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Abstract: In this work, the spread of hypergeometric orthogonal polynomials (HOPs) along their
orthogonality interval is examined by means of the main entropy-like measures of their associated
Rakhmanov’s probability density—so, far beyond the standard deviation and its generalizations, the
ordinary moments. The Fisher information, the Rényi and Shannon entropies, and their correspond-
ing spreading lengths are analytically expressed in terms of the degree and the parameter(s) of the
orthogonality weight function. These entropic quantities are closely related to the gradient functional
(Fisher) and the Lq-norms (Rényi, Shannon) of the polynomials. In addition, the degree asymptotics
for these entropy-like functionals of the three canonical families of HPOs (i.e., Hermite, Laguerre,
and Jacobi polynomials) are given and briefly discussed. Finally, a number of open related issues are
identified whose solutions are both physico-mathematically and computationally relevant.

Keywords: special functions; classical orthogonal polynomials; entropy-like measures; asymptotics

1. Introduction

Hypergeometric orthogonal polynomials (HOPs), also called Shohat–Favard poly-
nomials and classical orthogonal polynomials, play a key role in the development of the
theory of special functions, and they are instrumental in numerous scientific problems,
ranging from approximation theory to quantum theory and mathematical physics [1–8].
Here, we examine and review the knowledge of the spreading measures of the HOPs in
a real continuous variable, {pn(x)}, orthogonal with respect to the weight function h(x)
on the interval Λ ⊆ R. These quantities measure the different spreading facets of their
associated probability density as follows:

ρn(x) = p̂2
n(x) h(x) =

1
κn

p2
n(x) h(x), with κn =

∫
Λ
|pn(x)|2 h(x)dx, (1)

where the symbol p̂n(x) = pn(x)/κ
1
2
n denotes the orthonormal polynomial. This quantity

is called Rakhmanov’s density [9] because he first discovered it to govern the asymptotical
(n → +∞) behavior of the ratio of two polynomials with consecutive orders. Later on,
it was realized that this normalized-to-unity probability density characterizes the Born’s
probability density of the bound stationary states of a great deal of quantum systems in
one and many dimensions (harmonic oscillator, hydrogenic atoms, etc.) [3,10,11]. This is
because the physical solutions (wave functions) of the Schrödinger equation for a broad
family of quantum potentials, such as the spherically symmetric ones [3,12,13], are con-
trolled by the three canonical HOPs families of Hermite Hn(x), Laguerre L(α)

n (x) and Jacobi
P(α,β)

n (x) types, respectively. So, the spreading measures of the HOPs quantify numerous
physical and chemical properties of quantum systems, such as the physical entropy-like
measures, which are the basic variables of the classical and quantum information theo-
ries [14–16]. These spreading measures include standard deviation (and its generalizations,
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the ordinary moments) and the entropy-like measures (Fisher information [17,18], Shannon
entropy [14,19] and Rényi entropies [20,21]) and Lq-norms of the density ρn(x). In order for
all these quantifiers to be mutually compared on the same footing, we have examined the
corresponding information-theoretic lengths of Fisher, Shannon and Rényi types [22–25].
These quantities, together with the standard deviation, are direct spreading measures [26]
of Rakhmanov’s density because they have some common properties: namely, the same
units as the variable x, invariance under translations and reflections, linear scaling with x
and vanishing in the limit as ρn(x) approaches a delta function. Note that, contrary to the
standard deviation, which measures the concentration of the probability density around
a particular point (the centroid) of the orthogonality interval, the information-theoretic
lengths do not refer to any specific point of that interval.

The Fisher information F(ρ) is a functional of the derivative of the density ρ(x);
so, it is sensitive to the fluctuations of the density. The Fisher information controls the
localization of the density around its nodes, appropriately grasping the oscillatory nature
of the density; this confers it a relevant role in the characterization of a great diversity of
scientific phenomena [18]. It is a local spreading measure of the density, which quantifies
the pointwise concentration of ρ. Moreover, the higher this quantity, the more localized the
density, and the higher the accuracy in predicting the localization of the particle.

The Rényi entropies Rq[ρ], 0 < q < ∞, q 6= 1, conform a family of spreading measures
of the density ρ(x), depending on a real parameter q. They are q-power functionals of the
density, closely related to the Lq-norms, so they have a global character, contrary to the
previous Fisher information. According to the values of the parameter q, these quantities
supply complementary ways to quantify the different facets of the extent/shape of ρ(x) all
over the orthogonality interval, including the Onicescu functional [27] or disequilibrium
D[ρ] = exp(−R2[ρ]) and the Shannon entropy S[ρ] = limq→1 Rq[ρ]. These quantities satisfy
a large number of interesting physico-mathematical properties [14,28–31]. In particular,
the Shannon entropy is the only one that satisfies all the hypotheses of Shannon’s theorem
of information theory [14,19] as well as some other important criteria [32]; for instance,
Shannon entropy becomes thermodynamical entropy in the case of a thermal ensemble. It
is worth noting that S[ρ] can have any values in [−∞, ∞], contrary to differential Shannon
entropy, −∑i pi ln pi, of a probability on a discrete sample space, which is always positive.
Moreover, any sharp peaks in ρ(x) tends to make S[ρ] negative, whereas a slowly decaying
density’s tail provokes positive values for S[ρ]; hence, the Shannon entropy S[ρ] estimates
the total extent of the density ρ.

In this work, we update the analytical determination of the spreading measures of
the HOPs with emphasis on the entropy-like quantities and Lq-norms because of their
relevance in the information theory of special functions and quantum systems, and to
facilitate its numerical and symbolic computation. We should keep in mind that the naive
numerical evaluation of these quantities using quadratures is often not convenient due to
the increasing number of integrable singularities when the polynomial degree n is increas-
ing, which spoils any attempt to achieve reasonable accuracy, even for rather small n. In
addition, the asymptotics (n→ ∞) of these polynomial functionals has also been consid-
ered, although briefly discussed. The degree asympotics of HOPs and its generalizations
was initiated in the middle of the nineties by A.I. Aptekarev, J.S. Dehesa, W. van Assche and
their collaborators [33–35] and reviewed with some physical and mathematical applications
in 2001 [11] and 2010 [36], respectively. The q-asymptotics and the weight-function’s pa-
rameter asymptotics for unweighted and weighted Lq-norms are not considered here. The
degree asymptotics was recently used to evaluate physical Rényi and Shannon entropies for
the highly-excited (Rydberg) states of quantum systems of harmonic (oscillator-like) [37,38]
and Coulombic (hydrogenic-like) types [39–41] as well as for Rydberg atoms, which are
used as building elements of logical gates in quantum computation.

Here, we do not consider the entropy-like measures of polynomials with varying
weights (i.e., polynomials whose weight-function’s parameter does depend on the polyno-
mial degree), which are also of great mathematical and physical interest [42,43], nor do we
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consider another kind of entropy, the discrete Shannon entropy of HOPs [44] introduced
in 2009, which was explicitly calculated for Chebyshev polynomials and whose degree
asymptotics for Jacobi polynomials was determined in 2015 [45] (see also [46] for the
discrete Tsallis and Rényi entropies).

This paper has the following structure. In Section 2, we give the spreading measures
for an arbitrary probability density ρ(x) of dispersion (standard deviation and ordinary mo-
ments) and information-theoretic (Fisher, Shannon and Rényi) types, which are considered
here. In Section 3, the moments around the origin and the standard deviation for the three
canonical families of real HOPs (namely, Hermite, Laguerre and Jacobi) are explicitly calcu-
lated. In Sections 4 and 5, we determine the Fisher and Rényi (and the associated weighted
Lq-norms) spreading measures of the HOPs for all degree n, respectively. In Sections 6–8,
we calculate the degree asymptotics of the weighted and generalized weighted Lq-norms
for Hermite, Laguerre and general (i.e., Szegö type) orthonormal polynomials and Jacobi
polynomials, respectively. In Sections 9 and 10 we show the Shannon spreading measures
of the HOPs and their degree asymptotics via the appropriate (unweighted, weighted)
Lq-norms, respectively. Finally, some concluding remarks are pointed out and a number of
open related issues are identified.

2. Spreading Measures of a Probability Density

In this section, we describe the spreading measures of dispersion (ordinary moments,
standard deviation) and information-theoretic (Fisher information, Shannon entropy, Rényi
entropies) types for a random variable X characterized by the continuous probability
density ρ(x), x ∈ Λ ⊆ R.

To estimate the spread of X over the interval Λ, we often take a familiar disper-
sion measure [47] related to the moments around a particular point of Λ; usually, one
chooses the origin (ordinary moments or moments around the origin 〈xk〉) or the cen-
troid 〈x〉 (central moments or moments around the centroid 〈(x − 〈x〉)k〉), or we use
some information-theoretic quantities connected with the frequency or entropic moments
Wq[ρ] = 〈[ρ(x)]q−1〉 = ‖ρn‖q

q [47–49], which do not depend on any particular point of the
interval and are closely related to the Lq-norms of the density. Each set of moments deter-
mines the probability density ρ(x) under certain conditions as the associated ordinary [50]
and entropic moment problems state. The expectation value of f (x) with respect to the
(normalized-to-unity) density ρ(x) is given by 〈 f (x)〉 =

∫
Λ f (x)ρ(x)dx. The most familiar

dispersion measure is the statistical root-mean-square or standard deviation ∆x, which is
the square root of the variance:

V[ρ] = (∆x)2 = 〈x2〉 − 〈x〉2,

The entropic moments quantify the extent/shape to which the probability is, in fact,
distributed. They are, at times, much better probability quantifiers than the ordinary
moments [48]; moreover, they are fairly efficient in the range where the ordinary moments
are fairly inefficient [51]. Two relevant spreading measures related to the entropic moments
are the entropy-like measures of Rényi and Shannon types. The Rényi entropies Rq[ρ] of
ρ(x) are defined as follows [20,21]:

Rq[ρ] =
1

1− q
ln Wq[ρ] =

1
1− q

ln
∫

Λ
[ρ(x)]qdx, q > 0, q 6= 1, (2)

The Shannon entropy [14,19] is given by the limiting value q→ 1, taking into account
the normalization condition W1[ρ] = 1 as follows:

S[ρ] = lim
q→1

Rq[ρ] = −
∫

Λ
ρ(x) ln ρ(x)dx. (3)

The Rényi parameter q allows to enhance or diminish the contribution of the integrand
over different regions to the whole integral in (2). Higher values of q make the function
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[ρ(x)]q to concentrate around the local maxima of the distribution, while the lower values
have the effect of smoothing that function over its whole domain. It is in this sense that the
parameter q provides a powerful tool in order to obtain information on the configuration
shape of the probability density by means of the Rényi entropies. Moreover, let us mention
here the monotonicity relations given by the following:

Rp[ρ] ≥ Rq[ρ], if p ≤ q; and
p− 1

p
Rp[ρ] ≥

q− 1
q

Rq[ρ], if p ≥ q > 1 (4)

which, in particular, allow one to lowerbound all the Rényi entropies by means of the
second-order entropy as Rq[ρ] ≥ 1

2 R2[ρ], for q > 0.

A third remarkable, qualitatively different, entropy-like spreading measure of ρ(x) is
the Fisher information [17,18] which is defined as follows:

F[ρ] :=
∫

Λ

[ρ′(x)]2

ρ(x)
dx. (5)

Opposite to the previous dispersion and entropy-like entropies, which have a global
character because they are power and logarithmic functionals of the density, the Fisher
information has a locality property because it is a functional of the derivative of ρ(x).
Moreover, these three information-theoretic spreading measures (Shannon, Rényi, Fisher)
do not depend on any particular point of the interval Λ, contrary to the standard deviation.
However, they have different units from the standard deviation (i.e., the units of X) so that
they can not be mutually compared. To overcome this difficulty, the following information-
theoretic lengths were introduced [26]:

LR
q [ρ] = eRq [ρ] =

(
Wq[ρ]

) 1
1−q =

{∫
Λ
[ρ(x)]qdx

} 1
1−q

, Rényi length, (6)

LS
1 [ρ] = lim

q→1
LR

q [ρ] = exp(S[ρ]) = exp
{
−
∫

Λ
ρ(x) ln ρ(x)dx

}
, Shannon length, (7)

δx =
1√
F[ρ]

=

{∫
Λ

[ρ′(x)]2

ρ(x)
dx
}− 1

2

, Fisher length. (8)

We remark that the quantities (V[ρ], Rq[ρ], S[ρ], F[ρ]), and its related spreading lengths
(∆x, LR

q [ρ], LS
1 [ρ], δx), are complementary since each of them grasps a single different facet

of the probability density ρ(x). So, the variance measures the concentration of the density
around the centroid, while the Rényi and Shannon entropies are measures of the config-
urational aspects of the extent/shape to which the density is, in fact, concentrated, and
the Fisher information is a quantifier of the oscillatory character of the density since it
estimates the pointwise concentration of the probability over its support Λ. All spread-
ing lengths share the following properties [26,52,53]: same units as the random variable,
translation, reflection invariance and linear scaling under adequate boundary conditions,
vanishing when the density tends to a delta function. Moreover, they fulfill an uncer-
tainty property [24,54–56] and the Cramér-Rao [52] and Shannon [19] inequalities given by
the following:

δx ≤ ∆x, and LS
1 [ρ] ≤ (2πe)

1
2 ∆x, (9)

respectively.
In the next sections, we determine the previous spreading measures for the Rakhmanov

density (1) of the real hypergeometric polynomials {pn(x)}, orthogonal with respect to the
weight function h(x) on the interval Λ so that the following holds:∫

Λ
pn(x)pm(x) h(x)dx = κn δn,m, deg pn = n (10)
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where the weight function has the following expressions:

hH(x) = e−x2
, x ∈ (−∞,+∞)

hL
α(x) = xαe−x, (α > −1), x ∈ [0,+∞) (11)

hJ
α,β(x) = (1− x)α(1 + x)β, (α, β > −1), x ∈ [−1,+1]

for the HOPs families of Hermite Hn(x), Laguerre L(α)
n (x) and Jacobi P(α,β)

n (x) types,
respectively. The corresponding normalization constants are as follows:

κH
n ≡ d2

n =
√

π n! 2n, (12)

κL
n ≡ d2

n,α = Γ(n + α + 1)/n!, (13)

κ J
n ≡ d2

n,α,β =
2α+β+1Γ(α + n + 1)Γ(β + n + 1)

n!(α + β + 2n + 1)Γ(α + β + n + 1)
, (14)

respectively. Note that κn = 1 for the orthonormal polynomials p̂n(x) of Hermite Ĥn(x),
Laguerre L̂(α)

n (x) and Jacobi P̂(α,β)
n (x) types.

3. Ordinary Moments and Standard Deviation of HOPs

In this section, we show the ordinary moments and the standard deviation for the
three canonical families of the hypergeometric orthonormal polynomials defined by the
expressions (10) and (11). They are given by the corresponding quantities of the associated
Rakhmanov density given by (1):

〈xk〉n =
∫ b

a
xk ρn(x) dx =

1
κn

∫ b

a
xk p2

n(x) h(x) dx k = 0, 1, 2, ... (15)

for the ordinary moments, and

(∆x)n =
(
〈x2〉n − 〈x〉2n

) 1
2 , (16)

for the standard deviation. These quantities can be obtained from the different charac-
terizations [3,4,6] of the HOPs, such as the explicit expression [22–24], the orthogonality
relation (10), the three-term recurrence relation [57] and the second-order differential equa-
tion [3,58]. Briefly, for Hermite polynomials these quantities have the following values:

〈xk〉n =

 k!
2kΓ( k

2+1) 2F1

(
−n,− k

2
1

∣∣∣∣2), even k

0, odd k
, (17)

where 2F1(a, b; c; 2) denotes the Gauss hypergeometric function 2F1(a, b; c; x) [6] evaluated
at x = 2 for the ordinary moments, and

(∆x)n =

√
n +

1
2

, (18)

for the standard deviation of the orthonormal Hermite polynomials. For Laguerre polyno-
mials the following values

〈xk〉n,α =
n! Γ(k + α + 1)
Γ(n + α + 1)

n

∑
r=0

(
k

n− r

)2(k + α + r
r

)
, (19)

(∆x)n,α =
√

2n2 + 2(α + 1)n + α + 1, (20)
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were found for the ordinary moments and for the standard deviation of the orthonor-
mal Laguerre polynomials, respectively. For Jacobi polynomials, one has the follow-
ing expressions:

〈xk〉n,α,β =
n

∑
i=n−k

(
n

∑
t=i

(−1)t−i
(

n
t

)
Γ(α + n + 1) Γ(α + β + n + t + 1)
n! 2t Γ(α + β + n + 1) Γ(α + t + 1)

(
t
i

))

× (−1)k+i−n 2n (k + i)! Γ(n + α + β + 1)
(k + i− n)! Γ(2n + α + β + 1)

× 2F1

(
n− k− i, n + β + 1

2n + α + β + 2

∣∣∣∣2). (21)

for the ordinary moments of the orthonormal Jacobi polynomials, and

(∆x)n,α,β =

[
4(n + 1)(n + α + 1)(n + β + 1)(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2)2(2n + α + β + 3)

+
4n(n + α)(n + β)(n + α + β)

(2n + α + β− 1)(2n + α + β)2(2n + α + β + 1)

]1/2

, (22)

for the standard deviation. Note, in particular, that the asymptotical behavior of the
standard deviation of the HOPs goes as

√
n (Hermite),

√
2 n (Laguerre) and 1/

√
2 (Jacobi)

when the weight’s parameters are fixed. Finally, it is worth mentioning here that other kinds
of moments of orthogonal polynomials were recently considered, such as the exponential
and logarithmic moments as well as the generalized Krein-like moments of HOPs [59].

4. Fisher’s Spreading Length of HOPs

In this section, we give the values of the Fisher spreading length (8) for the three
canonical families of the HOPs defined by the expressions (10) and (11). They are given by
the corresponding quantities of the associated Rakhmanov probability density ρn(x) given
by (1):

(δx)n ≡
1√

F[ρn]
≡
〈[

d
dx

ln ρn(x)
]2
〉− 1

2

=

{∫
∆

dx
[ρ′n(x)]2

ρn(x)

}− 1
2

, (23)

where F[ρn] ≡ F[pn] denotes the Fisher information of the polynomial pn(x). This quantity
was derived for the first time from the second-order differential equation of HOPS [60] (see
also [25,61]), obtaining the following values:

(δx)n =
1√

4n + 2
, (24)

for Hermite polynomials Hn(x),

(δx)n,α =


1√

4n+1
; α = 0,√

α2−1
(2n+1)α+1 ; α > 1,

0; α ∈ (−1,+1], α 6= 0.

(25)

for Laguerre polynomials L(α)
n (x), α > −1, and

(δx)n,α,β =
1√

F
[
ρn,α,β

] , (26)
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where the Fisher information F
[
ρn,α,β

]
is given by the following:

F
[
ρn,α,β

]
=



2n(n + 1)(2n + 1), α, β = 0,
2n+β+1

4

[
n2

β+1 + n + (4n + 1)(n + β + 1) + (n+1)2

β−1

]
, α = 0, β > 1,

2n+α+β+1
4(n+α+β−1)

[
n(n + α + β− 1)

(
n+α
β+1 + 2 + n+β

α+1

)
+(n + 1)(n + α + β)

(
n+α
β−1 + 2 + n+β

α−1

)]
, α, β > 1,

∞, otherwise,

for Jacobi polynomials P(α,β)
n (x), with α, β > −1. We can easily note from these values

and the ones for the standard deviation of the previous section that the Cramér-Rao
inequality (9) is duly fulfilled for the three families of HOPs. Moreover, we observe that the
asymptotical behavior of the Fisher spreading length δ(x) for the HOPs is n−1/2 (Hermite),
n−1/2(Laguerre) and n−3/2 (Jacobi) when the weight’s parameters are fixed.

5. Rényi’s Spreading Lengths and Weighted Lq-Norms of HOPs

In this section, we give the values of the Rényi spreading length (6) for the three
canonical families of HOPs {pn(x)}, defined by the expressions (10) and (11). These
quantities, denoted as LR

q [pn] for convenience, are given by the corresponding quantities
of the associated Rakhmanov density ρn(x) given by (1):

LR
q [ p̂n] = eRq [ p̂n ] =

(
Wq[ p̂n]

) 1
1−q =

{∫
Λ
[ρn(x)]qdx

} 1
1−q

=

{∫
Λ

[
p̂2

n(x) h(x)
]q

dx
} 1

1−q
, q > 0, q 6= 1, (27)

where the symbols Rq[ p̂n] and Wq[ p̂n] for the Rényi entropy and the weighted Lq-norm
of the orthonormal polynomials p̂n(x) denote the qth-order Rényi entropy Rq[ρn] and the
entropic moment Wq[ρn] of ρn(x), respectively, so that the following holds:

Rq[ p̂n] =
1

1− q
ln
∫

Λ

[
p̂2

n(x) h(x)
]q

dx, q > 0, q 6= 1, (28)

and
Wq[ p̂n] =

∫
Λ

[
p̂2

n(x) h(x)
]q

dx, q > 0, q 6= 1, (29)

Then, we have in particular that the weighted Lq-norm and the Rényi spreading
length of the orthogonal (HOPs) and orthonormal polynomials are mutually related as
follows:

Wq[pn] =
∫

Λ

[
p2

n(x) h(x)
]q

dx = κ
q
n Wq[ p̂n] (30)

and

LR
q [pn] =

(
Wq[pn]

) 1
1−q = κ

q
1−q
n
(
Wq[ p̂n]

) 1
1−q . (31)

The analytical determination of these norms has been a long standing problem in the
theory of special functions and extremal polynomials itself since the times of Bernstein
and Steklov (see [62–64]) and in the theory of trigonometric series [65]. More recently,
these quantities were obtained by using either (a) the series expansion of the powers of
the HOPs pn(x) by means of the combinatorial Bell polynomials [66], or (b) the Srivastava–
Niukkanen’s linearization method [67,68] of the positive integer powers [pn(x)]2q of HOPs
by means of the multivariate Lauricella function F(2q)

A

(
1
q , . . . , 1

q

)
[69] (Hermite and La-

guerre cases) and in terms of the Srivastava–Daoust generalized function F1:2;...;2
1:1;1...;1(1, . . . , 1)

(Jacobi case), as Sánchez-Moreno et al. showed in [22,70], respectively. The combinatorial
approach is based on the expansion p-th power of the arbitrary polynomial as follows:

yn(x) =
n

∑
t=0

ctxt (32)
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given by the following [22]:

[yn(x)]p =
np

∑
t=0

p!
(t + p)!

Bt+p,p(c0, 2!c1, . . . , (t + 1)!ct) xt, (33)

with ci = 0 for i > n; the remaining expansion coefficients are given by Equations (44), (49)
and (56) in the Hermite, Laguerre and Jacobi cases, respectively. The B-symbols denote
the renowned multivariate Bell polynomials of combinatorics [66] which are given by
the following:

Bm,l(c1, c2, . . . , cm−l+1) = ∑
π̂(m,l)

m!
j1!j2! · · · jm−l+1!

( c1

1!

)j1( c2

2!

)j2
· · ·
(

cm−l+1
(m− l + 1)!

)jm−l+1

(34)

where the sum runs over all partitions π̂(m, l) such that the following holds:

j1 + j2 + · · ·+ jm−l+1 = l, and j1 + 2j2 + · · ·+ (m− l + 1)jm−l+1 = m. (35)

On the other hand, the algebraic approach [70] uses the Srivastava–Niukanen lin-
earization formulas of the HOPS. In particular, for the Laguerre polynomials we have the
following [70]:

xµ
[

L(α)
n (tx)

]r
=

∞

∑
i=0

ci(µ, r, t, n, α, γ)L(γ)
i (x) (36)

with the following linearization coefficients:

ci(µ, r, t, n, α, γ) = (γ + 1)µ

(
n + α

n

)r
F(r+1)

A

 γ + µ + 1;
r︷ ︸︸ ︷

−n, . . . ,−n,−i

α + 1, . . . , α + 1︸ ︷︷ ︸
r

, γ + 1
;

r︷ ︸︸ ︷
t, . . . , t, 1

, (37)

where the Pochhammer symbol (z)a =
Γ(z+a)

Γ(z) [6] and F(r+1)
A (x1, . . . , xr) denote the Lauri-

cella function of type A of r + 1 variables and 2r + 3 parameters defined as follows: [69]

F(s)
A

(
a; b1, . . . , bs
c1, . . . , cs

; x1, . . . , xs

)
=

∞

∑
j1,...,js=0

(a)j1+···+js(b1)j1 · · · (bs)js
(c1)j1 · · · (cs)js

xj1
1 · · · x

js
s

j1! · · · js!
. (38)

Similarly, we have the following linearization formula for the Jacobi polynomials [70]:(
P(α,β)

n (x)
)r

=
∞

∑
i=0

c̃i(r, n, α, β, γ, δ)P(γ,δ)
i (x), (39)

where the coefficients are given by the following:

c̃i(r, n, α, β, γ, δ) =

(
n + α

n

)r γ + δ + 2i + 1
γ + δ + i + 1

n

∑
j1,...,jr=0

i

∑
jr+1=0

(γ + 1)j1+···+jr+jr+1

(γ + δ + i + 2)j1+···+jr

×
(−n)j1(α + β + n + 1)j1 · · · (−n)jr (α + β + n + 1)jr (−i)jr+1

(α + 1)j1 · · · (α + 1)jr (γ + 1)jr+1 j1! · · · jr!jr+1!
, (40)

To obtain the linearization formula for the Hermite polynomials within the framework
of this algebraic approach, we use Equation (36) together with the known relation of the
Hermite and Laguerre polynomials [6]:

H2n(x) = (−1)n22nn! Ln(x2); H2n+1(x) = (−1)n22n+1n! x Ln(x2). (41)
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5.1. Hermite Polynomials

From (27) and the explicit expressions (32) of the Hermite polynomials Hn(x), the
combinatorial approach allows one to obtain the following values of the Rényi spreading
lengths LR

q [Hn] for 2q ∈ N, q > 2:

LR
q [Hn] =

{
Wq[Hn]

} 1
1−q , (42)

with the weighted norm Wq[Hn] of the Hermite polynomials given by the following:

Wq[Hn] =
∫ ∞

−∞

[
H2

n(x) hH(x)
]q

dx =
nq

∑
j=0

Γ
(

j + 1
2

)
qj+ 1

2

(2q)!
(2j + 2q)!

B2j+2q,2q(c
(n)
0 , 2!c(n)1 , . . . , (2j + 1)!c(n)2j ), (43)

with the following values:

c(n)t =
(−1)

3n−t
2 n!(

2nn!
√

π
) 1

2

2t( n−t
2
)
!t!

(−1)t + (−1)n

2
. (44)

for the expansion coefficients ct of the orthonormal Hermite polynomials (see [3,6,22]).
Then, the expressions (43) and (42) together with (34) and (44) provide an algorithmic
procedure to find the qth-weighted norm and the qth-Rényi spreading length of the Hermite
polynomial, respectively, in terms of its degree n and the parameter q. See Section 3.2
of [22] for further details.

Alternatively, from Equations (36) and (41) and the orthogonality relation (10) of the
Hermite polynomials, the algebraic approach [70] allows one to find the following values:

Wq[Hn] = q−νq− 1
2

 Γ
(

n+ν+1
2

)
Γ
( n−ν

2 + 1
)
q(

Γ
(

ν +
1
2

))−2q
Γ
(

qν +
1
2

)
F(2q)

A


qν + 1

2 ;

2q︷ ︸︸ ︷
ν− n

2
, . . . ,

ν− n
2

ν +
1
2

, . . . , ν +
1
2︸ ︷︷ ︸

2q

;

2q︷ ︸︸ ︷
1
q

, . . . ,
1
q

 (45)

for the weighted norm of Hermite polynomials. Note that this quantity is completely
determined by n and q. Let us recall here that F(r+1)

A (x1, . . . , xr) denotes the Lauricella
function of type A of r + 1 variables and 2r + 3 parameters defined as follows [69]:

F(s)
A

(
a; b1, . . . , bs
c1, . . . , cs

; x1, . . . , xs

)
=

∞

∑
j1,...,js=0

(a)j1+···+js(b1)j1 · · · (bs)js
(c1)j1 · · · (cs)js

xj1
1 · · · x

js
s

j1! · · · js!
. (46)

which depends on N = ∑r
i=0(pi + qi) parameters.

Then, from expressions Equations (42), (43) and (45), one has the Rényi spreading
length of the Hermite polynomials in the two combinatorial and algebraic approaches. In
particular, for q = 2, we obtain the following values for the Onicescu information-theoretic
length LR

2 [Hn] = LR
2 [ρn]

LR
2 [H0] =

√
2π, LR

2 [H1] =
4
3

√
2π, LR

2 [H2] =
64
41

√
2π

of the first few Hermite polynomials with degrees n = 0, 1, 2. See [22,70,71] for further
details and application to the determination of the total Rényi entropies of the one- and
multidimensional harmonic systems in position and momentum spaces.



Symmetry 2021, 13, 1416 10 of 28

5.2. Laguerre Polynomials

From (27) and the explicit expressions (32) of the orthonormal Laguerre polynomials
L̂(α)

n (x), the combinatorial approach allows one to obtain the following values of the Rényi
spreading lengths LR

q [L̂
(α)
n ] = LR

q [ρn,α] for 2q ∈ N, q > 2 and being ρn,α = L̂(α)
n (x)2 hL

α(x):

LR
q [L̂

(α)
n ] =

{
Wq[L̂

(α)
n ]
} 1

1−q , (47)

with the weighted norm Wq[L
(α)
n ] of the Laguerre polynomials given by the following:

Wq

[
L̂(α)

n

]
=
∫ ∞

0

[
L̂(α)

n (x)2 hL
α(x)

]q
dx =

2nq

∑
k=0

Γ(αq + k + 1)
qαq+k+1

(2q)!
(k + 2q)!

Bk+2q,2q

(
c(n,α)

0 , 2!c(n,α)
1 , ..., (k + 1)!c(n,α)

k

)
, (48)

where B-symbol describes the multivariate Bell polynomials to be calculated at the follow-
ing values:

c(n,α)
t =

√
Γ(n + α + 1)

n!
(−1)t

Γ(α + t + 1)

(
n
t

)
. (49)

for the expansion coefficients of the orthonormal Laguerre polynomials (see [6,24]). Then,
the expressions (48) and (47) together with (34) and (49) provide an algorithmic procedure to
find the qth-weighted norm and the qth-Rényi spreading length of the Laguerre polynomial,
respectively, in terms of its degree n and the parameters α and q. In particular, for q = 2,
we obtain the following values for the Onicescu information-theoretic length LR

2 [L̂
(α)
n ] :

LR
2 [L̂

(α)
0 ] =

(
22α+1(Γ(α + 1))2

Γ(2α + 1)

) 1
2

, LR
2 [L̂

(α)
1 ] =

(
22α+3(Γ(α + 2))2

(1 + α)(2 + 3α)Γ(2α + 1)

) 1
2

(50)

of the Laguerre polynomials L(α)
n (x) with n = 0, 1.

Alternatively, from the expression (36) and the orthogonality relation (10) of the
Laguerre polynomials, the algebraic approach [70] allows one to find the following values:

WR
q [L

(α)
n ] =

Γ(αq + 1)
qαq+1

(Γ(n + α + 1))q

(n!)q(Γ(α + 1))2q F(2q)
A


αq + 1;

2q︷ ︸︸ ︷
−n, . . . ,−n

α + 1, . . . , α + 1︸ ︷︷ ︸
2q

;

2q︷ ︸︸ ︷
1
q

, . . . ,
1
q

, (51)

for the weighted norm of the Laguerre polynomials L(α)
n (x) for all integer orders (i.e., when

q ∈ N). Note that these quantities only depend on the order q, the polynomial degree n
and the polynomial parameter α, where F(2q)

A (x1, . . . , xr) denotes the Lauricella function of
type A given by Equation (46).

Then, from expressions Equations (47) and (51) one has the Rényi spreading length of
the Laguerre polynomials in the two combinatorial and algebraic approaches. In particular,
we have the following values:

LR
q [L̂

(α)
0 ] =

[
1

Γ(α + 1)q
Γ(αq + 1)

qαq+1

] 1
1−q

, (52)

which recalls the Mehta–Selberg integral, and

LR
q

[
L̂(α)

1

]
=

[
Γ(αq + 1)(1 + α)2q

(Γ(α + 2))qqαq+1 2F0

(
−2q, αq + 1

− ;
1

q(α + 1)

)] 1
1−q

. (53)
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for the Laguerre polynomials L(α)
n (x) with n = 0, 1. Note also that Equations (52) and (53)

with q = 2 boil down to the previous values (50), respectively, of the Onicescu lengths.
See [70,72] for further details and application to the determination of the radial Rényi
entropies of the multidimensional hydrogenic systems in position and momentum spaces.

5.3. Jacobi Polynomials

From (27) and the explicit expressions (32) of the Jacobi polynomials P(α,β)
n (x), the

combinatorial approach allows one to obtain the following values of the Rényi spreading
lengths LR

q [P
(α,β)
n ] = LR

q [ρn,α,β)] for 2q ∈ N, q > 2:

LR
q [P

(α,β)
n ] =

{
Wq[P

(α,β)
n ]

} 1
1−q , (54)

with the weighted norm Wq[P
(α,β)
n ] of the Jacobi polynomials given by the following:

Wq[P
(α,β)
n ] =

∫ +1

−1

[
P(α,β)

n (x)2 hJ
α,β(x)

]q
dx =

2nq

∑
k=0

(2q)!
(k + 2q)!

Bk+2q,2q

(
c(n,α,β)

0 , 2!c(n,α,β)
1 , . . . , (k + 1)!c(n,α,β)

k

)
I(k, q, α, β), (55)

with the parametric function

I(k, q, α, β) =
(−1)k21+αq+βqΓ(αq + 1)Γ(βq + 1)

Γ(αq + βq + 2) 2F1

(
−k, 1 + βq
2 + (α + β)q

; 2
)

,

with the Jacobi expansion coefficients (see [3,6,23])

c(n,α,β)
t =

√
Γ(α + n + 1)(2n + α + β + 1)

n!2(α + β + 1)Γ(α + β + n + 1)Γ(n + β + 1)

n

∑
i=t

(−1)i−t
(

n
i

)(
i
t

)
Γ(α + β + n + i + 1)

2iΓ(α + i + 1)
(56)

Then, the expressions (55) and (54) together with (34) and (56) provide an algorithmic
procedure to find the qth-weighted norm and the qth-Rényi spreading length of the Jacobi
polynomial, respectively, in terms of its degree n and the parameters (α, β) and q. See
Section 4 of [23] for further details.

Alternatively, from the expression (39) and the orthogonality relation (10) of the Jacobi
polynomials, the algebraic approach [70] allows one to find the following values:

Wq[P
(α,β)
n ] =

[
2αq+βq+1Γ(αq + 1)Γ(βq + 1)

Γ(αq + βq + 2)

(
n!(α + β + 2n + 1)Γ(α + β + n + 1)

2α+β+1Γ(α + n + 1)Γ(β + n + 1)

)q

×
(

n + α

n

)2q
F1:2;...;2

1:1;...;1

 αq + 1 :

2q︷ ︸︸ ︷
−n, α + β + n + 1; . . . ;−n, α + β + n + 1

αq + βq + 2 : α + 1; . . . ; α + 1︸ ︷︷ ︸
2q

;

2q︷ ︸︸ ︷
1, . . . , 1


 (57)

for the weighted norms of the Jacobi polynomials P(α,β)
n (x) with order q = 2, 3, 4, . . .. Note

that these quantities depend only on the order q, the polynomial degree n and parameters α

and β. Let us recall here that the symbol F1:2;...;2
1:1;...;1 (x1, . . . , xr) denotes the r-variate Srivastava–

Daoust function defined as follows [67,70]:
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F1:2;...;2
1:1;...;1

 a(1)0 : a(1)1 , a(2)1 ; . . . ; a(1)r , a(2)r
; x1, . . . , xr

b(1)0 : b(1)1 ; . . . ; b(1)r

 =

=
∞

∑
j1,...,jr=0

(
a(1)0

)
j1+...+jr(

b(1)0

)
j1+...+jr

(
a(1)1

)
j1

(
a(2)1

)
j1
· · ·
(

a(1)r

)
jr

(
a(2)r

)
jr(

b(1)1

)
j1

(
b(1)r

)
jr

xj1
1 xj2

2 · · · x
jr
r

j1!j2! · · · jr!
, (58)

which depends on N = ∑r
i=0(pi + qi) parameters.

Then, from the expressions of Equations (54), (55) and (57), one has the Rényi spreading
length of the Laguerre polynomials in the two combinatorial and algebraic approaches [23].
See [67,70,72] for further details and application to the determination of the angular Rényi
entropies of the multidimensional hydrogenic systems in position and momentum spaces.

Finally, since the expressions obtained for the weighted norms W[pn] and, conse-
quently, for the Rényi entropies R[pn] and the Rényi spreading lengths LR

1 [pn] of the
HOPs are not easily manipulated analytically, it would be interesting at least to have the
asymptotical values (n→ ∞) and to obtain simple, compact and accurate upper bounds to
these quantities in terms of the degree and the parameters of their weight function. The
latter problem has not yet been determined, but the former one related to the asymptotics
(n → ∞) is extensively shown in the next three sections for the Hermite, Laguerre and
Jacobi polynomials and its generalizations.

6. Degree Asymptotics for the Weighted Lq-Norms of Hermite Polynomials

The aim of this section is the strong asymptotic (n→ ∞) determination of the entropic
moments or weighted Lq-norms of Hermite polynomials, i.e., the following:

Wq[Hn] =
∫ +∞

−∞

[
H2

n(x) e−x2
]q

dx; q > 0. (59)

This problem was initiated by Aptekarev et al. [34,36] who solved it for q ∈
[
0, 4

3

]
by

use of an extension of the Plancherel and Rotach asymptotics of the orthonormal Hermite
polynomials [1]. They obtained [34] the following expression:∫ +∞

−∞

[
Ĥ2

n−1(x)e−x2
]q

dx = cq(2n)
1−q

2 (1 + o(1)) , for q ≤ 4
3

, (60)

for the main term of the weighted norm of the orthonormal polynomials H̃n−1(x), with the
following constant:

cq =

(
2
π

)q Γ(q + 1
2 )

Γ(q + 1)
Γ(1− q

2 )

Γ( 3
2 −

q
2 )

. (61)

Now, taking into account the normalization constant (12) and the Stirling formula
for the gamma function [6], this expression gives rise to the following asymptotics for the
weighted norm of the orthogonal Hermite polynomial Hn−1(x):

Wq[Hn−1] = cq κ
q
n−1 (2n)

1−q
2 (1 + o(1)) = cqπq(2n)q(n−1)+1/2 e−qn (1 + o(1)) . (62)

To improve this expression and extends its validity for all values of q, we have to
go beyond the Plancherel–Rotach asymptotics since it cannot give the asymptotics of the
Hermite polynomials on the whole real line. This can be achieved either by means of the
powerful Riemann–Hilbert method of Deift et al. [73] (see also [74]) or by the Tulyakov
approach [75], whose starting point is the weight of orthogonality and the recurrence
relation, which characterizes these orthogonal polynomials, respectively. The application
of the latter approach to Hermite polynomials has allowed us to find [76] the following
asymptotical result:
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Theorem 1. Let Hn(x) be the Hermite polynomials with the standard orthogonality (10)–(12).
Then, the entropic moments or weighted Lq-norms Wq[ρn−1], given by Equation (59), have the
following asymptotic (n→ ∞) behavior:

Wq[Hn−1] =


cqπq (2n)q(n−1)+1/2 e−qn (1 + o(1)), q < 2,

2(2n)2n− 3
2 e−2n(ln(n) + O(1)), q = 2,

2 Cq 2−q (2n)q(n− 2
3 )−

1
6 e−qn(1 + o(1)), q > 2.

(63)

where the constant cq is defined in (61) and the constant Cq is equal to the following:

Cq =
∫ +∞

−∞

[
2π
3
√

2
Ai2
(
− z 3
√

2
2

)]q

dz .

with z := 2n

x
2
3
− x

4
3 , and the Airy function Ai (see [6]).

We note that the first asymptotic formula in the right hand side of (63) coincides
with (62), but now it holds true in the maximal range of p (when p = 2, then cp = ∞); let
us also highlight that the main term of the asymptotics is growing. Moreover, the smaller
terms contain a constant which depends on p, and when p → 0, this constant tends to
infinity; however, our formula is correct for any small fixed p > 0. We also note that the
leading term of all three formulae in the right hand side of (63) match each other when
p→ 2.

Let us highlight the great simplicity of the main term of asymptotics (n→ ∞) of the
weighted norm of the Hermite polynomials, Wq[Hn], given by expressions (63). Indeed,
this result is impressively simple, given the complexity of the expressions (43) and (45)
obtained in Section 5 for the corresponding quantities of a Hermite polynomial with fixed
degree n, which require the evaluation of either the multivariate Bell polynomials (34) at
the Hermite expansion coefficients (44) or the multivariate Lauricella function of type A of
the type (46) at 1/q, respectively.

This theorem facilitates the evaluation of the Rényi entropies of the highly-excited
(i.e., Rydberg) states of the one-dimensional oscillator-like systems [76], basically because
the radial wave functions of these quantum systems are controlled by Hermite’s poly-
nomials. Briefly, the various physical quantities described by the Rényi entropies with
different orders q have a clearly increasing dependence on the principal quantum number
n characterizing the Rydberg state of the system.

7. Degree Asymptotics for the Generalized Weighted Lq-Norms of
Laguerre Polynomials

In this section, we study and solve the asymptotics (n → ∞) of the generalized
weighted Lq-norms of the Laguerre polynomials defined as follows:

N(q)
n (α, β) =

∞∫
0

([
L̂(α)

n (x)
]2

hL
α(x)

)q
xβ dx , q > 0 , α > −1. (64)

with β so that β + pα > −1 to get convergence, and the weight function hL
α(x) = xαe−x.

Note that for β = 0 these quantities denote the weighted Lq-norms (29) of the orthonormal

Laguerre polynomials, Wq[L̂
(α)
n ]. The orthonormal polynomials

[
L̂(α)

n (x)
]2

=
[

L(α)
n (x)

]2
/κL

n ,

with the norm κL
n = ‖L(α)

n ‖2 = d2
n,α given by (13) and the orthogonal polynomials:

L(α)
n (x) =

n

∑
ν=0

(
n + α

n− ν

)
(−x)ν

ν!
. (65)
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This problem, which essentially depends on the values of the parameters α, β and q,
was tackled by Aptekarev et al. [77] in 2016. They realized that the dominant contribution
to the integral N(q)

n (α, β) is given by different regions of integration in (64) depending on
the parameters’ values, which control the behavior of the polynomials along its orthog-
onality interval. Accordingly, we have to use different asymptotical representations for
the Laguerre polynomials in the various integration’s regions of the orthogonality interval
(0, ∞); these representations appear to follow different scales.

First, at the extreme left of the orthogonality interval (i.e., in the neighborhood of
zero) we have the Bessel regime because the Laguerre polynomials can be asymptotically
represented by means of Bessel functions. Then, to the right, in the bulk region of zeros’
location, the oscillatory behavior of the polynomials is modeled asymptotically by means
of the trigonometric functions. At the neighborhood of the extreme right zeros, asymp-
totics of the polynomials is given by Airy functions: it is the Airy regime. Finally, in the
neighborhood of ∞ the polynomials have growing asymptotics. Furthermore, in some
contiguous integration’s regions, the asymptotical behaviors appear to match each other.
Namely, asymptotics of the Bessel functions for large arguments match the trigonometric
function, and asymptotics of the Airy functions do the same.

There are in total five asymptotical regimes that can give (depending on α and q) the
dominant contribution in the asymptotics of N(q)

n (α, β). Three of them show a growing
dependence on n, according to a power law with an exponent, which depends on α and
q; we refer to them as Bessel, Airy and cosine (or oscillatory) regimes. In addition, there
are two more asymptotical regimes associated to the transition regions: cosine-Bessel and
cosine-Airy. If these regimes dominate in integral (64), then the asymptotics of N(q)

n (α, β)
has a factor ln n besides the power law in n. Summarizing, a detailed and highbrow
analysis led Aptekarev et al. [77] to the following result.

Theorem 2. The asymptotics (n → ∞) of the generalized weighted Lq-norms N(q)
n (α, β) of the

Laguerre polynomials defined by (64), is given by the following expressions:
A. For β > 0,

N(q)
n (α, β) =



C(β, q) (2n)1+β−q (1 + o(1)) , q ∈ (0, 2)

ln n + O(1)
π2(4n)1−β

, q = 2

CA(q)
πq (4n)(

1−2q
3 +β)(1 + o(1)) , q ∈ (2, 2 + 3β)

(
CA(q)
πq4β+1 + CB(α, β, q)

)
n−β−1, q = 2 + 3β

CB(α, β, q) n−β−1 , q ∈ (2 + 3β, ∞)

, (66)

B. For β = 0,

N(q)
n (α, 0) ≡Wq[L̂

(α)
n ] =



C(0, q) (2n)(1−q) (1 + o(1)) , q ∈ (0, 2)

ln n + O(1)
π2n

, q = 2

CB(α, 0, q)
n

(1 + o(1)) , q > 2

, (67)
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C. For β < 0 (and p > 0),

N(q)
n (α, β) =



C(β, q) (2n)1+β−q (1 + o(1)), q ∈ (0, 2 + 2 β)

2 Γ(q + 1/2) (ln n + O(1))
πq+1/2 Γ(q + 1) (4n)1+β

, q = 2 + 2 β

CB(α, β, q) n−(1+β) (1 + o(1)), q > 2 + 2 β

, (68)

respectively, where the characteristics constants C, CB, CA are given by the following:

CB(α, β, q) := 2
∞∫

0

t2β+1|Jα(2t)|2q dt . (69)

for the Bessel regime,

CA(q) :=
∫ +∞

−∞

[
2π
3
√

2
Ai2
(
− t 3
√

2
2

)]q

dt . (70)

for the Airy regime, and

C(β, q) :=
2β+1

πq+1/2
Γ(β + 1− q/2) Γ(1− q/2) Γ(q + 1/2)

Γ(β + 2− q) Γ(1 + q)
. (71)

for the cosine regime, respectively. The symbols Jα(z) and Ai(−z) denote the known Bessel and
Airy functions [6,77], respectively.

Note that in all cases, the great simplicity of the main term of asymptotics (n→ ∞) for
the the generalized weighted Lq-norms N(q)

n (α, β). This is more impressive for the weighted

Lq-norms of the Laguerre polynomials, N(q)
n (α, 0) = Wq[L̂

(α)
n ], given by expressions (67). In-

deed, this result is amazingly simple, given the complexity of the expressions (48) and (51)
obtained in Section 5 for the corresponding quantities of a Laguerre polynomial with
arbitrary, fixed degree n, which require the evaluation of either the multivariate Bell poly-
nomials (34) at the Laguerre expansion coefficients (49), or the multivariate Lauricella
function of type A of the type (46) at 1/q, respectively.

These simple, compact asymptotical results were used to calculate the Rényi and
Shannon entropies of the highly-excited (Rydberg) states of the three and multidimensional
harmonic [77] and hydrogenic [40] systems. This is basically because the radial wave
functions of these quantum systems are controlled by Laguerre’s polynomials.

8. Degree Asymptotics for Generalized Weighted Lq-Norms of OPs with General and
Jacobi Weights

In this section, we investigate and solve the asymptotics of the generalized weighted
Lq-norms N(q)

n (h, F) of the polynomials p̂n(x) orthonormal with respect to a general weight
function (defined almost everywhere on [−1, 1]) given by the following:

N(q)
n (h, F) :=

1∫
−1

[
p̂2

n(x)h(x)
]q

F(x) dx (72)

with
F(x) := (1− x)α(1 + x)β f (x), α ≥ β > −1, f (x) ∈ L1(−1, 1), (73)

Then, we use this general asymptotics result to obtain the generalized weighted
Lq-norms of the Jacobi polynomials P(α,β)

n (x) and, as instances, the (simple) weighted

Lq-norms denoted by Wq[P
(α,β)
n ].
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Let us begin by considering the sequence { p̂n(x)}∞
n=0 of the orthonormal polynomials

as follows:
1∫
−1

p̂n(x) p̂m(x)h(x) dx = δn,m, deg pn = n (74)

with respect to a general weight function

h(x) > 0, a.e. x ∈ [−1, 1]. (75)

To obtain the dominant term in the asymptotics of the norms N(q)
n (h, F), we first

realize that the weight function h(x) in (74) satisfies the Szegö condition as follows:

1∫
−1

h(x)√
1− x2

dx > −∞, (76)

(which is more restrictive than (75)), then the orthonormal polynomials are known to
have [1] the following asymptotical behavior on [−1, 1]:

1∫
−1

| p̂n(x)− p̄n(x)|2h(x) dx → 0, when n→ ∞, (77)

where the polynomials

p̄n(x) :=

√
2
h0

cos(n arccos x + γ̄(x)) (78)

form a set of polynomials orthonormal with respect to the weight h0(x) := π
√

1− x2 h(x),
and where γ̄(x) is the Hilbert transform of the function ln h0(x). Second, we take into
account the following Lemma [34].

Lemma 1. Let g be a continuous, periodic function on R, f be an integrable and γ̃ be a measurable
function on (0, π):

g ∈ C(R), g(θ + π) = g(θ), f ∈ L1(0, π), γ̃ < const a.e. on (0, π).

Then, the following holds:

π∫
0

g(nθ + γ̃(θ)) f (θ) dθ → 1
π

π∫
0

g(θ) dθ

π∫
0

f (θ) dθ, n→ ∞. (79)

Now, with these two previous results, Aptekarev et al. [78] proved in 2021 the follow-
ing powerful result.

Theorem 3. Let { p̂n(x)} be the polynomials (74) orthonormal on [−1, 1] with respect to the
weight function h(x) for which (a) has singularities at the end points ±1 of the order (1− x)αh

and (1 + x)βh , respectively, with αh ≥ βh > −1, and (b) satisfies the Szegö condition (76). Let
also the following hold:

F(x) := (1− x)α(1 + x)β f (x), α ≥ β > −1, f (x) ∈ L1(−1, 1), (80)

where f (x) may have a possible growth at the end points ±1 but not faster than logarithmic. Then,
we have the following asymptotical behavior:
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N(q)
n (h, F) :=

1∫
−1

[
p̂2

n(x)h(x)
]q

F(x) dx −→
n→∞

2q Γ̄(q)
πq+1

1∫
−1

(1− x2)−
q
2 F(x) dx, (81)

for

− β + 1
βh

< q < β + 1 (82)

and where

Γ̄(q) :=
Γ(q + 1/2)Γ(1/2)

Γ(q + 1)
. (83)

Moreover, when h(x) and F(x) are the Jacobi weights, we can find, using the method-
ology of [34], the following asymptotical result [78] in a straightforward manner.

Theorem 4. Let { p̂n(x)} be a system of Jacobi polynomials, orthonormal with respect to an
arbitrary Jacobi weight function h(x) := (1− x)αh(1 + x)βh , αh ≥ βh > −1, and F(x) be the
Jacobi weight:

F(x) := (1− x)α(1 + x)β, α ≥ β > −1.

Then, the generalized weighted norm of the Jacobi polynomials

N(q)
n (h, F) :=

1∫
−1

[
p̂2

n(x)h(x)
]q

F(x) dx,

has the following limiting (n→ ∞) behavior.

A. For − β+1
βh

< q < 2(β + 1)

N(q)
n (h, F) −→ 2q

πq+1 Γ̄(q)
1∫
−1

(1− x2)−
q
2 F(x) dx =

=
2α+β+1

πq+1
Γ(q + 1

2 )Γ(
1
2 )

Γ(q + 1)
Γ(α− q

2 + 1)Γ(β− q
2 + 1)

Γ(α + β− q + 2)
;

(84)

B. For q = 2(β + 1)

N(q)
n (h, F) ∼ ln n, i.e. ∃ c0 : N(q)

n / ln n→ c0; (85)

C. For q > 2(β + 1)

N(q)
n (h, F) � nq−2(β+1), i.e. ∃ c1, c2 : c1 ≤ N(q)

n /nq−2(β+1) ≤ c2. (86)

Note the diversity of the asymptotics of N(q)
n when n → ∞ for various q. For q

relatively small to the parameter β, the integrals remain bounded for big n. When q
approaches its critical value 2(β + 1), the right hand side of the bound (84) explodes since
the argument of the multiplier Γ(β− q

2 + 1) is close to the pole of gamma function. Then,
for the critical q = 2(β+ 1), the bound (84) does not work any more and according to (85), a
new asymptotical regime takes place where N(q)

n grows as ln n. Finally, when q > 2(β + 1),
the norms shows a n-degree exponential scale governed by the positive difference between
q and its critical value.

It is remarkable the great simplicity of the main term of asymptotics (n→ ∞) of the
weighted Lq-norms of the Jacobi polynomials, Wq[P̂

(α,β)
n ], given as particular instances of

the expressions (84)–(86). Indeed, this result is impressively simple, given the complexity
of the expressions (55) and (57) obtained in Section 5 for the corresponding quantities of a
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Jacobi polynomial with fixed degree n, which require the evaluation of either the multi-
variate Bell polynomials (34) at the Jacobi expansion coefficients (56), or the multivariate
Srivastava–Daoust of the type (58) at unity, respectively.

These mathematical results were recently used [78] to evaluate in a compact and
elegant way the Rényi and Shannon entropies of the Rydberg hydrogenic three and multi-
dimensional states. This was possible because the radial and angular wave functions of
these quantum states are controlled by the Gegenbauer polynomials, which are instances
of the great family of Jacobi polynomials.

9. Shannon’s Spreading Length and Logarithmic Potential of HOPs

In this section, we examine the Shannon spreading length LS
1 [pn] = LS

1 [ρn] of the three
canonical families of the HOPs {pn(x)} for all n by means of the logarithmic-potential-
based approach, which is the only existing one with general validity, although it requires
the evaluation of the logarithmic potentials of the polynomials at their zeros on the or-
thogonality support. The latter, however, is a non-trivial task which makes necessary,
almost mandatory, the consideration and analysis of the asymptotics (n → ∞) for the
Shannon entropy of the HOPs; this is shown in the next section. Likewise, it is helpful
to obtain analytical upper bounds to LS

1 [pn] as simply and accurately as possible; some
results, which are briefly pointed out at the end of this section, were found for Hermite, La-
guerre and Jacobi polynomials [22–24] in terms of the ordinary moments of their associated
Rakhmanov density (1).

According to Equations (7), (10) and (11), this quantity is given by the Shannon
spreading length of the associated Rakhmanov probability density ρn(x) given by (1),
that is, the following:

LS
1 [ρn] = lim

q→1
LR

q [ρn] = exp(S[ρn]) = exp
{
−
∫

∆
ρn(x) ln ρn(x)dx

}
, (87)

where S[ρn] denotes the Shannon-like integral functional S[pn] of the polynomials given
by the following:

S[pn] = S[ρn] = −
∫

Λ

1
κn

p2
n(x) h(x) ln

[
1
κn

p2
n(x) h(x)

]
dx = ln κn +

1
κn

(E[pn] + I[pn]),

(88)
with the polynomial functionals

I[pn] := −
∫

Λ
p2

n(x)h(x) ln h(x)dx (89)

and
E[pn] := −

∫
Λ

p2
n(x)h(x) ln p2

n(x)dx. (90)

The functional I[pn] was determined [79] for all HOPs in terms of the coefficients of
its second-order differential equation. However, the explicit computation of the functional
E[pn] for all n in terms of the degree and the parameters of the weight function h(x) is a
formidable task, not yet solved for the HOPs despite the efforts of many authors, except (a)
for a few specific families of the Jacobi polynomials, such as the Chebyshev polynomials
of the first and second type, and (b) in some asymptotical cases, such as when (n → ∞)
or when the parameters of the weight h(x) go toward ∞. This functional E[pn] is called
Shannon entropy of the HOPs pn(x). Note that, to fix the notation, the Shannon-like
integral functional S[ p̂n] of the orthonormal polynomial p̂n is the following:

S[ p̂n] = −
∫

Λ
p̂2

n(x) h(x) ln
[

p̂2
n(x) h(x)

]
dx = E[ p̂n] + I[ p̂n], (91)
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and the Shannon entropy of p̂n(x) is the following:

E[ p̂n] := −
∫

Λ
p̂2

n(x)h(x) ln p̂2
n(x)dx, (92)

Then, for illustration, the Shannon spreading length for the orthonormal Hermite
polynomials Ĥn(x) is given by the following:

LS
1
[
Ĥn
]
= exp

{
S
[
Ĥn
]}

, (93)

where the Shannon-like integral functional of Ĥn(x) is the following:

S[Ĥn] = −
∫

Λ
Ĥ2

n(x) hH(x) ln
[

Ĥ2
n(x) hH(x)

]
dx = E[Ĥn] + n +

1
2

, (94)

where E[Ĥn] denotes the Shannon entropy of Ĥn(x) defined as follows:

E[Ĥn] := −
∫

Λ
Ĥ2

n(x)hH(x) ln Ĥ2
n(x)dx, (95)

whose explicit value for all n has not yet been found despite serious attempts [10,34,80].
Only the asymptotic case (n → ∞) has been determined in a simple compact way as
discussed in the next section.

Now, the Shannon spreading length of the orthonormal Laguerre polynomials is
given by the following:

LS
1

[
L̂(α)

n

]
= exp

{
S
[

L̂(α)
n

]}
, (96)

where the Shanon-like integral functional of the orthonormal Laguerre polynomials L̂(α
n (x) is

the following:

S
[

L̂(α)
n

]
= −

∫ +1

−1

[
L̂(α)

n (x)
]2

hL
α(x) ln

{[
L̂(α)

n (x)
]2

hL
α(x)

}
dx = E

[
L̂(α)

n

]
+ I
[

L̂(α)
n

]
,

with the integral functional as follows [24,79]:

I
[

L̂(α)
n

]
= −

∫ ∞

0

[
L̂(α)

n (x)
]2

hL
α(x) ln hL

α(x) = 2n + α + 1− α ψ(α + n + 1) (97)

and the Shannon entropy of L̂(α
n (x) is given by the following:

E
[

L̂(α)
n

]
= −

∫ ∞

0

[
L̂(α)

n (x)
]2

hL
α(x) ln

[
L̂(α)

n (x)
]2

dx, (98)

whose explicit value for all n has not yet been found in spite of different attempts [10,34,80];
only the asymptotic case (n → ∞) has been determined in a simple compact way as is
discussed in the next section.

Finally, the Shannon spreading length of the orthonormal Jacobi polynomials P̂(α,β)
n (x),

which is given by the following:

LS
1

[
P̂(α,β)

n

]
= exp

{
S
[

P̂(α,β)
n

]}
, (99)

where the Shannon-like integral functional of P̂(α,β)
n (x) is the following:

S
[

P̂(α,β)
n

]
= −

∫ +1

−1

[
P̂(α,β)

n (x)
]2

hJ
α,β(x) ln

{[
P̂(α,β)

n (x)
]2

hJ
α,β(x)

}
dx

= E
[

P̂(α,β)
n

]
+ I
[

P̂(α,β)
n

]
,
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with the integral functional as follows [57,79]:

I
[

P̂(α,β)
n

]
= −

∫ +1

−1

[
P̂(α,β)

n (x)
]2

hJ
α,β(x) ln hJ

α,β(x) (100)

= −α ψ(n + α + 1)− β ψ(n + β + 1) + (α + β)

×
[
− ln 2 +

1
2n + α + β + 1

+ 2 ψ(2n + α + β + 1)− ψ(n + α + β + 1)
]

, (101)

and the Shannon entropy of P̂(α,β)
n (x) is given by the following:

E
[

P̂(α,β)
n

]
= −

∫ +1

−1

[
P̂(α,β)

n (x)
]2

hJ
α,β(x) ln

[
P̂(α,β)

n (x)
]2

dx (102)

The explicit determination of this entropic functional for the Jacobi polynomials was
not known up until now, except in the asymptotic case (whose value is given in the next
section) and when the parameters (α, β) are equal to (−1/2,−1/2) and (1/2, 1/2), which
correspond to the families of Chebyshev polynomials of the first and second kind, denoted
by Tn(x) and Un(x), respectively. The following values were found [10,80]:

E[Tn] = −
1
π

∫ +1

−1
T2

n(x) ln T2
n(x)

dx√
1− x2

= ln 2− 1; for n ≥ 1

for the Shannon entropy of the orthogonal Chebyshev polynomials of the first kind, and
the values [80]

E[Un] = −
2
π

∫ +1

−1
U2

n(x) ln U2
n(x)

√
1− x2dx =

1
n + 1

− 1; for n ≥ 0

for the Shannon entropy of the orthogonal Chebyshev polynomials of the second kind.
Moreover, when the parameters (α, β) are equal to (λ− 1/2, λ− 1/2) the corresponding
Jacobi polynomials conform to the family of Gegenbauer polynomials C(λ)

n (x). Then, it
is known the value for the Shannon entropy of the modified Gegenbauer polynomials
G(λ=2)

n (x), which are the following polynomials:

G(λ)
k (x) =

(
k!(k + λ)Γ(2λ)

λΓ(k + 2λ)

) 1
2
C(λ)

k (x) = γλ
k xk + lower degree terms

orthogonal with respect to the positive unit weight on [−1,+1],

hλ(x) =
Γ(λ + 1)√

πΓ(λ + 1/2)
(1− x2)λ− 1

2 .

Buyarov et al. [81] (see also [11,82]) found the following:

E
[

G(λ)
k

]
= −

∫ +1

−1

[
G(λ)

k (x)
]2

ln
[

G(λ)
k (x)

]2
hλ(x)dx

= − ln
(

3(n + 1)
n + 3

)
− n3 − 5n2 − 29n− 27

(n + 1)(n + 2)(n + 3)
− 1

n + 2

(
n + 3
n + 1

)n+2
, for λ = 2.

This expression was extended for Gegenbauer polynomials with integer order λ
(see [81,83] and the references therein).

In the general case, the Shannon entropy of the orthonormal polynomials p̂n(x) on
the real line can be expressed in terms of the logarithmic potential of its Rakhmanov
density ρn(x) = p̂2

n(x) h(x) and, equivalently, by means of the mutual logarithmic energy
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between the normalized zero counting distribution λn(x) = 1
n

n
∑

j=1
δ
(
x− xj,n

)
and the

Rakhmanov density ρn(x). Indeed, let xj,n(j = 1, ..., n) be the zeros of p̂n(x) and γn the
leading coefficient, so that the following holds:

p̂n(x)) = γn

n

∏
j=1

(
x− xj,n

)
, γn > 0.

Then, it can be proved that the Shannon entropy of the orthonormal polynomials
p̂n(x) can be expressed [80] as follows:

E[ p̂n] := −2 ln γn + 2n
∫
V(x; λn) p̂2

n(x) h(x)dx, (103)

where
V(z; µ) =

∫
ln

1
|z− x| dµ(x)

is known as the logarithmic potential of the probability measure µ [84]. Moreover, taking
into account the mutual logarithmic energy of the two measures µ and ν, given [84] by

I[ν, µ] =
∫
V(z; ν) dµ(x) = −

∫ ∫
ln |z− t| dν(t) dµ(t),

one has that the Shannon entropy of the orthonormal polynomials can be written [80]
as follows:

E[ p̂n] = −2 ln γn + 2n I[λn, ρn]

When the support interval of µ(x) is compact, the potential V(z; µ) oscillates around
its Robin (or extremal) constant. The zeros xj,n turn out to be [80] points of local minima
for the potential V(x; ρn); this implies that to calculate E[ p̂n], we have to sum up the values
of the logarithmic potential V(x; ρn) at its local minima. Then, by applying this expression
to the Jacobi polynomials and taking into account Fubini’s theorem, one finally has the
Shannon entropy of the orthonormal Jacobi polynomials P̂(α,β)

n (x):

E
[

P̂(α,β)
n

]
:= −2 ln γn − 2

n

∑
j=1
V(xj,n; ρn,α,β), (104)

in terms of the following logarithmic potential evaluated at the zeros of the polynomial:

V(z; ρn,α,β) =
∫

P̂(α,β)
n (x)2 hJ

α,β(x) ln
1

|z− x| dx

Similarly, one can obtain the Shannon entropy of the remaining HOPs in terms of
the values of their logarithmic potentials evaluated at their zeros, such as the Hermite,
Laguerre and Gegenbauer polynomials, as explained in detail in [11,36,80,85]. Additionally,
the Shannon entropy of the HOPs was calculated [58] in terms of the eigenvalues of their
associated Jacobi matrix and the ordinary moments (15) of their corresponding Rakhmanov
density (1). In practice, however, we have a nontrivial task in both cases, especially when
the degree of the polynomials is not sufficiently low. Then, it appears that the determination
of the asymptotical (n→ ∞) values of the Shannon entropy of the HOPs is necessary, which
is shown in the next section.

Since the expressions obtained for the Shannon entropy E[pn] and, consequently, for
the Shannon spreading lengths LS

1 [pn] of the HOPs are not easily manipulated analytically,
it is also interesting to obtain simple, compact and accurate upper bounds to these quantities
in terms of the degree and the parameters of their weight function. Some upper bounds
were found for Hermite [22], Laguerre [24] and Jacobi [23] polynomials by means of
the ordinary moments of their associated Rakhmanov densities (1). In the Hermite and
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Laguerre cases, we used an optimized information-theoretical technique to obtain the upper
bounds based on the non-negativity of the Kullback–Leibler functional of the Rakhmanov
density of the polynomial and a probability density of exponentially decreasing type of the
form exp

(
−xk)

)
. It is found that the following holds:

LS
1
[
Ĥn
]
≤ 2(ek)

1
k

k
Γ
(

1
k

)(
〈xk〉n

)1/k
; k = 2, 4, . . .

and

LS
1

[
L̂(α)

n

]
≤ (ke)

1
k

k
Γ
(

1
k

)(
〈xk〉n,α

)1/k
; k > 0,

for the Shannon spreading length of Hermite and Laguerre polynomials, respectively,
where the ordinary moments of such polynomials are given by (17) and (19). In the
Jacobi case, beyond the general upper bound LS

1 [pn] ≤ 2 valid for any probability density
with the support interval [−1,+1], some variational bounds were found by means of the
following ordinary and logarithmic moments: 〈x〉, 〈x2〉, 〈ln x2〉, 〈ln(1± x)〉, 〈ln(1− x2)〉.
In particular, it is known that

LS
1

[
P̂(α,β)

n

]
≤ 2 sinh(λ2)

λ2
exp(−1− λ2 coth(λ2)), (105)

where λ2 is given in terms of 〈x〉n,α,β by means of the following implicit equation:

1
λ2
− coth(λ2) = 〈x〉n,α,β. (106)

where, according to (21), the first order moment 〈x〉n,α,β of the Rakhmanov density ρn,α,β(x)
of the Jacobi polynomials is given explicitly by the following:

〈x〉n,α,β =
β2 − α2

(2n + α + β)(2n + α + β + 2)
. (107)

These variational bounds to LS
1

[
P̂(α,β)

n

]
have been analytically and numerically dis-

cussed in detail [23].
Finally, let us also remark that Beckermann et al. [86] found some asymptotic upper

bounds to the Shannon entropy E[ p̂n] for polynomials p̂n(x) orthonormal with respect to a
weight function h(x) on the support [−1,+1], which belongs to the Szegö class, although
the determination of the entropy itself remains an open problem. See [43,87–89] for recent
extensions of these results.

10. Shannon Entropy E[pn] and Lq-Norms Nq[pn] of HOPs Degree Asymptotics

In this section, we tackle and solve the asymptotics (n→ ∞) for the Shannon entropy
of the three canonical families of the HOPs and the Freud polynomials (which is a general-
ization of the Hermite polynomials). This study was initiated in 1994 [33–35] and reviewed
in 2001 [11] and 2010 [36].

The following approach was used. Taking into account the limiting relation (3), we
can convert the calculation of this Shannon entropy of the HOPs to the evaluation of the
(unweighted) Lq-norms Nq[ p̂n] since the following holds:

E[ p̂n] = − lim
q→1

1
q− 1

ln
∫
| p̂n(x)|2qh(x)dx = − lim

q→1

∂

∂q
N2q[ p̂n], (108)

where
Nq[ p̂n] :=

∫
| p̂n(x)|qh(x)dx (109)
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denotes the (unweighted) Lq(h) norms of p̂n(x). Then, the asymptotical value for the
Shannon entropy E[ p̂n] is as follows [34,36]:

E∞ = lim
n→∞

E[ p̂n] = − lim
n→∞

∂N2q[ p̂n]

∂q

∣∣∣∣
q=1

= −N ′2q

∣∣∣
q=1

(110)

This approach based on the (unweighted) Lq-norms can be used for the HOPs with
both bounded and unbounded supports. However, for an absolutely continuous weight
function h(x) on the real line, it is more convenient to calculate the Shannon entropy E[ p̂n]
from the weighted Lq-norms Wq[ p̂n] given by (30) so that, according to (91) and (89), one
has the following [34]:

E[ p̂n] = S[ p̂n]− I[ p̂n] = −
∂Wq[ p̂n]

∂q

∣∣∣∣
q=1
− I[ p̂n]. (111)

Thus, the asymptotical value E∞ for the Shannon entropy is basically controlled by the
asymptotics of Wq[ p̂n]. Let us now apply this second approach to the Freud polynomials

F(κ)
n (x), which are orthogonal with respect to the weight function hκ(x) = e−|x|

κ
, κ > 1,

∞ < x < +∞. In this case we have that the Shannon entropy is the following:

E[F(κ)
n ] = −

∂Wq[F
(κ)
n ]

∂q

∣∣∣∣∣
q=1

− I[F(κ)
n ] = −

∂Wq[F
(κ)
n ]

∂q

∣∣∣∣∣
q=1

− 2n + 1
κ

(112)

Now, the asymptotical behavior (n→ ∞) of the weighted Lq-norms Wq[Fn] is found
to be the following:

Wq[F̂
(κ)
n ] =

(
2
π

)q Γ(q + 1/2)
Γ(q + 1)

Γ(1− q/2)
Γ(3/2− q/2)

α
1−q
n (1 + o(1)) (113)

with

αn =

(
2n + 1

2β

)1/κ

and β =
Γ(κ/2 + 1/2)
Γ(1/2) Γ(κ/2)

. (114)

Then, from the last three expressions, we have that the (n → ∞)-asymptotics of the
Shannon entropy of the Freud polynomials [35] is given by the following:

E[F̂(κ)
n ] = = −2n + 1

κ
+

1
κ

ln(2n)− 1
κ

ln
( √

π Γ(κ/2)
2 Γ(κ/2 + 1/2)

)
+ ln π − 1 + o(1)

Consequently, for κ = 2 we have that the asymptotics (n → ∞) for the Shannon
entropy of the Hermite polynomials Hn(x) is given by the following:

E[Ĥn] = −n + ln
√

2n− 3
2
+ ln π + o(1) (115)

The same technique can be used to find the asymptotic behaviour (n → ∞) for the
Shannon entropy of the orthonormal Laguerre polynomials L̂(α)

n (x), obtaining [90] for fixed
real α > −1 such that the following holds:

E
[

L̂(α)
n

]
= −2n + (α + 1) ln n− α− 2 + ln π + o(1) (116)

Similar operations with the orthonormal Jacobi polynomials P̂(α,β)
n (x) by using the

(unweighted) Lq-norms Nq[ p̂n] given by (109) allowed us, according to (108), to find the
following expression:

E
[

P̂(α,β)
n

]
= −2n + (α + 1) ln n− α− 2 + ln π + o(1) (117)
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for the asymptotic behavior of the Shannon entropy of the orthonormal Jacobi polynomials.
A particularly relevant family of the Jacobi polynomials are the Gegenbauer polynomials
C(λ)

n (x), which are orthogonal with respect to the weight function hλ(x) = (1− x2)λ− 1
2 on

the interval [−1,+1]; then, the orthonormal Gegenbauer polynomial Ĉ(λ)
n (x) are as follows:

C̃(λ)
n (x) =

C(λ)
n
κn

; with κ2
n =

21−2λπΓ(n + 2λ)

[Γ(λ)]2(n + λ)n!
, (118)

so that, according to (109), the Shannon entropy of Ĉ(λ)
n (x) has the following asymptotic

expression [34]:

E(Ĉα
m) ≡ −

∫ +1

−1
hα(x)

[
Ĉα

m(x)
]2 ln

[
Ĉα

m(x)
]2dx = ln π + (1− 2α) ln 2− 1 + o(1), (119)

for fixed λ and large degree n. This asymptotic expression was improved by obtaining
further terms as shown in [81,83]. Further details about the proof of these results and their
extensions to more general orthonormal polynomials belonging to the Bernstein and Szegö
classes can be seen in [34,36,86–89].

Moreover, from the previous expressions (115)–(117) for the asymptotics of the Shan-
non entropy E[ p̂n] of HOPS and the exact expressions (94), (97) and (100) for the integrals
I[ p̂n] given by (89), we have the following asymptotics (n → ∞) for the Shannon-like
integral functionals S[ p̂n] of the HOPS [34]:

S[Ĥn] = ln
√

2n + ln π − 1 + o(1), S[L̂(α)
n ] = (α + 1) ln n− αψ(α + n + 1)− 1 + ln(2π) + o(1),

and
S[P̂(α,β)

n ] = ln π − 1 + o(1)

for the Hermite, Laguerre and Jacobi polynomials, respectively. To obtain the last ex-
pression, we have also taken into account that limn→∞ I

[
P̃(α,β)

n

]
= (α + β) ln 2. Then, the

Shannon spreading length LS
1 [ p̂n] = LS

1 [ρn] of the three canonical families of the HOPs
{ p̂n(x)} have the following asymptotical values:

LS
1 [Ĥn] '

π

e

√
2n, LS

1 [L̂
(α)
n ] ' π

e
2n, and LS

1 [P̂
(α,β)
n ] ' π

e
(120)

for Hermite, Laguerre and Jacobi polynomials, respectively. By comparing these expressions
with the asymptotical values of the standard deviation ∆x given by Equations (18), (20)
and (22) for Hermite, Laguerre and Jacobi polynomials, respectively, one is led to the following
linear relation:

LS
1 [ p̂n] '

π
√

2
e

∆x[ p̂n] ' 1.6389 ∆x[ p̂n], n→ ∞ (121)

which holds for the three canonical families of HOPs [91] (see also [22–24]); note that it
fulfills the general Cramér-Rao relation (9). In fact, the validity of this relation for HOPs
extends to the whole class of Bernstein-Szegö polynomials, although it fails for arbitrary
orthogonal polynomials. For example, it is violated for Freud polynomials for which the
Shannon length and the standard deviation have a quadratic relation [91].

11. Conclusions

Hypergeometric orthogonal polynomials (HOPs) are the simplest non-elementary func-
tions in the theory of special functions of applied mathematics and mathematical physics.
The three canonical families of HOPs (Hermite, Laguerre and Jacobi) and their general-
izations are not only interesting per se, but also because of their physico-mathematical
applications in science and technology. In particular, they have been shown to control the
physical solutions (wave functions) of the Schrödinger equation of numerous classical and
quantum systems, which characterize, for example, the bound stationary states of systems
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subject to spherically-symmetric quantum-mechanical potentials (harmonic systems of
oscillator type, Coulomb systems of hydrogenic type, etc.).

Keeping this in mind, we have examined and reviewed in this work the present
knowledge of the spreading of the HOPs along the orthogonality support of their weight
function by means of the entropy-like measures of Fisher, Shannon and Rényi types
(and their associated Lq-norms)—far beyond the ordinary moments and the standard
deviation of their associated Rakhmanov probability density. We have shown the analytical
expressions that allow one to compute such spreading measures of the HOPs in a numerical
and symbolic manner by means of the degree and the weight function’s parameters of
the polynomials. In addition, we have shown the asymptotic behavior (n → ∞) for the
Lq-norms of the HOPs {pn(x)} and some generalizations, which provides simple and
compact expressions for the first dominant terms of these quantities in terms of q and the
weight parameters. The latter controls the physical entropies of the highly excited states of
atomic systems and the corresponding Rydberg logical gates of quantum computation.

As always, some related open issues deserve to be mentioned, including the following:
the calculation of the upper bounds to the Rényi spreading lengths LR

q [pn] for all q and
n, extending the corresponding quantities obtained for the Shannon spreading length as
mentioned above; the algebraic determination of the Shannon entropies for the HOPs
at all n by means of a technique that does not require the evaluation of the logarithmic
potential evaluated at the zeros of the polynomials, perhaps at the cost of evaluating some
generalized hypergeometric functions at unity (see e.g., [92]); and the asymptotics of the
(unweighted) Lq-norms of HOPs when n → ∞ and when the parameters of the weight
function become large or very large. In addition, the asymptotics of the Shannon entropy
of orthogonal polynomials in the whole Szegö class remains open, although some recent
relevant efforts relative to asymptotic upper bounds and universality limits were carried
out (see [43,86,89]).
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