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ABSTRACT Currently, the diagnosis of major depressive disorder (MDD) and its subtypes is mainly based
on subjective assessments and self-reported measures. However, objective criteria as Electroencephalogra-
phy (EEG) features would be helpful in detecting depressive states at early stages to prevent the worsening
of the symptoms. Scientific community has widely investigated the effectiveness of EEG-based measures
to discriminate between depressed and healthy subjects, with the aim to better understand the mechanisms
behind the disorder and find biomarkers useful for diagnosis. This work offers a comprehensive review
of the extant literature concerning the EEG-based biomarkers for MDD and its subtypes, and identify
possible future directions for this line of research. Scopus, PubMed and Web of Science databases were
researched following PRISMA’s guidelines. The initial papers’ screening was based on titles and abstracts;
then full texts of the identified articles were examined, and a synthesis of findings was developed using
tables and thematic analysis. After screening 1871 articles, 76 studies were identified as relevant and
included in the systematic review. Reviewed markers include EEG frequency bands power, EEG asymmetry,
ERP components, non-linear and functional connectivity measures. Results were discussed in relations to
the different EEG measures assessed in the studies. Findings confirmed the effectiveness of those measures
in discriminating between healthy and depressed subjects. However, the review highlights that the causal
link between EEG measures and depressive subtypes needs to be further investigated and points out that
some methodological issues need to be solved to enhance future research in this field.

INDEX TERMS Biomarkers, cognitive science, depressive subtypes, early detection, electroencephalogra-
phy (EEG), EEG measures, major depressive disorder (MDD).

I. INTRODUCTION
Major depressive disorder (MDD) is one of the most impor-
tant challenges in global mental health and the leading
cause of disability worldwide. Globally, depression affects
more than 300 million people and the prevalence rates
by gender report that it occurs more commonly among
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females (5.1%) than males (3.6%). Major depression sig-
nificantly impacts work or school life, sleeping, eating
habits and general physical health [1]. Indeed, MDD has
been associated with other physical conditions as cardiac
problems and cancer [2]. Besides physical impairments,
MDD also generates social disabilities, as deficits in emo-
tional expression recognition and in personal relationships,
causing isolation and pauperization of individuals’ quality of
life [3].
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TABLE 1. Description of symptom-based subtypes of MDD, according to DSM-5 (American Psychiatric Association, 2013).

The MDD symptomatology consists of core and sec-
ondary symptoms. Core symptoms include depressed
mood and anhedonia (i.e., loss of interest or pleasure).
Secondary symptoms include appetite and weight changes,
sleep disturbances (insomnia or hypersomnia), psychomotor
agitation or retardation, fatigue or loss of energy, diminished
ability to concentrate, feelings of worthlessness or excessive
guilt and suicidal thoughts. The diagnosis of major depressive
disorder requires that five or more symptoms, including at
least one of the two core symptoms, have to be present within
a 2-week period [4].

Although MDD symptoms are broadly accepted and rec-
ognized by clinicians, many scholars agree on the poly-
thetic nature of depression, which can impede the successful
diagnosis and choice of the proper treatment [5]. To this
regard, Østergaard [6] pointed out that, according to the
DSM criteria in force at the time, more than 1400 possible
combinations of symptoms can result in the diagnosis of
MDD. Moreover, depressive symptomatology overlaps with
comorbid disorders or syndromes, increasing the diagnostic
heterogeneity [7]. An attempt to overcome the heterogeneous
MDD symptomatology’s traits and facilitate the disorder’s
detection was to distinguish, within MDD, homogenous sub-
groups characterized by specific clusters of differing depres-
sive symptoms. To this regard, the latest edition of DSM
(DSM-V) [4] includes six specifiers based on clusters of
different symptoms, which can further define the MDD’s

diagnosis and allow clinicians to carry out more specific
treatments. The six specifiers are the following: melancholia,
atypical depression, psychotic depression, depression with
anxious distress, depression with mixed features and depres-
sion with catatonic features, and are detailed in Table 1.

The detection of depression can favor the promotion of
prevention programs and increase the likelihood of obtaining
positive care’s outcomes [8]. However, even with this added
knowledge, successful diagnoses, interventions and therapies
are hindered by lack of resources and trained health providers.

The major reason for untreated cases relies on the absence
of accepted objective biomarkers for MDD. Indeed, most of
the diagnoses are based on patients’ subjective description
of their symptoms obtained during clinical interviews and
self-reported questionnaires. Objective biomarkers can pro-
vide impartial criteria to detect depression at early stages
and prevent the worsening of the symptoms. Nevertheless,
biomarkers are not currently accounted for in the diagnosis
of any psychiatric disorder, including MDD [9].

Unbiased information for supporting the MDD diagnosis
can be obtained by changes in the electroencephalogra-
phy (EEG) features. Indeed, EEG’s measures can be consid-
ered successful biomarkers of depressive symptoms, being at
the same time easily available and cost-effective [10].

EEG is an electrophysiological method for recording the
electrical activity of the brain with a temporal resolution
on a millisecond time scale. The brain activity, generated
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TABLE 2. Classification of brain waves.

when neurons are triggered by synaptic activation, is captured
by metal electrodes positioned on the surface of the scalp.
An EEG signal between electrodes consists of neural oscil-
lations, or brain waves, produced by synchronized electrical
pulses from neurons communicating with each other. The
most frequently used method to classify brainwaves is by
their frequency: EEG signals can be decomposed into delta,
theta, alpha, beta and gamma oscillations measured in hertz
and their sub-bands (cycles per second, Hz). Table 2 reports
the classification of brain waves into five categories as
described by Abhang and colleagues [11].

Various combinations of the features (frequency’s power,
ratio, and amplitude) of EEG frequency bands are expected
during certain psychological states and considered informa-
tive of cognitive processes, as those concerning motivation,
attention or emotional feelings [12].

Neuronal activity can also be assessed by the time-locked
EEG activity, or event-related potentials (ERPs), which are
very small voltages generated in the brain structures in
response to specific events or stimuli [13]. ERPs can be
elicited by a wide variety of sensory, cognitive and/or motor
tasks and they represent a valuable methodology for exam-
ining the aspect of both normal and abnormal cognitive
processes [14]. Since ERPs provide a continuous measure
of processing between a stimulus and a response, they can
detect the brain activity at the exact moment in which a
specific experimental manipulation occurs (e.g., the presen-
tation of a sound, a word, a picture). Such temporal precision
makes ERPs an effective measure to examine the mental
operations involved in cognitive processes as perception,
attention, memory or language processing [15].

Frequency domain features and ERPs are routinely used
for clinical and diagnostic purposes [16]. However, these
measures may not be informative of the EEG dynamic vari-
ations, which are nonlinear and non-stationary in nature.
To overcome these limitations, several non-linear measures

from information theory, chaos theory and random fractal
theory have been proposed to analyze the EEG data [17],
such as the Higuchi fractal dimension (HFD), the Lempel-Ziv
complexity (LZC), the Sample Entropy (SampEn).

Hence, the exploitation of EEG signals in clinical research
has moved from the simple visual inspection of the shape
and/or power of the measured signals in specific frequency
bands to a more detailed and complex analysis of the
temporal and spatial characteristics of the EEG signals.
Nevertheless, the spatial resolution of neuronal activities
identified from EEG waves may be altered by volume
conduction, due to holes, lesions, ventricles or anisotropic
conductivity of the skull. Volume conduction is the term used
to describe the effects of recording electrical potentials at a
distance from their source generator [18]. These effects can
produce misleading information about the spatial localiza-
tion of the brain activities and generate spurious connections
between cerebral areas [19]. To overcome the EEGs poor
spatial resolution and to reliably localize sources of brain
activities, EEG measurements have been combined with data
describing head and brain anatomy. Brain source localization
algorithms exploiting biophysical models of highly spatially
sampled density, such as the low-resolution electromagnetic
tomography (LORETA) and its variants [20], have been
developed to infer information about the brain functional
connectivity, and reconstruct the brain activity in the source
space [21]. Functional connectivity is defined as the temporal
correlation, in terms of statistically significant dependence
between spatially remote brain areas, of the activity of dif-
ferent neural groups [22].

Abnormalities in the typical electrophysiology of neu-
rocognitive processes have been found in MDD patients
when compared with healthy controls. These abnormali-
ties could concern the power in distinct frequency bands,
EEG activation of the left and right hemisphere, amplitudes
or intensities of the ERPs components, non-linear features of
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the EEG signal, and functional connectivity between brain
regions. Therefore, EEG may help to provide objective cri-
teria for the early detection of depression as suggested by
the several studies reporting significant differences in the
features extracted from EEG signals of healthy subjects and
MDD patients [9], [23].

Nevertheless, to the best of our knowledge no previous
work has provided a comprehensive review of the literature
concerning this topic. In an attempt to overcome this gap,
a summary of the current knowledge about the relation-
ship between EEG-based measures and MDD is presented.
The primary aim is to assess the discriminative power of
EEG-based features, recorded both at resting-state and during
tasks’ execution, to identify objective criteria to facilitate the
early detection of the disorder. The second aim is to evaluate
whether specific clusters of depressive symptoms are asso-
ciated with specific EEG characteristics. Finally, this review
aims to identify the aspects that have not been exhaustively
investigated in the EEG-based studies and to suggest future
research directions in this field.

II. METHODS
A. SEARCH STRATEGY AND STUDY SELECTION
The present study followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) method-
ology [24]. The electronic literature search was carried out
from June 2020 to May 2021 through Scopus, Web of Sci-
ence and PubMed databases. The first group of key search
terms consisted of ‘‘Electroencephalogram’’ OR ‘‘EEG’’.
The second group of key terms consisted of ‘‘Major depres-
sive disorder’’ OR ‘‘depressive subtypes’’ OR ‘‘depressive
subgroups’’ OR ‘‘Major depressive episode’’ OR ‘‘Major
depression’’. The focus was on studies published between the
2010-2021 temporal interval in order to avoid the inclusion of
outdated methods and technologies.

In the first stage of the selection process, duplicates (the
specific number of identified papers during the selection
process will be given in the section A of Results) across
databases were removed. After that, titles and abstracts were
screened to avoid the inclusion of research not relevant for
the topic of the review. The full text of remaining publications
was examined to identify relevant information for the review.
Fig. 1 illustrates the study selection process.

B. ELIGIBILITY CRITERIA
The literature concerning the assessment of cerebral activ-
ity in MDD patients consists of a large number of studies.
The reason is that the relationship between EEG signals
and MDD has been investigated in several research fields
and with numerous techniques. Therefore, the inclusion and
exclusion criteria were developed in order to decrease the het-
erogeneity among the studies and, thus, make reliable com-
parisons between the findings. The inclusion criteria were the
following:

- Studies in which the cerebral activity was assessed only
with EEG.

- Studies in which the sample consisted of adult partici-
pants of any gender, and the experimental session was
performed in a community or clinical setting.

- Quasi-experimental and observational studies.
- Studies involving participants with a primary diagnosis
of MDD according to the Diagnostic and Statistical
Manual of Mental Disorders (DSM IV or later versions),
and/or the International Classification of Diseases
(ICD-9 or ICD-10).

- Year of publication: between 2010 and 2021.
Exclusion criteria were:
- Studies focusing on mood disorders other than MDD.
- Pharmacological and machine learning studies.
- Studies in which EEG signals were recorded only during
sleep.

- Studies in which cerebral activity was altered by using
techniques as transcranial magnetic stimulation (TMS)
or transcranial direct current stimulation (tDCS).

- Studies in which statistical analyses were not specifi-
cally performed on EEG parameters.

- Studies which did not report statistical comparisons
between the clinical sample and healthy participants.

- Case report, letter to the editor, editorials, dissertation,
book chapter, personal opinions or commentary, review.

- Papers not written in English.
- Papers whose full text was not available through institu-
tional access nor by searching in the web for free.

III. RESULTS
A. STUDY SELECTION
The first phase of the electronic search identified 1871 stud-
ies. After duplicates were removed, 1201 records remained,
of which 601 were excluded because the title or the abstract
had no pertinence to the review topic. Of the remain-
ing 600 papers, 520 were excluded based on the basis
of the following reasons: types of publications other than
research article or conference paper; sample features did not
meet the inclusion criteria listed above; no primary clinical
diagnosis of MDD; no involvement of EEG metrics; method-
ologies involving techniques other than EEG or pharmaco-
logical testing. Finally, four papers were excluded due to
full-text unavailability. The remaining 76 studies encountered
the inclusion criteria and were included in the review. Data
extraction included the sample characteristics (number of
participants, sample composition, diagnosis, gender, age),
the type of feature extracted from EEG signal, the study char-
acteristics (setting, study design, experimental paradigm),
and the summary of the main findings.

B. SUMMARY OF MAIN FINDINGS
The 76 selected records are quite heterogeneous in terms of
the methodology adopted and the features extracted from the
EEG signal. In order to make reliable comparisons among
the results and identify possible depression markers able to
discriminate betweenMDD patients and healthy subjects, the
summary of the main findings is divided into 5 sections based
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FIGURE 1. Flowchart of the literature search strategy.

on the different EEG measures considered by the selected
studies. In addition, for a better understanding of the results,
a brief description of the adoptedmeasures is provided in each
section. A summary of the results discussed in each section is
reported in Table 1 of supplementary material for each study.

1) EEG FREQUENCY BANDS
The EEG signal consists of brainwaves characterized by
different frequencies. The most used analysis method for
decomposing and quantifying their oscillatory activity is the
spectral analysis [25]. Spectral analysis provides information
about power, spatial distribution, or event-related temporal
change of frequency of interest trough several methods. The
most common methods include Fourier transform method,
which creates a representation of the signal in the frequency
domain, or the Wavelet transform method, which creates a
representation of the signal in both the time and frequency
domains (for a review see [26]).

Among the spectral measures, power spectral density is the
most used, since the power spectrum of a time series describes

the distribution of power among the frequency components of
the signal [27].

Many studies involving EEG signal investigated whether
putative differences between healthy and depressed sub-
jects, can be observed among EEG frequency bands’ power.
In this context, Jaworska and colleagues [28] found that
depressed patients display greater alpha power than controls
at resting state. Segrave et al. [29], compared MDD and
healthy measurements of the event related synchronization
(ERS), which refers to the percentage increase in a spe-
cific band during a test interval compared to a reference
one and is calculated using the formula (Test- Reference)/
Reference) x 100) [30]. In this study, alpha band power was
firstly assessed at resting-state and then alpha band ERS
was calculated during a Stenberg verbal working memory
task [31]. This task consists in an encoding phase in which
a set of letters is presented, followed by a maintenance phase
in which the letters disappear from the screen. After that, par-
ticipants observe a single letter and have to indicate whether it
was present in the previous set (i.e., response phase). ERSwas
calculated by considering a 600 ms reference interval within
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a pause period between the offset of a fixation point and the
onset of the encoding phase, and a 2000 ms test interval after
the maintenance phase. Results showed that MDD patients
displayed greater alpha ERS than controls during the test
interval; suggesting the need for MDD of additional neuronal
resources to achieve performance comparable to healthy
participants. The same experimental paradigm was used by
Murphy et al. [32] to calculate ERS on the whole scalp
for upper alpha (v10–13 Hz), theta and gamma frequency
bands during working memory (WM) encoding and mainte-
nance. Results showed that, when compared to healthy con-
trols, depressed patients exhibited increased occipital upper
alpha power and decreased frontal-midline theta power dur-
ing theWM encoding phase. Moreover, they showed reduced
frontal-midline theta power and occipital gamma and upper
alpha during the WM maintenance phase. Kane et al. [33]
also used a memory task to investigate theta power in
MDD patients and healthy subjects. During encoding phase,
participants viewed neutral words occurring at different
position of the screen and had to categorize them as
living/non-living or mobile/immobile. In the subsequent
retrieval phase, participants responded to some questions
about words previously presented (e.g., in which position the
word occurred; whether the word was a number or not; how
they categorized them). EEG on the whole scalp was only
recorded during the retrieval phase. Theta power analysis
showed that it was reduced in depressed patients relative
to healthy subjects during retrieval process, suggesting that
abnormal theta activity may contribute to memory deficits
in MDD.

Siegle et al. [34] investigated the elaboration of emotional
stimuli in MDD by using an emotional word valence iden-
tification task. They found that depressed patients exhib-
ited a sustained and increased gamma power activity (all
over the 20 electrodes used to record the EEG activity)
after the presentation of negative words compared to neu-
tral ones, whereas the control group did not show such
gamma power differences due to the emotional valence of
the presented words. These results were further supported by
Martin et al. [35] which used the same experimental paradigm
and found that the MDD group showed greater gamma power
activity after the presentation of positive words, compared
to the control group, but also ‘‘reliable increased [gamma
power activity] to negative compared to positive [words]’’
(Martin et al. [35], p. 7). Ding et al. [36] investigated the
power activity of the full EEG bands (theta, delta, alpha,
beta and gamma), measured in the prefrontal cortex rather
than the whole brain area, during the presentation of 8 video
clips (3 positive, 3 dysphoric and 2 neutral) with different
emotional valence. They observed a decrease of theMDD full
EEG power bands activity compared to controls.

Cook et al. [37] examined resting-state absolute
(i.e., the amount of power in a frequency band at a given
electrode) and relative (i.e., the percentage of power con-
tained in a frequency band relative to the total spec-
trum) power and cordance in theta band at midline and

prefrontal sites. Cordance is a measure of regional brain
activity that combines the information from absolute and
relative power of EEG spectra [38]. Results showed that
depressed patients were associated with higher values of
cordance at midline frontal site (Fpz electrode), compared
to healthy subjects. No differences between groups were
observed in absolute and relative theta power. Cordance
values in MDD patients at frontal site were further examined
by Chen et al. [39]. The authors analyzed absolute, relative
power and cordance values in delta, theta, alpha and beta
bands over the whole scalp both at resting-state and during
the test of variables of attention (TOVA, [40]) in which
participants had to respond or not to target and nontarget
stimuli according to specific criteria. Results showed that
theta cordance values were greater in MDD patients at the
left frontal site, regardless the condition (resting state, target,
and nontarget stimuli).

Starting from the frequency bands analysis, it is possible
to collect information about EEG vigilance stages by using
an algorithm indicating the different levels of brain arousal
during waking state, ranging from high wakefulness to sleep
onset [41]. In a recent study [42] such algorithm was used to
process continuous EEG data acquired from MDD patients
and healthy subjects at resting-state. EEG recordings were
divided in segments and classified into 5 different EEG-
vigilance states (A1, A2, A3, B1 and B2/3) in order to obtain
two arousal indices indicating the arousal decline from high
vigilance stages to lower ones (i.e. arousal stability index)
and the relative amount of each EEG-vigilance stages in
percentage (i.e., arousal level). Results showed that depressed
patients switched less between stages and remained longer
in A stages than healthy controls, confirming the authors’
hypothesis that MDD is associated with a hyperstable arousal
regulation and higher level of brain arousal than healthy
subjects. Another recent study [43] used the same algorithm
to compute the vigilance-analysis betweenMDD patients and
healthy subjects at resting-state. The authors found that MDD
patients spent significantly more times at stages B2/B3 and
less time at stages A2/A3, compared to controls.

Most of the above-mentioned studies support the hypothe-
sis that frequency bandsmeasures can be considered potential
biomarkers of MDD. Depressed patients are characterized
by frequency bands activity different from healthy subjects,
such as greater alpha power at resting-state, higher gamma
activity in response to emotional stimuli, and higher theta
cordance values both at resting-state and during task execu-
tion. However, univocal conclusions are hard to be drawn due
to the heterogeneity of the studies in terms of methodology
and procedure. Many variables hinder comparisons between
findings. Some of them concern the experimental paradigms
(resting-state or task execution), the type of task or whether
or not experiments involve emotional stimuli. Other aspects
concerned the EEG recording procedure, as the location of
the electrodes and the electrodes number, the pre-processing
procedure of EEG data and/or the length of recordings. Since
findings seem to depend on such variables, future research
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should focus on more coherent experimental paradigm and
recording procedures in order to test the discriminative power
of frequency bands measures between depressed and non-
depressed individuals in more replicable conditions.

2) EEG ASYMMETRY
Human brain consists of two hemispheres, which have been
known to not be completely symmetrical for what concerns
both structural and functional aspects [44]. Abnormalities
in right-left asymmetry have been widely associated with
MDD and most of the findings come from EEG studies
which have investigated alpha band activity, usually at frontal
regions [45]. Following the assumption that alpha power
is inversely related to regional brain activity, meaning that
decreased alpha power values indicate an increase in cortical
or hemispherical activation [46] it is assumed that MDD is
characterized by hyperactivity of the right prefrontal cortex
and hypoactivity of the left prefrontal one. According to
Henriques and Davidson [47], the decreased left-sided frontal
activation would be ascribed to a deficit in the approach
system that is responsible of active and goal-seeking behav-
iors. On the other hand, the right-side frontal activation
would be related to withdrawal system which ‘facilitates
the withdrawal of an organism from sources of aversive
stimulation and generates certain forms of negative affect’
(Davidson [48], page 608).

Empirical evidence supporting this hypothesis comes from
studies which have calculated alpha asymmetry from EEG
recorded both at resting-state and during tasks. To compute
asymmetry, the alpha power at any given site is firstly natural
log transformed. Then a difference score is calculated by sub-
tracting the natural log of left hemisphere alpha power from
the natural log of right hemisphere alpha power (ln[right]-
ln[left]) for each homologous pair of electrodes [46]. This
calculation results in an asymmetry score, according to which
positive values reflect greater right alpha power, and thus
decreased relative right cortical activity, and negative values
reflect the opposite.

For what concerns frontal alpha asymmetry, some stud-
ies investigating alpha activity at resting-state found that
MDD exhibited lower asymmetry scores, which reflect
less left hemispheric frontal activity compared to healthy
individuals [43], [49]–[51]. However, Gollan et al. [52]
observed higher positive alpha asymmetry scores at frontal
electrodes in MDD patients compared to healthy sub-
jects, indicating greater relative left than right frontal
activation.

Jaworska and colleagues [28] calculated resting-state alpha
asymmetry scores at both frontal and parietal sites in MDD
patients and healthy subjects. Asymmetry scores were cal-
culated for alpha band (8–13 Hz), alpha1 (8–10.5 Hz) and
alpha2(10.5–13 Hz) sub-bands. MDD group reported nega-
tive frontal asymmetry score for the alpha2 sub-band, reflect-
ing a decreased relative left fronto-cortical activity, whereas
control group reported a positive score. Analyses on pari-
etal alpha asymmetry revealed significant results only for

female participants: MDD females exhibited a relative left
parietotemporal hypoactivity while control females exhibited
the opposite pattern. Koo et al. [43] examined frontal and
parietal EEG asymmetry in all frequency bands, finding that
MDD patients showed greater right-than-left frontal activity
compared to control group.

Kemp et al. [53] compared frontal and parietotemporal
alpha asymmetry scores in MDD patients, post-traumatic
stress disorder (PTDS) patients and healthy controls. Results
of frontal asymmetry showed that the MDD group was sig-
nificantly right-lateralized compared to control, which did
not differ from PTSD group. Concerning the parietotemporal
asymmetry, no significant differences were found between
groups.

A recent study [54] investigated the neural sources of alpha
asymmetry with a technique called exact low resolution brain
electromagnetic tomography (eLORETA [20]) that localizes
the electrical activity in the brain based on scalp potential
frommultiple-channel EEG recording. Results from the study
showed that depressed patients were characterized by less left
than right activity in the precentral and midfrontal gyrus.

Roh et al. [55] investigated frontal alpha asymmetry in
MDD patients with and without suicidal ideation (SI) and
healthy controls. Increased alpha power at the left frontal
region was found in theMDD groups compared to the control
one. Moreover, MDD patients with SI exhibited reduced
alpha power at the left frontal region compared to MDD
patients without SI.

Other studies examined differences in EEG asymmetry
between MDD patients and healthy subjects during the task
performance. Beeney et al. [56] compared frontal alpha
asymmetry scores of individuals suffering from MDD, Bor-
derline personality disorder (BPD) and healthy subjects.
EEG data were recorded before and during a computerized
rejection task called Cyberball task [57]. Participants were
provided with an avatar playing a virtual ball-throwing game
with two others, and the task was programmed in such
a way that the participant’s avatar was either included in
ball-throwing or excluded from it. Compared to the other
two groups, MDD patients exhibited a greater right-frontal
cortical activation both at baseline and following rejection,
suggesting that MDD is associated with a particular way to
deal with social stress that involves withdrawal behaviors.

Stewart et al. [58] presented MDD patients and healthy
subjects with a facial emotion task where they were required
to move their facial muscles into certain configurations rep-
resenting approach-related emotions (happiness, anger) and
withdrawal-related emotions (fear, sadness). Frontal alpha
asymmetry scores were calculated both at resting-state and
during the task execution. Analyses showed that MDD group
displayed relatively less left than right frontal activity than
controls during the task but not during the rest phase. Accord-
ing to the authors, these results suggest that emotional tasks
would be more powerful in detecting individual differences
than resting-state. Similar conclusions were reached by Kus-
tubayeva et al. [59], which investigated brain asymmetry
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analyzing left and right alpha power and ERPs amplitudes at
frontal, central, parietal, occipital sites both at resting-state
and during a decisional task entailing positive or negative
feedback. Results showed that depressed patients were char-
acterized by a lack of left dominance at resting-state, whereas
during the task baseline and the following decision-making
process they exhibited a larger right dominance compared to
healthy subjects.

Gheza et al. [60] examined frontal alpha asymmetry dif-
ferences between MDD patients and healthy subjects during
reward processing and reinforcement learning. Participants
were presented with a probabilistic learning task where they
had to learn, by trial and error, hidden stimulus-response
associations. A feedback was given after every response and
each trial was associated with a different probability of a
positive (reward) and negative outcome. Analyses on frontal
alpha asymmetry scores in response to feedback revealed that
MDD group expressed a negative asymmetry index, whereas
the control group showed the opposite trend.

Although the previous findings confirmed the hypoth-
esis that MDD was characterized by right-lateralization,
other authors failed to find significant differences between
groups or report a reduced or a lack of EEG asymmetry in
depressed patients [61], [62]. No significant differences were
also found in Jang et al. [63] in which depressed patients’
frontal alpha asymmetry scores were compared with those of
schizophrenic and healthy subjects.

EEG alpha asymmetry was also assessed in order to dis-
criminate between healthy subjects and patients with different
depressive subtypes. To this regard, Quinn et al. [64] inves-
tigated alpha asymmetry in melancholic, non-melancholic
and healthy subjects at resting-state. They hypothesized
a difference between control and melancholic groups.
On the contrary, they found that non-melancholic patients
significantly differed from control group by showing a
relative global left-hemispheric activation (across frontal
and parieto-temporal regions). Differently, a more recent
study [65] found that melancholic symptoms were asso-
ciated with reduced left-than-right frontal activity during
a computerized slot machine paradigm, used to measure
reward sensitivity. Melancholic symptoms were measured
both dimensionally and categorically. Significant results were
only obtained when melancholic symptoms were inserted in
the regression analysis as a continuous variable. On the con-
trary, whenmelancholia was defined as a categorical variable,
no significant group effect was found.

A large body of literature has been dedicated to EEG
asymmetry in MDD, often concerning the alpha band power
at frontal regions. As reported by experimental findings, this
measure can discriminate between MDD and healthy sub-
jects and be considered a promising biomarker of depression.
More specifically, the majority of studies reported that MDD
is associated with a reduced left than right frontal cortical
activity. However, most of the findings are obtained from
EEG recorded at resting-state, whereas few studies examined
EEG asymmetry during tasks execution and even less of

them analyzed asymmetry during the processing of emotional
information. Yet, as suggested by Stewart et al. [58], which
investigated frontal alpha asymmetry both at resting-state and
during an emotional task, this measure seems to have more
discriminative power when emotional material is involved
compared to the resting-state. Hence, this research line may
be strengthened by increasing the number of studies using
emotional tasks and by extending the investigation of EEG
asymmetry concerning other frequency bands and brain
regions.

3) ERP COMPONENTS
When an individual experiences a stimulus, the brain waves
deflect in some specific ways. These specific responses are
called event-related responses (ERPs). An ERP component
indicates a specific part of the more complex ERP wave-
form. ERP components are classified by their polarity, tim-
ing, scalp distribution, sensitivity to stimuli type and task
manipulation [66]. The nomenclatures of ERP components
derive from different aspects of such defining characteris-
tics. For example, ERP components that occur at the time
of 100, 200, 300 milliseconds from the stimulus onset are
called N100/P100, N200/P200 and N300/P300, respectively,
where P and N indicate whether the deflection is Positive or
Negative [67]. P300 is generated if the stimulus is different
from the previous ones; otherwise, other components (e.g.,
N100, P200, N200) can be observed [16]. Moreover, different
types of stimuli could elicit specific ERP components as the
mismatch negativity (MMN), which arises in response to an
odd stimulus in a sequence of standard ones. For instance,
in the case of auditory stimuli, the MMN arises after an
infrequent change in a repetitive sequence of sounds (odd-
ball paradigm, [68]). Likewise, the Late Positive Compo-
nent (LPC) is an ERP component whose modulation depends
on whether the stimulus is new or previously experienced.
This is a positive-going ERP component, particularly con-
sidered in studies of explicit recognition memory since it
is thought to reflect the reactivation of memory represen-
tation [69]. The LPC, also termed P600, follows, or even
includes, the P300 component and it is larger for old stimuli
than for new ones [70]. Differently, the Late Positive Poten-
tial (LPP) is a positive deflection, modulated by the emotional
intensity of a stimulus. Emotional stimuli of either a positive
or negative valence elicit a larger LPP than neutral stimuli
and more arousing neutral pictures elicit a larger LPP than
less arousing neutral pictures [71].

Other ERPs components are the contingent negative
variation (CNV), the error-related negativity (ERN) and
correct-related negativity (CRN). The first is a slow negative
potential occurring prior to the onset of a stimulus which
requires a motor response or decision from the subject [72].
The ERN component consists in a negative deflection occur-
ring approximately 80-150 ms after an individual responds
incorrectly during a task or responds when a response
should be withheld. The CRN appears at the same latency
as the ERN, but it is usually smaller and occurs after the
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individual correctly responds to a trial task [73]. A variant
of the ERN is the Feedback error-related negativity (FRN),
which occurs approximately 250 ms after an individual
receives external feedback indicating that the performance
is worse than expected [74]. These components are elicited
when the experimental paradigm involves a feedback of the
task performance, as reinforcement learning paradigms (e.g.,
Eriksen flanker task, [75]).

ERP components have been investigated in clinical
research and proposed as diagnostic markers of MDD. Sev-
eral studies have examined such a hypothesis in order to
test ERPs discriminative power. Shestyuk and Deldin [76]
assessed the P200 and LPC amplitudes of current MDD
patients, remitted patients and healthy subjects during
an identification word task in which they had to indi-
cate whether positive and negative words can be used to
describe themselves and former US president Bill Clinton
(self-referential vs other-referential conditions). Analysis of
EEG data revealed that in the self-referential condition both
MDD groups exhibited greater P200 amplitudes in response
to negative than positive words, whereas control group exhib-
ited the opposite results. In the self-referential condition,
greater amplitudes of LPC were observed after negative
words compared to positive ones only in current MDD
patients, whereas healthy subjects showed greater ampli-
tudes in response to positive words than negative ones.
Fogelson et al. [77] elicited P300 component by present-
ing MDD and healthy subjects with sequences of standard
and target stimuli appearing in random or predicted order.
In the predictive sequence the standard stimuli preceding the
target always followed the same presentation order. Results
showed that, compared to controls, MDD patients exhibited
smaller P300 amplitudes for all the experimental trials, and
longer P300 latencies in response to target stimuli in the
predicted sequences. No group differences in P300 latency
following the target stimuli in the random sequences were
found.

To elicit P300 component, Mumtaz et al. [78] used a
visual oddball paradigm, consisting in the presentation of
standard stimuli infrequently interrupted by a deviant one.
They observed smaller P300 amplitudes and longer latencies
in MDD group, compared to control one. Oddball paradigm
but with auditory stimuli was used by van Dinteren et al. [79]
that found smaller amplitudes of P300 at frontal and parietal
sites in MDD compared to healthy subjects, whereas the
same group effect for N100 amplitudes was limited only to
youngMDD patients (<46 years). The same task was used by
Chen and colleagues [80] that compared the P300 ampli-
tudes and latencies at central, frontal and temporal sites
in individuals with a MDD first-episode, recurrent MDD,
and healthy controls. Compared to control and first-episode
groups, smaller amplitudes and longer latencies in the recur-
rent MDD group were observed.

A different procedure was used by Favrod et al. [81]
which compared the global field power (GFP) of depressed,
schizophrenic and healthy subjects’ EEG, during a visual

backward masking task. GFP quantifies the amount of activ-
ity at each time point in the field by considering the data from
all electrodes simultaneously [82]. Results showed that GFP
N100 amplitudes of depressed patients were lower compared
to controls, and higher compared to schizophrenic patients.
Yin et al. [83] assessed the amplitudes of N170 component of
MDD and healthy subjects during a task involving the presen-
tation of visual stimuli (human faces, tables and butterflies) in
different position (upright vs inverted). They found thatMDD
patients exhibited increasedN170 amplitudeswhen presented
with face stimuli, but not with the other categories. These
results suggest that perceptual processes involved in the early
stages of face processing are impaired in MDD.

Zhu et al. [84] assessed the amplitudes and latencies of
N450 and P300 components in MDD and control groups,
using a face-word Stroop task. Participants were presented
with sad and happy face stimuli with the words happy or
sad superimposed on them in incongruent and congruent
ways and had to indicate the emotion expressed by the face,
ignoring the word. Results showed that, compared to control
group, MDD was characterized by shorter N450 latencies
after happy incongruent trials (i.e., happy face with the word
sad superimposed) than happy congruent ones. P300 ampli-
tude following sad incongruent stimuli was higher than sad
congruent ones in healthy subjects, whereas this difference
was not found in MDD patients.

Palmwood et al. [85] investigated inhibitory control in
depression through a Go/NoGo task. Larger P300 ampli-
tudes during successful NoGo trials relative to unsuccessful
NoGo ones in healthy subjects were observed, whereas MDD
patients showed no differences due to trial type. A similar
Go/NoGo task with visual emotional stimuli was used by
Camfield et al. [86] to compare ERPs amplitudes in MDD
and healthy subjects. Results showed that N200 component
following NoGo trials was less negative with positive stimuli
compared to neutral ones, while the P300 component in
response to NoGo trials was reduced for positive and negative
stimuli compared to neutral ones. This effect was found to be
enhanced in depressed patients compared to controls.

For what concerns the MMN ERP component, the find-
ings are quite mixed. All the selected studies assessing
this component used a visual or auditory oddball paradigm.
Pang et al. [87] instructed participants to watch a silent
movie while words pronounced with different emotional
prosodies were presented. They found that MMN for sad
vocal stimuli was absent in patients with MDD, whereas
MMN components of angry and happy stimuli were simi-
lar across groups. Chen et al. [80] presented neutral stan-
dard and deviant tones while first-episode MDD patients,
recurrent depression patients, and healthy controls watched a
silent movie. They found that first-episode patients had lower
MMN amplitudes compared to healthy controls, while no dif-
ferences were found between the recurrent and first-episode
groups. A similar experimental procedure was used by
Bissonnette et al. [88] to compare MMN amplitudes between
MDDpatients and healthy subjects. They used 5 deviant tones
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varying from the standard ones in intensity, pitch, duration,
perceived location, or continuity. Results showed that, com-
pared to controls, MDD group reported higher MMN ampli-
tudes following tones deviating in intensity and location, and
greater latencies following tones deviating in the pitch, sug-
gesting that the auditory change detection process is altered in
MDD but only for certain types of auditory stimuli. In support
of this hypothesis, Restuccia and colleagues [89] recorded
acoustic MMN in MDD patients and healthy subjects at
2 different stimulus intensities (70 dB and 90 dB) while
they were reading a novel. Shorter latency and increased
amplitudes of MMN in MDD group were observed, but in
response to 90 dB acoustic stimuli only. In a recent study,
Kim et al. [90] compared amplitudes and source activity of
MMN in major depression, bipolar depression (BD) patients
and healthy subjects during an auditory oddball paradigm.
Results from source analysis showed that MMN at left ante-
rior cingulate cortex, inferior and middle frontal gyrus was
significantly increased in the bipolar group compared to
the MDD. However, MDD and BD groups did not signifi-
cantly differ from healthy subjects.

Auditory stimulation with different sound intensities was
also used in Kim et al. [91] to elicit the Loudness dependence
of auditory evoked potentials (LDAEP) in in MDD patients
with and without Attention deficit hyperactivity disor-
der (ADHD) and healthy subjects. LDAEP assesses changes
in the amplitude of N100-P200 component in response to
different auditory stimulus intensities [92]. Results reported
that comorbid patients had lower LDAEP levels compared
to MDD without ADHD symptoms and healthy subjects.
However, differences in the LDAEPs between only depressed
patients and healthy subjects were not statistically significant.

Regarding the LPP component, known to be involved in
emotional processing, Benau et al. [93] presented depressed
and non-depressed participants with sentences ending with
a negative, positive or neutral word. Results showed that
LPP amplitudes following negative stimuli were larger in
the MDD group, compared to healthy subjects. LPP ampli-
tudes in response to positive and neutral stimuli did not
differ between groups. Kettle and Allen [94] examined LPP
amplitudes across central, frontal and parietal sites presenting
to MDD patients, psychotic patients and healthy subjects
facial expressions with different valences. Regardless of the
emotional valence of stimuli, MDD patients and healthy sub-
jects showed lower LPP amplitudes compared to psychotic
subjects. However, no significant differences between MDD
and control group were observed.

Emotional stimuli were used also to elicit CNV com-
ponent [95]. Participants viewed faces expressing different
emotions and non-facial objects followed by a target stim-
ulus. They had to respond to the target only after face
stimuli and inhibit the response when non-facial objects
appeared. The onset of CNV component was calculated
and results showed that CNV appeared significantly later
in MDD group compared to healthy subjects, suggesting

that disengaging from emotional facial stimuli took longer
in MDD.

Deficits in attention inhibition toward specific stimuli were
also investigated by Vanderhasselt et al. [96]. They conducted
a topographical analysis on ERP data registered in order to
identify electric field configurations over the whole scalp.
Duration (Global Field Power, GFP) of scalp topographies
and neural sources associated with them were examined.
ERP data were registered during a Cued Emotional con-
flict task in which participants had to categorize happy and
sad facial expressions as the same or the opposite of their
actual valence. Results showed that MDD patients exhibited
longer duration of a topography characterized by a positive
component over centro-parietal electrodes, followed by a
left-lateralized negative component over frontal/pre-frontal
ones, only in response to sad stimuli categorized as happy.
Source analysis revealed that they showed a stronger activity
in the bilateral dorsal anterior cingulate cortex, which reflects
anomalous control when they had to inhibit attention towards
negative stimuli.

Besides attentional bias, MDD has also been associated
with increased sensitivity for negative performance feed-
back, as reported in various studies which have observed
enhanced ERN and FRN amplitudes compared to healthy
subjects [97]–[99]. However, other studies drew different
conclusions. Bakic et al. [100] examined ERN and FRN
components by using a probabilistic learning task. Results
revealed that while FRN mean amplitudes in healthy sub-
jects were inversely proportional to the reward probability,
MDD patients did not show FRN variations depending on
reward probability. In addition, ERN mean amplitudes did
not differ between groups. No significant differences were
observed by Muir et al. [101] that compared ERN and CRN
amplitudes at fronto-central electrodes in MDD, generalized
anxiety disorder, comorbid patients and healthy subjects by
using a modified version of the Eriksen Flanker test.

Regarding findings related to depressive subtypes, ERPs
were uniquely examined in melancholia. Kerr et al. [102]
compared auditory ERPs of patients with melancholic and
non-melancholic major depression, subclinical depressed
mood and healthy controls during an auditory oddball task by
using the technique of deconvolution of target waveforms into
overlapping standards [103]. Deconvolution expresses the
difference between standard and target waveforms using the
entire waveform and not the isolated points. Deconvolution
waveform usually contains two peaks: the first peak corre-
sponds to N100 and P200 features of the target waveform, and
the second one corresponds to N200 and P300 components.
Deconvolution measures consist in the peak area and the
latency. The latency of a deconvolution peak corresponds to
the relative response latency between standard and targets,
and the peak area corresponds to relative response ampli-
tude. Results of Kerr and colleagues’ study showed that the
amplitude of relative responses to targets versus standard
stimuli at parietal sites decreased significantly in patients
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with major depression compared to healthy controls, with
more pronounced decreases in melancholics.

Quinn et al. [104] compared N200, P200 and P300 com-
ponents recorded at frontal and midline location in melan-
cholics, non-melancholics and healthy subjects during the
execution of Go/No-go task. Statistical analyses were per-
formed on the ERP averages following correct response
to the No-Go stimuli. Results revealed no significant dif-
ferences between groups for any of the ERP components.
Chen et al. [105] analyzed themean peak amplitudes of whole
scalp ERP data while melancholic patients and healthy sub-
jects performed a mental rotation task with different stimuli
(hand vs letter). Compared to control group, melancholic
patients showed lower mean peak amplitudes for both type
of stimuli and longer latencies only in response to hand
stimuli at parietal site, which may suggest an impairment
concerning the processing of this specific type of stimuli in
melancholia. Finally, Weinberg et al. [106] calculated the
difference between ERN and CRN (i.e., 1ERN), acquired
during a modified version of Eriksen Flanker Test in remitted
melancholic, remitted non-melancholic and healthy subjects.
Results revealed that melancholic group showed smaller
1ERN compared to the remitted non-melancholic and con-
trol ones, which did not differ from each other, suggesting
that blunted ERN may be a marker for melancholia.

Several studies investigating the differences in ERP com-
ponents between depressed and non-depressed individuals
have been carried out. Findings in the literature suggest that
MDD patients are characterized by ERPs activity different
from healthy individuals. However, two issues emerged: on
one hand, results are not always consistent, which makes
it difficult to identify solid conclusions. On the other hand,
the discriminative power of ERPs is strictly related to the
task and the type of stimuli used to elicit them, which may
impede comparisons between findings and their generaliz-
ability. Therefore, further investigations may be necessary to
consider evoked potentials as reliable biomarkers of MDD.

4) EEG COMPLEXITY METRICS
A complex system is a system composed of many compo-
nents interactingwith each other. Themassive number of neu-
ronal connections and its staggering computing power makes
the human brain the best example of a complex system [107].
Complex systems as the brain cannot be fully understood by
decomposing them into simpler components. For this reason,
in the last decade, the investigation of brain dynamics through
EEG has borrowed several concepts and techniques from the
Nonlinear Dynamical Systems theory, which can describe
the fluctuations within the signal better than analysis of fre-
quency bands [108]. Due to the huge amount of information
generated within it, the brain is characterized by non-linear
dynamical process (i.e., nonlinearity is defined as the lack of
proportionality between a stimulus and the system’s response
to that stimulus) and unpredictability.

The difficulty to predict a system’s future behavior
depends on the amount of information generated within it.

In information theory, the rate of generation of new infor-
mation is called entropy. Entropy-related measures are the
Approximate Entropy (ApEn) [109] and the Sample Entropy
(SampEn), which quantify the regularity degree in time-series
data by examining their similar epochs: more frequent and
more similar epochs lead to lower values of entropy [110].

Closely related to entropy measures, the Lempel-Ziv Com-
plexity (LZC) quantify the uncertainty contained in time
series data. LZC assesses the number of distinct segments
and their occurrence in a specific signal [111]. Other com-
plexity metrics regard the fractal properties of time series.
The analysis of fractal dimension (FD) aims to quantify
the self-similarity of time series data, which refers to how
many times a pattern in the time-series is repeated. Katz
fractal dimension (KFD) [112] and Higuchi’s fractal dimen-
sion (HFD) [113] algorithms assess FD directly in the time
domain.

Complexity metrics have been applied to analyze EEG
data and to the study of depressive disorders, in order to
identify potential nonlinear markers of MDD. Hence, many
studies tested the hypothesis that individuals diagnosed with
MDD and healthy controls exhibit differences in complexity
metrics.

Ahmadlou et al. [114] studied the fractal properties of
frontal EEG oscillations in alpha, beta, delta and gamma
bands in MDD patients and healthy subjects at resting-state.
KFD and HFD were computed at right, left and overall
frontal electrodes. Results showed that HFD values in beta
and gamma bands in MDD group were greater than control.
This means that frontal activity in MDD is characterized by
higher fractality compared to non-MDD participants. Sim-
ilar group differences, at resting-state, in HFD and KFD
values in beta and gamma bands at frontal and parietal
regions were reported by Akar et al. [115]. The same
authors further investigated KFD, HFD and LZC values in
depressed and non-depressed individuals during emotional
processing [116]. EEG was recorded both at resting-state and
during the listening of music and noise aimed to elicit pos-
itive and negative emotional states, respectively. Compared
to resting-state, LZC and KDF values of patients increased
in the frontal region in response to music and noise stimuli,
whereas controls showed the opposite pattern in response
to music stimuli. Moreover, MDD patients had the largest
KFD increase during the noise period compared to baseline
state at frontal region. Greater resting-state values of LZC
on the whole scalp in MDD patients were also observed by
Bachmann et al. [117]. Wolff et al. [118] analyzed LZC val-
ues from EEG recorded during an auditory oddball paradigm,
finding that LZC changes after stimulus onset were signifi-
cantly lower in MDD group, but for deviant stimuli only.

Cukic et al. [119] compared the HFD and SampEn val-
ues at resting-state in patients suffering from acute depres-
sive episode, patients in remission and healthy participants.
Regardless of the course of illness, depressed patients had
higher HFD and SampEn values compared to healthy sub-
jects at frontal and centro-parietal regions. Counterintuitively,
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patients in remission reported higher values of both metrics
at frontal and parietal regions, compared to the acute-episode
group.

Higher SampEn values in depressed patients were also
reported by Lin et al. [120]. SampEn analysis of 10 minutes
EEG recordings at resting-state revealed thatMDD group had
higher values of this index at frontal, posterior temporal and
occipital sites, compared to healthy controls.

Finally, the recent study of Chen and colleagues [39], pre-
viously described, extracted ApEn values from EEG recorded
at resting-state and during TOVA, finding an increase in
MDD group compared to control group in response to target
and nontarget stimuli, whereas no group differences were
observed at resting-state.

According to the above-mentioned studies, nonlinear
features are potentially effective methods to discriminate
between depressed and non-depressed individuals. Empirical
findings suggest that EEG dynamics of depressive patients
are associated with higher values of non-linear parameters,
compared to healthy controls. Future research should fur-
ther investigate their discriminative power and pay particular
attention to two topics. On one hand, the discriminative power
of nonlinear parameters should be further tested during task
execution. It would be interesting to examine whether dif-
ferences in complexity metrics between healthy subjects and
depressed patients occur when they are engaged in exper-
imental paradigms aimed to assess attentional, emotional
recognition or memory processes. Indeed, as Chen et al. [39]
showed, nonlinear parameters seem to be more informative
markers of depression during task execution than at resting-
state. On the other hand, analysis of nonlinear parameters
should be adopted also for the detection of depressive sub-
types. As the electronic search showed, currently no studies
have investigated these measures in the attempt to discrimi-
nate between different types of depression.

5) EEG FUNCTIONAL CONNECTIVITY MEASURES
Brain activity can also be examined through the inter-
actions among different brain regions. Neuronal activity
acquired through EEG electrodes can provide information
about the brain network structure and the connections within
it. In mathematics, a network is a graphic representation of
a complex system, described by connections between nodes
and edges. In a cerebral network, the nodes usually repre-
sent the brain regions and the edges represent the connec-
tions between them. Brain connectivity can be structural or
functional [22]. Structural connectivity refers to the physi-
cal connections between different cerebral areas. Functional
connectivity is defined as statistical dependencies among
remote neurophysiological events. Therefore, the analysis of
functional connectivity provides information about temporal
correlations in activity occurring between different areas,
which are not necessary structurally connected with each
other [121].

The functional analysis involves various metrics to assess
connectivity between regions. One of the most used is the

coherence metric. Coherence measures linear dependencies
between two electrode signals recorded at distinct locations
at a specific frequency domain. This method is based on
the assumption that inter-regional synchronization of neu-
ronal oscillations is one of the mechanisms that enables the
exchange of information between various brain areas [122].
However, this functional connectivity measure simply indi-
cates that a specific area is linked with another, without
specifying the direction of influence [123]. Another measure
of synchronization is the Phase Synchronization Index (PSI),
also called phase-locking value, which quantifies the syn-
chrony of same-frequency oscillations extracted from a pair
of signals, especially when the interaction between areas is
too weak to be detected by other measures [124].

Functional connectivity of brain networks using EEG sig-
nals has also been assessed with measures associated with
graph theoretical approach. Graph theory is a branch of math-
ematics, describing the relationship among the network’s ele-
ments. By applying the graph theory measures to EEG data,
it is possible to configure an architecture of the brain network
(known as ‘‘topology’’) both at global and nodal levels [125].
Some of the main network metrics adopted in EEG studies to
assess functional connectivity are summarized in table 3.

The investigation of functional connectivity between brain
regions has been applied to the study of depressive disorders
in order to improve knowledge about their pathophysiol-
ogy [131]. In the last decade, functional connectivity metrics
have been adopted to test whether they can detect differences
between depressed patients and healthy subjects.

Olbrich and colleagues [132] performed EEG connectiv-
ity analysis using eLORETA technique. Resting-state EEG
was recorded in depressed and healthy subjects and the PSI
of delta, theta, alpha and beta bands at prefrontal areas
was computed. Compared to healthy subjects, MDD patients
revealed increased connectivity at alpha frequency between
subgenual prefrontal cortex and the left dorsolateral and
left medial prefrontal cortex. A study of Li et al. [133]
computed the PSI of delta, theta, alpha and beta frequen-
cies in MDD and control subjects during a visual oddball
task, by using event-related phase coherence, which is a
method to analyze the dynamic coupling between differ-
ent brain regions in response to specific motor, sensory
or cognitive events [134]. In response to deviant stimuli,
MDD patients showed a decreased PSI at delta frequency
between frontal and parietal/temporal/occipital sites and
increased frontal and prefrontal PSI of theta, alpha and beta
band activities.

Differences in functional connectivity of delta and beta
bands between depressed and non-depressed subjects were
also observed in Liu et al. [135]. They recorded EEG dur-
ing music perception and calculated the phase synchroniza-
tion for all channels pairs at all frequency bands through
Phase Lag Index method (PLI) [136]. PLI is an asymme-
try index assessing the distribution of phase differences and
can vary between 0 (=no coupling) and 1 (= true coupling
strength between pairs of channels). Results showed that in
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TABLE 3. Description of the main network metrics adopted in EEG studies.

the MDD group, connectivity strength increased for the delta
band and decreased for the beta band, compared to control
group. The authors also calculated the degree of each node
(i.e., the number of links connected to a node) in delta and
beta bands for both groups, and observed the same results of
phase synchronization analysis.

Li et al. [137] investigated EEG coherence between each
possible pairs of 72 channels in theta, alpha and beta
frequency bands in MDD and healthy subjects. Results
showed that compared to controls, global coherence of
MDD group was higher in theta band, but not in the
other two frequency bands. Further analysis on theta
coherence showed that depressed group had significantly
higher coherence in the left hemisphere of the brain, espe-
cially in parietal and temporal regions, compared with
healthy controls. Theta coherence was also investigated by
Ahn et al. [138] among frontal, parietal and temporal regions
in MDD patients, Somatic symptom disorder (SSD) patients,
and healthy participants. Results showed decreased theta
coherence in SSD and MDD groups compared to controls
within temporoparietal junction. However, theta coherence
in frontotemporal area was lower in the SSD group than
MDD and healthy controls, which did not differ from each
other.

Guo et al. [139] examined N100, P200, N200, P300 and
N450 components inMDDand healthy individuals to identify
functional connected regions during a Face-word Stroop test.
Results showed that during N450 component, after the occur-
rence of incongruent stimuli, for healthy subjects functional
connectivity was observed over left frontal and central lobes,
whereas for depressed patients, the functional connected
regions involved not only the left frontal and central lobe but
also the right frontal one.

An alternative synchronization measure to examine func-
tional connectivity was used by Fingelkurts and Fin-
gelkurts [140]. They investigated the self-referential brain
network in MDD patients and healthy subjects. This network
is responsible for those processes resulting in the awareness
of oneself, which is suggested to be abnormal in MDD [141].
In Fingelkurts & Fingelkurts’ study [140], EEG electrodes
were used to estimate the operational synchrony within the
network modules, which provides information about discrete
brain operations occurring simultaneously in different corti-
cal areas [142]. A significant increase in the strength of EEG
operational synchrony within all the modules was observed
in MDD group compared to control.

Orgo et al. [143] analyzed coherence values in delta, theta,
alpha, beta, gamma and total frequency band of EEG recorded
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at resting-state in depressed and non-depressed individuals.
In addition, CC, PL, and S graph metrics were computed.
Results showed that MDD subjects had increased coherence
and decreased CC, PL and S values, revealing a more ran-
domized brain network compared to healthy subjects.

Shim et al. [144] extracted various graph measures from
the resting-state EEG recordings of MDD patients and
healthy participants. Network analysis showed that strength,
CC and efficiency significantly decreased in MDD group
in theta and alpha bands, whereas the PL in the alpha
band was significantly enhanced compared to control group.
Zhang et al. [145] found lower CC, PL and local effi-
ciency but increased global efficiency in MDD patients, com-
pared to controls. A recent study by the same authors [146]
further investigated the brain networks dynamics in MDD
and control groups. Network metrics were extracted from
resting-state EEG data. Results showed that NBC in left
temporal region, CC in left frontal and left central regions,
and local efficiency at left parietal-occipital region decreased
in MDD group in theta band. However, MDD group showed
increased PL in the left central region. For the alpha2 band
(9–10.9 Hz), the PL increased in left frontal and right tempo-
ral regions and the CC decreased in the left temporal region.

Decreased CC at left central and frontal regions and lower
PL value at left central region in theta band were observed by
Sun et al. [147] in depressed patients, compared to healthy
subjects. Furthermore, they found that MDD group showed
lower EBC and NBC values at right temporal region in alpha
band, compared to control group, suggesting a more ran-
domized network structure. As well, analysis from a recent
study [148], in which several graph metrics were compared
between MDD and healthy subjects, revealed that MDD was
associated with a more random network configuration.

Fogelson et al. [149] extracted various graph measures
from the EEG signal recorded during a target detection
task, previously described (see [77]). Results showed that
the CC and local efficiency values in the beta frequency
band were greater in patients compared to controls during
the processing of standard stimuli preceding the target in
the predicted sequence, suggesting an increased structured
network organization.

Finally, a recent study [150] used a method called
microstate analysis [151] to study network activity in MDD.
This method consists of examining electrical microstates in
the brain, which are defined as subsequent short time peri-
ods during which the configuration of the potential field on
the scalp stays semi-stable, suggesting the synchronism of
activity among the nodes of a network. These microstates
persist for tens of microseconds and then transit to a different
topography [152]. The analysis of microstates revealed that
the proportion of the microstate involving the parietal and
left insular cortex (i.e., microstate D) was reduced in MDD
patients and remitted MDD patients, compared to healthy
controls. Moreover, the duration and the occurrence of
microstate D were decreased in MDD group compared to the
control one.

The number of studies on functional connectivity in
MDD has increased during the last decade. Empirical evi-
dence revealed that MDD is associated with neurophysi-
ological characteristics different from healthy individuals.
Indeed, findings suggest that functional connectivity metrics
extracted from EEG recordings can discriminate depressed
from non-depressed subjects. However, results are hetero-
geneous. This can be ascribed to the different EEG mea-
sures adopted to assess functional connectivity, the methods
used to analyze EEG data and the cerebral areas investi-
gated. To reduce the variance of results and make reliable
comparisons between them, experimental conditions should
be unified regarding the regions of interest and methods
for modeling connectivity. Moreover, most of the studies
assessed these metrics at resting-state and only some of
them investigated the discriminative power of functional
connectivity metrics during task execution. Future research
should be conducted in these directions. As well, this line
of research should explore the possibility to use functional
connectivity metrics to discriminate between depressive
subtypes. Therefore, further studies are still necessary
in order to consider these metrics as effective markers
of MDD.

IV. DISCUSSION
The review shows that the effectiveness of EEG measures
for detecting MDD has been widely investigated. Accord-
ing to the selected studies, many EEG measures are effi-
cient in discriminating between MDD patients and healthy
subjects.

Significant differences in frequency bands power between
depressed and non-depressed individuals have been reported.
However, it is quite complicated to identify a trend, even
between studies investigating the same frequency band, since
the findings are quite mixed. More consistent results are
obtained on EEG alpha asymmetry. Indeed, much empirical
evidence corroborates the hypothesis that MDD is associated
with a hyper-activation of the right prefrontal cortex, which is
considered related to withdrawal behaviors [47]. Among the
ERP components, findings suggest a trend for time-related
features of the ERP responses. MDD patients show lower
amplitudes or shorter latency of these components compared
to healthy controls. ERPs components related to the type
of stimuli and feedback also succeed to detect significant
differences between MDD patients and controls; however,
the results are less univocal. For what concerns complex-
ity metrics, studies suggest that MDD is characterized by
higher values of nonlinear parameters, which reflects the
fractality and unpredictability properties of the time-series
data. MDD patients are also associated with increased
EEG coherence, reflecting increased neurophysiologic con-
nectivity, and abnormal graph properties, suggesting a ran-
dom brain network configuration.

Taken together, the current findings support EEG mea-
sures’ discriminative power to separate depressed patients
from healthy subjects. However, results do not always point
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in the same direction and the brain regions associated with
changes in the typical EEG activity are still unclear and open
to further investigation.

The major issue in identifying standardized and consis-
tent biomarkers relies on the fact that the studies are con-
ductedwith very different techniques andmethodologies. The
present review attempts to downsize this barrier and present
more comparable results by describing the findings as a func-
tion of the features extracted from EEG data. Nevertheless,
heterogeneity remains a characteristic of EEG-based studies’
results. In agreement with other works [9], [23], [153], the
present review ascribes these inconsistencies to several
factors. The first of them is the variety of experimental
paradigms and stimulus content: for example, analyses per-
formed on EEG data recorded at resting-state or during the
execution of a task involving different cognitive processes led
to different results which cannot be comparedwith each other.
Second, differences in electrode positioning and reference
can affect the discriminative power of the EEG metrics.
Another difference concerns the sampling rate of EEG acqui-
sition, i.e., the rate at which the waveform data is sampled
in order to convert it into a numerical format. As well,
studies differ in pre-processing procedures (e.g. correction
or removal of artefact segments) and analysis procedures to
extract the features from the EEG signals, especially for what
concerns the methods to model functional connectivity [154].
Moreover, the reviewed studies differ in sample sizes and
composition and this can impact the statistical significance of
results. Therefore, solving these issues becomes fundamental
to establish the usage of biomarkers in the diagnostic process
of MDD.

Suggestions for future research concern at least two
aspects: focusing on more consistent experimental
paradigms and materials, and choosing a common EEG
reference at the time of data acquisition, such as shar-
ing one of the international electrode positioning systems.
As Chella et al. [155] argue, these aspects matter and
influence the results. Moreover, to improve the validity of
EEG biomarker research, future studies may consider com-
binations of EEG-based and non-EEG markers in order to
identify more defined criteria. In addition, the research of
MDD biomarkers should enhance the interest towards spe-
cific clusters of differing depressive symptoms. Few studies
have investigated the discriminative power of EEG features
in depressive subtypes and all of them were focused on
melancholic symptoms. This line of research should be
strengthened, especially for what concerns EEG nonlinear
or connectivity metrics. Future works should extend the use
of these measures to investigate whether they could detect
depressive subtypes.

The current review has some inherent limitations that
should be acknowledged. For example, some methodological
aspects were not taken into account in the inclusion/exclusion
criteria of the studies, such as the length of EEG record-
ings, the order in which EEG is collected, the pre-processing
procedure or the gender distribution in the studies’ samples.

Moreover, since the pharmacological treatment of patients
was not always specified in the studies, such information
was not extracted in the present review. However, omitting
the studies that did not report the type of medical treatment
would have led to a decrease of findings that are instead
useful to shed light on the discriminative power of EEG-based
markers for depression. Furthermore, papers comparing only
the effect of treatments on EEG data were excluded by the
selection criteria, even though they should be studied in
further systematic reviews. Another limitation is represented
by the low number of empirical findings about the subtypes
of depression, which are currently examined only through
linear measures of EEG. Indeed, to the best of our knowledge,
the only studies that have investigated the discriminative
power of EEG features in depressive subtypes are those
concerning depression with melancholic features. There are
no studies devoted to establishing a possible link between
EEG features and other depressive subtypes, as psychotic or
atypical depression.

Maybe, the scarcity of these types of studies could be
ascribed to the inherent difficulty to identify the depres-
sion subtypes themselves, which are characterized by over-
laps across symptoms, aetiologies, and time of onset
(as pointed out by other works [156] Harald & Gordon,
2012; [5] Ulbricht et al., 2013]. Consequently, building a
sample composed of homogenous subgroups identified by
specific clusters of differing depressive symptoms becomes
challenging. However, this gap needs to be filled to strengthen
the line of research interested in the search of biomarkers for
depressive disorders.

Finally, the present review did not consider the stud-
ies which have used machine learning (or deep learning)
approaches to classify depressed patients and healthy subjects
based on EEG features. This decision relied on the fact that
the studies based onmachine learning approaches usually uti-
lized several combinations of features and models which may
generate confusion in the reading and an overload of infor-
mation. However, it is worth noting that recent reviews are
specifically dedicated to this field of research [9], [157] and
suggest that these approaches would be a useful methodology
to implement in the MDD diagnosis process. As pointed
out by some authors [158], [159], the use of both machine
and deep learning techniques can provide valuable biomark-
ers in discriminating MDD from other mood disorders, and
can also be adapted to the computer-aided diagnosis of
depression.

Overall, the present work has also some strengths.
To the best of our knowledge, there are no systematic
reviews in the field of psychology which have investi-
gated the body of literature concerning the EEG-based
biomarkers aimed to discriminate between depressed and
non-depressed individuals. Moreover, for a matter of
clarity and to better comprehend the findings, the review
provides information about the linear, non-linear and con-
nectivity EEG measures which are usually assumed to be
acknowledged.
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V. CONCLUSION
The review offers a comprehensive assessment of the extant
literature concerning the EEG-based biomarkers for MDD
and identifies possible future directions for this line of
research. The current findings support the discriminative
power of such biomarkers to separate depressed patients
from healthy subjects. In addition to the promising results,
the non-invasiveness and feasibility of the electroencephalo-
gram should increase the usage of EEG-based biomarkers
for the detection and diagnosis of major depressive disorder.
However, some methodological issues previously addressed
need to be solved in order to establish clinically useful and
valid MDD biomarkers.
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