exists a component C ofE∩Pn such that
C bounds a disk ∆C in D−{0} by the last paragraph, and we contradict the maximum principle
applied to x3|∆C

as all the (finitely many) ends of E in ∆C are planar). Since E ∩ Pn = Γ̂(n)

for each n ∈ N, then (3) computed for t = x3(Pn) gives that VE e3 = F (Γ̂(n))V for each
n ∈ N, from where (5) follows directly.

By the arguments in the last paragraph, we can assume that all the annular ends of E have
negative logarithmic growth. Fix n ∈ N. As E − Ωn lies locally above Pn along Γ̂(n) (by
item 4 of Lemma 4.2) and every annular end of E in E − Ωn is represented by a punctured
disk that lies entirely below Pn, then we conclude that E ∩ Pn consists of Γ̂(n) together with
infinitely many compact components Ci(n), i ∈ N, each of which bounds a disk ∆Ci(n) in
D − {0} that contains a finite positive number of catenoidal type ends of E. Therefore, (3)
computed for t = x3(Pn) gives that

VE e3 = F (Γ̂(n))V +
∑

i∈N
F (Ci(n)), (6)

where F (Ci(n)) is the (vertical) flux vector of E along ∂∆Ci(n) computed with the unit conor-
mal vector that points outwards from ∆Ci(n) along its boundary. Observe that given n, i ∈ N,
the divergence theorem gives that F (Ci(n)) equals e3 times a finite sum of logarithmic growths
of annular ends of E. As the sequence of domains {Ωn}n forms an increasing exhaustion of
E, then given n, i ∈ N, there exists k ∈ N sufficiently large so that all annular ends in ∆Ci(n)

lie in the closure of Ωn+k in D − {0}. This observation and (6) imply that (5) holds, and the
proof of item 4 is complete.

We next show items 5 and 6. Using item 2 we have

λnF (Γ̂(n))H = λn(FE)H = λn(h, 0, 0)

for each n ∈ N. If Case (G1-c) occurs, then the left-hand-side of the last equation tends to the
nonzero horizontal component of the flux F (M∞) of M∞, which implies that the λn converge
to a finite positive number λ∞. Taking vertical components in item 1 we have

λnF (Γ̂(n))V = λn[(FE)V − 2πβne3]. (7)

Taking n → ∞ in (7), we obtain 〈F (M∞), e3〉 = λ∞(τ − 2πβ∞), hence β∞ is finite (and
negative, as βn is nonpositive for every n) and F (M∞) = λ∞(h, 0, τ − 2πβ∞).
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If Case (G1-b) happens, then the horizontal component of the flux ofM∞ is zero and thus, a

similar reasoning shows that |F (Γ̂(n))H |
|F (Γ̂(n))V |

→ 0, hence the βn diverge to−∞ and the λn converge
to zero. This finishes the proof of the corollary. 2

In the remainder of this section, we will assume that E satisfies the normalization stated in
Corollary 4.5, and we will also use the notation in that corollary.

Lemma 4.6 Suppose {p′n}n ⊂ E is a divergent sequence such that {IE(p′n)}n is bounded.
Then, β∞ is finite and a subsequence of the surfaces E − p′n converges smoothly on compact
sets of R3 with multiplicity one to the Riemann minimal example with horizontal ends and flux
vector (h, 0, τ − 2πβ∞).

Proof. First assume that the Gaussian curvature of the sequence {E− p′n}n is locally bounded
in R3. Then, a subsequence of {E − p′n}n converges to a minimal lamination L of R3 with a
nonsimply connected leaf L passing through the origin and genus zero. By Theorem 7 in [30],
L is proper. By the Halfspace Theorem, L is the unique leaf of L. Since L has genus zero, then
L is either a catenoid or a Riemann minimal example; in particular, the convergence of E− p′n
to L is of multiplicity one. Similar arguments as those in the proof of Lemma 4.2 imply that:

(I1) If L is a catenoid (resp. a Riemann minimal example), then the waist curve of L (resp.
each circle contained in L) is the limit as n → ∞ of closed curves αn ⊂ D(∗) that wind
once around the limit end ~0 of E in the parameter domain D(∗) of E − p′n.

(I2) The annular ends of L are horizontal.

Note that the horizontal component F (αn)H of the flux ofE−p′n along αn is independent of n
and nonzero (by item 2 of Corollary 4.5), which is clearly impossible if L is a vertical catenoid.
This proves thatL is a Riemann minimal example. The fact that the flux ofL is (h, 0, τ−2πβ∞)

comes from taking limits in the fluxes of the curves αn and using the arguments in the proof
of item 5 of Corollary 4.5. This completes the proof of the lemma provided that the Gaussian
curvature of {E − p′n}n is locally bounded in R3.

Now assume that the Gaussian curvature of {E − p′n}n fails to be locally bounded in R3.
As IE is bounded away from zero outside every ε-neighborhood of ∂E by Theorem 3.5, then
Theorem 2.2 in [26] ensures that after choosing a subsequence, {E − p′n}n converges to a
minimal parking garage structure with two columns (the one-column case of a limiting parking
garage structure is ruled out because IE(p′n) is bounded from above by assumption). Similar
arguments as in the proof of item 3 of Corollary 4.5 lead to a contradiction, which completes
the proof of the lemma. 2

4.2 Analysis of the Case (G1) when M∞ is a Riemann minimal example.

In this section, we will prove that Theorem 1.6 holds provided that Case (G1) occurs and that
the limit surface M∞ of the surfaces Ẽn given by (2) is a Riemann minimal example.
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Let R be the Riemann example with horizontal ends and flux vector (h, 0, τ − 2πβ∞),
which is just a fixed rescaling of M∞ by item 5 of Corollary 4.5. Recall that R is invariant
under the π-rotation about infinitely many horizontal straight lines Lk, k ∈ Z, that intersect
the surface orthogonally (the lines Lk are parallel to the lines in which R intersects horizontal
planes at the heights of its planar ends, and the heights of Lk are ordered by k ∈ Z). Given
k ∈ Z, let A1(k), A2(k) ∈ R the two points in which Lk intersects R. For i = 1, 2, let
JRi ⊂ R be the integral curve of the gradient of the third coordinate function x3 ofR, passing
through the points Ai(k) for all k ∈ N. JR2 is the reflected image of JR1 with respect to
the vertical plane of symmetry ofR, and both JR1 , J

R
2 are properly embedded, periodic Jordan

arcs, see Figure 6 for a picture in a fundamental region ofR. If we parameterizeR conformally
by a cylinder S1 × R so that x3 corresponds to the projection over the second factor, then JRi
corresponds to {θ0} ×R for certain θ0 ∈ S1. Observe that the image of JR1 through the Gauss
map NR of R is a simple closed curve C ⊂ S2, and if we parameterize JR1 by x3, then the
derivative of the argument of gR(JR1 (x3)) is a positive (or negative) periodic function, where
gR denotes the stereographic projection of NR from the north pole of S2; this last property
follows from the well-known fact that the Gauss map of a minimal surface and its conjugate
minimal surface are the same, and the conjugate surface of a Riemann example is another
Riemann example, where the integral curves of the gradient of x3 correspond to circles in the
conjugate surface.

Proposition 4.7 Let C ⊂ S2 be closed curve defined in the last paragraph. Then, after replac-
ing E by another end representative of the limit end, the inverse image of C through the Gauss
map ofE consists of two disjoint, proper Jordan arcs J1, J2 satisfying the following properties:

1. IE restricted to J1 ∪ J2 is bounded from above, and

lim sup
x∈J1∪J2

IE(x) = lim sup
x∈JR1 ∪JR2

IR(x) <∞.

2. When viewed in R3, the unit tangent vector along J1 ∪ J2 makes an angle with the
horizontal planes which is bounded away from zero.

Proof. After a small perturbation of C (by the Sard-Smale theorem), we can assume that the
Gauss map N of E is transverse to C. In particular, N−1(C) consists of a proper (possibly
disconnected) 1-dimensional submanifold ofE; after replacingE by a subend, we may assume
that the geometry of E near ∂E is close to the one of R and thus, N−1(C) intersects ∂E
transversely at two points. Observe that the tangent plane to E along N−1(C) is bounded
away from the horizontal. The proposition will be a consequence of three assertions.

Assertion 4.8 If IE(p′n) → ∞ for a sequence of points p′n ∈ N−1(C), then for n large
N−1(C) makes an angle with the horizontal at p′n which is bounded away from zero.

Proof. Let J(n) denote the component of N−1(C) that contains p′n. Arguing by contradic-
tion, we may assume that the tangent line to J(n) at p′n makes an angle less than 1

n with the
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horizontal and IE(p′n) is much greater than n. Since IE(p′n) → ∞, Proposition 1.1 in [9] en-
sures that after replacing by a subsequence, we may assume that p′n lies in a compact minimal
disk Dn ⊂ B(p′n, n) ∩ E with ∂Dn ⊂ ∂B(p′n, n). Since the vertical component of the flux
VE = τ − 2πβ∞ is finite and the tangent plane to E along N−1(C) is bounded away from the
horizontal, then for n large, there exist constants an C,R0 ∈ (0, n/3) depending on VE and
there is a point q′n ∈ B(p′n, R0) ∩ E where the absolute Gaussian curvature of E is at least C.
It then follows from Theorem 0.1 in [8] that a subsequence of the disks

Σn =
1√
n

(Dn − p′n) ⊂ B(
√
n)

converges on compact subsets of R3 to a minimal parking garage structure F with a single
column being a straight line L passing through the origin and orthogonal to the planes in F ,
see also Meeks [20, 22]. Since VE is finite, L is the x3-axis.

It follows from [19] that for n large, Σn(1) = Σn ∩ B(~0, 1) contains a compact arc αn
along which Σn(1) has vertical tangent spaces, and αn is converging C1 to the line segment
{(0, 0, t) | t ∈ [−1, 1]}; this last result can be found in Meeks [19]. Some further refinements
by Meeks, Pérez and Ros (Corollary 4.27 in [27]) give that at every point x ∈ αn and for n large
enough, Σn(1) nearby x can be closely approximated in the C2-norm by compact domains of
a shrunk vertical helicoid Hx whose axis contains x, and in the complement of a small tube Tn
around αn containing the forming vertical (scaled) helicoids, the remaining surface Σn(1)−Tn
consists of almost horizontal multigraphs with an arbitrarily large number of sheets for n large.
In particular, the corresponding curve 1√

n
(J(n) − p′n) lies in Tn. Since the inverse image JH

of C ⊂ S2 by the Gauss map on a vertical helicoid makes an angle with the horizontal that is
bounded away from zero (because if we use conformal coordinates ρeiθ defined on C−{0} for
the helicoid so that the polar angle θ corresponds to height in R3, then JH can be parameterized
by θ, and the angle of JH(θ) with the horizontal has constant positive derivative with respect to
θ). Thus, for n sufficiently large the same property holds for J(n) near p′n. This contradiction
completes the proof of Assertion 4.8. 2

Let c0, c1 ⊂ R be the horizontal circles passing through the points A1(0), A1(1) defined
just before the statement of Proposition 4.7. Let Cyl be a solid, compact vertical cylinder
whose axis passes through the branch point of NR at height 1

2(x3(c0) + x3(c1)), of radius
r > 0 large enough so that [JR1 ∪ JR2 ] ∩ x−1

3 ((x3(c0), x3(c1))) is contained in the interior of
Cyl, and such that the top and bottom disks in ∂Cyl contain the circles c1, c0, respectively, see
Figure 6. By construction, the side of Cyl intersects R in an almost horizontal closed curve γ
(for r large enough) that winds once around the axis of Cyl, and NR(γ) is a closed spherical
curve arbitrarily close to (0, 0, 1) ∈ S2 that winds twice around (0, 0, 1) (we can assume that
(0, 0, 1) is the extended value of NR at the planar end of R between the heights of c0 and c1).
LetR0 be the compact subdomainR∩ Cyl ofR.

Given ε > 0 small, let R0(ε) ⊂ E be a compact subdomain which is ε-close to R0 in the
Hausdorff distance in R3, which exists since the smooth limit of translations of E is R. We
may assume that ∂R0(ε) consists of three components c0(ε), c1(ε), γ(ε), so that c0(ε), c1(ε)
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Figure 6: The small square in the center of the figure represents the branch point of the Gauss
map NR ofR whose height is the average of the heights of the circles c0, c1. The green curves
represent the intersection ofR∩ Cyl with the symmetry plane ofR.

are horizontal convex curves and γ(ε) is a Jordan curve whose image by N is at positive
spherical distance from C. We may take ε sufficiently small so that N−1(C) ∩R0(ε) consists
of two disjoint arcs, each one joining c0(ε) to c1(ε). The complement of R0(ε) in D − {0}
consists of three components, namely two annular components of which one contains ∂E and
another one contains 0, and a disk component ∆. By the convex hull property, ∆ contains a
finite positive number of annular ends of E. Observe that we can choose an infinite sequence
of pairwise disjoint domains of the typeR0(ε) inE, so that the sequence collapses to the origin
when viewed in D− {0}.

Assertion 4.9 After replacing E by a limit subend, every such a domain ∆ contains exactly
one annular end of E.

Proof. Arguing by contradiction, assume that we have a sequence ∆n of such domains so
that ∆n contains at least two annular ends of E. As the limiting normal vector of E at its
annular ends is vertical and N−1(C) ∩ ∂∆n = Ø, then a simple continuity argument gives
that N−1(C) ∩∆n contains a finite positive number of components, each of which is a Jordan
curve. Choose one of these Jordan curves βn ⊂ N−1(C) ∩ ∆n. If for each n ∈ N there
exists a point p′n ∈ βn so that the sequence {IE(p′n)}n is bounded, then Lemma 4.6 implies
that after extracting a subsequence, the E − p′n converge smoothly with multiplicity one toR.
Note that the sequence {(∆n ∩ E)− p′n}n also converges toR (because the intrinsic distance
from γn(ε) to βn goes to infinity as n → ∞). This is impossible, as every closed curve in
∆n∩E has vertical flux butR does not have this property. Therefore, the sequence of numbers
{min IE(x) | x ∈ βn}n goes to ∞. In this situation, Assertion 4.8 gives a contradiction by
taking for each n ∈ N a point xn ∈ βn of maximum height in R3 (which exists since βn is a
Jordan curve). This finishes the proof of Assertion 4.9. 2

By Assertion 4.9, after replacing E by a limit subend, we assume that every ∆-domain as
defined in the description just before the statement of Assertion 4.9, contains one end of E.
By the last sentence before Assertion 4.9, these ∆-domains occur in a sequence collapsing to
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the limit end of E. By the Gauss-Bonnet formula, the total Gaussian curvature of the annulus
∆ ∩ E is arbitrarily small by choosing R0(ε) appropriately. Therefore, ∆ ∩ E is a graph
over its projection into the (x1, x2)-plane, of a function with small length of its gradient (the
maximum of the length of the gradient of the graphing function occurs at ∂∆). By gluing
(∆ ∩ E) ∪ R0(ε) with the two planar disks bounded by c0(ε) ∪ c1(ε), we obtain a piecewise
smooth topological plane Π, which is properly embedded in R3. Take a maximal collection
{Πn}n of such topological planes, so that Πn ∩Πm = Ø if n 6= m. R3−⋃n∈N Πn consists of
a countable union of open components, each of which is a topological slab Sn.

Given such a slab Sn, observe that the closure of N−1(C) ∩ Sn is a compact 1-manifold
with four boundary points. Therefore,N−1(C)∩Sn consists of a finite number of Jordan curves
plus two arcs. We first check that for n sufficiently large,N−1(C)∩Sn does not contain Jordan
curve components. Otherwise, there exists a sequence of points p′n ∈ N−1(C) ∩ Sn where the
tangent line to N−1(C) ∩ Sn is horizontal. By Assertion 4.8, IE(p′n) must be bounded. Thus,
Lemma 4.6 gives that after extracting a subsequence, the E − p′n converge smoothly to R,
which is impossible since on R the corresponding set N−1

R (C) = JR1 ∪ JR2 satisfies that the
angle with the horizontal planes is bounded away from zero. Therefore, N−1(C)∩Sn does not
contain Jordan curve components that for n sufficiently large, and the same argument proves
that the two compact arcs in the closure of N−1(C) ∩ Sn make an angle with the horizontal
planes which is bounded away from zero; in particular, each of these arcs joins two boundary
components of Sn. After replacing E by a subend, we can assume that N−1(C) consists
of two proper arcs J1, J2 satisfying item 2 of the proposition. In particular, each Ji can be
parameterized by the x3-coordinate, i = 1, 2.

Assertion 4.10 Given δ > 0, there exists x3,0 = x3,0(δ) ∈ R such that if x3 ≥ x3,0, then for
i = 1, 2 it holds

IE(Ji(x3)) ≤ δ + lim sup
x∈JR1 ∪JR2

IR(x).

Proof. Arguing by contradiction, suppose that the assertion fails. Then, there exists δ > 0 and
a sequence of heights tn →∞ so that IE(Ji(tn)) > δ+ c, where c = lim supx∈JR1 ∪JR2 IR(x).
After passing to a subsequence, we can assume that given n ∈ N, there exists t′n ∈ (tn, tn+1) so
that the related point Ji(t′n) lies in a region of the formR0(ε) where E is ε-close to a compact
portion ofR. Then, after taking εmuch smaller than δ, we can assume that IE(Ji(t

′
n)) ≤ δ

2 +c.
By continuity of IE ◦Ji, there exists t′′n ∈ (tn, t

′
n] such that IE(Ji(t

′′
n)) = δ

2 +c for each n ∈ N.
Applying Lemma 4.6 to pn := Ji(t

′′
n) we deduce that the E−Ji(t′′n) converge (after extracting

a subsequence) smoothly to R, which is impossible since the value of the injectivity radius of
E−Ji(t′′n) at the origin is δ

2 + c and the injectivity radius is a continuous function with respect
to smooth limits (see e.g. Ehrlich [13] and Sakai [42]). Now the assertion is proved. 2

Finally, item 1 of Proposition 4.7 follows directly from Assertion 4.10. Item 2 of Proposi-
tion 4.7 follows from Assertion 4.10, Lemma 4.6 and the fact that the unit tangent vector along
the curves JR1 ∪ JR2 makes an angle with the horizontal planes which is bounded away from
zero. This completes the proof of the proposition. 2
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A direct consequence of Lemma 4.6 and Assertion 4.10 is that for every divergent sequence
of points p′n ∈ J1 ∪ J2, the surfaces E − p′n converge smoothly to R after passing to a sub-
sequence. This property together with Assertion 4.9 imply that after replacing E by a subend,
E consists of an infinite number of noncompact pieces Mn, each of which is has the topology
of a pair of paints with a point removed (this puncture is one annular end of E), and the two
compact boundary components of c0,n, c1,n of Mn can be taken arbitrarily close to translated
copies of the horizontal circles c0, c1 ⊂ R defined in the paragraph just after the proof of
Assertion 4.8. Furthermore, c1,n = c0,n+1 and Mn ∩Mn+1 = c1,n for all n ∈ N.

We next explain why Theorem 1.6 holds in the Case (G1) whenM∞ is a Riemann minimal
example. The main properness statement of Theorem 1.6 was proven in Section 3. Items 1, 2
of Theorem 1.6 were proven in the second paragraph of this section 4. Item 3 of Theorem 1.6
follows from Lemma 4.2 and Corollary 4.5. In particular, items 1, 2, 3 of Theorem 1.6 also
hold in the Case (G1) when M∞ is a vertical catenoid. Assume from now on that Case (G1)
occurs andM∞ is a Riemann minimal example. Item 4 of Theorem 1.6 is a consequence of the
last paragraph. The same description of E as a union of domains Mn implies that the Gaussian
curvature of E is bounded, which is item 5 of Theorem 1.6. The next proposition completes
the proof of Theorem 1.6 in the Case (G1) when M∞ is a Riemann minimal example.

Proposition 4.11 If Case (G1) occurs and M∞ is a Riemann minimal example, then item 6 of
Theorem 1.6 holds.

Proof. Suppose that the proposition fails. As each of the annular ends of E has finite total
curvature, E is conformally diffeomorphic to D̂ = D−{x ∈ D | |x| ≤ a} for some a ∈ (0, 1),
with a countable discrete set of points {en}n∈N removed and where |en| ↘ a as n→∞.

By the above decomposition of E as a countable union of regions Mn, there exists δ > 0

and a sequence fn : S1 × [0, δ] → E (here S1 is the unit circle) of conformal embeddings
with fn(S1 × [0, δ]) being arbitrarily close to a region R0(ε) of ‘Riemann type’ to which one
attaches an annular end of E (that might have negative logarithmic growth, arbitrarily close to
zero). Observe that the fn have pairwise disjoint images in R3 for different values of n.

Consider on D̂ the usual flat metric g0. Next we will show that the g0-area of fn(S1×[0, δ])

is at least 2πa2δ, which gives the desired contradiction since the g0-area of D̂ is finite and we
have an infinite number of such pairwise disjoint embeddings fn in D̂.

To compute the g0-area of fn(S1 × [0, δ]), we will apply the coarea formula to the smooth
function hn : fn(S1 × [0, δ])→ R that satisfies

(hn ◦ fn)(θ, t) = t, for all (θ, t) ∈ S1 × [0, δ]. (8)

Thus,

Area(fn(S1 × [0, δ]), g0) =

∫ δ

0

(∫

h−1
n (t)

dst
|∇0hn|

)
dt, (9)

where dst, |∇0hn| denote respectively the length element of the simple closed curve h−1
n (t) =

fn(S1×{t}) and the gradient of hn, both computed with respect to g0. Since fn is a conformal
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diffeomorphism onto its image endowed with g0, we deduce that

v :=
1∣∣∣∂fn∂t (θ, t)

∣∣∣
∂fn
∂t

(θ, t) (10)

is a unit normal vector to the curve fn(S1×{t}) at the point fn(θ, t). Hence, (8) and (10) give

|∇0hn|(fn(θ, t)) = (dhn)fn(θ,t)(v) =
1∣∣∣∂fn∂t (θ, t)

∣∣∣
,

which implies that the right-hand-side of (9) equals

∫ δ

0

(∫

fn(S1×{t})

∣∣∣∣
∂fn
∂t

∣∣∣∣ dst
)
dt =

∫ δ

0

(∫

S1×{t}

∣∣∣∣
∂fn
∂t

∣∣∣∣
∣∣∣∣
∂fn
∂θ

∣∣∣∣ dθ
)
dt. (11)

Using again the conformality of fn in the right-hand-side of (11) and the Cauchy-Schwarz
inequality, we obtain

Area(fn(S1 × [0, δ]), g0) =

∫ δ

0

(∫

S1×{t}

∣∣∣∣
∂fn
∂θ

∣∣∣∣
2

dθ

)
dt ≥ 1

2π

∫ δ

0

(∫

S1×{t}

∣∣∣∣
∂fn
∂θ

∣∣∣∣ dθ
)2

dt

=
1

2π

∫ δ

0
[length(fn(S1 × {t}))]2dt

(?)

≥ 1

2π

∫ δ

0
(2πa)2dt = 2πa2δ,

where in (?) we have used that fn(S1 × {0}) is a loop in D̂ that is parallel to ∂D̂. This
completes the proof of the proposition. 2

4.3 Analysis of the Case (G1) when M∞ is a catenoid.

We will devote this section to prove Theorem 1.6 provided that Case (G1) occurs and that the
limit surface M∞ of the surfaces Ẽn given by (2) is a vertical catenoid.

Without loss of generality, we will assume that the waist circle of M∞ is the unit circle in
the (x1, x2)-plane. Recall the following properties demonstrated above for each n ∈ N:

(J1) There exists a horizontal plane Pn so that Pn ∩ E contains a convex Jordan curve Γ̂(n)

and the λn(Γ̂(n) − pn) converge as n → ∞ to the waist circle γ̃ of M∞. Moreover, the
heights of Pn diverge increasingly to∞.

(J2) Γ̂(0) = ∂E, Γ̂(n) is topologically parallel to ∂E in D−{0} (items 1 and 2 of Lemma 4.2)
and Γ̂(n) is the unique compact component of Pn ∩E that is topologically parallel to ∂E
in D− {0} (claim in the first paragraph of the proof of Lemma 4.2).

(J3) When viewed in D(∗), Γ̂(n) bounds a noncompact domain E(Γ̂(n)) which is an end
representative of the limit end of E; we take E(Γ̂(n)) as the closure of the component of
E − Γ̂(n) such that E(Γ̂(n)) ∩ ∂E = Ø.
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(J4) When viewed in R3, Γ̂(n) bounds a compact convex disk Dn ⊂ Pn whose interior is
disjoint from E, and the Dn all lie in the same side of E (item (6a) of Lemma 4.2). We
will denote by W the closure of the component of R3 − (E ∪ D0) that contains Dn for
n ≥ 1.

(J5) F (Γ̂(n)) = FE − 2πβne3 and F (Γ̂(n))H = (FE)H is not zero (items 1 and 2 of Corol-
lary 4.5).

(J6) VE =∞, β∞ =
∑

n βn = −∞ and λn → 0 as n→∞ (items 4 and 6 of Corollary 4.5).
In particular, the annular ends ofE all have strictly negative logarithmic growths (because
if one of these ends were asymptotic to a plane, then all annular ends of E above this last
one would be planar as well, and F (Γ̂(n))V would then be independent of n, which
contradicts that β∞ = −∞ after taking vertical components in the first formula of (J5)).

(J7) {IE(p′n)}n is unbounded for every divergent sequence {p′n}n ⊂ E (Lemma 4.6).

Proposition 4.12 Given ε > 0 small, there exist compact annular subdomains ∆n = ∆n(ε) ⊂
E bounded by horizontal convex curves, such that for n sufficiently large:

1. There exist numbers λ′n > 0 converging to zero and points p′n ∈ R3 such that the
Hausdorff distance between λ′n(∆n − p′n) and M∞(ε) = {x ∈ M∞ : |x3| ≤ 1/ε} is
less than ε, and λ′n(∆n − p′n) can be written as a normal graph over its projection to
M∞ with C2-norm less than ε and the boundary curves of λ′n(∆n − p′n) are contained
in the planes {x3 = ±1/ε}.

2. For all n ∈ N, the boundary curves of ∆n are topologically parallel to ∂E in D− {0}.
Therefore, we may assume that the ∆n are ordered so that for each n, ∆n is contained
in the component of D(∗)−∆n+1 that contains ∂E.

3. The closed horizontal slab in R3 that contains ∆n is strictly below the one that contains
∆n+k for all n, k ∈ N, k 6= 0.

4. Except for a finite number of components, each component Ω of E −
⋃

n∈N
∆n is topolog-

ically a plane with two disks removed, and Ω is the graph of a function u defined over
the projection of Ω to the (x1, x2)-plane, with |∇u| < 1.

5. The Gaussian curvature KE of E is asymptotically zero.

Proof. Items 1 and 2 follow from the facts that the sequence {Ẽn}n defined by (2) converges
smoothly on compact subsets of R3 with multiplicity 1 to the vertical catenoid M∞, that λn →
0, and that the convex horizontal curves Γ̂(n) defined in (J1) are topologically parallel to ∂E
in D− {0}.

We next prove item 3. Let A(Γ̂(n), Γ̂(n+ 1)) be the subdomain of E bounded by Γ̂(n) ∪
Γ̂(n+1). Since the ends ofA(Γ̂(n), Γ̂(n+1)) have negative logarithmic growths and {x3(Pn)}n
is increasing, the maximum principle applied to the function x3|A(Γ̂(n),Γ̂(n+1))

implies that
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A(Γ̂(n), Γ̂(n+ 1)) is contained in the halfspace {x3 ≤ x3(Γ̂(n+ 1))}. As A(Γ̂(n− 1), Γ̂(n))

is contained in the halfspace {x3 ≤ x3(Γ̂(n))} and A(Γ̂(n− 1), Γ̂(n))∩A(Γ̂(n), Γ̂(n+ 1)) =

Γ̂(n), then we conclude that A(Γ̂(n), Γ̂(n + 1)) locally lies above Pn along Γ̂(n). Observe
that A(Γ̂(n), Γ̂(n + 1)) contains the portion ∆+

n of ∆n that lies above Pn, and it also con-
tains the portion ∆−n+1 of ∆n+1 that lies below Pn+1. By the maximum principle applied to
x3|A(Γ̂(n),Γ̂(n+1))−[∆+

n∪∆−n+1]
, we deduce that the lower boundary curve of ∆n+1 lies strictly

above the upper boundary curve of ∆n, which implies that item 3 holds.
Next we prove item 4 of the proposition. For ε > 0 small and fixed, choose a maximal

collection of pairwise disjoint domains {∆n}n∈N∪{0} ⊂ E which satisfy items 1, 2 and 3.
After replacing E by a subend representative of the limit end, we may assume that ∂E is thre
bottom boundary component of ∆0.

We will first show that if a component Ω of E−⋃n∈N∪{0}∆n is topologically a plane with
two disks removed, then Ω is the graph of a function u defined over the projection of Ω to the
(x1, x2)-plane, with |∇u| < 1. To see this, note that if ε > 0 is sufficiently small, the total
geodesic curvature of E along each of the two components of ∂Ω is arbitrarily close to −2π.
As we are assuming that Ω has exactly one end and this end has finite total curvature, then the
Gauss-Bonnet formula gives that Ω has arbitrarily small total Gaussian curvature by taking ε
sufficiently small. Therefore, the Gaussian image of Ω lies in a small neighborhood of one of
the poles, say the north pole, of the unit sphere. Hence, the projection of Ω to the (x1, x2)-
plane is a proper submersion which is injective on each of the two boundary components of
Ω. In this setting, a straightforward covering space type argument implies that Ω is a graph
of a smooth function u defined over the projection of Ω to the (x1, x2)-plane. The fact that
|∇u| < 1 follows from the fact that the Gaussian image of Ω lies in a small neighborhood of
the north pole. Therefore, to prove item 4 we must show that except for a finite number
of components of E − ⋃n∈N∪{0}∆n, all these components have the topology of a plane
minus two disks. Observe that item 2 of this proposition implies that every component of
E −⋃n∈N∪{0}∆n is a planar domain with two boundary components and a finite number of
annular ends with negative logarithmic growth.

Let {Ωn}n∈N be the collection of components of E − ⋃n∈N∪{0}∆n. Enumerate these
components so that Ωn is the component of E −⋃n∈N∪{0}∆n with boundary components

αn = Ωn ∩∆n−1, βn = Ωn ∩∆n. (12)

Fix for each n ∈ N a dilation fn : R3 → R3 so that the Hausdorff distance between fn(∆n)

and M∞(ε) is minimized, and so, by the definition of ∆n, this Hausdorff distance is less than
ε.

Lemma 4.13 After passing to a subsequence, the surfaces fn(Ωn) converge with multiplicity
one to the representative M∞ ∩ {x3 ≤ −1/ε} of the bottom end of M∞. In fact, the surfaces
fn(E) converge smoothly on compact subsets of R3 to M∞.

Proof. We first show that if the sequence of curves {fn(αn)}n diverges to infinity in R3, then
the lemma holds. Following the notation in property (J3) above, we denote by E(αn) the
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closure of the component ofE−αn such thatE(αn)∩∂E = Ø. By construction, after passing
to a subsequence, we may assume that the curves fn(βn) converge in the C2-norm to a convex
horizontal curve β̂. Take a divergent sequence {Rn}n of positive numbers so that for each n,
the boundary fn(αn) of fn(E(αn)) lies outside of the closed ball B(Rn) centered at the origin.
Then, item 3 of Theorem 2.2 in [26] applied to the sequence of compact minimal surfaces
{fn(E(αn)) ∩ B(Rn)}n implies that after extracting a subsequence, the fn(E(αn)) ∩ B(Rn)

converge smoothly on compact subsets of R3 with multiplicity one to a connected, properly
embedded, nonflat minimal surface M̂∞ of genus zero, that is either a catenoid, a helicoid or a
Riemann minimal example. Clearly, M̂∞ contains the curve β̂. M̂∞ cannot be a helicoid since
M̂∞ has nonzero vertical flux along β̂; the same argument shows that either M̂∞ is a vertical
catenoid or a Riemann minimal example with vertical flux. Our earlier arguments imply that
M̂∞ must be a vertical catenoid. Since the limit set of the sequence {fn(E(αn)) ∩ B(Rn)}n
equals the limit set of {fn(E)}i (this follows from the properties that fn(E − E(αn)) lies in
the halfspace {x3 ≤ x3(fn(αn))}n and x3(fn(αn))→ −∞ as n→∞), then we conclude the
Lemma in the special case that the fn(αn) diverge to infinity in R3.

We next divide the proof into two parts: in the first one, we will prove the lemma assuming
that, after choosing a subsequence, Ωn contains just one annular end for every n. In the second
part we will suppose that, after choosing a subsequence, Ωn contains more than one annular
end for every n.

Assume that Ωn contains just one annular end for every n. We will demonstrate that the
curves fn(αn) diverge to infinity in R3. Arguing by contradiction, assume that after choosing
a subsequence, fn(αn) lies in a compact set of R3 independently of n ∈ N. Recall that the
logarithmic growths of the annular ends of E are bounded (between the negative logarithmic
growth of the lowest end of E and zero), and that the dilation fn has homothetic factor going
to zero as n → ∞. Therefore, the logarithmic growths of the unique annular end of fn(Ωn)

is arbitrarily small in absolute value for n sufficiently large. Since the flux of fn(Ωn) along
fn(βn) is converging to the nonzero flux ofM∞ along β̂ and the flux of fn(Ωn) along its annu-
lar end is arbitrarily small, then the divergence theorem implies that the flux of fn(Ωn) along
fn(αn) converges to the negative of the flux of M∞ along β̂, that is nonzero. This property
and the fact that the convex planar curve fn(αn) lies in a compact set independent of n, imply
that the fn(αn) converge (after passing to a subsequence) to a convex, horizontal planar curve
α̂ as n → ∞. Also recall that fn(Ωn) is a graph over its projection to the (x1, x2)-plane, by
the fourth paragraph in the proof of Proposition 4.12. Therefore, curvature estimates for stable
minimal surfaces imply that the fn(Ωn) converge to a minimal graph over the complement in
the plane {z = 0} of the two disks bounded by Π(α̂),Π(β̂), where Π(x, y, z) = (x, y, 0). As
this minimal graph has vertical flux and two convex boundary curves, a standard application of
the López-Ros deformation argument leads to contradiction. This contradiction shows that the
fn(αn) diverge to infinity in R3. By the discussion in the first paragraph of this proof, we now
conclude that Lemma 4.13 holds if Ωn has one end for every n (after choosing a subsequence).

Next assume that Ωn has always at least two ends. Again by the discussion in the first
paragraph of the proof of Lemma 4.13, it remains to show that the curves fn(αn) diverge to
infinity in R3. Assume this last property fails to hold. Since the diameter of the sets fn(αn) are
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uniformly bounded (because the diameter of fn(∆n−1) is bounded as the homothetic factor of
the dilation fn is going to zero and the diameter of fn−1(∆n−1) is comparable to the one of
M∞(ε)), we may assume from this point on that the curves fn(αn) all lie in a fixed bounded
subset of R3. This bounded set must lie below the plane {x3 = −1} if ε is chosen sufficient
small (by the already proven item 3 of Proposition 4.12). We will find the desired contradic-
tion by analyzing each of the following two mutually exclusive situations (after passing to a
subsequence):

(K1) The diameters of the curves fn(αn) are not bounded away from zero.

(K2) The diameters of the curves fn(αn) are bounded away from zero.

Suppose that Case (K1) holds. Then, after choosing a subsequence, we may assume that
the curves fn(αn) converge to a point p ∈ R3 that lies below the plane {x3 = −1}. Consider
the sequence of compact, embedded, minimal planar domains {fn(E(αn)) ∩ B(n)}n. We
claim that the [fn(E(αn))∩B(n)]−{p} form a locally simply connected sequence of minimal
planar domains in R3 − {p}. Otherwise, our previous arguments show that we can produce,
after blowing-up by topology, a new limit of dilations of the [fn(E(αn))∩B(n)]− {p} which
is a vertical catenoid. This means that after extracting a subsequence and for n sufficiently
large, [fn(E(αn)) ∩ B(n)]− {p} contains a compact subdomain Cn which is arbitrarily close
to a homothetically shrunk copy of a large compact region of a vertical catenoid, where the
homothetic factor can be taken arbitrarily small. Note that Cn cannot lie in fn(Ωn) because
this contradicts the maximality of the family {∆m}m. Since fn(∆n) is ε-close to M∞(ε), we
deduce that Cn must lie in fn(E(αn+1)). To see that this is impossible, first observe that for n
sufficiently large, the generator of the homology group H1(Cn) of Cn is topologically parallel
to fn(βn) modulo annular ends of fn(E) (adapt the arguments as in the proof of Claim 4.3). As
the vertical component of the flux vector of fn(∆n) along fn(βn) is larger than some positive
number in absolute value (namely, one half of the vertical flux of M∞) and the annular ends of
fn(E) all have negative logarithmic growths, we deduce from the divergence theorem that the
vertical component of the flux vector of fn(Cn) is positive and bounded away from zero (see
the last paragraph of the proof of Corollary 4.5), which contradicts that the length of a generator
of H1(Cn) tends to zero as n → ∞. Therefore, the sequence [fn(E(αn)) ∩ B(n)] − {p} is
locally simply connected sequence in R3 − {p}. In fact, this argument shows that for all
n ∈ N and given a regular neighborhood Un(δ) of the boundary of fn(E(αn)) ∩ B(n) in
fn(E(αn))∩B(n) with radius δ > 0, the restriction of the injectivity radius function of fn(E)

to [fn(E(αn)) ∩ B(n)]− Un(δ) is uniformly bounded away from zero (independently of n).
In this setting, item 3 of Theorem 2.2 in [26] ensures that after passing to a subsequence,

the surfaces [fn(E(αn))∩B(n)]−{p} converge to a minimal lamination L of R3−{p} whose
closure L in R3 consists of a single leaf which is a properly embedded minimal surface L1 of
genus zero that is either a helicoid, a catenoid or a Riemann minimal example. Furthermore,
the convergence of the [fn(E(αn))∩B(n)]−{p} to L1 is smooth on compact sets of R3−{p}.
Our previous arguments show that L1 is the vertical catenoid M∞. As p is a point in L1, then
M∞ must pass through p. We next analyze the intersection of fn(E(αn)) with a ball B(p, δ)
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of small radius δ > 0 so that B(p, δ) ∩ M∞ is a graphical disk with boundary Γ∞. For n
large, we can assume that fn(αn) ⊂ B(p, δ). Since fn(E(αn)) is a properly embedded surface
of genus zero and fn(E(αn)) ∩ ∂B(p, δ) consists of a single curve Γn such that {Γn}n →
Γ∞, then we conclude that fn(αn) ∪ Γn bounds a compact annulus in fn(E(αn)); in fact,
fn(E(αn)) ∩ B(p, δ) is this annulus.

We now arrive at the desired contradiction as follows. Consider a horizontal plane Π strictly
below the height of p. Since M∞ is the smooth limit of the [fn(E(αn)) ∩ B(n)] − {p} away
from p, we conclude that the horizontal circle M∞ ∩ Π is arbitrarily close to a simple closed,
planar convex curve cn ⊂ fn(E(αn)). Observe that cn can be joined to both fn(αn) and
fn(βn) by arcs that do not intersect fn(αn) ∪ fn(βn) ∪ cn except at their extrema. Therefore,
fn(αn) ∪ fn(βn) ∪ cn is the boundary of a compact planar domain in fn(E(αn)). Since αn
and βn are both nontrivial in D − {0}, then cn must bound a disk in D − {0} and therefore,
cn bounds in E a punctured disk Tn with the number of punctures being positive and finite
(depending on n) by the convex hull property. Recall that the logarithmic growths of the
annular ends of fn(En) are arbitrarily small in absolute value for n sufficiently large. As
the flux of fn(E(αn)) along cn is bounded away from zero, we conclude that the number of
punctures in Tn is unbounded as n→∞. Since fn(Tn) lies below the plane Π, cn = ∂[fn(Tn)]

is a convex horizontal curve inside Π and the flux of any closed curve in fn(Tn) is vertical,
then the López-Ros deformation argument implies that Tn contains just one puncture, which is
a contradiction for n large. This contradiction proves that Case (K1) does not occur.

Finally suppose that Case (K2) occurs. This assumption implies that after passing to a
subsequence, the following properties hold.

(L1) The surfaces fn(∆n−1) converge to a compact minimal annulus ∆∞ bounded by two
horizontal simple closed convex curves, and ∆∞ is close in the Hausdorff distance to a
compact piece of a vertical catenoid. Similarly, fn(∆n) converge to a compact minimal
annulus ∆∞ bounded by two horizontal simple closed convex curves, and ∆∞ is ε-close
in the Hausdorff distance to M∞(ε).

(L2) The curves fn(αn) converge to the top boundary component α̂ of ∆∞.

(L3) For all n ∈ N, the restriction of the injectivity radius function of fn(E) to fn(E(αn)) ∩
B(n) is uniformly bounded away from zero (independently of n; this is a consequence of
the arguments in the first paragraph of the proof of Case (K1)).

We now divide the argument of why Case (K2) leads to contradiction into two subcases,
depending on whether or not the sequence {fn(Ωn)}n has locally bounded second fundamental
form in R3.

First suppose that {fn(Ωn)}n has locally bounded second fundamental form in R3. By
the arguments in the proof of Lemma 1.1 in [35], after passing to a subsequence, the surfaces
fn(Ωn) converge to a minimal lamination L1 of R3 − (α̂ ∪ β̂). In fact, property (L1) above
together with the definition of fn imply that {fn(Int(Ωn ∪ ∆n−1 ∪ ∆n))}n converges to a
minimal lamination L2 of R3 − (α̂1 ∪ β̂1), where

α̂1 = ∂∆∞ − α̂, β̂1 = ∂∆∞ − β̂,
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and L2 contains the interior of both ∆∞,∆∞ as portions of its leaves. We will call L(∆∞)

(resp. L(∆∞)) the leaf of L2 that contains the interior of ∆∞ (resp. of ∆∞). Note that
L(∆∞) might coincide with L(∆∞). Also observe that neither L(∆∞) nor L(∆∞) are stable,
as both ∆∞, ∆∞ can be assumed to be unstable by choosing ε in the statement of Proposi-
tion 4.12 sufficiently small. As L(∆∞), L(∆∞) are not stable, Theorem 1 in [32] implies that
L(∆∞), L(∆∞) are not limit leaves of L2. Also note that every limit leaf of L1 is contained
in a limit leaf of L2, and so, limit leaves of L1 are complete stable minimal surfaces, which are
planes. In particular, limit leaves of L1 and of L2 are the same. This implies that the closure in
R3 of each nonflat leaf of L2 is proper in R3, in a halfspace or in a slab with boundary being
limit leaves of L1. In particular, the following surfaces with compact boundary are proper in
R3, proper in an open halfspace or proper in an open slab:

{
L(∆∞) ∪ α̂1, L(∆∞) ∪ β̂1 if L(∆∞) 6= L(∆∞),

L(∆∞) ∪ α̂1 ∪ β̂1 if L(∆∞) = L(∆∞).

Suppose that L(∆∞) 6= L(∆∞). In this setting, property (L3) above and the intrinsic version
of the one-sided curvature estimates by Colding and Minicozzi (Corollary 0.8 in [9]) imply that
L(∆∞) ∪ α̂1 has bounded Gaussian curvature in any small regular neighborhood of the limit
set of L(∆∞) ∪ α̂1 (see Lemma 1.2 in [35] for a similar argument using the extrinsic version
of the one-sided curvature estimates by Colding and Minicozzi). Therefore, L(∆∞) ∪ α̂1 is
proper in R3, and the same holds for L(∆∞) ∪ β̂1 by similar arguments. In the case that
L(∆∞) = L(∆∞), the same reasoning gives that L(∆∞) ∪ α̂1 ∪ β̂1 is proper in R3.

Observe thatL(∆∞) has genus zero and one or two boundary curves, each of which bounds
an open convex horizontal disk disjoint from L(∆∞) (this follows from the arguments in the
proof of Assertion 3.13). If L(∆∞) has one boundary curve, then we contradict the Halfspace
Theorem, as L(∆∞) lies in the halfspace {x3 ≤ 0} (because fn(Ωn) has the same property
for all n) and L(∆∞) contains interior points with heights strictly greater than its boundary
curve. Therefore, L(∆∞) has two boundary curves (equivalently, L(∆∞) = L(∆∞)). By the
convex hull property, L(∆∞) is noncompact. As L(∆∞) − ∆∞ is contained in {x3 ≤ 0},
then L(∆∞) has horizontal limit tangent plane at infinity. Since both αn, βn have the same
horizontal component of their fluxes, and the homothetic factors λn in (2) tend to zero, then
we deduce that the fluxes of L(∆∞) along its boundary curves are vertical. This implies that
L(∆∞) has vertical flux, since it has genus zero. Therefore, L(∆∞) cannot have a finite
positive number of ends by the López-Ros deformation argument.

The previous paragraph implies that L(∆∞) has infinitely many ends. Let D be a positive
number such that the boundary of L(∆∞) is contained in the ball B(D) of radius D centered
at the origin. We claim that for every sequence {µn}n of positive numbers going to zero, the
restriction to µn[L(∆∞)−B(2D)] of the injectivity radius function of µnL(∆∞) is greater that
some positive constant (independent of n) times the distance to the origin. Otherwise, there
exists a sequence of points xn ∈ µn[L(∆∞)− B(2D)] such that

IµnL(∆∞)(xn)

|xn|
→ 0 as n→∞,
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where IµnL(∆∞) stands for the injectivity radius function of µnL(∆∞). Since the last quotient
is invariant under rescaling, the sequence xn/|xn| lies in the unit sphere and the boundary of
µnL(∆∞) shrinks to the origin as n → ∞, we produce a sequence of blow-up points on the
scale of topology on Ωn, which is impossible by previous arguments (maximality of {∆m}m).
This proves our claim.

Since L(∆∞) has infinitely many ends, then L(∆∞) has infinite total curvature. As
L(∆∞) has compact boundary, then Theorem 1.2 in [34] ensures that L(∆∞) does not have
quadratic decay of curvature, i.e., there exists a divergent sequence yn ∈ L(∆∞) such that

|KL(∆∞)|(yn) · |yn|2 →∞ as n→∞,

where KL(∆∞) denotes the Gaussian curvature of L(∆∞). Taking µn = 1/|yn| and using
the claim in the last paragraph, we conclude by Theorem 2.2 in [26] that after passing to a
subsequence, the µnL(∆∞) converge to a minimal parking garage structure of R3. This is
impossible, since the limit set of the µnL(∆∞) lies in {x3 ≤ 0}. This contradiction implies
that L(∆∞) cannot have infinitely many ends, and thus, case (K2) does not occur in the special
case that {fn(Ωn)}n has locally bounded second fundamental form in R3.

By the last sentence, it remains to prove that the sequence {fn(Ωn)}n has locally bounded
second fundamental form in R3 provided that case (K2) happens. By property (L3) above
and the 1-sided curvature estimates by Colding-Minicozzi, we conclude that the norms of the
second fundamental forms of the fn(Ωn ∪ ∆n−1 ∪ ∆n) are bounded on some small fixed
compact regular neighborhood W of ∆∞ ∪ ∆∞. Arguing by contradiction, suppose, after
extracting a subsequence, that there is a sequence of points qn ∈ fn(Ωn) −W that converges
to a point q ∈ R3 −W where the norms of the second fundamental forms of the fn(Ωn) are
greater than n. By property (L3), Colding-Minicozzi theory in [7] (see also Figure 2 in [28])
implies that after extracting a subsequence, the following properties hold:

(M1) There is a positive number δ less than one half of the distance in R3 from q to W , a
relatively closed subset Sq,δ of B(q, δ) and a minimal lamination Lq,δ of B(q, δ) − Sq,δ
such that B(q, δ) ∩ fn(Ωn) consists of disks with their boundary curves in ∂B(q, δ) and
a subsequence of these disks converges Cα, α ∈ (0, 1), to Lq,δ in B(q, δ)− Sq,δ.

(M2) For each point s ∈ Sq,δ, there is a limit leaf of Lq,δ that is a minimal disk punctured at s,
and the closure in B(q, δ) of the collection of all the limit leaves of Lq,δ forms a minimal
lamination Fq,δ of B(q, δ).

We refer the reader to description (D) in Section 3 of [28] for details on observations (M1),
(M2). Furthermore, straightforward diagonal arguments using this just described local structure
of the limit set of the fn(Ωn) near points in R3 where the norms of their second fundamen-
tal forms are becoming unbounded, demonstrate that there exists a possibly singular minimal
lamination L′ of R3 − W and a relatively closed set S ⊂ L′ in R3 − W (the set of points
where L′ fails to admit a local lamination structure) such that after extracting a subsequence,
the fn(Ωn) converge Cα (0 < α < 1) on compact subsets of R3 − [W ∪ S ∪ S(L′)] to L′,
where S(L′) ⊂ L′ − S is the set of points where L′ admits a local lamination structure but
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the second fundamental forms of the surfaces fn(Ωn) blow up as n → ∞ (S(L′) is called the
singular set of convergence of the sequence). In fact, since the second fundamental forms of the
fn(Ωn ∪∆n ∪∆n−1) are uniformly bounded in W , we conclude that L′ can be extended to a
possibly singular minimal laminationL′1 of R3−(α̂1∪β̂1) and the surfaces fn(Ωn∪∆n∪∆n−1)

converge Cα to L′1 in R3 − [α̂1 ∪ β̂1 ∪ S ∪ S(L)]. Furthermore, the singular set (resp. the sin-
gular set of convergence) of L′1 equals the singular set S (resp. the singular set of convergence
S(L′)) of L′. Additionally, the closure in R3− [α̂1∪ β̂1] of the sublamination of limit leaves of
L′1 is a (regular) minimal lamination F of R3 − [α̂1 ∪ β̂1] with S ∪ S(L′) ⊂ F . Observe that
the leaves L(∆∞), L(∆∞) of L′1 that contain respectively Int(∆∞), Int(∆∞), are unstable and
thus, they are not leaves of F . In fact, ∆∞ ∪∆∞ can be assumed to lie at a positive distance
from F after slightly changing the compact domains ∆∞,∆∞. This implies that the leaves of
F are complete in R3, and since they are stable, then these leaves are planes.

SinceF contains S∪S(L′), then the norms of the second fundamental forms of the surfaces
fn(Ωn) are locally bounded in the open set R3 − F , which is a countable union of open slabs
and open halfspaces. As the top boundary component of L(∆∞) is β̂1, it follows thatL(∆∞) is
contained in the halfspace {x3 ≤ x3(β̂1)} and L(∆∞) is proper in the open slab A of R3 with
boundary {x3 = x3(β̂1)} ∪ P , where P is the plane in F with largest x3-coordinate (which
exists since S ∪ S(L′) 6= Ø). Observe that L(∆∞) is proper in A (otherwise there exists a
plane in F ∩A).

Next we will show that L(∆∞) ∪ ∂L(∆∞) is incomplete. Arguing by contradiction, sup-
pose that L(∆∞)∪ ∂L(∆∞) is complete. As the injectivity radius function of fn(Ωn)∪∆n ∪
∆n−1 restricted to fn(Ωn) is uniformly bounded away from zero (otherwise we could find a
sequence of blow-up points in Ωn, which is impossible) and L(∆∞) ∪ ∂L(∆∞) is assumed
to be complete, then the injectivity radius function of L(∆∞) is bounded away from zero out-
side any neighborhood of its boundary. In this setting, Theorem 1.2 implies that L(∆∞) is
proper in R3. To find the desired contradiction, we distinguish two cases; first suppose that
∂L(∆∞) = β̂1. In this case, L(∆∞) ∪ β̂1 has full harmonic measure by Lemma 2.2 in [12].
But the third coordinate function of L(∆∞)∪ β̂1 is a bounded harmonic function with constant
boundary values x3(β̂1) and values at interior points strictly below x3(β̂1), which is a contra-
diction. Second, suppose that ∂L(∆∞) = α̂1 ∪ β̂1; in this case, L(∆∞) has finitely many
ends by the same Lemma 2.2 in [12], and thus, these ends are asymptotic to horizontal planes.
Now the López-Ros deformation argument applied to L(∆∞) ∪ ∂L(∆∞) leads to contradic-
tion as this noncompact embedded minimal surface has vertical flux and two convex horizontal
boundary components. Therefore, L(∆∞) ∪ ∂L(∆∞) must be incomplete.

Since L(∆∞) ∪ ∂L(∆∞) is incomplete and L(∆∞) is proper in A, then L(∆∞) contains
a proper arc τ : [0, 1)→ L(∆∞) of finite length with its limiting endpoint q ∈ S ∩P ; previous
arguments also imply that L(∆∞) has vertical flux. If there exists another point q′ ∈ (S ∩
P )−{q} where L(∆∞) fails to be complete, one can construct a sequence of connection loops
σk ⊂ L(∆∞), k ∈ N, that converge as k → ∞ with multiplicity 2 away from {q, q′} to an
compact embedded arc σ in P −(S−{q, q′}) that joins q to q′, and such that the fluxes of these
connection loops on L(∆∞) converge to a nonzero horizontal vector, which contradicts that
L(∆∞) has vertical flux. Therefore, L(∆∞) only has q ∈ S ∩ P as a point of incompleteness.
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By the extrinsic 1-sided curvature estimates of Colding-Minicozzi, there is an ε′ > 0 small such
that the intersection of L(∆∞) with the ε′-neighborhood P (ε′) of P is a disk that contains a
pair of disjoint ∞-valued graphs Σ1,Σ2 (with respect to polar coordinates in P centered at
q, each Σi is an ∞-valued graph over an annulus in P centered at q with inner radius 1 and
arbitrarily large radius, i = 1, 2) and both Σ1, Σ2 spiral together into P by above. Furthermore,
Σ1 and Σ2 can be joined by curves in L(∆∞) ∩ P (ε′) with uniformly bounded length. In this
setting, Corollary 1.2 in [4] (see especially the paragraph just after this corollary) leads to a
contradiction. This contradiction completes the proof that Case (K2) cannot occur.

Since we have discarded Cases (K1) and (K2) above, then the curves fn(αn) diverge to
infinity in R3. Thus, the first paragraph in the proof of Lemma 4.13 ensures that the conclusions
of Lemma 4.13 hold. 2

Recall that we had called Ωn, n ∈ N, to the components of E −⋃m∈N∪{0}∆m, where the
index n is chosen so that (12) holds, and that in order to prove item 4 of Proposition 4.12, it
suffices to find a contradiction with the following assumption:

(♣) The number of components Ωn with has at least two annular ends is infinite.

Suppose that (♣) holds, and let Ωn(i), i ∈ N, denote the subsequence of the Ωn with at least two
annular ends each. Since any path in Ωn(i) joining two consecutive annular ends intersects the
inverse image by the Gauss map of E of the horizontal equator in the sphere, we conclude that
there exists some point xi ∈ Ωn(i) where the tangent plane to Ωn(i) is vertical. We can assume
that xi is chosen so that it is an extrinsically closest such point to the upper boundary component
βn(i) of Ωn(i). Let d∂(i) > 0 be the extrinsic distance from fn(i)(xi) to fn(i)(βn(i)), where fn
is the dilation defined just before Lemma 4.13. Since fn(i)(Ωn(i)) converges as i → ∞ to
M∞ ∩ {x3 ≤ −1

ε } by Lemma 4.13 (recall that M∞ is the vertical catenoid whose waist circle
is the unit circle in the (x1, x2)-plane) and the tangent plane to fn(i)(Ωn(i)) at fn(i)(xi) is
vertical, it follows that d∂(i)→∞ as i→∞.

Now we apply a homothety to obtain the surface

Θn(i) =
1

d∂(i)
[fn(i)(Ωn(i))− fn(i)(bi)], (13)

where bi is a closest point to xi in βn(i). The surface Θn(i) is an embedded, minimal planar
domain passing through the origin, with two horizontal, almost circular boundary components
and a positive number of ends (at least two), all with negative logarithmic growth; after extract-
ing a subsequence, let x ∈ R3 be the limit of the points 1

d∂(i) [fn(i)(xi) − fn(i)(bi)] and note
that x is at a distance 1 from the origin. Let

αn(i) =
1

d∂(i)
[fn(i)(αn(i))− fn(i)(bi)], βn(i) =

1

d∂(i)
[fn(i)(βn(i))− fn(i)(bi)]

be the respective lower and upper boundary components of Θn(i).
Since the lengths of αn(i), βn(i), are shrinking to zero, then after extracting a subsequence,

the βn(i) converge to~0 and the αn(i) either converge to a point q(α) ∈ R3 or they diverge in R3.
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It follows that {Θn(i) ∩ B(i)}i is a sequence of compact genus zero minimal surfaces which is
locally simply connected in R3 −W , where W = {~0, q(α)} in the case that q(α) exists and
W = {~0} otherwise. By Theorem 2.2 in [26], after choosing a subsequence, the surfaces Θn ∩
B(n) converge to a minimal lamination L of R3−W and L extends to a minimal lamination L
of R3. Notice that L contains a complete leaf Lx passing through x. Since Θn(i) is contained
in the halfspace {x3 ≤ 1} for i large (since 1

d∂(i)fn(i)(∆n(i)) shrinks to ~0), then Theorem 2.2

in [26] implies that all of the leaves in L are horizontal planes and that the sequence of norms
of the second fundamental forms of the surfaces Θn(i) ∩ B(i) is locally bounded in R3 −W .
In particular, Lx is a horizontal plane. Since the tangent plane of Θn(i) ∩ B(i) is vertical at xi
for each i, the sequence {Θn(i) ∩B(i)}i cannot have uniformly bounded curvature in any fixed
sized neighborhood of x, which implies that x = q(α) (in particular, q(α) exists).

We next explain how to refine the arguments in the last paragraph to conclude the following
property.

Claim 4.14 Once we restrict to the subsequence {Θn(i) ∩ B(i)}i that limits to L, for any
sequence of points yi ∈ Ωn(i) with vertical tangent plane (not necessarily the closest such
points in Ωn(i) to the upper boundary component βn(i)), the points 1

d∂(i)fn(i)(yi) converge
to x.

Proof. Let d∂(yi, i) be the extrinsic distance from fn(i)(yi) to fn(i)(βn(i)), which is attained at
some point fn(i)(b

′
i) with b′i ∈ βn(i). Observe that d∂(yi, i) ≥ d∂(i) and the arguments before

Claim 4.14 prove that after choosing a subsequence, the curves

1

d∂(yi, i)
[fn(i)(αn(i))− fn(i)(b

′
i)]

converge to the same (subsequential) limit y of the points

1

d∂(yi, i)
[fn(i)(yi)− fn(i)(b

′
i)],

which in turn is a point in the unit sphere. Since the curves 1
d∂(yi,i)

[fn(i)(αn(i)) − fn(i)(b
′
i)]

converge to the same limit point as the αn(i) (this last limit was called q(α) in the preceeding

paragraph), we conclude that y = q(α) = x and that d∂(yi,i)

d∂(i) tends to 1 as n → ∞, from

where we obtain that the 1
d∂(i) [fn(i)(yi) − fn(i)(b

′
i)] converge to x. The fact that the whole

original sequence { 1
d∂(i) [fn(i)(yi) − fn(i)(b

′
i)]}i converges to x (i.e., we do not need to pass

to a subsequence of the yi once we restrict to the subsequence that produces the convergent
sequence {Θn(i) ∩ B(i)}i to L) follows from arguing by contradiction and passing to further
subsequences. 2

Now return to the definition of the point xi ∈ Ωn(i). Define the related point zi as an
extrinsically farthest point in Ωn(i) to its lower boundary component αn(i) where the tangent
plane to Ωn(i) is vertical; since the set of all such points z is compact in Ωn(i) and a positive
distance from αn(i), the point zi exists. We now apply our previous arguments with zi in place
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of xi: consider for each i ∈ N the related surface

Θn(i) =
1

d∂(zi, i)
[fn(i)(Ωn(i))− fn(i)(ai)],

where d∂(zi, i) > 0 is the extrinsic distance from fn(i)(zi) to fn(i)(αn(i)) and ai is a point in
αn(i) closest to zi. Observe that we do not know if d∂(zi, i) → ∞ as i → ∞ but we do know
(from the previous paragraph) that the distances in R3 from the origin to the top boundary
component 1

d∂(zi,i)

(
fn(i)(βn(i))− fn(i)(ai)

)
of Θn(i) diverges to infinity as i→∞.

Claim 4.15 The sequence d∂(zi, i) is bounded independently of i.

Proof. Arguing by contradiction, suppose after choosing a subsequence, d∂(zi, i) ≥ 2i. By
Claim 4.14, the extrinsic distance from zi to βn(i) is much larger than the extrinsic distance
from zi to ai. Therefore, we can assume that the curve

1

d∂(zi, i)
[fn(i)(βn(i))− fn(i)(ai)]

lies outside the ball B(i2). Consider the compact minimal surfaces Θn(i) ∩ B(i), which form a
locally simply connected sequence of surfaces in R3 − {~0} by our previous arguments. After
extracting a subsequence, let z ∈ R3 be the limit of the points

1

d∂(zi, i)
[fn(i)(zi)− fn(i)(ai)],

which is a point in the unit sphere. As before, Theorem 2.2 in [26] implies that after passing
to a subsequence, the Θn(i) ∩ B(i) converge to a minimal lamination L+ of R3 − {~0}, which
extends to a lamination L+ of R3 with a leaf Lz passing through z.

Now consider the surfaces

Σi =
1

d∂(zi, i)

[
fn(i)(Ωn(i) ∪∆n(i)−1 ∪ Ωn(i)−1)− fn(i)(ai)

]
, i ∈ N.

For each i, Σi is a noncompact planar domain bounded by two convex horizontal curves, that
we call

∂Σ+
i =

1

d∂(zi, i)
[fn(i)(βn(i))− fn(i)(ai)], ∂Σ−i =

1

d∂(zi, i)
[fn(i)(αn(i)−1)− fn(i)(ai)],

and x3(∂Σ−i ) < x3(∂Σ+
i ). Previous arguments show that the sequence of curves {∂Σ−i }i

either converges to some point q− ∈ R3 (that would then lie in {x3 ≤ 0}, possibly being ~0),
or else {∂Σ−i }i diverges in R3. Maximality of the family {∆m}m implies as above that the
sequence of surfaces {Σi∩B(i)}n is locally simply connected in R3−W where W = {~0, q−}
if q− exists, andW = {~0} otherwise. Therefore, Theorem 2.2 in [26] implies that after passing
to a subsequence, the Σi converge to a minimal lamination L of R3 −W , which extends to a
lamination L of R3. Note that L contains L+ as a sublamination. Also observe that the same
arguments applied to the sequence of surfaces

1

d∂(zi, i)

[
fn(i)(Ωn(i)−1)− fn(i)(ai)

]
.
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give that the surfaces 1
d∂(zi,i)

[
fn(i)(Ωn(i)−1)− fn(i)(ai)

]
∩ B(i) converge to a minimal lam-

ination L− of R3 − W , which extends to a lamination L− of R3. Moreover, L− contains
a leaf that passes through the origin, and L− is a sublamination of L. By construction, the

1
d∂(zi,i)

[
fn(i)(Ωn(i)−1)− fn(i)(ai)

]
lie in {x3 ≤ 0} for each i ∈ N, and thus, L− is also con-

tained in {x3 ≤ 0}. In particular, {x3 = 0} is a leaf of L−. In this setting, Theorem 2.2 in [26]
implies that all leaves of L− are horizontal planes, and thus, the same theorem gives that all
leaves of L are horizontal planes. In particular, Lz is a horizontal plane.

Since the tangent plane to Ωn(i) at zi is vertical, then the convergence of the Θn(i) ∩ B(i)

to Lz cannot be smooth around z. This property and Theorem 2.2 in [26] imply that L+ is
a foliation of R3 by horizontal planes and the Θn(i) ∩ B(i) converge to L outside the origin
and one or two vertical lines (this is the singular set of convergence), one of which passes
through z. This is impossible, since the compact surfaces Θn(i) ∩ [B(i2/2) − B(2)] have
uniformly bounded Gaussian curvature (this follows since the last surfaces do not have vertical
tangent planes, and so they are locally graphical hence stable, and by curvature estimates for
stable minimal surfaces). Now Claim 4.15 is proved. 2

As a consequence of Lemma 4.13, the diameter of the compact surface

1

d∂(zi, i)

[
fn(i)(∆n(i)−1)− fn(i)(ai)

]

tends to zero as i→∞. In particular, the diameter of the top boundary curve of the last surface
tends to zero, which implies that

1

d∂(zi, i)

[
fn(i)(αn(i))− fn(i)(ai)

]
→ ~0 as i→∞.

On the other hand, Claim 4.14 implies that

1

d∂(zi, i)

[
fn(i)(βn(i))− fn(i)(ai)

]
diverges in R3 as i→∞.

Therefore, Theorem 2.2 in [26] implies that after passing to a subsequence, the Θn(i) ∩ B(i)

converge to a minimal lamination L+ of R3 − {~0}. From this point, we can repeat verbatim
the arguments in the proof of Claim 4.15 to obtain a contradiction. This contradiction shows
that property (♣) cannot hold, and so, item 4 of Proposition 4.12 is proven.

Finally, item 5 of Proposition 4.12 follows from the fact that the Gaussian curvature func-
tions of the domains Ωn and ∆n become uniformly small as n → ∞. Now the proof of
Proposition 4.12 is complete. 2

Proposition 4.16 Items 4, 5 and 6 of Theorem 1.6 hold in the Case (G1) when M∞ is a
catenoid. In particular, Theorem 1.6 holds in this case.

Proof. Recall that in the paragraph just before Proposition 4.11, we explained that items 1, 2, 3
of Theorem 1.6 hold in the Case (G1) when M∞ is a catenoid. The description of E as a union
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of domains ∆n and Ωn as given in Proposition 4.12 implies that item 4 of Theorem 1.6 holds.
Item 5 of the same theorem follows from item 5 of Proposition 4.12. Finally, the arguments
in the proof of Proposition 4.11 can be easily adapted to the current situation, with the only
change of the annular regions of “Riemann type” by similar annular regions of “catenoid type”,
namely regions of the type of the compact annuli ∆n = ∆n(ε) that appear in Proposition 4.12,
each of which contains the image of a conformal embedding fn(S1 × [0, δ]) for some δ > 0

independent of n (here we are using the notation in the proof of Proposition 4.11). This finishes
the proof of Proposition 4.16. 2

5 The proof of Theorem 1.3.

Suppose M ⊂ R3 is a complete, embedded minimal surface with finite genus, an infinite
number of ends and compact boundary.

We first check thatM has at most two simple limit ends. Arguing by contradiction, suppose
M has at least three simple limit ends, say e1, e2, e3. By Theorem 1.6, we can choose three
pairwise disjoint, properly embedded representatives E1, E2, E3 ⊂M , representing e1, e2, e3
respectively, such that each one satisfies, after a possible rotation, the conclusions of Theo-
rem 1.6. Embeddedness of M implies that after a rotation, the annular ends of E1, E2, E3

may be assumed to be asymptotic to ends of horizontal planes and catenoids with vertical axes.
Furthermore, after a possible reindexing, we may assume that the ends E1, E2 are simple top
limit ends, that ∂E1 is a simple closed curve in the (x1, x2)-plane and that ∂E2 has constant
positive x3-coordinate.

Let DE1 ⊂ {x3 = 0} be the planar disk with ∂DE1 = ∂E1 and let X1 be the closure
of the component of R3 − (E1 ∪ DE1) that lies above DE1 locally near DE1 . Similarly, we
can define a horizontal disk DE2 with ∂DE2 = ∂E2 and the related closed component X2 of
R3 − (E2 ∪DE2) above DE2 .

An elementary topological analysis applied to the topological picture of E1 and E2 given
in item 4 of Theorem 1.6 shows, after possibly reindexing E1 and E2 and replacing E1 and
E2 by representing subends, that DE2 ∩ E1 6= Ø and X2 contains a representative E′1 ⊂ E1

of the limit end of E1 with ∂E′1 ⊂ DE2 ⊂ ∂X2. Let X3 be the closure of the component of
X2 − E′1 which has ∂E2 in its boundary. The piecewise smooth surface ∂X3 is a good barrier
for solving least-area problems in X3 (Meeks and Yau [40]), see Figure 7.

Let Ẽ2 be a noncompact, properly embedded surface of least-area in X3 with ∂Ẽ2 =

∂E2 ⊂ ∂X3. By a result of Fischer-Colbrie [15], the orientable, stable minimal surface Ẽ2 has
finite total curvature. Since Ẽ2 is contained in X2, it must have a finite number of ends, all of
which are annuli and which are parallel to the planar and catenoidal ends ofE2. Since points of
Ẽ2 near DE2 have x3-coordinates which are larger than the constant value x3(DE2), Ẽ2 must
have a highest end which has positive logarithmic growth by the maximum principle applied to
the harmonic function x3|Ẽ2

. Hence, Ẽ2 has a catenoid-type end representative F of positive
logarithmic growth. Since the annular ends of E1 have nonpositive logarithmic growth, then
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Figure 7: The area-minimizing surface Ẽ2 is trapped between two simple top limit endsE1, E2.

none of the annular ends of E1 lie above F . This implies that E1 lies below the region of
R3 bounded by the union of F and a horizontal disk with boundary in F . Since E1 also lies
above some catenoid end of negative logarithmic growth, the results in [12] imply that E1 has
quadratic area growth. By the monotonicity formula, each annular end in E1 contributes with
at least π

2R
2 to the area growth of E1 in each ball B(R) for R > 0 large. Hence, E1 has a

finite number of ends. This contradiction shows that M cannot have more than two simple
limit ends, which is item 1 of Theorem 1.3.

Next we prove item 2 of Theorem 1.3. If M is properly embedded in R3, then the results
in [12] implyM has one or two limit ends, which are the top and/or bottom ends in the ordering
of the ends of M . On the other hand, if M has one or two limit ends, then these limit ends are
simple limit ends, and so, these limit ends have proper representatives by Theorem 1.6. The
remaining finite number of ends ofM are then annuli, each of which is proper (see Theorem 3.3
in Section 4). Hence, M is proper, which proves item 2 in Theorem 1.3.

Concerning item 3, suppose now that M has a countable number of limit ends. A result
proven in pages 288, 289 of [24] states that the space of ends of M embeds topologically as
a totally disconnected, closed subset A of the closed unit interval I = [0, 1]. Since the set of
limit points LA of A is a closed countable subspace of the metric space I (and hence LA is
complete), Baire’s theorem implies that LA contains a countable dense set of isolated points
(see Lemma 5.1 below). In particular, if LA has at least three points, then M has at least
three simple limit ends. Since M cannot have more than two simple limit ends by item 1 of
Theorem 1.3, then LA consists of one or two points, and so M has one or two limit ends, each
of which is a simple limit end. Hence, part 3-A of Theorem 1.3 holds. As M has at most two
limit ends, then item 2 of Theorem 1.3 implies that M is properly embedded in R3, which is
part 3-B.

If M has exactly two limit ends, then these limit ends are simple. By the proof of item 1 of
Theorem 1.3, we deduce that after a rotation ofM , these simple limit ends have representatives
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E1, E2, where E1 is a top limit end of M and E2 is a bottom limit end of M . By item 1 of
Theorem 1.6, the annular ends of E1 have nonpositive logarithmic growths and the annular
ends of E2 have nonnegative logarithmic growths. Thus, the embeddedness of M implies that
all the annular ends ofM must have zero logarithmic growth, which means that they are planar,
and item 3-C is proved.

Now assume ∂M = Ø. Since M has finite genus, then the main result in [31] insures that
M has two limit ends and is recurrent for Brownian motion, which is part 3-D.

We finally prove item 3-E of Theorem 1.3. Assume ∂M 6= Ø. If the annular ends of M are
horizontal and planar, there exists a horizontal plane P that intersectsM transversely in a finite
number of simple closed curves, and P can be chosen to lie above ∂M . Hence, the closure Σ

of each component of M −P is a properly embedded minimal surface with compact boundary
and Σ is contained in a closed halfspace of R3. Theorem 3.1 in [12] implies that such a Σ is
a parabolic surface with boundary. Since there are a finite number of such closed components
Σ, and the union of these components along related compact boundary components is M , we
conclude that ∂M has full harmonic measure, and so item 3-E holds provided that all of the
annular ends of M are horizontal and planar.

If there exists an annular end with nonzero (say negative) logarithmic growth, then this end
is asymptotic to the end of a negative half catenoid, and so, there exists a horizontal plane P
whose intersection with this catenoidal end is an almost circle, and the end has a representative
E with ∂E ⊂ P such thatE is graphical over the outside of the open planar diskD ⊂ P whose
boundary is ∂E. We may assume that P is at height zero. The complement of the topological
planeE∪D inM consists of several components, each one with nonempty boundary contained
in M ∩ D. Since M is proper, then M ∩ D is compact. In particular, M − (E ∪ D) has a
finite number of components. Let Σ1, . . . ,Σk be the components of M − (E ∪D) which lie
below E ∪D. For each i = 1, . . . , k, the surface with boundary Σi is parabolic, since its third
coordinate function is a proper negative harmonic function. By items 3-A and 3-C, the surface
M has exactly one limit end. Since a limit end of a properly embedded minimal surface in R3

cannot lie below a catenoidal end of negative logarithmic growth (see Lemma 3.6 in [12]), then
the limit end ofM has a representative of genus zeroET which lies aboveE∪D. In particular,
the limit end of M is its top end. By item 6 of Theorem 1.6, the representative ET is parabolic.
Let Ω be the closure of one of the (finitely many) components of M − (ET ∪ Σ1 ∪ . . . ∪ Σk).
Since Ω has a finite number of ends, each of which is asymptotic to an end of a plane or
half catenoid, then Ω has quadratic area growth. Therefore, Ω is also a parabolic surface with
boundary. As M is a finite union of parabolic surfaces with boundary along their common
compact boundaries, we deduce that M has full harmonic measure on its boundary. This
finishes the proof of Theorem 1.3. 2

For the sake of completeness, we prove the following elementary fact which was needed in
the above proof.

Lemma 5.1 Suppose X is a complete countable metric space, L(X) ⊂ X is the set of limit
points of X and S(X) = X − L(X) is the open set of nonlimit points of X . Then:

1. S(X) is dense in X .
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2. L(X) is a complete countable metric space, and so, its set S(L(X)) of isolated points
is dense in L(X).

Proof. Let L(X) = {p1, ..., pn, ...} be a listing, possibly finite or empty, of the set of limit
points of X . If L(X) = Ø, then S(X) = S(X) = X , and so, item 1 holds. Otherwise,
consider the subsets Xn = X − {p1, ..., pn} and note that each Xn is an open dense subset of
X . The intersection of this countable collection of sets is equal to S(X) and must be dense in
X by Baire’s theorem. Hence, S(X) is dense in X , which proves item 1 in the lemma.

Since S(X) is an open set and X is a complete countable metric space, then L(X) =

X−S(X) is a closed countable set which is complete in the induced metric. Hence, by item 1,
S(L(X)) is dense in L(X). 2

6 The proof of Corollary 1.8.

This last section is devoted to the following result, which has Corollary 1.8 stated in the Intro-
duction as a special case.

Corollary 6.1 Suppose that M ⊂ R3 is a connected properly embedded minimal surface with
compact boundary and a limit end of genus zero. Then M is recurrent for Brownian motion if
its boundary is empty, and otherwise its boundary has full harmonic measure.

Proof. Suppose for the moment that the corollary holds when the surface M has nonempty
boundary. Then, in the special case that the boundary of M is empty, consider a compact disk
D ⊂ M and note that M − Int(D) has full harmonic measure by assumption, which implies
that M is recurrent for Brownian motion. Thus, it suffices to prove the corollary in the special
case that M has nonempty boundary.

Assume now that ∂M 6= Ø. Let Ê ⊂ M be an end representative of a limit end of M
of genus zero. Since Ê is proper in R3 with compact boundary, then item 2 of Theorem 1.3
implies that Ê has one or two simple limit ends. Let E ⊂ Ê be an end representative of a
simple limit end of M of genus zero. After a fixed rotation of M and a replacement of E
by a subend representative of its limit end, we may assume that E satisfies the conclusions of
Theorem 1.6, and ∂M ⊂ {x3 < 0}.

We claim that there exist a pair of horizontal open disks D1, D2 ⊂ R3 − E with the
following properties.

(N1) ∂Di ⊂ E, i = 1, 2, and 0 ≤ x3(D1) < x3(D2).

(N2) D1∩E = Ø and if we denote by X1 the closure of the mean convex region of R3− (E∪
D1), then D2 ⊂ R3 −X1. In particular, D2 ∩ E = Ø.

(N3) Define X2 as the closure of the mean convex region of R3 − (E ∪D2). Then, M −E is
disjoint fromX1∪X2. In particular,M−E is contained in the halfspace {x3 ≤ x3(D2)}.
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To prove the claim and following the discussion in Sections 4.2 and 4.3, we will explain how to
construct the disks D1, D2 in each of the cases given by (G1) with M∞ being a Riemann min-
imal example with horizontal limit tangent plane at infinity, or M∞ being a vertical catenoid.
In the first case, we simply take D1, D2 as the horizontal disks bounded by almost-circles
c0(ε), c1(ε) contained in the boundary of a piece R0(ε) ⊂ E as defined in the paragraph just
before Assertion 4.9. In the case (G1) with M∞ being a vertical catenoid, we take D1, D2 as
the convex horizontal disks bounded by αn and βn, respectively (here we are using the nota-
tion in (12)). Properties (N1), (N2) hold from item 4 of Theorem 1.6. Concerning item (N3), if
M−E intersectsX1 then one can find a contradiction by adapting the arguments in paragraphs
four and five of the proof of Theorem 1.3. Hence M − E is disjoint from X1 and similarly,
M − E is disjoint from X2.

As M − Int(E) is contained in a closed halfspace by item (N3) and M − Int(E) is proper,
then M − Int(E) is a parabolic surface with compact boundary by Theorem 3.1 in [12]. By
item 6 in Theorem 1.6, E is also a parabolic surface with compact boundary. Therefore, M =

(M − Int(E)) ∪ E is a parabolic surface with compact boundary, i.e., ∂M has full harmonic
measure. 2
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