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Abstract
After several years, crypto‐ransomware attacks still constitute a principal threat for in-
dividuals and organisations worldwide. Despite the fact that a number of solutions are
deployed to fight against this plague, one main challenge is that of early reaction, as
merely detecting its occurrence can be useless to avoid the pernicious effects of the
malware. With this aim, the authors introduced in a previous work a novel anti‐
ransomware tool for Unix platforms named R‐Locker. The proposal is supported on a
honeyfile‐based approach, where ‘infinite’ trap files are disseminated around the target
filesystem for early detection and to effectively block the ransomware action. The authors
extend here the tool with three main new contributions. First, R‐Locker is migrated to
Windows platforms, where specific differences exist regarding FIFO handling. Second,
the global management of the honeyfiles around the target filesystem is now improved to
maximise protection. Finally, blocking suspicious ransomware is (semi)automated
through the dynamic use of white‐/black‐lists. As in the original work for Unix sys-
tems, the new Windows version of R‐Locker shows high effectivity and efficiency in
thwarting ransomware action.

1 | INTRODUCTION

As evidenced in the last years, the impact and relevance of
threats and security incidents on services and systems are
continuously increasing [1, 2]. This is of special interest in the
case of mobile environments [3], as the use and deployment of
such a kind of platform (smartphones, tablets, and iot related
devices) is becoming more and more generalised [4].

The consequences of security attacks can be diverse, as the
objectives and motivations of the hackers are varied too [5].
Measured in economic terms or from the perspective of
confidence and reputation, the losses provoked by security
incidents can be most of the time dramatic for victim users,
services and systems [6].

The usual form of perpetrating security attacks is by means
of malware, that is malicious software specifically designed to
disrupt, damage, or gain unauthorised access to a computer
system. Malware has evolved over time from simple parasite

routines embedded in legitimate software to really complex,
independent, auto‐propagable, metaformic, multi‐exploit and
multi‐platform software [7].

As specified in the bulk of the current security threat
reports, ransomware is, among others like botnets or bank‐
related malware, one prominent type of malware nowadays
[8, 9]. According to the number of ransomware families and
variants appeared [10, 11], also the number of related in-
cidents are continuous since some decades ago. The
healthcare industry is a top target for ransomware attacks,
but none (either individual or organisations) is free of
suffering from the pernicious effects of this form of mal-
ware [12]. In particular, the death of a woman motivated by
the disruption of patient care by a ransomware attack was
reported in a German hospital during last September in
2020.

Moreover, situations like the crisis caused by the
COVID‐19 extraordinarily spread this problem due to the
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massive use of technological means by the population, as
described in [13].

In consequence with the relevance of the problem, several
anti‐ransomware solutions have been proposed in the speci-
alised literature [14]. They range from prevention to response
countermeasures such as those aimed at trying to recover the
encryption keys from the infected system [15]. Regretfully,
none of the developed solutions are definitive and, thus, this
still continues being a harmful threat for users and organisa-
tions all over the world.

A honeyfile‐based approach to thwart the action of
crypto‐ransomware was proposed by the authors in a previ-
ous work [16]. It is based on the deployment of a honeyfile
solution to block the action of ransomware on the host
environment in an early stage, without affecting the expected
behaviour of the environment either in terms of resource
consumption or from the perspective of system interaction.
Originally implemented for Unix platforms, the tool, named
R‐Locker, is extended now to Windows platforms. The
functionality and conceptual operation is the same, but the
implementation varies due to particular aspects of the specific
OS regarding FIFOs handling.

In addition to this significant contribution due to the wide
use of Windows systems, the new version of R‐Locker im-
proves the creation, distribution and maintenance of the
honeyfiles to dynamically protect the target filesystem over
time. Moreover, as a new difference with the original version of
R‐Locker, the effective response to be adopted against suspi-
cious ransomware samples is (semi)automated through the use
of dynamic black‐/white‐lists of well‐known harmful/legiti-
mate applications.

The rest of the paper is organised as follows: Section 2
discusses the main proposals available at present to fight
against ransomware, focussing on solutions developed from
the publication of [16] until now. After that, Section 3 briefly
describes the general honeyfile methodology considered by R‐
Locker, and deals with the specific implementation of the tool
for Windows platforms. In addition, we detail in the same
section some improvements introduced to the tool in com-
parison with its previous version regarding the dynamic man-
agement of the honeyfiles and the adoption of a
(semi)automatic response procedure. The overall perfor-
mance of the tool, both in terms of accuracy and efficiency, is
evaluated and discussed in Section 4. Finally, Section 5 sum-
marises the contributions of the work and outlines some future
directions.

2 | RELATED WORK

Ransomware is receiving important attention over time by the
research community, as the number of related incidents are
continuous in the recent years [17, 18]. One of the first known
ransomware attacks occurred in 1989 and targetted the
healthcare industry [19]. Since then, the evolution in typology
and impact experienced by ransomware is exponential, the

biggest incidents occurring in more recent years [20, 21]. Most
of them refer to the crypto‐ransomware form, that is, the
encryption (typically RSA or AES) of the information on the
infected devices and the subsequent demand of a payment
from victims to rescue data.

Some examples of ransomware and related incidents are
as follows: Reveton is a ransomware type appeared around
2012 that impersonates law enforcement agencies. Known as
police ransomware or police trojan, this malware is notable
for showing a notification page purportedly from the victims
local law enforcement agency, informing them that they were
caught doing an illegal or malicious activity online. After-
wards, CryptoLocker infected more than 2,50,000 Windows
systems in 2013. Between 2014 and 2016, other variants like
CryptoWall, Locky and Cerber were among the most
commonly used ransomware types, targetting hundreds of
thousands of individuals and organisations. Also in 2015
TeslaCrypt appeared, affecting computer games and involving
in some cases such as PayPal My Cash cards, and a group
known as the Armada Collective carried out a string of at-
tacks against various financial services in countries like
Switzerland and Greece.

Based on the previous variants, several incidents occurred
in 2016. One of them involved the Hollywood Presbyterian
Medical Centre in Los Angeles, and allegedly demanded a
ransom of dozen thousand dollars. Also, an Ottawa Hospital
was hit by ransomware that impacted more than 9,800 ma-
chines. Thanks to diligent backup and recovery processes, the
hospital avoided paying ransom. Also, the Kentucky Methodist
Hospital and the Chino Valley Medical Centre, and Desert
Valley Hospital in California were hit by Locky ransomware. In
addition to health‐related targets, the San Francisco Municipal
Transportation Agency fell victim to a ransomware attack by
Mamba or HDDCryptor that disrupted train ticketing and bus
management systems. Attackers demanded a whopping 100
Bitcoin ransom (equivalent to about $73,000 at the time), but
thanks to the speedy response and comprehensive backup
processes, the SFMTA was able to restore its systems within
two days.

SamSam is another relevant family of ransomware which
appeared in 2015 and affected the Colorado Department of
Transportation at the City of Atlanta, as well as numerous
health care facilities. Jigsaw ransomware appeared in 2016
and was designed to be spread through malicious attach-
ments in spam emails. If the ransom is not paid within one
hour, one file is deleted. Following this procedure for each
hour without a ransom payment, the amount of files deleted
is exponentially increased each time from a few hundred to
thousands of files until the computer is wiped after 72 h.
Any attempt to reboot the computer or terminate the pro-
cess will result in 1,000 files being deleted. A further updated
version also makes threats to dox the victim by revealing
personal information online. Afterwards, in 2017, Wanna‐
Cry, Petya and Bad Rabbit attacks were famous because
they affected hundreds of relevant international companies
all over the world.
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The Ryuk variant hit in 2018 and 2019, whose victims
were organisations with little tolerance for downtime,
including daily US newspapers and a North Carolina water
utility struggling with the aftermath of Hurricane Florence.
Zeppelin began to appear on the scene in November 2019
and was an evolutionary descendent of the family known as
Vega or VegasLocker, a ransomware‐as‐a‐service offering that
wreaked havoc across accounting firms in Russia and Eastern
Europe. Zeppelin is specifically designed to not execute on
computers running in Russia, Ukraine, Belarus, or
Kazakhstan. Sodinokibi, also known as REvil, first emerged
in April of 2019 and, like Zeppelin, it appeared to be the
descendent of another malware family: GandCrab. It also had
a code that prevented it from executing in Russia and several
adjacent countries, as well as Syria, indicating that its origin
was in that region.

It is worth to mention that ransomware attacks doubled in
number in the last period. Thus, in the first quarter of 2020s
financial year, ransomware attacks have dramatically increased
due to the lack of cybersecurity measures during home‐office
working that the COVID‐19 pandemic has brought along
[22]. This last study also points out that organising auctions
on the Internet (generally through the Deep Web) is a ten-
dency in recent ransomware incidents to maximise hackers'
earnings. Furthermore, many ransomware families have
improved their skills of stealing sensitive data from various
sectors such as banking, financial services, governmental
services, insurance and manufacturing sectors. In this context,
we can mention NetWalker ransomware, also known as
Mailto, one of the most destructive malicious software in the
ransomware attacks 2020‐2021 list. NetWalker uses the
network of the victim to encrypt all Windows devices by
following two different ways to attack: (a) coronavirus
phishing mails and (b) executable files that spread through
networks. The appearance of the Sekhmet ransomware in
June 2020 is also noticeable. It encrypts the files and asks for
money to decrypt them. Infected files' extensions are
randomly changed such as ‘.HrUSsw, .WNgh, .NdWfEr’.

In this context, the best way to fight against ransomware
is prevention: users' training and education, use of legitimate
software, periodical software update, data backups disposal,
users' privilege management etc. However, prevention
mechanisms do not impede the potential occurrence of
malware activity, so that detection schemes should be
additionally deployed to protect against ransomware. This
way, a holistic taxonomy of countermeasures for ransom-
ware is introduced in [23, 24], where both technical, edu-
cation based, as well as policy and law‐related actions are
considered. Focussing on a technical perspective, the
detection of ransomware action is usually dealt with ac-
cording to some well‐known methodologies [25–27], each of
them with pros and cons:

� Static, intended to detect ransomware action before mal-
ware runs. This is the case of finding common strings in

programs (e.g. ‘ransom’, ‘bitcoin’, and ‘encrypt’) or the use
of function calls to encrypt files.

� Dynamic, related with the execution of the malware over
time. The information accessed in this case is varied: fil-
esystem access (overwriting or removing files, file extension
modification), network activity (e.g. DNS requests and C&C
communications), and system registry modification, etc.

Based on the above usually recurrent aspects, the authors
discuss in [16] several proposals developed in the specialised
literature to thwart ransomware action. Since then, some other
similar approaches can be found as explained in [28], in
particular regarding ransomware detection [29]. For example,
Bae et al. introduce in [30] a machine learning approach to
detect ransomware based on API sequences expressed in terms
of N‐gram sequences. Also, Arabo et al. present in [31] a
machine learning approach, but in this case DLL APIs calls,
usage of system resources (disk, CPU, RAM, network con-
nections) and files opened are considered to conclude or not
the action of a ransomware piece.

Instead, the authors in [32] propose an algorithm based
on traffic monitoring that can detect ransomware action and
prevent further activity over shared documents. Also, [33]
presents a traffic‐based detector, but in this case the authors
design an SDN detection and mitigation framework based
on OpenFlow to detect WannaCry samples. In a similar
line, the authors in [34] introduce a network‐based intrusion
detection system to detect Locky samples, employing two
independent classifiers working in parallel on different levels:
packet and flow levels. The authors in [35] combine
network‐related activities with file accesses in an introspec-
tion approach to detect crypto‐ransomware running on
VMs. Considering a more varied activity, Jethva et al.
explore and compare in [36] three ML schemes (SVM, lo-
gistic regression and random forest) where grouped registry
key operations, file entropy and file signature are considered
as analysis parameters with detection purposes. More
recently, Almomani et al. consider permissions and API
packages to detect ransomware in Android platforms making
use of machine‐learning approaches like Random Forest,
Decision Tree, Sequential Minimal Optimisation, and Naive
Bayes [37].

Beyond the specific parameters considered in detection,
some works are mainly focussed on evaluating novel
analysis methodologies. This is the case of [38], where an
ensemble‐based detection model which incorporates two
techniques (incremental bagging and enhanced semi‐random
subspace selection) is evaluated for ransomware detection.
In [39, 40], deep learning techniques are explored. In the
first case, to extract the latent representation of a high
dimension of collected data to identify malicious behaviours
accurately. In the second work, a theoretical model named
CRED is developed to accurately define the boundaries of
the pre‐encryption phase of the attack lifecycle based on
ransomware. In [41], a detection method for ransomware
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by employing a combination of a similarity preserving
hashing method called fuzzy hashing and a clustering
method is applied to detect WannaCry samples. Similarly,
the authors in [42] propose a fuzzy‐import hashing tech-
nique, which is the integration of two methods, namely,
fuzzy hashing and import hashing. This integration can
offer several benefits such as an improved detection rate by
complementing each other when one method cannot detect
malware, then the other method can; the generation of
fuzzied results for subsequent clustering or classification, as
the import hashing result can be easily merged with the
fuzzy hashing result.

Although numerous and relevant, none of the available
solutions at present are yet definitive. In fact, one principal
challenge is that of early detection. That is, although poten-
tially accurate in detection, a valid solution should additionally
be as quick as possible. Otherwise, the action regarding the
encryption of the system can be completed and, thus, the
detection itself will become useless. In this line, the authors
in [43] propose an adaptive pre‐encryption early detection
model which is expected to deal with the population concept
drift of crypto‐ransomware given the limited amount of data
collected during the pre‐encryption phase of the attack life-
cycle. With such adaptability, the model can maintain up‐to‐
date knowledge about the attack behaviour and identify the
polymorphic ransomware that continuously changes its
behaviour.

In this overall context, the authors introduce in [16]
R‐Locker, a novel early detection plus reaction anti‐
ransomware approach based on the deployment of honey-
files where: (a) Each honey archive deployed is not a ‘normal’
file but FIFO like, so that a ransomware accessing the trap file
will be completely blocked because the OS automatically
stops any process reading from an empty (not previously
written) FIFO; (b) the honeyfile is connected to a monitor
process in such a way that, when accessed, a response pro-
cedure is automatically launched aimed to effectively defeat
the infection, and (c) the complexity and cost of the solution
are really low and do not interfere with the normal operation
of the environment.

Provided the good performance exhibited by the original
tool for Unix systems, it is now improved in three main aspects
as pointed out in [16]:

� It is extended by authors to Windows environments for
which FIFO operation varies from that in Unix plat-
forms. Provided the wide use of such types of platforms,
the impact of our ransomware solution is expected to be
high.

� The creation, distribution and maintenance of the honeyfiles
is automated to dynamically handle them over time and,
thus, to maximise the filesystem protection.

� Once a suspicious application is blocked by the detection
tool, the subsequent countermeasure (e.g. stop and uninstall
the application) is (semi)automated through the disposal of

dynamic black‐/white‐lists to avoid relying always the de-
cision on the final user.

From the above section, the rest of the document is
devoted to describe and evaluate the new version of R‐Locker.
We shall see that the proposal is effective and efficient, while
novel in comparison with others in the literature where the
typical parameterisation and monitoring‐based detection
methodologies previously described are considered [44–46].

3 | A HONEYFILE‐BASED ANTI‐
RANSOMWARE TOOL FOR WINDOWS
PLATFORMS

Accepted that the crypto‐ransomware operation relies on
scanning the infected machine's filesytem to access files and
encrypt the contained information, our ransomware detection
approach is aimed to satisfy some functional properties and
operational requirements (named as F1–F2, and R1–R5 in
[16]) regarding effectivity, scalability, transparency, consump-
tion, etc.

3.1 | Honeyfile approach to thwart
ransomware action

In [47], we can find the eight steps composing the typical
lifecycle of ransomware for the .NET framework: (a) infil-
trating the host system, (b) gaining execution privileges, (c)
creating unique cryptographic keys, (d) enumerating files to
encrypt, (e) cyphering files with keys, (f) removing access to
original files, (g) protecting keys until payment, and (h) main-
taining an extortion channel. From that, any mechanism
intended to prevent ransomware from succeeding should be
based on stopping its execution in at least one of the previous
stages.

Our approach will operate somewhere between fourth and
fifth steps. Provided that to encrypt a file it is first needed to
read its content, our proposal relies on making use of trap files,
or honeyfiles, aimed to hold indefinitely the process reading the
accessed file. That is, the corresponding read() call will never
return to the caller (i.e. the ransomware), so that it will thwart
the last goal of the ransomware: file ciphering.

To achieve goals Fx and Rx, a simple and elegant solution
is to make use of an interprocess communication mechanism
(IPC) named FIFO (First Input First Output), or named pipes
[16]. Some main features of FIFOs are as follows:

� FIFOs are special files which are manipulated with the same
set of system calls than regular files: read(), write(), open(),
…This will make natural the interaction of ransomware with
the honeyfiles.

� A principal property of FIFOs is that when a process reads
an empty named pipe, that is, no process has been previ-
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ously written on it, the OS automatically blocks the reading
process.

A named pipe needs a writing process at the other side.
Such a process can control the interactions with the FIFO, so
that it is the ideal place to locate the monitor process for the
detection tool to be deployed. According to that, [16] shows
(see figs 3 and 4 there) the architecture and the operational
flow for the proposed ransomware detector. From them: (a)
when the user installs the tool, a blocking FIFO is created and
one trap file is inserted in every folder around the whole fil-
esystem pointing to the central FIFO; (b) once all the trap files
are created and distributed around the filesystem, the monitor
process remains waiting at the named pipe; (c) when a process
(e.g. ransomware) accesses any of the honeyfiles for reading, it
is redirected to the FIFO and becomes blocked; (d) at this
moment, the OS wakes the monitor procedure up to launch a
process intended to adopt the corresponding countermeasures.

Algorithm 1 outlines the general operation of R‐Locker.

Algorithm 1 : R‐Locker related algorithm.

3.2 | R‐locker implementation for windows

Based on the mentioned general operation of R‐Locker, in this
section we describe the specific implementation for Windows
platforms, where two main differences exist in handling FIFOs
in comparison with Unix systems: (a) System files and pipes
have different namespaces, and (b) only one process is allowed
to simultaneously read from a FIFO. Therefore, Algorithm 2 is
now implemented, where we should remark that the devel-
opment is made over the Windows application programming
interface (Win32API) so that the user only needs to run an
executable programme without requiring to modify or
configure the OS kernel.

Algorithm 2 : R‐Locker pseudocode.

According to the mentioned algorithm, the main() function
in R‐Locker starts the calling function PopulateTraps(), which
is responsible for obtaining the folder structure of the fil-
esystem. Then, the tool creates a symbolic link to the named
pipe in each of the folders (CreateSymbolicLink system call), so
that a tree of direct paths to the detection tool through the
central FIFO is deployed around the filesystem.
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Nowadays, many ransomware families (e.g. Cerber) involve
multithread processes to optimise the encryption of the sys-
tem. In order to deal with such malware variants, R‐Locker
next creates a pool of threads (line 33). To perform multi-
thread operations in Windows, it is necessary to create multiple
instances of the same FIFO and to deploy one monitor thread
per instance (line 34). The number of threads is determined in
an experimental way, so the algorithm declares a parameter to
adjust it (line 30). A good estimation of the parameter value is
two, because the maximum performance is obtained with two
threads per core. This way, while a thread is waiting for reading
a file, the other can use the CPU to cypher data. A greater
number of threads will not improve performance, as they will
compete with each other for the CPU.

Each of the created threads then calls the InstanceThread()
function, which is intended to deploy respective instances of
the named pipe. At this point, it is noticeable the fact that, as
previously mentioned, system files and pipes in Windows have
separate namespaces. To solve this inconvenience, we need to
use the naming conventions and rules in Windows to name
devices like regular files or directories (line 3).

For our main purpose, another interesting property of
FIFOs is that the synchronisation of the communications are
automatically handled by the OS. This way, when a process
reads an empty FIFO (i.e. nobody has written yet on it), the OS
blocks the reading process. For that, it is necessary to instruct
the OS when creating a synchronous FIFO (flag PIPE_WAIT
on CreatePipe() in line 10). After that, the thread gets con-
nected synchronously to the pipe (line 11), just awaiting ran-
somware to fall into the trap. This way, the monitor process in
R‐Locker will act as a writer to the pipe, while ransomware will
act as a reader over the communication channel.

When a reading process accesses a honeyfile, the function
Detection() will be executed by the corresponding thread. This

function is responsible for determining the identity of the
process trying to read the trap and subsequently to put into
action the appropriate countermeasure to give response to the
incident, according to its real malicious or legitimate nature.

Figure 1 represents the specific flow diagram of R‐Locker
for Windows (grey box). As discussed in the previous para-
graphs, it is composed of a monitoring process connected to the
named pipe. Such a monitor just consists of a writing process to
the named pipe, whose action will be successful when a reading
process intervenes at the other side. Since our interest is to
protect the entire filesystem, we will replicate the trap into
multiple directories. Although it is possible to replicate the
named pipe itself, the associated management by the master
process would become more complex. Therefore, as indicated,
we replicate the traps through the use of symbolic links to the
same central FIFO. This way, a ransomware sample trying to
access the symbolic link in any part on the filesystem will be
directed to the (unique) FIFO. On the other hand, as the reading
action from a FIFO is blocking in Windows, R‐Locker will
create several threads to manage multithread ransomware.

Let us remark again the low resource consumption ex-
pected for R‐Locker. First, symbolic links do not consume disk
space, the named pipe only involving the space to store the
metadata in the filesystem since it is not really a file but a
device. Second, regarding memory usage, the system only
needs space to allocate 2 � n threads, with n equal to the
number of system processors. Third, the CPU usage is null
when the monitor is awaiting because the operating system
puts it in a blocked state and the overall operation relies on a
future reading process from the FIFO.

Embedded in the previous operational flow, in the next
subsubsections, we present two particular improvements with
respect to the original tool introduced in [16] (see Section 4.3
in that study). First, the dynamic management of the folder

F I GURE 1 Flow diagram of R‐Locker
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structure and the corresponding deployment of honeyfiles,
which will provide a better protection of the target filesystem
over time. Second, the adoption of subsequent corrective ac-
tions once a suspicious ransomware event is detected, where a
(semi)automatic procedure is now implemented.

3.2.1 | Dynamic management of the honeyfiles

Beyond the interesting general behaviour of the honeyfiles
deployed around the filesystem to protect it, some specific
practical aspects must be highlighted about them. One of them
is about the particular locations for an effective protection, that
is how to select and handle the folders into which to place the
traps. In [48], the interaction of some samples of ransomware
with the filesystem is analysed, and two important issues are
highlighted. First, the order followed by ransomware samples
for folder selection. Second, the order of file selection into a
folder depending on the filesystem type.

In the first case, the authors in [48] show that there does
not exists a unique order for folder selection. Some samples,
like GandCrab or TeslaCrypt, perform an initial folder se-
lection based on depth and then go through the structure
following alphabetical order. However, other samples, like
Osiris, carry out a random selection of the folders. Such a
disparate behaviour concludes with the convenience of deploy
traps into all the existing folders for complete protection. That
is, we need to create a symbolic link to the central FIFO in
every folder in the filesystem. This is the purpose of the
function PopulateTrap() in the pseudocode of Algorithm 2,
which creates such links at the initialisation phase of the tool.
In addition, the function will dynamically explore the folder
structure of the target filesystem to include symlinks into the
new folders appeared over time.

As the size associated to a symbolic link is 0 bytes, no disk
space is involved in creating as many symlinks as needed. In
addition, due to the fact that all the symbolic links point out to
the same central FIFO waiting for a reading process, the only
pro‐active action that will consume additional resources of the
system is the periodic thread checking the existence of new
folders around the filesystem. The execution period of each
thread is currently tuned to minimise the exposure of new
folders at a reasonable computational cost (see Section 4 below).

In respect of the file selection process into a folder, ran-
somware samples select files according to different criteria. In
cases like GandCrab and TeslaCrypt, Win32 API functions
like FindFirstFile() and FindNextFile() [44] are commonly
used, which return the files depending on the type of fil-
esystem. For example, in the case of NTFS, the filesystem
typology of primary disks of current versions of Microsoft
Windows, the entries of a folder will be alphabetically returned.
Hence, to stop the ransomware action at the beginning of
the reading process, the symbolic link can be named so that it
is the first alphabetical entry (e.g. ‘!\enleadertwodots !’). In
other cases, for example Osiris, files are first prioritised by
extension and then selected in alphabetical order. To address
such a situation, we can create multiple links with name

‘!\enleadertwodots !’ and appealing extensions like ‘.doc’, ‘.pdf’,
‘.jpg’, etc. To reinforce transparency from the user perspective,
the symlinks can be additionally marked with hidden attribute
to be invisible for normal user operation.

3.2.2 | Response after detection

When a reading process accesses a honeyfile, R‐Locker in its
original version launched a notification to allow user the
manual adoption of potential subsequent corrective actions.
The most feasible way to implement the notification procedure
is making use of the general procedure NotifyUser(). This
function is responsible for determining the identity of the
process trying to read the trap and subsequently notify the
user, who will decide the particular action or countermeasure
to be taken, if so. The usual reaction mechanism adopted by
the moment is to stop and/or kill the supposedly malicious
programme.

As an improvement of that manual reaction procedure, the
current version of R‐Locker makes use of a semi‐automatic
process based on the dynamic management of black‐lists and
white‐lists as follows:

1. The tool creates at the installation time a whitelist with
legitimate programs which are permitted to access the fil-
esystem. To do that, R‐Locker explores the system pro-
gramme folders, located in C:\Programme Files and
C:\Programme Files (x86), and incorporates the corre-
sponding executable files into the whitelist.

2. Based on that, when a suspicious programme accesses the
honeyfile, the tool will first check the whitelist so that: (a) if
the programme is into the list, R‐Locker does not act in any
sense against the process; (b) otherwise, the user will be
notified to decide how to proceed.

3. After notification, if the user decides not to act against the
incident because she/he considers the programme as
legitimate, the system will automatically add it to the
whilelist.

4. On the contrary, if the user decides to stop/kill the pro-
gramme, R‐Locker will append the name of the programme
into the blacklist. This way, the next time the same pro-
gramme appears and it will be automatically terminated by
the tool without requiring the user to intervene.

4 | EXPERIMENTAL EVALUATION

After describing R‐Locker, this section is devoted to experi-
mentally assess the tool when confronted with real ransomware
samples on Windows platforms.

4.1 | Experimental environment

Testing real ransomware samples requires a secure and
reusable environment. It is secure to avoid affecting real
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deployed services and systems and reusable to restore the
experimental system to its original state in an efficient and
dynamic way in case a test fails and the system becomes
affected.

A usual way to test malware samples is to execute and
analyse them on a virtual machine (VM) environment. In this
case, some considerations must be taken into account:

� First, the VM must be isolated from the host system, while
maintaining the access to the internet to allow potential
command and control (C&C) communications.

� Second, the VM must be deployed on an isolated network to
avoid affecting other systems.

� Third, the VM must be realistic to evade anti‐sandbox
techniques potentially deployed by malware.

� Finally, the test environment is a proprietary system so we
must be licenced.

To accomplish with the above requirements, the experi-
mental environment deployed here is based on Malboxes [49]
in conjunction with Vagrant [50]. Malboxes is an open‐source
project destined to build Windows virtual machines for mal-
ware analysis. Its mission is to create a Vagrant box through the
downloading and creation of a VirtualBox‐based VM, and its
provisioning and configuration. The Vagrant box is the initial
state of the tests, allowing virtual machine management in a
single workflow that makes the automation of the process
easier. The joint use of the two mentioned tools allows
creating, destroying or stopping VMs through simple
commands.

The Vagrant configuration file helps to configure the re-
sources loaned to the VM, the network configuration, the files
to be copied from the host to the VM, and the scripts to be
executed on the VM deployed. All those features are needed to
automate the overall process. Our experimental setup is
configured to create a VM with four CPUs and 4 GB of RAM
to disable the shared folder created by Vagrant, to copy the R‐
Locker code into the VM, and to run a PowerShell script to
download the crypto‐ransomware samples considered.

It should be mentioned that we have not automated
completely the deployment of the experimental environment
due to some principal reasons. First, R‐Locker must be
executed manually because Vagrant does not have an option to
do this automatically. Second, in case the programme analysed
is detected as a malicious programme by the system, Windows
Defender must be manually disabled. Third, some samples
need a pre‐configuration or dependency resolution to be
properly executed.

4.2 | Evaluation samples and results

Once the experimental environment is tuned, it is time to run
the tests with real crypto‐ransomware samples. For that, some
public repositories of malware samples are available. One
example of that is [51], but in this case just pcap files are
available instead of malware samples themselves. Therefore, we
have acquired the experimental samples from TheZoo re-
pository [52]. The reason is that the malware samples available
at this site are classified by families, which is useful with the
testing purposes and does not occur with several other well‐
known datasets such as VirusShare or VirusTotal.

Table 1 shows the specific ransomware samples tested in
our experimentation. They refer to famous ransomware cases
recurrently used in worldwide attacks: Cerber, Jigsaw, and
WannaCray. Additionally, a proof‐of‐concept sample named
Generic [53] is considered, whose basic functionality is similar
to the one in the famous ransomware Cryptolocker: it encrypts
with a RSA‐4096 (RSA‐OAEP‐4096 + SHA256) public key
any payload and then uploads it to a remote server. Although
some other ransomware samples have been downloaded by
authors, they have evidenced not to run and work properly on
the deployed environment.

As indicated in Table 1, the samples corresponding to
WannaCry, Jigsaw, and Generic have been detected and
blocked by R‐Locker, as expected. Moreover, the affection of
the system in all cases is null, that is, no file has been encrypted
by the sample thanks to the deployment of honeyfiles around
the whole filesystem. Hence, the detection tool succeeds in
defeating ransomware, which concludes that the FIFO solu-
tion is effective, and the traps deployed cover correctly the
filesystem folders affected by the ransomware samples.

However, not all the ransomware samples have been
detected by R‐Locker. In particular, the Cerber sample is not
detected, which can be justified as follows: The reversing en-
gineering of Cerber [54] shows that the authors of the malware
defined a minimum file size for candidate files to be encrypted.
This way, since symbolic links are of 0 bytes size, the honeyfiles
(symbolic links) deployed by R‐Locker have not been selected
by the ransomware for encryption which impedes detecting its
operation on the system.

The main operation of R‐Locker is registered over time
into a log file. Figure 2 shows a fragment of an example log. In
the first lines, we can see how the whitelist is built from the
legitimate programs in the target system (e.g. explorer.exe, git.
exe). When a programme is detected as a suspicious ransom-
ware sample and it is not included in the whitelist, a notifica-
tion box like that shown in Figure 3 is generated by R‐Locker.

TABLE 1 Crypto‐ransomware samples
tested

Name Source MD5 Detection result

Cerber TheZoo 8b6bc16fd137c09a08b02bbe1bb7d670 Not detected

Generic GitHub Locally compiled Detected

Jigsaw TheZoo 3ad6374a3558149d09d74e6af72344e3 Detected

WannaCry TheZoo 84c82835a5d21bbcf75a61706d8ab549 Detected
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Such a notification informs the user about the process iden-
tification of the supposed ransomware and the path where it is
launched from, asking the user about the possibility to stop the
potentially malicious process.

From the first ellipsis in the log file in Figure 2, we can see
how blacklist is handled. First, the execution of Powershell will
generate a notification, so that the programme is labelled as
malicious by the user and, thus, automatically included into the
blacklist by R‐Locker. After that, any further appearance of this
programme will be automatically blocked by R‐Locker. Like-
wise, the log file also shows the detection of a sample of
WannaCry as well as an infected version of it, iCacl.exe.

In summary, from all the above we can conclude that the
overall functional operation of R‐Locker is as efficient as
expected.

With testing and further developing purposes, R‐Locker
for Windows is publicly available for the community at [55].

5 | CONCLUSION AND FUTURE WORK

This work introduces a new version of R‐Locker, an anti‐
ransomware solution proposed by the authors in a previous
work, for Windows platforms. Like the original version for

Unix, it is based on the deployment of honeyfiles around the
target filesystem to trap potential malicious processes accessing
disk information. However, three main aspects are contributed
here to improve the original tool. First, the particular imple-
mentation for Windows needs to solve two main differences in
handling FIFOs with respect to Unix platforms: (a) separate
namespaces for system files and pipes, and (b) allowance of
only one simultaneous process reading from a FIFO. Second,
as pointed out in the previous work by authors, a novel pro-
cedure for the deployment and maintenance of the honeyfiles
around the target filesystem is introduced for a better pro-
tection over time. Third, also the use of white‐/black‐lists is
considered here to (semi)automatically determine and act
against legitimate versus real ransomware processes accessing
filesystem, thus reducing the intervention of the final user.

Publicly available at a GitHub repository, after evaluating
the tool experimentally, it contributes several benefits: (a)
effective operation, (b) unprivileged installation, (c) simplicity
with low resources consumption involved, and (d) non‐
interference with the rest of the system.

As a future work, we guess to advance in two main di-
rections. On the one hand, in defeating ransomware inde-
pendently of the size of the honeyfiles deployed (to catch
samples like that of Cerber in Section 4). On the other hand, it

F I GURE 2 Partial content of the log file generated by R‐Locker

F I GURE 3 User notification by R‐Locker for a suspicious ransomware incident
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is of utmost interest to extend the proposal for mobile plat-
forms, since the current use and consequent risks of such types
of devices for the community are notable.
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