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ABSTRACT Humans and machines harmoniously collaborating and benefiting from each other is
a long lasting dream for researchers in robotics and artificial intelligence. An important feature of
efficient and rewarding cooperation is the ability to assume possible problematic situations and act in
advance to prevent negative outcomes. This concept of assistance is known under the term proactivity.
In this article, we investigate the development and implementation of proactive dialogues for fostering a
trustworthy human-computer relationship and providing adequate and timely assistance. Here, we make
several contributions. A formalisation of proactive dialogue in conversational assistants is provided.
The formalisation forms a framework for integrating proactive dialogue in conversational applications.
Additionally, we present a study showing the relations between proactive dialogue actions and several
aspects of the perceived trustworthiness of a system as well as effects on the user experience. The results of
the experiments provide significant contributions to the line of proactive dialogue research. Particularly,
we provide insights on the effects of proactive dialogue on the human-computer trust relationship and
dependencies between proactive dialogue and user specific and situational characteristics.

INDEX TERMS Human-computer-interaction, human-computer trust, proactivity, spoken dialogue system.

I. INTRODUCTION
2021 marks the tenth anniversary of the integration of
the personal assistant Siri in Apple’s iPhone, introducing
conversational user interfaces to the mainstream and paving
the way for the nowadays ubiquitous smart assistant speakers,
like Amazon Alexa or Google Echo. Being able to recognise
and understand user intents, such devices are able to engage
in a natural language dialogue for solving tasks cooperatively
with the user. Cooperatively in this context implies that
user and system take turns during an interaction exchanging
information for ultimately satisfying a specific user goal,
e.g. booking a restaurant, making a purchase, or simply
asking for the weather. Even though being a commercial
success, the assistive functions of current conversational user
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interfaces are rather limited. For example, interactions with
Alexa are mostly based on one-shot interactions (‘‘Alexa,
what’s the weather today?’’), only allowing a few follow-up
questions, and restricted to simple task domains. However,
due to technological advancement and an ever growing
market for digital assistants [1], it can be expected that
conversational assistants (CA) enter more sophisticated
domains and be used for very challenging tasks, like decision-
making [2], learning [3], or planning tasks [4]. In order
to be accepted and trusted in these delicate domains,
conversational interfaces must extend their assistance capa-
bilities and be equipped with more human-like assistant
behaviour.

An important aspect of future dialogue assistants will
be the ability to act autonomously, hence to proactively
provide support. In doing so, a dialogue system would
make assumptions about the current situation-specific user
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needs and subsequently take the floor to provide suggestions
or completely act on behalf of the user. For example,
an assistant that helps a user solving a particular task,
e.g. planning of a city trip or working on a do-it-yourself
(DIY) project, could automatically suggest possible helpful
information for the user during task execution. In case a
system is very sure about the user’s intention it could even
decide to provide the information without prompting the
user.

However, there exist no clear definitions of proactive
dialogue or human-computer interaction (HCI) in general.
Most research applies the term proactivity to all-kind of
system-initiated behaviour and focus only on the capability of
machines to act autonomously [5], [6]. Fine-grained aspects
of proactive behaviour, such as when to use which kind of
proactive strategy or whether proactivity is necessary at all
are highly understudied topics [7]. Besides, most research
on proactive dialogue does not take into account the current
situation and the user’s characteristics. Therefore, contempo-
rary proactive applications lack flexibility and naturalness.
Additionally, initiating an interaction at an inappropriate
point of time or in the wrong way could be perceived as
disruptive and obtrusive. This has been shown to corrupt
the human-computer relationship, especially regarding the
user’s perceived trust in the system [8], [9]. In summary,
naive ways of proactive interaction are highly fraught with
risk as misused proactivity could lead to distrust in the
system and drive the user away from the system as seen
by Microsoft’s Office Assistant Clippit. The early proactive
assistant interrupted users at inappropriate moments during
task execution, providing non-helpful assistance, while
behaving highly obtrusively [10]. However, we assume that
proactive interaction strategies could greatly benefit the
user if applied correctly. First results suggest that proactive
interaction affects the user’s perception of conversational
systems and performs well regarding task efficiency and user
satisfaction [2], [6], [11].

In order to expand this line of research, we make
several contributions. First, a formalisation of proactive
dialogue in CAs is provided. The formalisation is domain-
independent and generalisable, which forms a framework for
integrating proactive dialogue in conversational applications.
Secondly, we present a study showing the relations between
proactive dialogue actions and several aspects of the human-
computer trust (HCT) relationship as well as effects on
user experience. This article forms an extension of previous
research published in Kraus et al. [12]. In comparison to
the previous publication, we provide an extended review
proactive HCI and trust in HCI. Furthermore, we integrate a
previously developed set of proactive dialogue actions (None,
Notification, Suggestion, Intervention) into a formalisation of
proactive dialogue in CAs. Additionally, the description of
the study presented in Kraus et al. [12] is extended by a more
thorough system description and by providing new results
regarding the effects of the proactive dialogue strategies.
Here, we include new insights on effects on the trust

progression and relations between proactive behaviour and
user characteristics.

The remaining structure of the article is as follows:
Related work in the field of proactive HCI, and trust in
HCI is presented in Section II. A formalisation of proactive
dialogue and the definition of proactive actions is described
in Section III. Subsequently, in Section IV, the development
and implementation of a proactive CA for task-planning is
described. The developed CA is embedded in an experimental
setup for testing the relations between proactive dialogue
strategies and their effects on the user. This is described
in Section V. The results of the experiments are presented
in Section VI. The findings from these relations between
proactive dialogue and its effects on the user, are discussed in
detail in Section VII. Finally, this article is concluded with a
summary and an brief outlook on future work in Section VIII.

II. RELATED WORK
A. PROACTIVE HUMAN-COMPUTER INTERACTION
Cohen [13] describes the process of collaboration in com-
munication in the following way: ‘‘people infer the reasons
behind their interlocutor’s utterances and attempt to ensure
their success by (at least) telling themwhat they need to know
to be successful, and by potentially volunteering to perform
actions on their behalf’’. Although not mentioning explicitly
the term proactivity, Cohen describes two key characteristics
of proactive behaviour, actively informing the user to allow
them being successful, and performing helpful actions on
behalf of the user.

According to its definition in organizational psychology
and management, proactivity concerns taking action in order
to anticipate problematic situations and prevent negative
experiences [14]–[16]. Proactive behaviour can be described
by several characteristics. For example, proactivity is sup-
posed to have a long-term focus and intends to predict future
states, is action-oriented and goal-directed, while also being
persistent and self-starting [14], [15]. In contrast, reactive
behaviour is about reacting to environmental demands,
only doing what one is told and not about developing
plans to deal with possible difficulties [15]. Experiments
in this research field have shown the positive effects of
proactive behaviour at work. Proactivity leads to a higher
job performance and team performance and is associated
with leadership and innovation [14]. Additionally, it refines
one’s intrinsic motivation and self-regulation [15] while also
creating coworker trust in work environments and positively
contributing to socialisation [16]. Due to the positive effects
of proactive behaviour, several researchers have studied the
development of proactive human-machine interaction over
the last decades [2], [7], [11], [12], [17]–[19].

One of the main streams for research on proactive
behaviour forms human-robot interaction. Here, proactivity
of a robot can be differentiated into three categories:
approaching a human in an acceptable manner [20]–[22],
sharing tasks between robot and human based on the user’s
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TABLE 1. Levels of autonomy according to Sheridan and Verplank [29].

intention [23], [24], and assisting proactively [2], [11], [25].
With regard to the work presented in this article, it is
particularly interesting to consider related work on proactive
robot assistance. Application domains for robotic assistants
span various fields, such as shopping assistants [2], [26], care-
givers [25], or DIY-assistants [12], where robots proactively
engage in a conversation for providing extra information,
promptingmessages or proposing actions. Relatedwork often
only studies one form of proactivity as opposed to reactive
behaviour [6], [11], [26], [27]. More interesting with regard
to the research presented in this article, are the effects of
the robot’s level of autonomy on the interaction [2], [28].
According to Sheridan and Verplank’s [29] seminal work,
a system/robot’s autonomy level can be divided into ten
levels, ranging from offering no assistance to completely
autonomous behaviour. Parasurman et al. [30] later refined
this model for HCI. The individual levels are listed in Table 1.
Based on these frameworks, Peng et al. [2], for example,
designed the proactivity of a robot in three dimensions - low,
medium, and high - where the lowest level of proactivity
can be considered as reactive behaviour. Depending on the
proactive level the robot makes assumptions about the user’s
needs and either lets the user verify them (medium-level)
or directly takes action (high-level). Besides how the robot
should behave proactively, i.e. decide on the level of proac-
tivity, also the timing when to be proactive has been studied
for robotic assistants. For example, Grosinger et al. [25]
equipped a robot with planning capabilities and took into
account context- and time-related measures to decide when to
take action. Here, the robot could infer the human’s activity
using a simple user model containing the user’s location
and day time. Depending on the activity the robot would
proactively prompt the user. In the work of Liu et al. [26],
a robot learns the appropriate moments for being proactive
from using human interaction data as training input. In this
context, proactive robot behaviour is triggered in moments
of silence or after users’ provided backchannel utterances,

e.g., ‘‘Okay’’, or ‘‘I see’’ depending on previous interaction
context.

Transferring the concept of proactivity to HCI in gen-
eral, the concept is mostly applied to personal assis-
tants supporting the user in accomplishing complex tasks
[31]–[34]. Here, proactive behaviour aims to initiate helping
actions to avoid problems in advance. In this regard,
Nothdurft et al. [7] describe proactivity in dialogue assistants
as ‘‘an autonomous, anticipatory system-initiated behaviour,
with the purpose to act in advance of a future situation,
rather than only reacting to it’’. Under this consideration,
several different dialogue actions in personal assistants can
be connoted as proactive behaviour. In [35], proactivity is
described as the act of leading the dialogue and to actively
changing the discussion topic, while keeping the dialogue
natural, coherent and engaging. Similarly, [5] understand the
act of actively presenting or recommending topics related
to the current interaction as proactive behaviour. Here,
proactivity is especially used for resolving ambiguous user
demands, by showing possible candidates for the unclear
query instead of doing nothing. In general, conversational
recommendation (e.g. see [36]) can be seen as proactive
interaction, as it facilitates the user’s item selection in large
decision spaces.

For task-oriented dialogue systems, [18] introduced proac-
tive units at system turns. These units augment system
responses to user requests and contain assumable relevant
information that has not yet been provided by the user. For
example, by not only providing a user requested departure
time in a train schedule scenario, but additionally its
arrival time. While presented literature considers proactive
dialogue as providing additional information, recommending
information, or simply leading the interaction, this work
considers proactive dialogue in the sense of mixed-initiative
user interface design [17].

In mixed-initiative user interactions, a user and an
autonomous assistant collaborate for solving tasks. For pro-
viding assistance, the agent needs to track the user’s activities
and goals while reasoning about the costs and benefits of
taking automated actions. Here, proactive dialogue serves for
communicating and negotiating a system’s decision process
for minimizing the risk of system failure. Depending on
the user and the context, it may be sometimes better to not
interrupt the user, while there may be situations in which
suggestions could be beneficial. For instance, the proactive
assistant CALO [32] makes use of reasoning for estimating
the cost-benefit value of proactive behaviour and adjusts
its proactivity level accordingly. The cost-benefit value
is calculated using system-related metrics such as time-
sensitivity of the suggestion, the degree of uncertainty and
the system’s confidence. The decision which level to choose
is based on hand-crafted thresholds.

The way in which a proactive assistant can cooperate
in mixed-initiative interaction moves along the Interface-
Proactivity (IP) continuum introduced by Isbell and
Pierce [33]. They transferred the levels of autonomy
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introduced by Sheridan and Verplank [29] to the domain of
HCI, resulting in five different levels of proactive assistant
behaviour. The IP continuum ranges from zero, i.e., the
user acts fully on their own, to full automation, i.e., the
assistant acts fully on behalf of the user. The nuances
between these two extremes form alerts, telling the user
to pay attention, notifications, telling the user exactly what
to pay attention to, and suggestions, providing the user
with several decision options. The more proactive a system
becomes, the more it takes off control and responsibilities
from the user. Hence, the risk of failure also increases, as the
possibility that the system might take actions incongruently
with the user’s goal without asking for confirmation expand,
hurting the human-computer relationship [33]. Therefore,
most current applications in this area deal with notification
or suggestion management as the cost-benefit relation is
more controllable [31]. For example, there exists a body
of work on desktop [34], smartphone notifications [37],
as well as proactive suggestions for interactive television [38].
Challenges for the design of proactive strategies in CAs were
stated by Nothdurft et al. [7]. According to the authors, it is
necessary to investigate when and how proactivity should
be initiated for providing a positive user experience. In that
sense, Yorke-Smith [32] proposed guidelines for the design
of proactive behaviour in intelligent assistants. A proactive
agent should be valuable to the user as it advances his or her
interests and tasks. It should be aware of the current situation
and act according to its abilities and knowledge. Moreover,
user’s should be in control of the assistant and be able to
understand its actions. The agent should act unimposing and
not interfere with the user’s own activities and attention. For
adding value to the user, a proactive assistant needs to be
aware of current and future needs and opportunities and act
in a safe way, minimising the risk of negative outcomes in the
opinion of the user.

Following these guidelines, we present concrete steps on
how to model proactive dialogue in an intelligent CA and
address the challenges of proactive behaviour stated by [7].
Therefore, we formalise a proactive dialogue model and
introduce four proactive dialogue actions that were derived
from the presented levels of autonomy: None, Notification,
Suggestion, Intervention. For the development of proactive
dialogue strategies, we studied the effects of the proactive
dialogue actions as well as the timing of the actions on
the user experience. In proactive dialogue, a high degree of
collaboration for achievingmutual goals is necessary, making
humans vulnerable to the decisions of their assistant. Hence,
a particular focus for the evaluation is set on the perception
of the proactive system’s trustworthiness.

B. TRUST IN HUMAN-COMPUTER INTERACTION
Trust forms a fundamental concept in interpersonal relation-
ships [40]–[42], organisational management [43], [44], and
human-automation interaction [45]–[50]. According to the
definition provided byMayer et al. [43] trust can be specified
as the willingness to take risks and to be vulnerable to the

actions of another party ‘‘based on the expectation that the
other will perform a particular action important to the trustor,
irrespective of the ability to monitor or control that other
party’’. Due to advancements in automation technology and
industry 4.0 (e.g. see [51]), collaboration with intelligent
computers and machines increases and presents a shift of
control towards the automated assistance. This makes a
formation of trust in the user indispensable, otherwise it
possibly will not be accepted and becomes obsolete. Schaefer
and Hancock [47] describe the effect as the ‘‘no trust – no
use’’ principle. This is also stated in the earlier works on
trust in automation byMuir et al. [48], [49], who hypothesise
that independently of the ‘‘intelligence’’ or finesse of an
autonomous system, users will reject a system when it is not
perceived trustworthy. In literature, this phenomena is known
under the term ‘‘under reliance’’ [45], [50]. An example
for this is the false alarm problem often occurring with fire
detectors [45]. In case the false alarm ratio is too high, people
may disuse the device, even though this could have negative
consequences. Contrarily, ‘‘over reliance’’ in automation
may lead to misuse because people may overestimate the
competence of a system [45]. Therefore, a calibration of trust
is necessary, in which a user sets an appropriate trust level
corresponding to the machine’s trustworthiness and uses it in
accordance with its abilities and limits [48].

Trust in automated technology can be generally defined
as ‘‘the attitude that an agent will help achieve an individ-
ual’s goal in a situation characterized by uncertainty and
vulnerability’’ [46, p.51]. As indicated by the definition,
three factors seem to be fundamental for modelling trust: the
human, the autonomous partner, and the environment. Each
factor has specific characteristics that influence the human-
automation trust relationship. An extensive review hereby
can be found in Schaefer and Hancock [47]. Including these
factors, Hoff and Bashir [50] presented a three-layered model
of trust: Dispositional trust represents a user’s long term
tendency to an autonomous system dependent on individual
characteristics. The other two layers, situational and learned
trust are controlled by the users past experience either with the
environment, i.e. task type and context but also a user’s self-
confidence or mood, or specific features of the autonomous
systems. Taking into account the dynamic nature of trust
on a more short-term level, the authors distinguish between
initially learned trust depending on preexisting knowledge
and dynamically learned trust that is possible to change
during an interaction being subject to system performance
and design.

A higher degree of automation in human-machine collabo-
ration also requires more sophisticated interaction strategies
from a system’s perspective in order to enhance trust and to
avoid miscommunication. Therefore, intelligent automation
needs be able to conduct dialogues at appropriate moments
in order to be perceived trustworthy. Thus, conversational
assistance is supposed to be an important factor of future
automation. Many concepts of trust in automation are
supposed to be easily transferable to the domain of CAs,
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FIGURE 1. According to Madsen and Gregor [39], human-computer trust is based on the two foundations cognitive- and affect-based trust. Each base of
trust comprises several sub-concepts.

as they form a specialised form of automation themselves.
However, due to the ability to conduct natural dialogue
and interacting on a more complex information level,
some idiosyncrasies need to be taken into consideration.
For example, a dialogue can have a social, e.g., small
talk [52], or utilitarian purpose, e.g. solving a cooperative
task. Although there exists previous work studying the
effects of socio-emotional dialogue, small talk, empathetic
reactions, and voice characteristics of a conversational agent
on the user’s perceived trust (see Rheu et al. [53] for an
overview), most users rather see conversational agents still
as ‘‘tools’’ and use the term trust with reference to a system’s
performance or privacy [54].

Therefore, trust in CAs resembles more the concept of
computer believability or credibility as presented by Fogg and
Tseng [55]. Here, a system’s trustworthiness and expertise
form the bases for its credibility, whereby under the term
trustworthiness the quality of information (unbiased, truthful,
honest) is understood. However, besides the content an
agent provides, also its behaviour greatly influences its
relationship with the user. Trust in the system’s behaviour
in utilitarian terms is mostly related to its performance with
regard to consistency and reliability [46]. In this context,
much research focuses on a system’s capability to conduct
explanation dialogues for mitigating the effects of system
failures by providing transparency which in turn increases
trust (e.g see Nothdurft et al. [56] or Glass et al. [57]).

Measuring trust in CAs is complicated because trust
is multi-faceted and also a latent variable that cannot be
observed directly. For this reason, several approaches for
assessing the HCT relationship have been proposed. Primar-
ily, subjective measurements in the form of self-reported
questionnaires are collected [39], [58]. For measuring the
trustworthiness of the developed strategies, the Trust in
Automated Systems scale [59] and some variants [60]
were used, where subjects could agree or disagree with
statements about the system’s impression. Sub-components
of trust were measured using the HCT-model by Madsen
and Gregor [39]. The model is visualised in Fig. 1. This
hierarchical model relates to five fundamental components of

trust: Personal attachment and faith form the bases for affect-
based trust while perceived understandability, perceived
technical competence, and perceived reliability are the bases
for cognition-based trust. Affect-based trust refers to a
long-term human-computer relationship, being established
through frequent interactions with a system. In contrast,
cognition-based trust refers to a more short-termed trust. For
the latter, mostly the functionality and usability of a system
are of importance.

Considering trust could be beneficial for developing
proactive dialogue strategies, as the degree of proactive
behaviour of a technical system has shown to correlate
with the HCT relationship. For example, Rau et al. [11]
compared two levels of autonomy, high versus low. The
authors presented a WoZ-study, in which participants had to
complete a sea survival task in collaboration with a remotely
controlled robot. The study results demonstrated that trust in
the robot was higher in the low-level (reactive) than in the
high-level condition.

Therefore, the effects of proactive dialogue strategies on
the HCT relationship are studied in this article. Proactive
dialogue forms a new way to integrate the user in the decision
processes of an automated assistant in a mixed-initiative
interaction. For equipping a future CA with proactive
capabilities, we evaluate several distinct proactive dialogue
strategies on different components of trust. For a general
understanding of the relation between proactive strategies
and trust, we set up a mixed-factorial study which examines
how different levels of proactivity as well as timing strategies
of intelligent decision guide are trusted by subjects in an
artificial game scenario. In order to provide insight into the
how proactivity was modelled for our approach, we describe
a formalisation of proactive dialogue in the following section.

III. FORMALISATION OF PROACTIVE DIALOGUE
According to McTear [61] and Litman and Pan [62]
conversational interactions with current systems can be
divided into three types in terms of the dialogue initiative
strategy. In user-directed dialogues the user initiates and
controls the dialogue. However, this strategy mostly supports
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FIGURE 2. The IP-continuum ranging from zero to full autonomy [33].

so-called one-shot interactions, where the user issues a
question or command and the system reacts. Hence, this
strategy is typically applied in smart speakers and smart home
assistants. In contrast, system-directed dialogues are led by
the system. Here, McTear distinguishes between three types:
the system initiates an interaction to deliver a reminder or
notification; instructional dialogues in which the user starts
the dialogue and the system repeatedly guides the user with
little input from the user; so-called slot filling dialogues,
in which a user commences the dialogue with requesting
a service and the system takes over the command of the
interaction posing a set of questions for working out the user’s
preferences and helping with task completion. The third
strategy is known as mixed-initiative dialogue, that may
not be confused with the term mixed-initiative interaction
for human-machine collaboration on a specific task. Here,
mixed-initiative refers to a system’s ability to ask open-
ended and specific questions, while providing the user with
more freedom when answering questions in tasks-oriented
dialogues [62]. Otherwise, the term can also be applied in
open-domain interactions where the conversation can span a
variety of topics and both the system and the user have control
over the dialogue flow [61].

In this article, we focus on a mixed-initiative interaction
where a user cooperates with aDIY-assistant for the execution
of home improvement tasks. The basic interactions with the
assistant follow the type of instructional dialogues, i.e. the
system provides step-by-step descriptions for successful task
execution. Therefore, the overarching dialogue flow follows
a system-directed pattern. Hence, the system sequentially
presents a task step and the available interaction choices
(represented as a system action si), whereas the user can take
different actions (represented as a user action ui) until the
collaboration ends after n task steps:

(s1, u1), (s2, u2), (s3, u3), . . . , (sn, un) (1)

For investigating the relations of the different proactive
strategies and HCT, a decision-making use case scenario
is considered. Here, a DIY-assistant helps the user in the
planning of a specific DIY-project, i.e. supports selecting
appropriate actions on how to perform individual task steps.
In comparison to a simple instructional dialogue represented
in Eq. 1, an agent is able to provide assistance before a user
executes an action ui. The assistance is provided either in a
proactive, i.e. initiated by the system, or in a reactive manner,
i.e. initiated by the user.

In the context of mixed-initiative interaction, proactive
behaviour implies that the CA suggests or takes over actions

on behalf of the user. Therefore, proactive actions pa can
be considered as the initiation of sub-dialogues, where the
assistant influences a user action u, i.e. the system would
interact with the user in order to affect their decision-making.
Subsequently, a proactive action can be defined as a function
of u, noted as pa(u). Under this consideration, the structure
of a system-directed dialogue can be updated as follows:

(s1, pa(u), u1), . . . , (sn, pa(u), un) (2)

Our preliminary work [12] dealt with the development
of a set of proactive dialogue actions (None, Notification,
Suggestion, Intervention). In this article, the way in which
a system can interact with the user in order to affect
their decision-making is represented by this set of actions.
Hence, the proactive actions pa can be substituted with these
proactive dialogue actions.

The set of actions was designed following the principles
of the IP-continuum developed by Isbell and Pierce [33].
As previously described, the continuum ranges from zero
(‘‘Do It Yourself’’) to full automation (‘‘System Makes
Decisions’’) or from no intervention (not obtrusive) to
complete intervention (highly obtrusive). Transferring the
continuum to application in human-computer dialogue we
summarised the second and third point of the continuum (see
Fig. 2) under the proactive action Notification. The proactive
actions content is modelled according the guidelines provided
by Yorke-Smith [32], e.g. only task specific information is
conveyed that contributes to the user’s interests and tasks,
or the system is aware of the current situation during task
execution and aware of the user’s current and future needs.
Furthermore, proactive explanations can be added to justify
the behaviour of the system to take the initiative. This fulfills
Yorke-Smith’s guideline to enhance the proactive system’s
understandability. Besides, justification explanations have
shown to improve the user’s trust in automatic systems [63].
Based on these considerations, we obtain four levels of
proactivity:

A. NONE
This strategy refers to reactive system behaviour and forms
the lowest level of proactive behaviour. In this condition,
users can only explicitly request help from the assistant.

B. NOTIFICATION
This strategy forms themost conservative proactive approach.
Following such a policy, the participant is only notified by
the system. In this case it was up to the user to get assistance
or to ignore the system’s offer. By applying a notification,
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the user is in control of the system’s proactivity and is able to
ignore it. However, this proactive action might shift the user’s
focus to possible helpful resources and might be perceived as
unobtrusive.

C. SUGGESTION
Using aforementioned strategy, the CA directly suggests a
solution by also providing a proactive explanation for its
decision. Hence, the system takes over some control of the
interaction and asks the user to make a choice. This forms
a more rigid way of user interruption, but still lets the
user in control over the final decision. As response to
the system’s proposal, a subject can either confirm or decline
the suggestion.

D. INTERVENTION
In this case the system takes over all responsibilities and
performs a particular action in place of the user, also
providing a proactive explanation. Utilising this strategy
might be perceived quite obtrusive, but can be helpful if the
user has reached a critical level of need for proactivity.

Depending on the use case, this proactive dialogue
framework forms the basis for developing proactive dia-
logue strategies. In the following section, we describe the
implementation of these proposed proactive actions into a
proactive dialogue companion for task-planning. Here. a task-
planning scenario in the DIY-context forms an adequate way
to test proactive strategies in a vulnerable environment which
requires the user’s trust in the assistant.

IV. A PROACTIVE DIALOGUE COMPANION FOR
TASK-PLANNING
A. USE CASE SCENARIO
For developing and evaluating proactive dialogue strategies,
a use case in the DIY domain was chosen. Even though
the proactive dialogue strategies are generally domain-
independent, this domain was selected as our previous work
dealt with the development of an intelligent personal assistant
for assisting users in DIY-tasks [4], [64]–[67]. For being
applicable in other domains, only the content of the proactive
actions needs to be adjusted for fitting the respective use
case. The user’s task in the test scenario was to plan two
separate DIY-projects: building of a wooden nesting box and
the assembly of a wall candle holder made from copper tubes.
The projects differed in the degree towhich theywere familiar
to the users and might effect their perception of the difficulty
of the task. While building a nesting box was ought to be
more known to users, a copper-tube wall candle holder was
supposed to require a higher degree of imagination from
the subjects and could hence be perceived as more difficult.
Each project consisted of a predefined set of five sub-tasks
(n = 5). The building of the wooden nesting box comprised
the steps ‘‘wood cutting’’, ‘‘pre-drill holes’’, ‘‘connect the
parts of the nesting box’’, ‘‘create an entrance hole’’, and
‘‘process wood’’. In contrast, the steps for the wall candle

holder were ‘‘saw copper tubes’’, ‘‘connect copper tubes’’,
‘‘polishing copper tubes’’, ‘‘pre-drill wall and dowell’’, and
‘‘attach wall candle holder’’.

For each task, the user had to make decisions on how
they would perform individual task steps, without actually
working on the task. They only had to select between different
pre-defined approaches or tools which could help solving the
task step. These option were presented on a task screen. The
order of the task steps was fixed and could not be changed by
the user. For each step, four options on how to accomplish the
task were presented.

FIGURE 3. Screenshot of the interface for the planning task [12]. Users
could choose between four different methods for task completion. All
options were presented textually and visually. The selection was made
either by clicking on the respective button or by confirming NAO’s
proposal.

An example of possible options for the sub-task ‘‘connect
the parts of the nesting box’’ is depicted in Fig. 3. Subjects
were told to select the options they considered best and that
an intelligent personal assistant is able to help with decision-
making, if necessary. Additionally, an artificial rewarding
model was implemented for better motivating participants
to engage in the task and to provide a risky environment in
which trust is important. Therefore, options were associated
with a rewarding model based on three fictional categories:
appropriateness to the task, effort, and time efficiency. Each
category was rated between 0 and 10 scoring points. Themost
common approach to perform a task was awarded the highest
scoring (30). Alternative approaches that were functional but
more cumbersome or effort intensive were awarded 0, 10,
or 20 depending on their usefulness. In the example depicted
in Fig. 3 the cordless screwdriver was the best option, while
the usage of the nail gun was rated as inappropriate tool for
this task and rated with 0 points. After selection, the score
of the chosen approach was presented to the user as direct
feedback.

For providing a deeper level of assistance, the intelligent
agent was augmented with the ability to express proactive
behaviour. Hence, in the DIY-scenario the user was accom-
panied actively or in a reactive manner by a personal assistant
which would assist with decision-making in different ways.
The assistant was designed to be an expert avoiding the
unintended side effects of incompetent system behaviour on
its trustworthiness. Thus, it would only suggest the most
suited options. This allowed to only consider the effects of
the proactive levels on the HCT.

For our experimental setup, we determined to let the
participant control the planning task via a laptop that could
be operated by mouse clicks on a purpose-built GUI. As an
external representation of our assistance system was deemed
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FIGURE 4. The robotic assistant NAO was placed in front of the task
screen right beside the subject [12]. In doing so, the robot should be
perceived as a team member for task completion. Additionally, NAO has
been seated during the interaction for a better quality of speech
recognition.

to form a better separation of task and assisting technology,
we have positioned a NAO robot next to the laptop. This
120 cm high humanoid robot from Softbank Robotics has an
integrated speech interface which enables a natural approach
to dialogue control. Hence, the setup seemed more realistic
and was expected to deliver more significant results. To avoid
confusing the user and to achieve a better quality of the
speech recognition, the robot had a fixed position and
deactivated autonomous movements. The experimental setup
is illustrated in Fig. 4. The user was instructed which phrases
can be used, e.g. ‘‘Which option do you recommend in this
situation?’’. However, if a user input was not recognised,
the system automatically requested a repeat.

B. SYSTEM DESIGN
For conducting the user study, we implemented a prototypical
system consisting of a task-interface, a domain and reward
model, and a DIY-assistant in form of the NAO robot. The
study apparatus is visualised in Fig. 5. The user interface
presenting content for the planning task was implemented as
a clickable web application using the JavaScript framework
with a Bootstrap plugin for designing the web pages. Fig. 3
shows a screenshot of the designed interface. The web page
was structured in such a way that the description of the sub
task was presented on top of the screen, whereas the four
different options were put in line below the assignment. Each
option was presented with a picture of the tool or approach
and the corresponding label. NAO’s proactive messages and
responses to user requests were provided as spoken utterances
using natural language. At each task step, the user could select
one option using a mouse click and/or have a spoken dialogue
with the robot for getting guidance on decision-making.

The domain model contained the content of the individual
task steps, options as well as the content of the assistance

FIGURE 5. Depiction of the study apparatus.

messages. The corresponding texts and images were pre-
defined in advance and stored as html-templates. Similarly,
the reward model was pre-defined while the association
of the scoring points to the respective options was carried
out relying on DIY-knowledge from internet research. The
associations between scoring points and options were imple-
mented using key-value pairs.

To obtain knowledge about when and how to provide
the proactive messages, we have connected our external
assistance system NAO to the web interface using NAO’s
QiMessaging developing framework. QiMessaging makes
use of JavaScript bindings in order to take hold on NAO’s
speech modules. The bindings provide the class QiSession
that connects to the robot via socket connections and
gets proxies to services. After creating a session, NAO’s
modules (services) can be called using the service() function.
This provides a JavaScript proxy to any service. These
services are JavaScript object exposing methods and signals.
A service method, e.g. the ‘‘AlTextToSpeech’’ method
allowing NAO to provide speech output, is completely
asynchronous. This enabled the interaction of NAO to be
proactively initiated through timeouts on a web interface.
Additionally, we implemented the ‘‘ALSpeechRecognition’’
service method for setting the language and vocabulary of the
assistant’s speech recognition. We provided a rich vocabulary
for ensuring the recognition of multiple paraphrases of the
statements the user was allowed to utter. For creating a
system response upon the recognised user input, NAO’s
internal memory ‘‘ALMemory’’ was used. This memory
provides callbacks on specific events, e.g. when speech was
recognised, The event for speech recognition was subscribed
to by our agent in order to react appropriately to speech
commands. For example, in case the user uttered ‘Which
option do you recommend in this situation?’ at previously
described task step ‘‘connect the parts of the nesting box’’,
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FIGURE 6. Flowchart, visualising the dialogue content of different levels
of proactivity. User utterances are coloured in blue, while system actions
are red-coloured [12].

the assistant would provide the suggestion ‘‘The solution with
the cordless screwdriver sounds good, because it is the most
time efficient way. Should we choose this solution?’’. As a
response, the user could either accept or decline this offer
using speech that would also trigger a speech event. How
the timing and proactive actions of NAO were designed and
implemented is described in detail in the following section.

C. DEVELOPMENT OF PROACTIVE STRATEGIES
Proactive assistance was modelled according to the proac-
tive dialogue actions defined by [12]: None, Notification,
Suggestion, Intervention. Since the scenario was a planning
task and the user was supposed to select the, in their
opinion, best option per individual task step, the purpose
of system behavior was to provide helpful information and
suggestions for the selection process via natural language.
Therefore, we adapted the general proactive actions presented
in the previous chapter to fit our use case. The explanations
accompanying the proactive messages were generated using
scripted templates.

Using the reactive None-action, the system waited for the
user to explicitly ask for suggestions. For example, a user
could say ‘‘NAO, help me.’’ for receiving assistance. As a
response, the robot would then suggest the solution with the
highest score, which is equivalent to the Suggestion-action.
The more conservative proactive actions Notification and
Suggestion let the user confirm the assistant’s proposals and
differ only in the degree of directness. While Notification
allows the user to ignore the system’s message and proceed
on their own, the Suggestion-action expects the user to accept
or decline the offer. When users reacted upon a system’s
notification, a suggestion was triggered. The Intervention-
actions took the responsibility completely out of the user’s
hands an autonomously chose an option. Here, the system
makes an selection for the user and would utter: ‘‘I have
chosen the solution with the cordless screwdriver, because it
is the most time efficient’’. In parallel, the option is chosen

and the user was lead to the next task step. Possible dialogue
flows of the proactive strategies are depicted in Fig. 6. The
reason why the Suggestion-strategy was used, either upon
user request or after the user had reacted to an active system
notification, was to induce a natural interaction behaviour.
If NAO’s proposal was rejected by the user, the system did
not engage any further proactive interaction at this task step.

For triggering the proactive system’s actions, we made
use of timeouts. This allowed for specifying a certain period
of time, after which the robot took the initiative. The rules
upon we implemented the timing of system actions are
explained as follows: A fixed timing strategy was used as
a baseline. For this purpose, we hard-coded the points of
time the system took the initiative during the execution of the
planning task. Of the five possibilities for taking the initiative,
the system proactively acted at the sub-tasks one, four,
and five. In doing so, a ‘‘quasi’’-random proactive system
behaviour was simulated. Actually randomly distributing the
timing was omitted for economical reasons. A randomisation
would have enlarged the possibilities for triggering proactive
behaviour, requiring a huge amount of subjects in order to
guarantee comparability. Technically, NAO took the initiative
eight seconds after the respective task screen was loaded.
To avoid that subjects could select an option before NAO had
behaved proactively, we blocked the selection buttons for this
period of time. As a cover up, participants were told that we
wanted to guarantee that they really have read and understood
the task.

Furthermore, we implemented an insecurity-based timing
strategy. Here, the robot could take the initiative at each
project step, if the subject had not requested help or had
not selected an option before a time limit of twelve seconds.
We interpreted the four seconds of user inactivity after the
selection buttons had been enabled as insecurity in task
performance. As indication of insecurity is extremely user-
dependent, this time period was chosen as a heuristic measure
based on pre-testing. By using the participant’s insecurity
during task performance, a more context-related strategy for
timing of proactive behaviour was provided.

D. HYPOTHESES
We expected the developed proactive dialogue strategies to
perform differently with respect to the HCT relationship.
In particular, low- to medium-level of proactivity (none,
notification, and suggestion) were supposed to lead to higher
ratings of trust than high-level proactivity (intervention) due
to the uncontrollableness of the autonomous system’s actions.
Additionally, we expected a medium-level of proactivity
(notification and suggestion) to perform better regarding trust
than low- and high-level proactivity, as a result of the benefits
of proactive actions outweighing the costs. Furthermore,
we expected proactive dialogue actions to lead to higher
ratings of trust than the reactive None-action for the timing
strategy based on the user’s insecurity in contrast to the
fixed timing strategy. Besides, medium-level of proactivity
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FIGURE 7. Schematic description of the study procedure [12]. Both planning tasks consisted of five sub-tasks. For the strategy ‘‘fixed interrupt’’,
the system intervened proactively in the sub-tasks 1, 4, and 5. For the strategy ‘‘insecurity interrupt’’, the system intervened proactively each time a user
insecurity was detected. The two strategies were switched depending on the test condition.

was ought perform better regarding trust than high-level
proactivity based on the user’s insecurity.

V. EXPERIMENTAL DESIGN
A. CONDITIONS
In our study setup a 2 × 4 mixed factorial experimental
design was conducted with proactive dialogue strategies
(none - notification - suggestion - intervention) as between-
independent variables. Moreover, the timing strategies for
proactive behaviour (fixed - insecurity-based) were used as
within-subject variables. The order of the timing strategies
was randomised for each proactive dialogue strategy except
for the none condition, which did not require any timing due
to reactive behaviour. Accordingly, this study setup resulted
in a randomised distribution of participants in seven study
groups. The order of the tasks was the same for all users.

B. PARTICIPANTS
42 German participants (50 % female) with an average age
of 26 (standard deviation (SD) = 4.15) were recruited and
received 10 Euro as a reward. Most subjects were students
(37) majoring either in psychology (27 %) or in computer
science (38 %).

C. EXPERIMENTAL PROCEDURE
After the welcome procedure, participants were provided
with first instructions and details about the study. As a cover
story they were told that the purpose of the study was to
test a decision-making algorithm of the NAO robot and
to generally consider problem-solving between humans and
robots. Afterwards, they had to read and sign the informed
consent and had to fill out a pre-test questionnaire. Before
the first interaction cycle, they received detailed information
about the tasks and the procedure of the study. This included
details about the speech capabilities of NAO and about the
task to rate the interaction with the robot. Subsequently,
the participants had to work on planning the first DIY-project.
After completion, they had to fill in a questionnaire to assess
the dependent variables and to check the manipulations.
The same procedure was repeated for the second task
scenario. In addition, the questionnaire of the second task also
contained an evaluation of overall perceived user experience
with the robotic system. In conclusion, participants received

their reward and were dismissed. A graphical representation
of the procedure is depicted in Fig. 7.

D. QUESTIONNAIRES
In our experiment, we assessed trust and its five bases (com-
petence, reliability, understandability, personal attachment,
faith) in the robot and the participants’ cognitive load during
the interaction in order to evaluate the effects of proactive
dialogue behaviour. Furthermore, we measured the user’s
experience with the system in general for checking the quality
of the setup. Each variable was measured with items from
established and validated scales. To determine trust towards
the robot, a short version of the Trust in Automated Systems
Scale [59] in German by Kraus [60] was implemented. The
scale consists of 7-items for measuring the user’s trust and
showed great performance for investigating learned trust dur-
ing and after interaction. Furthermore, scales for measuring
the bases of trust developed by Madsen and Gregor [39]
were used. For measuring three types of cognitive loads
(extraneous, germane, intrinsic), a questionnaire developed
by Klepsch et al. [68] was included. More information on
the different types of cognitive load is described in [69], for
example. The user’s experience with the system was assessed
via the user experience questionnaire (UEQ) developed by
Laugwitz et al. [70]. This questionnaire consists of six word-
pair scales measuring the pragmatic (Perspicuity, Efficiency,
Dependability) and hedonic qualities (Stimulation, Novelty)
of a technical system. Besides, for personality assessment,
the Big-Five-Inventory BFI-10 by Rammstedt et al. [71] was
included. The scales, which were only available in English
language, were translated into German. Besides, some scales
were slightly modified for content and study context. For
example, we clarified that participants rate the interaction
with the NAO-robot and not the task-interface, as the original
questionnaires make use of the neutral term ‘‘system’’ in the
scale statements.

Possible confounding variables were measured using
scales of predisposed trust in autonomous systems [72],
negative attitudes towards robots (NADAS) [73], as well as
self-developed scales for previous experience with speech
dialog systems and DIY-tasks. All scales were rated on a
7-point Likert-scale from 1 (strongly disagree; word adjective
(UEQ)) to 7 (strongly agree; word adjective (UEQ)).
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TABLE 2. Descriptive statistics of the UEQ-subscales and the overall perceived trust in the system with reference to the proactive dialogue actions. Mean
values (M) and standard deviations (SD) are presented.

VI. RESULTS
For data analysis, we used t-tests for the manipulation
checks, a multivariate analysis of variance (ANOVA) for
confounding variables, as well as a mixed ANOVA for testing
the significance of developed proactive dialogue strategies.
No significant outliers were found in the data set. Typically
for small sample sizes, some deviations of normal distribution
(Shapiro-Wilk test) were detected. However, the F-statistic of
anANOVAcan be robust to violations of assumptions, as long
as the group sizes are equal [74]. Furthermore, we tested
for homogeneity of the error variances using Levene’s test.
All dependent variables showed equal variances (p > .05)
except the measurement of understandability which was then
excluded from the ANOVA.

A. CONFOUNDING VARIABLES AND
MANIPULATION CHECK
Confounding group differences for proactive behaviour
could be ruled out as the multivariate ANOVA did not
reveal any significant differences (all p-values � .05).
The evaluation of the manipulation check confirmed the
successful manipulation of proactive dialogue behaviour (all
p-values < .05 with regard to the non-proactive strategy).
However, the manipulation of timing of proactive behaviour
dependent on the subject’s insecurity failed (all p-values
� .05). Therefore, we did not consider timing strategies in
the evaluation. Instead, we checked if the two tasks differed
significantly in their level of difficulty. The conduction of a
paired t-test revealed that the intrinsic cognitive load, related
to the difficulty of a task, was rated significantly higher
for the planning of the wall candle than for the planning
of the nesting box (mean (M) = 1.94, SD = 1.08 for
nesting box vs. M = 2.48, SD = 1.20 for wall candle,
t(41) = −3.46, p < .01). Hence, differences between
proactive dialogue actions depending on task difficulty could
be observed.

B. USER EXPERIENCE WITH THE EXPERIMENTAL SETUP
In order to ensure the functionality and usability of
employing NAO as an intelligent assistant, we evaluated the

system regarding user experience. In general, the system
received positive feedback. Participants rated their interaction
partner well understandable, represented by a high value
for perspicuity (M = 5.45, SD = 1.18). Furthermore,
the system received good ratings for dependability (M =

5.42, SD = .87) and efficiency (M = 5.21, SD = .99).
In addition, the interaction with NAO received moderately
good ratings for attractiveness (M = 4.99, SD = .83),
novelty (M = 4.77, SD = .92), and stimulation (M = 4.80,
SD = .87). The descriptive statistics of the UEQ-
subscales with reference to the proactive dialogue actions
are depicted in Table 2. The Notification-action was rated
higher than the Intervention-action for the UEQ-features
perspicuity (t(13.48) = 2.61, p < .05) and novelty
(t(19) = 2.52, p < .05). Furthermore, theNotification-action
was rated higher than the Suggestion-action for perspicuity
(t(20) = 3.33, p < .01). The comparison of the proactive
action showed no significant differences on any other
UEQ-subscale.

C. EFFECTS OF PROACTIVE DIALOGUE STRATEGIES
ON TRUST
There was a statistically significant interaction between
proactive dialogue actions and task difficulty for perceived
competence (F(3, 38) = 8.25, p < .001, η2 = .39) and
for perceived reliability (F(3, 38) = 3.95, p = .015, η2 =
.24). In order to investigate further which groups differed
significantly in which task, a series of t-tests with Bonferroni
correction was conducted. First, we examined the effects of
proactive actions on perceived competence. TheNotification-
action was evaluated significantly higher than the None-,
and Intervention-action for the task nesting box (t(19) =
4.46, p < .001 vs. None; t(19) = 2.93, p = .038
vs. Intervention). Furthermore, for the more difficult task
wall candle the Notification-action was rated higher than
the Intervention-strategy (t(19) = 2.90, p = .038). In the
following, results for perceived reliability are presented. For
the relatively easier task nesting box, the Notification-action
was graded significantly higher than the None (t(19) =
3.03, p = .028 vs. None). For the harder task wall candle the
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FIGURE 8. Trust progression over the course of the experiment with
regard to the proactive dialogue actions. Pre-Trust represents
predisposition to trust autonomous systems, while Trust T1 and
T2 represent the trust measurements after the tasks ‘‘nesting box’’ and
‘‘wall candle holder’’ respectively.

Notification- and None-action were rated significantly higher
than the Intervention-action (Notification vs. Intervention,
t(19) = 2.96, p = .032; None vs. Intervention, t(18) =
2.84, p = .044). These results are depicted in Fig. 9. Finally,
we investigated significant main effects of proactive dialogue
strategies. The Notification-action was evaluated higher than
the Intervention-action for the categories perceived compe-
tence (t(19) = 3.02, p = .028) and perceived reliability
(t(19) = 3.16, p = .020). Additionally, the Notification-
action was rated higher than the None-action for perceived
competence (t(19) = 2.00, p = .036). No significant results
were found for all of the remaining dependent variables.

Considering the trust progression over the course of the
experiment depending on the proactive actions, we investi-
gated the within-subject differences of the trust ratings before
the experiment and after each task. Hereby, initial trust was
measured using the predisposed trust in autonomous systems
scale. For testing the significance of the differences, we used
paired t-tests. We found a significant trust difference for
the None-action measured after the first and second task
(t(9) = −3.00, p = .015). Furthermore, we found significant
trust differences between initial trust and trust measured after
the first task for the actions Notification (t(10) = −3.95,
p = .003) and Suggestion (t(10) = −2.90, p = .016). There
was no significant trust progression for the Intervention-
action. The results are depicted in Fig. 8.

D. EFFECTS OF USER CHARACTERISTICS ON TRUST
Further exploring the data, we found significant gender
differences using t-tests on the independent samples. Females
rated themselves to be less experienced with DIY (t(40) =
2.13, p = .039). Additionally, they rated themselves notably
less experienced with CAs (t(40) = 1.94, p = .059).
Considering personality characteristics, females had higher
ratings for neuroticism (t(40) = −3.33, p = .002) and
conscientiousness (t(40) = −2.22, p = .032). Females

rated themselves also considerably more open to experiences
(t(40) = −1.83, p = .075).
For observing the effects of the proactive actions depend-

ing on the individual gender, we split the data set accordingly
and tested for significant differences. Due to the resulting
smaller sample size, a normal distribution of the data was
not further provided. Therefore, we utilised a Kruskal–Wallis
one-way analysis of variance for testing the effects of
the different proactive actions. Here, several significant
differences were found for the female gender. For the
task ‘‘nesting box’’, significant differences were found for
reliability (p = .042) and competence (p = .038).
A significant difference was found for the task ‘‘wall candle’’
regarding reliability (p = .005). Additionally, we found a
significant effect on overall perceived reliability (p = .020).

In order to investigate further which groups differed
significantly for each task, post-hoc tests using the Dunn-
Bonferroni method were conducted. The results showed
that the Notification-action was rated higher than the
None-action for reliability (Z = −2.83, p = .028
and competence (Z = −2.88, p = .024 in the
task‘‘nesting box’’. In the task ‘‘wall candle’’, the None- and
Notification-action were rated higher than the Intervention-
action for reliability (Z = −3.18, p = .009;
Z = −2.95, p = 0.019). Additionally, we found some
notable effects of the proactive actions on competence
(p = .055) and understandability (p = .059) for the
task ‘‘wall candle’’ and for the UEQ-dimensions novelty
(p = .090) and dependability (p = .093). For
the male gender no significant differences were found.
However, a notable effect of the proactive actions on the
UEQ-dimension perspicuity was found ((p = .070).

VII. DISCUSSION
The study results verified our hypotheses that altering the
degree of proactive system behaviour has a significant impact
on the user’s trust in the CA. Especially, we discovered inter-
esting insights into the relations between proactive actions
and task knowledge/difficulty as well as user characteristics
on the perceived competence and reliability of the system.
For the first, easier perceived task ‘‘nesting box’’, low-
and medium-level proactive system actions were particularly
trusted more than the reactive condition. This was validated
both by the examination of the trust progression analysis and
the ANOVA. For this, there exist two possible explanations.

First, users could have been more sure about the decision
on appropriate planning steps for this task in comparison
to the ‘‘wall candle task’’. Therefore, the proactive actions
could have been perceived as a confirmation or reinforcement
of their own decision making processes and relieved them
in task execution. This in turn could foster trust, as the
benefits of proactive actions were higher as compared of the
risks of wrongful system advice. Particularly, as the low-
and medium level are more controllable [33]. The relative
low ratings for competence and reliability of the None-action
for the ‘‘nesting box’’-task could be explained that the ratio
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FIGURE 9. Depiction of the results for perceived reliability (left) and perceived competence (right) depending on the four proactive dialogue strategies
(Intervention, none, notification, suggestion) and the two tasks (1 = ‘nesting box’; 2 = ‘wall candle’). Mean values and standard deviations are provided.

between expenses and benefits of system usage was too
low, as requesting the system for help was perceived as
unnecessary step and could have been more of a distraction.
For the second, more difficult task, the None-action was
trusted similarly to the medium-level proactive conditions,
as the benefits of requesting system help outweighed the costs
of addressing the system.

Another explanation could be that study participants
perceived low- and medium level proactive actions to help
better in getting familiar with the task and the CA’s design
and performance than a reactive system that does not
actively communicate. Hence, the dynamically learned trust
according to Hoff and Bashir [50] was increased more by
proactive actions in the first task, because they initially made
the system more transparent. For the second task, the None-
action increased the dynamically learned trust as subjects
started communicating more with the system and learned
about its benefits.

Among the proactive strategies, theNotification-action had
the most impact on conveying competence and reliability
of the system. This particularly holds true for assistance in
the first, easier task. The Notification-strategy formed the
most conservative proactive strategy, that offered help in a
more subtle way. Hence, study participants always felt in
control but were also aware of the system’s active assistance.
Furthermore, this strategy comprised themost (four) dialogue
turns. It seems that subjects tend to accept proactive system
behaviour more when it is possible for them to have natural
dialogues.

In line with the findings from previous work by
Rau et al. [11], the most autonomous system behaviour,
the Intervention-action, was less trusted than the more
conservative strategies. Subjects considered this strategy to
be too obtrusive and perceived the system to be imposing.
In summary, when being proactive, a system should act more
subtle and give the user a feeling of system involvement in
the task, i.e. by notifying about or suggesting information.

The Intervention-strategy could be used for really tedious or
annoying tasks. Therefore, we consider the Notification- and
Suggestion-strategy as more trustworthy for the user. These
findings reinforce the results by Peng et al. [2], designating
medium-level proactivity as the most helpful.

When considering how user characteristics affect the
relation of proactive system actions and HCT, we found
significant gender differences. The interplay between gender
and trust is a common phenomenon in engineering and
science [75]–[77]. We found that varying the degree of proac-
tive system behaviour had a particularly significant impact
on the females user’s cognitive-based trust, reliability and
competence. Female study participants were less experienced
with CAs and DIY than male subjects. This suggests a first
evidence, that the perception of proactive system behaviour as
trustworthy is crucially affected by the user’s experience with
the task and technology. Furthermore, we found significant
differences between the genders regarding the big five
personality traits as females rated themselves higher for
neuroticism, conscientiousness, and to some degree openness
towards new experiences. A high degree of openness to
experience relates curious, innovative, adventurous persons.
A high degree of conscientiousness relates to goal-oriented,
efficient, disciplined, organised behaviour. Sensitive, inse-
cure individuals can be related to have a high degree of
neuroticism. Examining the individual personality traits it
could be reasoned that proactive behaviour primarily affects
innovative, goal-driven, but also more insecure persons.
Interestingly, in organisational psychology and management,
proactive behaviour is associated with goal-directed activities
and innovation [14], [15] relating to the traits openness
and conscientiousness. Seibert et al. [78] also introduce the
‘‘proactive personality’’. Hence, there could be a correlation
between one’s tendency for proactive behaviour and the
perception of a proactive CA. However, more research on this
topic is necessary for providing clear insights and underpin
this hypothesis. Nonetheless, taking into consideration the
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user’s personality when developing a proactive CA could be
beneficial.

The reason why overall trust in the system did not
differ significantly could lie in the short duration of the
interaction. These kinds of interactions only influence the
cognitive-, and not the affect-based trust. In order to get
significant differences in overall trust, a more long-term
human-machine relationship is necessary. According to
Madsen and Gregor [39], both cognitive- and affect-based
trust must be perceived as high in order to establish an overall
trustworthy CA.

However, manipulation of timing strategy according to
the user’s insecurity failed. In consequence, we assume that
a time-dependent measure for insecurity is insufficient for
usage as a trigger-variable of proactive dialogue actions.
Arguably, time as initiation-criterion needs to be avoided at
all because there exist too many side factors, which are not
necessarily user-related, that could lead to a delay in time.

Nevertheless, our work had several limitations. Even
though we let subjects interact with an actual autonomous
system, the study was still conducted in a controlled envi-
ronment. In a realistic scenario, a DIY-planning task would
be much more unpredictable and unbounded. Additionally,
NAO only allows for a limited speech interaction due to
its technical constraints. Furthermore, the timing strategies
developed can only be controlled in an experimental setup
and can hardly be transferred to a real case scenario. Using the
user’s insecurity as a metric for timing proactivity, however,
has proven unreliable. For tracking the user’s insecurity,
more sophisticated approaches, e.g. observing the mouse
movement of a user or applying eye tracking, could present a
more effective method. Since we kept using the same level
of proactivity for a subject while going through a study
run, this resulted in the perception of a rigid system. Even
though the proactive dialogue strategies are in general domain
and system independent making our results generalisable,
their applicability needs to be tested in different domains in
future work. Also a more diverse user group, i.e. a wider
range of the subject’s age. profession, or different cultures,
could help with generalisation of the approach. Additionally,
the proactive actions need to be tested in more flexible and
dynamic task structures, in order to investigate if proactive
behaviour can improve task efficiency.

VIII. CONCLUSION AND FUTURE WORK
Due to the increasing abilities of autonomous systems, proac-
tive conversations will become a major design guideline for
developing high-quality assistance behaviour. By equipping
a system with proactive functionality, a system may be
able to relieve a user in task execution and competently
provide reliable guidance and advice. The key to conveniently
convey proactive system actions is to engage in a dialogue.
Therefore, this article provided insights in developing
proactive dialogue strategies for CA. We described four
proactive actions or levels for engaging in a dialogue for
assisting users. The results of an initial study on the user

perception of these actions showed the overall benefits of
low- to medium-level proactivity and its relations to the HCT
relationship. Furthermore, we discovered an interaction of
proactive actions and perceived task difficulty, as well as
dependencies between proactive dialogue and certain user
characteristics, such as domain experience, technical affinity,
and personality properties. The results further showed that the
low- to medium-level proactivity is better for establishing an
immediate trust relationship. Particularly, proactive dialogue
seems to be especially relevant for novice users. In future
work, a more flexible way of proactive behaviour is intended,
as we only considered one type of proactive action at a
time in this work. For truly intelligent proactive assistance
a dialogue system should be able to choose the appropriate
type of action at the right time following an efficient proactive
dialogue strategy. Therefore, we need to consider temporal
relationship between the individual actions during different
task steps. Here, we plan to implement a system that is able
to learn an optimal proactive strategy. The systems should
derive this strategy from real users, e.g. via reinforcement
learning methods considering the user’s trust state during
the interaction. In doing so, we aim to create an even more
trustworthy human-machine interaction.
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