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Abstract

The aim of this paper is to study the numerical index with respect to an operator between
Banach spaces. Given Banach spaces X and Y , and a norm-one operator G ∈ L(X,Y ) (the
space of all bounded linear operators from X to Y ), the numerical index with respect to G,
nG(X,Y ), is the greatest constant k ≥ 0 such that

k‖T‖ ≤ inf
δ>0

sup{|y∗(Tx)| : y∗ ∈ Y ∗, x ∈ X, ‖y∗‖ = ‖x‖ = 1, Re y∗(Gx) > 1− δ}

for every T ∈ L(X,Y ). Equivalently, nG(X,Y ) is the greatest constant k ≥ 0 such that

max
|w|=1

‖G+ wT‖ ≥ 1 + k‖T‖

for all T ∈ L(X,Y ). Here, we first provide some tools to study the numerical index with respect
to G. Next, we present some results on the set N (L(X,Y )) of the values of the numerical indices
with respect to all norm-one operators in L(X,Y ). For instance, N (L(X,Y )) = {0} when X
or Y is a real Hilbert space of dimension greater than 1 and also when X or Y is the space of
bounded or compact operators on an infinite-dimensional real Hilbert space. In the real case

N (L(X, `p)) ⊆ [0,Mp] and N (L(`p, Y )) ⊆ [0,Mp]

for 1 < p < ∞ and for all real Banach spaces X and Y , where Mp = supt∈[0,1]
|tp−1−t|

1+tp
.

For complex Hilbert spaces H1, H2 of dimension greater than 1, N (L(H1, H2)) ⊆ {0, 1/2}
and the value 1/2 is taken if and only if H1 and H2 are isometrically isomorphic. Moreover,
N (L(X,H)) ⊆ [0, 1/2] and N (L(H,Y )) ⊆ [0, 1/2] when H is a complex infinite-dimensional
Hilbert space and X and Y are arbitrary complex Banach spaces. Also, N (L(L1(µ1), L1(µ2))) ⊆
{0, 1} and N (L(L∞(µ1), L∞(µ2))) ⊆ {0, 1} for arbitrary σ-finite measures µ1 and µ2, in both
the real and the complex cases. Also, we show that the Lipschitz numerical range of Lipschitz
maps from a Banach space to itself can be viewed as the numerical range of convenient bounded
linear operators with respect to a bounded linear operator. Further, we provide some results
which show the behaviour of the value of the numerical index when we apply some Banach space
operations, such as constructing diagonal operators between c0-, `1-, or `∞-sums of Banach
spaces, composition operators on some vector-valued function spaces, taking the adjoint to an
operator, and composition of operators.
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1. Introduction

The study of isometric properties of the space L(X,Y ) of all bounded linear operators
between two Banach spaces X and Y and their impact on the domain and range spaces
is a traditional subject of Banach space theory, and it remains to be an active area of
research. For instance, in the second part of the twentieth century there were a number
of results [5, 22, 40, 47, 48, 49, 50] on the structure of extreme points of the unit ball
of L(X,Y ) (sometimes known as extreme operators or extreme contractions), but the
subject attracts researchers until now, see for instance [10, 11, 32, 41, 46] and references
therein. When X = Y , the space L(X) := L(X,X) is a Banach algebra with unit Id

(or IdX if it is necessary to mention), and there are many deep results in this case (see,
for instance, the classical references [42, 45]). The starting point of all these results is
a celebrated result of 1955 by Bohnenblust and Karlin [6] which related the geometric
and the algebraic properties of the unit. To state their result, they introduce and study
a numerical range of elements of a unital algebra which generalized the classical Toeplitz
numerical range of operators on Hilbert spaces from 1918. Let us state here an extension
of this numerical range, which implicitly appeared in Bohnenblust–Karlin paper, and
which was introduced in the 1985 paper [39]. We refer the reader to the classical books
[7, 8] by Bonsall and Duncan, and to the recent book [9, Sections 2.1 and 2.9] for more
information and background. Given a Banach space Z, we write BZ and SZ to denote the
closed unit ball and the unit sphere of Z, respectively. If u ∈ Z is a norm-one element,
the (abstract) numerical range of z ∈ Z with respect to (Z, u) is given by

V (Z, u, z) := {φ(z) : φ ∈ F(BZ∗ , u)},

where Z∗ denotes the topological dual of Z and

F(BZ∗ , u) := {φ ∈ SZ∗ : φ(u) = 1}

is the face of BZ∗ generated by u ∈ SZ (also known as the set of states of Z relative to u).
Let us mention that when Z = A is a unital Banach algebra and u is the unit of A, then
V (A, u, a) is the algebra numerical range of the element a ∈ A. The well-known formula

sup ReV (Z, u, z) = lim
α→0+

‖u+ αz‖ − 1

α

(see Lemma 2.2) connects the geometry of the space Z around u with the numerical range
with respect to (Z, u). The numerical radius of z ∈ Z with respect to (Z, u) is

v(Z, u, z) := sup{|λ| : λ ∈ V (Z, u, z)},

[6]
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which is obviously a seminorm on Z satisfying v(Z, u, z) ≤ ‖z‖ for every z ∈ Z. Sometimes
the numerical radius is an equivalent norm on Z. The constant

n(Z, u) := inf{v(Z, u, z) : z ∈ SZ} = max{k ≥ 0: k‖z‖ ≤ v(Z, u, z) ∀z ∈ Z}

clearly measures this fact quantitatively. This constant is called the (abstract) numerical
index of (Z, u) or the numerical index of Z with respect to u. Clearly, 0 ≤ n(Z, u) ≤ 1 and
n(Z, u) > 0 if and only if v(Z, u, ·) is an equivalent norm on Z (and this is equivalent to
the fact that u is a geometrically unitary element of BZ , see the beginning of Chapter 2).
When n(Z, u) = 0, it is possible that v(Z, u, ·) is not a norm, or that v(Z, u, ·) is a non-
equivalent norm on Z (and in this case, u is a vertex of BZ which is not a geometrically
unitary element, see also the beginning of Chapter 2). The value n(Z, u) = 1 means
that the numerical radius with respect to (Z, u) coincides with the given norm of Z
(and in this case, we say that u is a spear element of Z, see Proposition 2.5 and the
paragraph after it for some equivalent formulations). With this language in mind, the
announced result of Bohnenblust and Karlin states that unitary elements of a unital
complex algebra A (a purely algebraic concept) are geometrically unitary elements of A
(a purely geometric concept), actually n(A, u) ≥ 1/e if u is a unitary element of the
complex Banach algebra A, see [9, Corollary 2.1.21]. This is no longer true in the real
case as, for instance, the identity is not even a vertex of L(H) when H is any real Hilbert
space of dimension greater than 1. Nevertheless, by numerical range arguments, the unit of
a unital real Banach algebra is a strongly extreme point (see [9, Corollary 2.1.42] and [25]
for a quantitative version). For (complex) C∗-algebras, the concepts of unitary element
and geometrically unitary element coincide (see [9, Theorem 2.1.27] for the details). Let
us also comment that the study of the algebra numerical range was crucial to state very
important results in the theory of Banach algebras such as Vidav’s characterization of C∗-
algebras (see [7] or [9]). More recently, geometric characterizations of algebraic properties
of elements of C∗-algebras have been given by Akeman and Weaver [2], some of which can
be expressed in terms of the numerical ranges (see [43]). Let us observe that geometrically
unitary elements (and even vertices) of the unit ball of a Banach space are extreme points
of the unit ball (see Lemma 2.3, for instance) so, when non-zero, the abstract numerical
index measures “how extreme” a point of the unit ball of a Banach space is. Finally, let
us recall that the concept of numerical range (and so the ones of numerical radius and
numerical index) depends on the base field, as for a complex Banach space Z and a norm-
one element u ∈ Z, V (ZR, u, z) = ReV (Z, u, z), where ZR is the real space underlying
the space Z and Re represents the real part function.

Let us now return to our aim of studying the geometry of L(X,Y ) around a norm-one
operator G. For this to be done, we introduce the numerical range with respect to G. If
X and Y are Banach spaces and G ∈ L(X,Y ) is a norm-one operator, we consider the
numerical range of T ∈ L(X,Y ) with respect to G, which is the set

V (L(X,Y ), G, T ) = {φ(T ) : φ ∈ L(X,Y )∗, ‖φ‖ = φ(G) = 1}.

Analogously, we may consider the corresponding numerical radius with respect to G:

v(L(X,Y ), G, T ) = sup{|λ| : λ ∈ V (L(X,Y ), G, T )} (T ∈ L(X,Y )),
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and the numerical index of (L(X,Y ), G) (or the numerical index of L(X,Y ) with respect
to G):

nG(X,Y ) := n(L(X,Y ), G) = inf{v(L(X,Y ), G, T ) : T ∈ L(X,Y ), ‖T‖ = 1}.

This will be the central concept of study in this paper. Note that nG(X,Y ) is the greatest
constant k ≥ 0 such that

max
|w|=1

‖G+ wT‖ ≥ 1 + k‖T‖

for every T ∈ L(X,Y ) (see Proposition 3.3). The case k = 1 in the inequality above gives
the concept of spear operator, introduced in [3] and deeply studied in [26].

Usually, when one deals with the geometry of spaces of operators, it is convenient
to have tools which allow to describe this geometry in terms of the geometry of the
domain and range spaces, allowing us to work on these spaces and not on the whole
space of operators and, even more, on its wild dual space. In the case of the numerical
range of operators on a Banach space (with respect to the identity operator), this tool
is the “spatial” version of the numerical range. For a Banach space X and T ∈ L(X),
the spatial numerical range of T was introduced by Bauer (and in a somehow equivalent
reformulation by Lumer) in the 1960s (see [7] for instance) as the set

(1.1) W (T ) := {x∗(Tx) : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1},

which is the direct extension of Toeplitz’s numerical range of operators on Hilbert spaces.
There is a straightforward inclusion W (T ) ⊆ V (L(X), Id, T ) and, actually, one has

conv(W (T )) = V (L(X), Id, T )

for every T ∈ L(X) (see [9, Proposition 2.1.31], for instance). Hence, the spatial numerical
radius v(T ) of an operator T ∈ L(X) coincides with the numerical radius with respect
to Id, that is,

v(T ) := sup{|λ| : λ ∈W (T )} = v(L(X), Id, T ).

Therefore, the same happens with the corresponding numerical index:

n(X) := inf{v(T ) : T ∈ L(X), ‖T‖ = 1} = n(L(X), Id).

With this tool it has been possible to construct an example of a Banach space X such
that the identity operator is a vertex but not a geometrically unitary element (see [9,
Proposition 2.1.39] for instance). For a detailed study of the Banach space numerical
index, we refer the reader to the expository paper [27] and to Subsection 1.1 of the very
recent paper [28].

When dealing with a general operator G ∈ L(X,Y ), it is not possible to get a spatial
numerical range with respect to G with a formula analogous to (1.1). Indeed, for the set

{(x, y∗) : x ∈ SX , y∗ ∈ SY ∗ , y∗(Gx) = 1}

to be non-empty, we need the operator G to attain its norm; but even in the case of G
being an inclusion operator, the above set is not always representative (see [34]). Nev-
ertheless, there is an “approximate spatial” numerical range with respect to an operator
recently introduced by Ardalani [3] which does the job. Given two Banach spaces X
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and Y and a norm-one operator G ∈ L(X,Y ), the approximate spatial numerical range
of T ∈ L(X,Y ) with respect to G is the set

VG(T ) :=
⋂
δ>0

{y∗(Tx) : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1− δ}.

It was shown in [3], using the Bishop–Phelps–Bollobás theorem, that VId(T ) = W (T ) for
every T ∈ L(X) and every Banach space X, so both numerical ranges produce the same
associated numerical radii. Moreover, the equality

(1.2) conv(VG(T )) = V (L(X,Y ), G, T )

holds [33, Theorem 2.1] for all Banach spaces X, Y and all operators G,T ∈ L(X,Y ).
Consequently,

vG(T ) := inf
δ>0

sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1− δ} = v(L(X,Y ), G, T ),

and
nG(X,Y ) = inf{vG(T ) : T ∈ L(X,Y ), ‖T‖ = 1} = n(L(X,Y ), G).

This provides a “spatial” way to deal with the numerical radius and the numerical index
with respect to an arbitrary operator, which is especially interesting when we work in
concrete Banach spaces and when we study the behaviour of these concepts with respect
to Banach space operations on the domain and range spaces.

The aim of this paper is to present a number of results on the numerical indices
with respect to operators. Let us detail the content of the paper. First, we finish this
introduction with a short section containing the needed terminology and notation. Next,
we provide in Chapter 2 some basic results on abstract numerical index. Some of the
results were previously known, but some others are new. Among the new ones, we may
stress the fact that the set {u ∈ SZ : n(Z, u) > 0} is countable (i.e. finite or infinite and
countable) when Z is a finite-dimensional real space, and we provide some estimations on
the sum of the values n(Z, u) with varying u ∈ SZ . On the other hand, for every subset
A ⊆ [0, 1] containing 0, we show that there is a (real or complex) Banach space Z such
that {n(Z, u) : u ∈ SZ} = A. Moreover, an extension of the formula (1.2) is given, which
provides some useful ways to calculate numerical radii with respect to operators. Next,
we particularize these results to numerical indices with respect to operators and also give
some more important tools in Chapter 3. Namely, we show that the numerical index with
respect to an operator always dominates the numerical index with respect to its adjoint,
we calculate the value of the numerical index with respect to a rank-one operator and we
show some estimations of the numerical index with respect to an operator in terms of the
numerical radii of operators on the domain space or on the range space. In Chapter 4 we
provide results on the set of values of the numerical indices with respect to all norm-one
operators between two fixed Banach spaces, that is, on the set

N (L(X,Y )) := {nG(X,Y ) : G ∈ L(X,Y ), ‖G‖ = 1}

for given Banach spaces X and Y (this notation is coherent with the one that we will
introduce at the beginning of Section 2.2 for the abstract numerical index). For example,
0 ∈ N (L(X,Y )) unless both X and Y are one-dimensional, and the set N (L(X,Y )) is
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countable if X and Y are finite-dimensional real spaces. In addition, for a real Hilbert
space H with dim(H) ≥ 2 one has

N (L(X,H)) = N (L(H,Y )) = {0}

for all Banach spaces X and Y . The role of the space H can also be played by some non-
Hilbertian real Banach spaces like L(H) where H is an infinite-dimensional real Hilbert
space. Estimations of the numerical indices with respect to operators whose domain or
range is a real space `p are also given: for 1 < p <∞,

N (L(X, `p)) ⊆ [0,Mp] and N (L(`p, Y )) ⊆ [0,Mp]

for all real Banach spaces X and Y , where Mp = supt∈[0,1]
|tp−1−t|

1+tp . For complex Hilbert
spaces H1, H2 of dimension greater than 1, N (L(H1, H2)) ⊆ {0, 1/2} and the value 1/2

is taken if and only if H1 and H2 are isometrically isomorphic. Moreover, N (L(X,H)) ⊆
[0, 1/2] and N (L(H,Y )) ⊆ [0, 1/2] when H is a complex infinite-dimensional Hilbert
space and X and Y are arbitrary complex Banach spaces. Also

N (L(C(K1), C(K2))) = {0, 1}

for many families of Hausdorff topological compact spaces K1 and K2, both in the real
and the complex cases. As a consequence, we demonstrate the inclusions

N (L(L∞(µ1), L∞(µ2))) ⊆ {0, 1} and N (L(L1(µ1), L1(µ2))) ⊆ {0, 1}

for all σ-finite positive measures µ1 and µ2.
In Chapter 5 we use the tools presented in Chapter 3 to prove that the concept of

Lipschitz numerical range introduced in [51, 52] for Lipschitz self-maps of a Banach space
can be viewed as a particular case of numerical range with respect to a linear operator
between two different Banach spaces.

Finally, we collect in Chapter 6 some results which show the behaviour of the value
of the numerical index when we apply some Banach space operations. For instance, the
numerical index of a c0-, `1- or `∞-sum of Banach spaces with respect to a direct sum
of norm-one operators in the corresponding spaces coincides with the infimum of the nu-
merical indices of corresponding summands. As a consequence, we show the existence of
real and complex Banach spaces X for which N (L(X)) = [0, 1]. We also show that a com-
position operator between spaces of vector-valued continuous, integrable, or essentially
bounded functions produces the same numerical index as the original operator. Next, we
provide two independent conditions ensuring that the numerical index with respect to
an operator and the numerical index with respect to its adjoint coincide: that the range
space is L-embedded or that the operator is rank-one. Finally, we discuss some results on
the value of the numerical index with respect to a composition of two operators, and then
we show how to extend the domain of an operator retaining the value of the numerical
index, and an analogous result for the codomain. In particular, the results of the chapter
allow us to solve Problem 9.14 of [26].

1.1. Notation and terminology. By K we denote the scalar field (R or C), and we
use the standard notation T := {λ ∈ K : |λ| = 1} for its unit sphere. We use the letters
X,Y, Z for Banach spaces over K and by a subspace we always mean a closed subspace.
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In some cases, we have to distinguish between the real and the complex case, but for
most results this difference is insignificant. We write JX : X → X∗∗ to denote the natural
isometric inclusion of X into its bidual X∗∗. Given a subset C of X we denote by conv(C)

and aconv(C) the convex hull and the absolutely convex hull of C, respectively.
Let Γ be a non-empty index set, and {Xγ : γ ∈ Γ} be a collection of Banach spaces.

We write [⊕
λ∈Λ

Xλ

]
c0
,

[⊕
λ∈Λ

Xλ

]
`1
,

[⊕
λ∈Λ

Xλ

]
`∞
,

to denote, respectively, the c0-, `1-, and `∞-sum of the family. If E is Rn endowed with
an absolute norm | · |E and X1, . . . , Xn are Banach spaces, we write X = [X1⊕· · ·⊕Xn]E
to denote the product space X1 × · · · ×Xn endowed with the norm

‖(x1, . . . , xn)‖ =
∣∣(‖x1‖, . . . , ‖xn‖)

∣∣
E

for all xi ∈ Xi, i = 1, . . . , n.
Given 1 ≤ p ≤ ∞ and a non-empty set Γ, we write `p(Γ) to denote the Lp-space asso-

ciated to the counting measure on Γ. For n ∈ N, we just write `np to denote `p({1, . . . , n}).
Given a Banach space X, a compact Hausdorff topological space K, and a σ-finite mea-
sure space (Ω,Σ, µ), we write C(K,X), L1(µ,X), and L∞(µ,X) to denote, respectively,
the spaces of continuous functions from K to X, (classes of) Bochner-integrable func-
tions from Ω to X, and (classes of) strongly measurable and essentially bounded functions
from Ω to X.



2. Some old and new results on abstract numerical index

Our aim here is to collect a few basic facts about the abstract numerical range, some of
which seem to be new. We start by recalling some related definitions which were already
mentioned in the introduction.

Definition 2.1. Let Z be a Banach space and let u ∈ SZ .
(a) We say that u is a vertex of BZ if F(BZ∗ , u) separates the points of Z (i.e. for every

z ∈ Z \ {0}, there is φ ∈ F(BZ∗ , u) such that φ(z) 6= 0). This is clearly equivalent to
the fact that v(Z, u, z) = 0 for z ∈ Z implies z = 0.

(b) We say that u is a geometrically unitary element of BZ if the linear span of F(BZ∗ , u)

is equal to the whole Z∗. It is known (see [9, Theorem 2.1.17]) that u is a geometrically
unitary element if and only if n(Z, u) > 0.

We refer the reader to the already cited book [9], and to the papers [4, 19, 21, 43] for
more information and background on these concepts.

2.1. A few known elementary results. First, we present some known results on
abstract numerical index which we will use throughout the paper. They are elementary
and come from many sources, but we use the recent monograph [9] as reference for them
for the convenience of the reader.

The first result allows us to relate the numerical range to a directional derivative.

Lemma 2.2. Let Z be a Banach space and let u ∈ SZ . Then

max ReV (Z, u, z) = lim
t→0+

‖u+ tz‖ − 1

t

for every z ∈ Z. Therefore,

v(Z, u, z) = max
θ∈T

lim
t→0+

‖u+ tθz‖ − 1

t
= lim
t→0+

max
θ∈T

‖u+ t θz‖ − 1

t
.

The first part of the above lemma is folklore and can be found in [9, Proposition 2.1.5].
The first equality for the numerical radius is an immediate consequence, and the second
equality follows routinely from the compactness of T. Indeed, let {tn}n∈N be a sequence
of positive scalars converging to 0 and for each n ∈ N, take θn ∈ T such that

max
θ∈T

‖u+ tn θz‖ − 1

tn
=
‖u+ tn θn z‖ − 1

tn
.

Extract a subsequence {θσ(n)}n∈N which is convergent to, say, θ0 ∈ T. Then
‖u+ tσ(n)θ0z‖ − 1

tσ(n)
≥
‖u+ tσ(n)θσ(n)z‖ − 1

tσ(n)
− |θσ(n) − θ0|‖z‖.

[12]
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Finally,

v(Z, u, z) ≥ lim
n→∞

‖u+ tσ(n)θ0z‖ − 1

tσ(n)
≥ lim
n→∞

max
θ∈T

‖u+ tσ(n) θz‖ − 1

tσ(n)
.

The next result relates the numerical index with respect to a point to the geometry at
the point. Recall that a norm-one element u of a Banach space Z is said to be a strongly
extreme point of BZ if whenever {xn}n∈N and {yn}n∈N are sequences in BZ such that
lim(xn + yn) = 2u, then lim(xn − yn) = 0. Strongly extreme points are extreme points,
but the converse result is not true (see [29] for instance).

Lemma 2.3. Let Z be a Banach space and u ∈ SZ .

(a) If u is a vertex of BZ , then u is an extreme point, and if moreover dim(Z) ≥ 2, then
the norm of Z is not smooth at u.

(b) If u is a geometrically unitary element of BZ (i.e. n(Z, u) > 0), then u is a strongly
extreme point of BZ .

The extreme point condition appears in [9, Lemma 2.1.25]; if the norm of Z is smooth
at u, then F(BZ∗ , u) is a singleton, so either dim(Z) = 1 or u cannot be a vertex. The
result in (b) appears in [9, Proposition 2.1.41]. There are vertices which are not strongly
extreme points [9, Example 2.1.43].

The next result, which can be found in [9, Corollary 2.1.2], is elementary and very
useful.

Lemma 2.4. Let ψ : Z1 → Z2 be a linear operator between Banach spaces Z1 and Z2, let
u ∈ SZ1

be such that ‖ψ(u)‖ = 1.

(a) If ‖ψ‖ = 1, then v(Z2, ψ(u), ψ(z)) ≤ v(Z1, u, z) for every z ∈ Z1.
(b) If ψ is an isometric embedding, then v(Z2, ψ(u), ψ(z)) = v(Z1, u, z) for every z ∈ Z1;

therefore, n(Z2, ψ(u)) ≤ n(Z1, u) in this case.

We next would like to present a pair of characterizations of the abstract numerical
index.

Proposition 2.5. Let Z be a Banach space, u ∈ SZ , and 0 < λ ≤ 1. Then the following
statements are equivalent:

(i) n(Z, u) ≥ λ.
(iiR) In the real case, λBZ∗ ⊆ conv(F(BZ∗ , u) ∪ −F(BZ∗ , u)).
(iiC) In the complex case, given ε > 0, θ1, . . . , θk ∈ BC satisfying

BC ⊆ (1 + ε) conv{θ1, . . . , θk},

we have

λBZ∗ ⊆ (1 + ε) conv
( k⋃
j=1

θj F(BZ∗ , u)
)
.

(iii) maxθ∈T ‖u+ θz‖ ≥ 1 + λ‖z‖ for every z ∈ Z.

The equivalence between (i) and (ii) is well known and can be found, for instance, in [9,
Theorem 2.1.17]. The implication (i)⇒(iii) is immediate from the Hahn–Banach theorem.
The converse result follows straightforwardly from the last equality in Lemma 2.2.
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The strongest possibility in Proposition 2.5, that is, λ = 1, gives rise to the concept
of spear vector introduced in [26]. A norm-one element u of a Banach space Z is a spear
vector if

max
θ∈T
‖u+ θz‖ = 1 + ‖z‖ for every z ∈ Z.

The previous proposition shows that this is equivalent to n(Z, u) = 1. We refer the reader
to [26, Chapter 2] for more information and background.

Finally, we present a result relating the numerical index of a Banach space with respect
to a point to the numerical index of its bidual with respect to the same point which can
be found in [9, Theorem 2.1.17.v].

Lemma 2.6. Let Z be a Banach space and let u ∈ SZ . Then n(Z∗∗, JZ(u)) = n(Z, u).

2.2. On the set of values of the abstract numerical indices with respect to all
unit vectors of a given space. For a given Banach space Z, denote

N (Z) := {n(Z, u) : u ∈ SZ}.

In this section we concentrate on the properties of N (Z) for various classes of Banach
spaces Z.

Let us start with a general important observation.

Proposition 2.7. Let Z be a Banach space with dim(Z) ≥ 2. Then 0 ∈ N (Z).

Proof. Let Y be a two-dimensional subspace of Z. Then there is a smooth point u∈SY
and we have n(Y, u) = 0 by Lemma 2.3(a). Now, Lemma 2.4(b) gives n(Z, u) = 0.

For many Banach spaces Z, zero is the only element of N (Z). Say, this happens
for smooth spaces of dimension greater than 1, a fact which follows immediately from
the above proof. In Chapter 4 the reader will find many examples of operator spaces
Z = L(X1, X2) with the property that N (Z) = {0}. On the other hand, for “big bad”
spaces Z, the corresponding set N (Z) can be big. Moreover, it is possible to show that
this set can be any subset of [0, 1] containing 0.

Proposition 2.8. For every subset A of [0, 1] with 0 ∈ A, one can find a (real or complex)
Banach space Z with N (Z) = A.

In order to demonstrate this result, we need some preparatory work.

Example 2.9. For every a ∈ [0, 1] there is a two-dimensional (real or complex) space Za
with N (Za) = {0, a}.

Indeed, for r ∈ [0, 1] denote by Z∗r the two-dimensional space K2 equipped with the
norm

‖(x1, x2)‖ = max{|x1|,
√
r|x1|2 + |x2|2}.

Then the intersections of BZ∗r with the lines {x1 = θ} for θ ∈ T are the only non-trivial
faces of BZ∗r (see Figure 1). Therefore, in the predual space Zr the only elements u of SZr
with n(Zr, u) 6= 0 are u = (θ, 0) with θ ∈ T. As Zr has the same abstract numerical index
with respect to all these elements, N (Zr) consists of two points: 0 and some h(r) ≥ 0.
The value h(r) varies continuously from 1 to 0 as r varies from 0 to 1 (because Z0 = `2∞
and Z1 = `22).
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(0, 1)
•

(1, 0)
•

y =
√
1− rx2

y = −
√
1− rx2

Fig. 1. The unit ball of Z∗r

The next result may be known, but we include the easy proof as we have not found
it in the literature.

Lemma 2.10. Let {Zγ : γ ∈ Γ} be a family of Banach spaces. Then

N
([⊕

γ∈Γ

Zγ

]
`1

)
=
⋃
γ∈Γ

N (Zγ).

Proof. If a norm-one element u = (uγ)γ∈Γ ∈ [
⊕

γ∈Γ Zγ ]`1 has more than one non-
zero coordinate, then n([

⊕
γ∈Γ Zγ ]`1 , u) = 0 as u is then not an extreme point. In the

case of u having just one non-zero coordinate uτ , one has n([
⊕

γ∈Γ Zγ ]`1 , u) = n(Zτ , uτ )

routinely.

We are now ready to provide the pending proof.

Proof of Proposition 2.8. For every a ∈ A, select a two-dimensional Za such that
N (Za) = {0, a} provided by Example 2.9 and then the desired example is Z =

[
⊕

a∈A Za]`1 by Lemma 2.10.

Our next goal is to find the restrictions onN (Z) which appear in the finite-dimensional
case. We start by showing that, in this case, the corresponding N (Z) is at most countable.

Proposition 2.11. Let Z be a finite-dimensional real Banach space. Then the set of
points u ∈ SZ satisfying n(Z, u) > 0 is countable. As a consequence, N (Z) is countable.

Proof. Let u ∈ SZ be such that n(Z, u) > 0. By Proposition 2.5, the set

conv(F(BZ∗ , u) ∪ −F(BZ∗ , u))

has non-empty interior so, being Z∗ finite-dimensional, F(BZ∗ , u) has non-empty interior
relative to SZ∗ . Indeed, otherwise F(BZ∗ , u) has affine dimension at most dim(Z∗)−2, so
its linear span has dimension at most dim(Z∗)−1, and so conv(F(BZ∗ , u)∪−F(BZ∗ , u))

has empty interior, a contradiction. Furthermore, for u1, u2 ∈ SZ , as

(2.1) F(BZ∗ , u1) ∩ F(BZ∗ , u2) ⊆ ker(u1 − u2),

the relative interiors of F(BZ∗ , u1) and F(BZ∗ , u2) are disjoint if u1 6= u2. Hence, by
separability, the set of those u ∈ SZ satisfying n(Z, u) > 0 has to be countable and,
a fortiori, so is N (Z).
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We do not know if the above corollary remains valid for “small” infinite-dimensional
spaces, such as Banach spaces with separable dual. We also do not know whether N (Z)

is countable for every finite-dimensional complex Banach space Z.
Our next aim is to give a strengthening of Proposition 2.11 for real finite-dimensional

spaces, where some techniques from combinatorial geometry are applicable. Note that
neither Theorem 2.12 nor Proposition 2.13 below are needed in the rest of the paper. We
introduce some notation. For a convex body K ⊆ Rn let us denote its inradius by

r(K) := sup{r > 0: ∃x ∈ K such that x+ rB`n2 ⊆ K}.

Note that in the case of K = −K, the above formula simplifies to

r(K) = sup{r > 0: rB`n2 ⊆ K}.

We denote by voln[K] and S(K) the volume and the surface area of K, respectively.

Theorem 2.12. Let Z be a real space with dim(Z) = m ≥ 2. Then∑
u∈SZ

n(Z, u)m−1 <∞.

Proof. Let us identify, as usual, Z with (Rm, ‖ · ‖), Z∗ with (Rm, ‖ · ‖∗) and BZ∗ with
the polar body of BZ . Given a finite set F of points in SZ , we evidently have

(2.2)
∑
u∈F

volm−1[F(BZ∗ , u)] ≤ S(BZ∗)

by (2.1). Using Proposition 2.5, for every u ∈ F , we have

n(Z, u)r(BZ∗)B`m2 ⊆ n(Z, u)BZ∗ ⊆ conv(F(BZ∗ , u) ∪ −F(BZ∗ , u))

and so,

n(Z, u)r(BZ∗)B`m2 ∩ ker(u) ⊆ [conv(F(BZ∗ , u) ∪ −F(BZ∗ , u))] ∩ ker(u).

For an arbitrary z∗ ∈ F(BZ∗ , u), the latter set can be rewritten as
1
2 [F(BZ∗ , u)− F(BZ∗ , u)] = 1

2 [(F(BZ∗ , u)− z∗)− (F(BZ∗ , u)− z∗)].

According to the Rogers–Shephard theorem [44, Theorem 1],

voln[K −K] ≤
(

2n

n

)
voln[K]

for every convex body K in an n-dimensional space. Applying this to the convex body
(F(BZ∗ , u)− z∗) of the (m− 1)-dimensional space ker(u), we obtain the inequality

volm−1[n(Z, u)r(BZ∗)B`m2 ∩ ker(u)] ≤ 1

2m−1

(
2(m− 1)

m− 1

)
volm−1[F(BZ∗ , u)].

Therefore, we can write

n(Z, u)m−1r(BZ∗)
m−1 volm−1[B`m−1

2
] = volm−1[n(Z, u)r(BZ∗)B`m2 ∩ ker(u)]

≤ 1

2m−1

(
2(m− 1)

m− 1

)
volm−1[F(BZ∗ , u)]
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which, combined with (2.2), gives

(2.3)
∑
u∈F

n(Z, u)m−1 ≤ 1

2m−1

(
2(m− 1)

m− 1

)
S(BZ∗)

volm−1[B`m−1
2

] · r(BZ∗)m−1
.

As F was arbitrary, we get the desired result.

For a finite-dimensional polyhedral space (i.e. finite-dimensional real space whose unit
ball has finitely many faces), we can give a lower bound for the sum of numerical indices
of the elements of the unit sphere.

Proposition 2.13. Let Z be Rm endowed with a polyhedral norm such that BZ∗ ⊆ B`m2 .
Then

(2.4)
∑
u∈SZ

n(Z, u) ≥ r(BZ∗).

Proof. Since Z∗ is also polyhedral, SZ∗ is the union of finitely many sets of the form
F(BZ∗ , u) ∪ −F(BZ∗ , u) for some u ∈ SZ . Let us denote by F the set of corresponding
u ∈ SZ . Then obviously

BZ∗ ⊆
⋃
u∈F

conv(F(BZ∗ , u) ∪ −F(BZ∗ , u)).

Since

conv(F(BZ∗ , u) ∪ −F(BZ∗ , u)) ⊃ r(conv(F(BZ∗ , u) ∪ −F(BZ∗ , u)))B`m2
⊃ r(conv(F(BZ∗ , u) ∪ −F(BZ∗ , u)))BZ∗ ,

Proposition 2.5 implies n(Z, u) ≥ r(conv (F(BZ∗ , u) ∪ −F(BZ∗ , u))). As the convex
body BZ∗ is covered by a finite number of convex bodies, we can use [24, Theorem 2.1]
to get ∑

u∈F
n(Z, u) ≥

∑
u∈F

r(conv(F(BZ∗ , u) ∪ −F(BZ∗ , u))) ≥ r(BZ∗).

Let us remark that the estimates in (2.3) and (2.4) depend on the particular chosen
representation of Z as Rm, and they do not pretend to be optimal. It would be interesting
to find the sharp estimates in both inequalities.

2.3. A new result on abstract numerical ranges. Our goal here is to present a very
general result about numerical range spaces which extends and generalizes the results
of [33]. It will be useful to study the behaviour of the numerical ranges with respect to
operators when dealing with some Banach space operations on the domain and range
spaces (see Chapter 6) and also to study Lipschitz numerical ranges (see Chapter 5).

Proposition 2.14. Let Z be a Banach space, let u ∈ SZ , and let C ⊆ BZ∗ be such that
BZ∗ = convw

∗
(C). Then

V (Z, u, z) = conv
⋂
δ>0

{z∗(z) : z∗ ∈ C, Re z∗(u) > 1− δ}

for every z ∈ Z. Consequently,
v(Z, u, z) = inf

δ>0
sup{|z∗(z)| : z∗ ∈ C, Re z∗(u) > 1− δ}

for every z ∈ Z.
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Let us first observe that the inclusion “⊇” is a straightforward application of the
Banach–Alaoglu theorem. Indeed, given λ0 ∈

⋂
δ>0 {z∗(z) : z∗ ∈ C, Re z∗(u) > 1− δ},

for every n ∈ N there is z∗n ∈ C such that

Re z∗n(u) > 1− 1/n and |λ0 − z∗n(z)| < 1/n.

If z∗0 ∈ BZ∗ is a limiting point of the sequence {z∗n}n∈N, we have z∗0(u) = 1 and z∗0(z) = λ0,
so λ0 ∈ V (Z, u, z). As the latter set is convex, the inclusion follows.

To prove the more intriguing reverse inequality, we need a couple of preliminary
results. The first one is a general version of [33, Lemma 2.5].

Lemma 2.15. Let Z be a Banach space, let C ⊆ BZ∗ be such that BZ∗ = convw
∗
(C), and

let u ∈ SZ and z ∈ Z. Then for every z∗0 ∈ SZ∗ with z∗0(u) = 1 and every δ > 0, there is
z∗ ∈ C such that

Re z∗(u) > 1− δ and Re z∗(z) > Re z∗0(z)− δ.

Proof. As BZ∗ = convw
∗
(C), for δ′ > 0 satisfying 2‖z‖δ′ < δ, we may find n ∈ N,

z∗1 , . . . , z
∗
n ∈ C, α1, . . . , αn ∈ [0, 1] with

∑n
k=1 αk = 1 such that

n∑
k=1

αk Re z∗k(u) > 1− (δ′)2 and
n∑
k=1

αk Re z∗k(z) > Re z∗0(z)− δ/2.

Now, consider
J = {k ∈ {1, . . . , n} : Re z∗k(u) > 1− δ′}

and let L = {1, . . . , n} \ J . We have

1− (δ′)2 <

n∑
k=1

αk Re z∗k(u) ≤
∑
k∈J

αk +
∑
k∈L

αk(1− δ′) = 1− δ′
∑
k∈L

αk,

from which we deduce ∑
k∈L

αk < δ′.

Now, we have

Re z∗0(z)− δ/2 <
n∑
k=1

αk Re z∗k(z)

≤
∑
k∈J

αk Re z∗k(z) + ‖z‖
∑
k∈L

αk <
∑
k∈J

αk Re z∗k(z) + δ/2.

Therefore, ∑
k∈J

αk Re z∗k(z) > Re z∗0(z)− δ,

and an obvious convexity argument provides the existence of k ∈ J such that

Re z∗k(z) > Re z∗0(z)− δ.

On the other hand, Re z∗k(u) > 1− δ as k ∈ J , so the proof is finished.

The next preliminary result follows straightforwardly from [33, Lemma 2.4].
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Lemma 2.16. Let {Wδ}δ>0 be a monotone family of compact subsets of K (i.e.Wδ1 ⊆Wδ2

when δ1 < δ2). Then
sup Re

⋂
δ>0

Wδ = inf
δ>0

sup ReWδ.

Proof of the main part of Proposition 2.14. For z ∈ Z, write
Wδ(z) := {z∗(z) : z∗ ∈ C, Re z∗(u) > 1− δ} and W (z) :=

⋂
δ>0

Wδ(z).

To get the desired inclusion V (Z, u, z) ⊆ convW (z) for every z ∈ Z, it is enough to prove
that for every δ > 0 and every z ∈ Z,
(2.5) sup ReV (Z, u, z) ≤ sup ReWδ(z) + δ.

Indeed, it then follows from Lemma 2.16 that sup ReV (Z, u, z) ≤ sup ReW (z) for every
z ∈ Z. Now, as for every θ ∈ T, we have

V (Z, u, θz) = θV (Z, u, z) and W (θz) = θW (z),

the desired inclusion follows easily.
So let us prove that inequality (2.5) holds. Fix z ∈ Z and δ > 0. Given z∗0 ∈ F(BZ∗ , u),

we may use Lemma 2.15 to get z∗ ∈ C such that

Re z∗(u) > 1− δ and Re z∗0(z) < Re z∗(z) + δ.

So, Re z∗0(z) ≤ sup ReWδ(z) + δ. Varying z∗0 in F(BZ∗ , u), we get

sup ReV (Z, u, z) ≤ sup ReWδ(z) + δ,

as desired.



3. Tools to study the numerical index with respect to an operator

Our aim in this chapter is to provide some tools to calculate, or at least estimate, the
numerical indices with respect to operators. Some of the results are just direct translation
to the operator spaces setting of the abstract results contained in the previous chapter,
but other ones rely on specifics of the operator case.

We need some notation. Let X and Y be Banach spaces. For a norm-one operator
G ∈ L(X,Y ) and δ > 0, we write

vG,δ(T ) := sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1− δ}
for every T ∈ L(X,Y ). It then follows from [33] (or from Proposition 2.14) that

v(L(X,Y ), G, T ) = vG(T ) = inf
δ>0

vG,δ(T )

for every T ∈ L(X,Y ), a result which we will use without any further mention (see
Lemma 3.4 for details).

We include first some results which directly follow from those of Chapter 2. The first
one is the translation of Lemma 2.3 to the setting of the spaces of operators. For a simpler
notation, let us say that a norm-one operator G ∈ L(X,Y ) is an extreme operator (or
extreme contraction) if G is an extreme point of the unit ball of L(X,Y ).

Lemma 3.1. Let X, Y be Banach spaces and let G ∈ L(X,Y ) be a norm-one operator
with nG(X,Y ) > 0. Then G is a strongly extreme point of BL(X,Y ); in particular, G is
an extreme operator. Moreover, if dim(X) ≥ 2 or dim(Y ) ≥ 2, then the norm of L(X,Y )

is not smooth at G.

Next, we particularize Lemma 2.2 to our setting.

Lemma 3.2. Let X, Y be Banach spaces and let G ∈ L(X,Y ) be a norm-one operator.
Then

vG(T ) = max
θ∈T

lim
α→0+

‖G+ αθT‖ − 1

α
= lim
α→0+

max
θ∈T

‖G+ αθT‖ − 1

α

for every T ∈ L(X,Y ).

We now include a part of Proposition 2.5, particularized to spaces of operators, which
allows us to characterize the numerical index in terms of the norm of the space of oper-
ators.

Proposition 3.3. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator,
and 0 < λ ≤ 1. Then the following statements are equivalent:

(i) nG(X,Y ) ≥ λ.
(ii) maxθ∈T ‖G+ θ T‖ ≥ 1 + λ‖T‖ for every T ∈ L(X,Y ).

[20]
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The case λ = 1 in the previous result gives us the concept of spear operator. A norm-
one operator G ∈ L(X,Y ) is said to be a spear operator if

max
θ∈T
‖G+ θ T‖ = 1 + ‖T‖

for every T ∈ L(X,Y ). This concept was introduced in [3] and deeply studied in [26],
where we refer for more information and background. Observe that Proposition 3.3 says,
in particular, that G is a spear operator if and only if nG(X,Y ) = 1.

The next result is a direct consequence of Proposition 2.14 and will be very useful
later on.

Lemma 3.4. Let X,Y be Banach spaces. Suppose that A ⊆ BX and B ⊆ BY ∗ satisfy
conv(A) = BX and convw

∗
(B) = BY ∗ . Then given G ∈ L(X,Y ) with ‖G‖ = 1, we have

V (L(X,Y ), G, T ) = conv
⋂
δ>0

{y∗(Tx) : y∗ ∈ B, x ∈ A, Re y∗(Gx) > 1− δ}

for every T ∈ L(X,Y ). Accordingly,
vG(T ) = inf

δ>0
sup{|y∗(Tx)| : y∗ ∈ B, x ∈ A, Re y∗(Gx) > 1− δ}.

Proof. The result follows from Proposition 2.14 as the hypotheses on A and B give
BL(X,Y )∗ = convw

∗
(A⊗B). Indeed, for every G ∈ L(X,Y ), we have

sup
x∈A, y∗∈B

Re y∗(Gx) = sup
y∗∈B

sup
x∈A

Re y∗(Gx) = sup
y∗∈B

sup
x∈BX

Re y∗(Gx)

= sup
x∈BX

sup
y∗∈B

Re y∗(Gx) = sup
x∈BX

sup
y∗∈BY ∗

Re y∗(Gx) = ‖G‖,

as desired.

We may also relate the numerical index with respect to an operator to the numerical
index with respect to its adjoint.

Lemma 3.5. Let X,Y be Banach spaces. Then
nG∗(Y

∗, X∗) ≤ nG(X,Y )

for every norm-one G ∈ L(X,Y ).

Proof. The result follows immediately from Lemma 3.2 and the fact that the norm
of an operator and the norm of its adjoint coincide. Alternatively, it also follows from
Lemma 2.4 as the operator Ψ: L(X,Y ) → L(Y ∗, X∗) given by T 7→ T ∗ is an isometric
embedding.

In the case of a rank-one operator, we may provide a formula for the numerical index
with respect to it.

Proposition 3.6. Let X, Y be Banach spaces, x∗0 ∈ SX∗ , and y0 ∈ SY . Then the rank-
one operator G = x∗0 ⊗ y0 satisfies

nG(X,Y ) = n(X∗, x∗0)n(Y, y0).

We need to introduce some notation, just for this proof. Given a Banach space Z,
u ∈ SZ , and δ ∈ (0, 1), we write

vδ(Z, u, z) := sup{|z∗(z)| : z∗ ∈ SZ∗ , Re z∗(u) > 1− δ}.
Then (use Proposition 2.14, for instance) v(Z, u, z) = infδ>0 vδ(Z, u, z).
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Proof of Proposition 3.6. Given x∗ ∈ SX∗ and y ∈ SY , we consider the norm-one
operator T = x∗ ⊗ y and show

vG,δ(T ) ≤ vδ(X∗, x∗0, x∗)vδ(Y, y0, y)

for every δ > 0. To do so, we first observe that

vδ(X
∗, x∗0, x

∗) = sup{|x∗(x)| : x ∈ SX ,Rex∗0(x) > 1− δ}

as JX(BX) is weak∗ dense in BX∗∗ . Therefore, we can write

vG,δ(T ) = sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re(y∗(y0)x∗0(x)) > 1− δ}
≤ sup{|y∗(y)||x∗(x)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(y0) > 1− δ, Rex∗0(x) > 1− δ}
≤ sup{|x∗(x)| : x ∈ SX , Rex∗0(x) > 1− δ} sup{|y∗(y)| : y∗ ∈ SY ∗ , Re y∗(y0) > 1− δ}
= vδ(X

∗, x∗0, x
∗) vδ(Y, y0, y).

This clearly gives nG(X,Y ) ≤ n(X∗, x∗0)n(Y, y0). To prove the reverse inequality, fixed
T ∈ L(X,Y ) with ‖T‖ = 1 and δ > 0, observe that

sup{‖Tx‖ : x ∈ SX , Rex∗0(x) > 1− δ}
= sup{|z∗(Tx)| : z∗ ∈ SY ∗ , x ∈ SX , Rex∗0(x) > 1− δ}
= sup{|[T ∗z∗](x)| : z∗ ∈ SY ∗ , x ∈ SX , Rex∗0(x) > 1− δ}
= sup{vδ(X∗, x∗0, T ∗z∗) : z∗ ∈ SY ∗}
≥ sup{n(X∗, x∗0)‖T ∗z∗‖ : z∗ ∈ SY ∗}
= n(X∗, x∗0)‖T ∗‖ = n(X∗, x∗0).

Therefore, we can write

vG,2δ(T ) = sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re(y∗(y0)x∗0(x)) > 1− 2δ}
≥ sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(y0) > 1− δ, Rex∗0(x) > 1− δ}
≥ sup{n(Y, y0)‖Tx‖ : x ∈ SX , Rex∗0(x) > 1− δ} ≥ n(Y, y0)n(X∗, x∗0),

which gives the desired inequality nG(X,Y ) ≥ n(X∗, x∗0)n(Y, y0).

To finish the chapter, we would like to present some results which allow to control
the numerical index with respect to operators in terms of the numerical radius of the
operators on the domain space or on the range space, which we will profusely use in
Chapter 4. They all follow from this easy key lemma.

Lemma 3.7. Let X,Y be Banach spaces and let G ∈ L(X,Y ) be such that ‖G‖ = 1. Then

(a) vG(G ◦ T ) ≤ v(T ) for every T ∈ L(X),
(b) vG(T ◦G) ≤ v(T ) for every T ∈ L(Y ).

Proof. Both statements follow from Lemma 2.4 by considering, respectively, the op-
erator L(X) → L(X,Y ) given by T 7→ G ◦ T , and the operator L(Y ) → L(X,Y ) given
by T 7→ T ◦G.
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As a consequence of this result, we have the following chain of inequalities:

nG(X,Y ) ≤ inf

{
v(T )

‖G ◦ T‖
: T ∈ L(X), G ◦ T 6= 0

}
≤ sup

ε>0
inf{v(T ) : T ∈ L(X), ‖G ◦ T‖ > 1− ε}

and, analogously,

nG(X,Y ) ≤ inf

{
v(T )

‖T ◦G‖
: T ∈ L(Y ), T ◦G 6= 0

}
≤ sup

ε>0
inf{v(T ) : T ∈ L(Y ), ‖T ◦G‖ > 1− ε}.

These inequalities immediately imply the following result.

Lemma 3.8. Let X, Y be Banach spaces, G ∈ L(X,Y ) with ‖G‖ = 1, and 0 ≤ α ≤ 1.
Then nG(X,Y ) ≤ α provided one of the following statements is satisfied:

(a) For every ε > 0 there exists Tε ∈ L(X) such that v(Tε) ≤ α and ‖G ◦ Tε‖ > 1− ε.
(b) For every ε > 0 there exists Sε ∈ L(Y ) such that v(Sε) ≤ α and ‖Sε ◦G‖ > 1− ε.

The previous result gives some important consequences.

Proposition 3.9. Let X, Y be Banach spaces and let 0 ≤ α ≤ 1.

(a) Let A(α) = {T ∈ L(X) : ‖T‖ = 1, v(T ) ≤ α}. If

BX = aconv
⋃

T∈A(α)

T (BX),

then nG(X,Y ) ≤ α for every norm-one operator G ∈ L(X,Y ).
(b) Let B(α) = {T ∈ L(Y ) : ‖T‖ = 1, v(T ) ≤ α}. If for every ε > 0, the set⋃

T∈B(α)

{y ∈ SY : ‖Ty‖ > 1− ε}

is dense in SY , then nG(X,Y ) ≤ α for every norm-one operator G ∈ L(X,Y ).
(c) In particular, if there exists a surjective isometry T ∈ L(X) with v(T ) ≤ α or there

exists a surjective isometry S ∈ L(Y ) with v(S) ≤ α, then nG(X,Y ) ≤ α for every
norm-one operator G ∈ L(X,Y ).

Proof. Fix G ∈ L(X,Y ) with ‖G‖ = 1.
(a) For every ε > 0, we may use the hypothesis to find Tε ∈ L(X) with ‖Tε‖ = 1 and

v(Tε) ≤ α such that ‖G(Tε(x))‖ > 1 − ε for some x ∈ BX . Therefore, ‖G ◦ Tε‖ > 1 − ε
and Lemma 3.8 gives the result.

(b) For every ε > 0, we take x ∈ SX such that ‖Gx‖ > 1 − ε/3. Now, we may use
the hypothesis to find Sε ∈ L(Y ) with ‖Sε‖ = 1 and v(Sε) ≤ α, and y ∈ SY such that
‖Sεy‖ > 1− ε/3 and

∥∥y −Gx/‖Gx‖∥∥ < ε/3. Now, ‖y −Gx‖ < 2ε/3, and so

‖Sε(Gx)‖ ≥ ‖Sεy‖ − ‖Sε(y −Gx)‖ > 1− ε/3− 2ε/3 = 1− ε.

Consequently, ‖Sε ◦G‖ > 1− ε and Lemma 3.8 gives the result.
Finally, (c) clearly follows from (a) and (b).
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For the special case α = 0, the above result can be improved as we do not have to
pay attention to the norm of the operators.

Proposition 3.10. Let X, Y be Banach spaces.

(a) Let G ∈ L(X,Y ) with ‖G‖ = 1.

(a.1) If there exists T ∈ L(X) with v(T ) = 0 and G ◦ T 6= 0, then nG(X,Y ) = 0.
(a.2) If there exists T ∈ L(Y ) with v(T ) = 0 and T ◦G 6= 0, then nG(X,Y ) = 0.

(b) If ⋂
T∈L(Y ), v(T )=0

kerT = {0},

then nG(X,Y ) = 0 for every norm-one operator G ∈ L(X,Y ).
(c) If ⋃

T∈L(X), v(T )=0

T (X)

is dense in X, then nG(X,Y ) = 0 for every norm-one operator G ∈ L(X,Y ).

We emphasize the following immediate consequence of the previous result which will
be useful.

Corollary 3.11. LetW be a Banach space such that there is an onto isometry J ∈ L(W )

with v(J) = 0. Then

(a) nG(X,W ) = 0 for every Banach space X and every operator G ∈ L(X,W ) of norm 1,
(b) nG(W,Y ) = 0 for every Banach space Y and every operator G ∈ L(W,Y ) of norm 1.



4. Set of values of the numerical indices with respect to all
operators between two given Banach spaces

We start by showing some general results which can be deduced from the tools imple-
mented in the previous sections. The first result shows that 0 is always a possible value
of the numerical index with respect to operators (unless we are in the trivial case of both
spaces being one-dimensional). It is a direct consequence of Proposition 2.7.

Proposition 4.1. Let X, Y be Banach spaces. If dim(X) ≥ 2 or dim(Y ) ≥ 2, then
0 ∈ N (L(X,Y )).

The result above is actually an equivalence, as the following result is immediate.

Example 4.2. N (L(K,K)) = {1}.
Next, we particularize Proposition 2.11 to spaces of operators.

Proposition 4.3. Let X, Y be finite-dimensional real Banach spaces. Then the set of
norm-one G ∈ L(X,Y ) with nG(X,Y ) > 0 is countable. In particular, N (L(X,Y )) is
countable.

Our next result shows that all values of the numerical index are valid for operators
between Banach spaces. In the real case, this is clear as the numerical indices of all two-
dimensional norms do the job (and they are the numerical index with respect to the
corresponding identities). But in the complex case, the values of the numerical indices
with respect to the identity are not enough (as they are always greater than or equal
to 1/e; see [9, Corollary 2.1.19], for instance).

A first simple way of getting arbitrary values of the numerical indices with respect to
operators is given in the following result which follows immediately from Proposition 2.8.

Example 4.4. For every subset A ⊆ [0, 1] containing 0, there is a Banach space X such
that N (L(X,K)) = A. Indeed, just take X to be the predual of the space Z provided in
Proposition 2.8 (which is a dual Banach space as it is the `1-sum of finite-dimensional
spaces).

Let us also observe that if X is a Banach space of dimension at least 2 whose dual
space is smooth, it follows from Lemma 2.3 that N (L(X,K)) = {0}. This result contrasts
with the already cited fact that n(X) ≥ 1/e for every complex Banach space X, so
N (L(X,X)) cannot reduce to 0 when X is a complex Banach space. Therefore, it seems
more interesting to perform the study of the set of values of the numerical indices with
respect to all operators from a Banach space to itself, that is, the set

{nG(X,X) : X (real or complex) Banach space, G ∈ L(X), ‖G‖ = 1}.

[25]
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In the real case it is immediate that this set covers [0, 1], just using identity operators
[16, Theorem 3.6]. In the complex case, using identity operators one can only cover the
interval [1/e, 1]. The result will be stated in Example 6.5. Even more, we will show that
there are Banach spaces X such that N (L(X)) = [0, 1], both in the real and in the
complex case, see Theorem 6.4.

For real Banach spaces, the Banach space numerical index may be zero, so there is no
obstacle for the set N (L(X)) to be equal to {0}. We are going to prove that this happens
when X is a real Hilbert space of dimension greater than 1. Actually, we show that zero
is the only possible value of the numerical index with respect to operators, when either
the domain space or the range space is a real Hilbert space of dimension at least 2.

Theorem 4.5. Let H be a real Hilbert space of dimension at least 2. Then

N (L(X,H)) = N (L(H,Y )) = {0}

for all real Banach spaces X and Y . In particular, N (L(H)) = {0}.

Proof. Observe that for every pair of points x, y ∈ SH with 〈x, y〉 = 0, the operator
T ∈ SH given by T (z) = 〈z, x〉y − 〈z, y〉x for z ∈ H satisfies v(T ) = 0. So, clearly⋃

T∈L(H), v(T )=0

T (H) is dense in H and
⋂

T∈L(H), v(T )=0

ker(T ) = {0}.

Now, both assertions are immediate consequences of Proposition 3.10.

For every complex Banach space W , its underlying real Banach space WR also has
trivial set of values of the numerical indices with respect to operators. This is an imme-
diate consequence of Corollary 3.11 as multiplication by i is an onto isometry which has
numerical radius zero when viewed in L(WR).

Proposition 4.6. Let WR be the real Banach space underlying a complex Banach
space W . Then

N (L(X,WR)) = N (L(WR, Y )) = {0}

for all real Banach spaces X and Y . In particular, N (L(WR)) = {0}.

Another kind of spaces having trivial set of values of the numerical indices with respect
to operators are L(H) and also K(H), the space of compact linear operators from H to H.

Theorem 4.7. Let H be a real Hilbert space of dimension at least 2. Then

N (L(X,L(H))) = N (L(X,K(H))) = {0}

for every Banach space X. In particular,

N (L(L(H))) = N (L(K(H))) = {0}.

Moreover, if H is infinite-dimensional or has even dimension, then

N (L(L(H), Y )) = N (L(K(H), Y )) = {0}

for every Banach space Y .

Proof. Let us start with the case of L(H). For J ∈ SL(H) we define the operator
ΦJ : L(H) → L(H) by ΦJ(T ) = J ◦ T for every T ∈ L(H). Evidently, ‖ΦJ‖ = ‖J‖ = 1



On the numerical index with respect to an operator 27

and ΦIdH = IdL(H). Therefore,

v(ΦJ) = v(L(L(H)), IdL(H),ΦJ) = v(L(H), IdH , J) = v(J)

by Lemma 2.4(b). Let us write

B = {ΦJ : J ∈ L(H), ‖J‖ = 1, v(J) = 0}

and observe that the result will follow from Proposition 3.10(b) if we prove the equality⋂
Φ∈B

ker Φ = {0}.

To do so, fix T0 ∈ SL(H) and take x ∈ SH such that ‖T0x‖ > 1/2. Now, define e1 = T0x
‖T0x‖

and take e2 ∈ SH satisfying 〈e1, e2〉 = 0. We define the operator J ∈ L(H) given by
Jh = 〈h, e2〉e1 − 〈h, e1〉e2 for h ∈ H, which satisfies ‖J‖ = 1 and v(J) = 0, so ΦJ ∈ B.
Moreover, we can write

‖ΦJ(T0)‖ = ‖J ◦ T0‖ ≥ ‖J(T0x)‖ = ‖ − ‖T0x‖e2‖ = ‖T0x‖ > 1/2.

Therefore, T0 /∈ ker ΦJ and thus
⋂

Φ∈B ker Φ = {0}, which finishes the proof for L(H).
For K(H), it suffices to observe that the same argument is valid since ΦJ(K(H)) ⊆ K(H)

and we may repeat the argument considering ΦJ : K(H)→ K(H) and getting

v(ΦJ) = v(L(K(H)), IdK(H),ΦJ) = v(L(H), IdH , J) = v(J).

The rest of the proof is identical.
To prove the moreover part, observe that when H is infinite-dimensional or has even

dimension, then there is an onto isometry J ∈ L(H) with v(J) = 0. Indeed, in this case
we may write H = [

⊕
λ∈Λ `

2
2]`2 for a suitable index set Λ and, defining A ∈ L(`22) by

A(x, y) = (y,−x), the surjective isometry with numerical index zero is given by

J [(xλ)λ∈Λ] = (Axλ)λ∈Λ ((xλ)λ∈Λ ∈ H).

Now, the operator ΦJ is an onto isometry on L(H) or K(H) (ΦJ−1 is clearly the inverse
of ΦJ) satisfying v(ΦJ) = 0. Then Corollary 3.11 gives the result.

When H has odd dimension, we do not know if the equality nG(L(H), Y ) = 0 holds
for every Banach space Y and every operator G ∈ L(L(H), Y ).

Another result of the same kind tells us that there are many other spaces of operators
having trivial set of values of the numerical indices with respect to operators.

Proposition 4.8. Let W1, . . . ,Wn be real Banach spaces, let E be Rn endowed with an
absolute norm, and let W = [W1 ⊕ · · · ⊕Wn]E. Then the following statements hold:

(a) If SE is smooth at points whose first coordinate is zero and⋂
{ker(S1) : S1 ∈ L(W1), v(S1) = 0} = {0},

then N (L(X,W )) = {0} for every Banach space X.
(b) If SE is rotund in the direction of the first coordinate, that is, SE does not contain

line segments parallel to (1, 0, . . . , 0), and
⋃
{S1(W1) : S1 ∈ L(W1), v(S1) = 0} is

dense in W1, then N (L(W,Y )) = {0} for every Banach space Y .

Consequently, if the assumptions of (a) or (b) hold, then N (L(W )) = {0}.
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Proof. (a) Given a Banach space X, a norm-one operator G ∈ L(X,W ) can be seen
as G = (G1, . . . , Gn) where Gk ∈ L(X,Wk) for k = 1, . . . , n. We claim nG(X,W ) = 0

if G1 6= 0. Indeed, let P1 ∈ L(W,W1) denote the natural projection on W1 and let
I1 ∈ L(W1,W ) be the natural inclusion, so G1 = P1 ◦ G. Observe now that for every
S1 ∈ L(W1) with v(S1) = 0, the operator S ∈ L(W ) given by S = I1 ◦ S1 ◦ P1 clearly
satisfies ‖S‖ = ‖S1‖ and v(S) = 0. Since

P1 ◦G 6= 0 and
⋂

S1∈L(W1), v(S1)=0

ker(S1) = {0},

we can find S1 ∈ L(W1) with v(S1) = 0 such that S1◦P1◦G 6= 0 and so I1◦S1◦P1◦G 6= 0.
As v(I1 ◦ S1 ◦ P1) = 0, we get nG(X,W ) = 0 from Proposition 3.10(a.2). Therefore, we
may and do assume from now on that G1 = 0. Next we fix w0 ∈ SW1 and x∗ ∈ SX∗ , we
consider the norm-one operator T = x∗ ⊗ (w0, 0, . . . , 0) ∈ L(X,W ), and we shall prove
vG(T ) = 0. To this end, as

vG(T ) = inf
δ>0

sup{|w∗(Tx)| : w∗ ∈ SW∗ , x ∈ SX , Rew∗(Gx) > 1− δ}

for every k ∈ N we can take w∗k = (w∗k,1, . . . , w
∗
k,n) ∈ SW∗ and xk ∈ SX satisfying

lim
k

Rew∗k(Gxk) = 1 and lim
k
|w∗k(Txk)| = vG(T ).

For each k ∈ N define

e∗k = (‖w∗k,1‖, . . . , ‖w∗k,n‖) ∈ SE∗ and ek = (‖G1xk‖, . . . , ‖Gnxk‖) ∈ BE

which satisfy 1 = limk Rew∗k(Gxk) ≤ limk〈e∗k, ek〉 ≤ 1, and thus limk〈e∗k, ek〉 = 1. Now, by
passing to a subsequence, we may find y∗ = (y∗1 , . . . , y

∗
n) ∈ SE∗ and y = (y1, . . . , yn) ∈ SE

such that limk→∞ e∗k = y∗ and limk→∞ ek = y. Then it follows that

〈y∗, y〉 = lim
k
〈e∗k, ek〉 = 1

and y∗ is a supporting functional of y. Moreover, we have y1 = 0 as the first coordinate
of ek is equal to ‖G1xk‖ = 0 for every k, so

1 = 〈y∗, y〉 =

n∑
j=1

y∗j (yj) =

n∑
j=2

y∗j (yj)

and the element ỹ∗ = (0, y∗2 , . . . , y
∗
n) ∈ BE∗ is also a supporting functional of y. Therefore,

we get ỹ∗ = y∗ by the smoothness of SE at y and so y∗1 = 0. Finally, we can write

vG(T ) = lim
k
|w∗k(Txk)| = lim

k
|w∗k(w0, 0, . . . , 0)| |x∗(xk)|

≤ lim
k
‖w∗k,1‖ ‖w0‖ ≤ lim

k
‖w∗k,1‖ = y∗1 = 0,

which gives vG(T ) = 0 and finishes the proof of (a).
To prove (b) we start by observing that we can assume G ◦ I1 ◦ S1 ◦ P1 = 0 for

every S1 ∈ L(W1) with v(S1) = 0. Indeed, if there is S1 ∈ L(W1) with v(S1) = 0 such
that G ◦ I1 ◦ S1 ◦ P1 6= 0, then S = I1 ◦ S1 ◦ P1 satisfies v(S) = 0 and G ◦ S 6= 0. So
Proposition 3.10 gives nG(W,Y ) = 0. Then G ◦ I1 ◦ S1 ◦ P1 = 0 for every S1 ∈ L(W1)
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with v(S1) = 0. This, together with the fact that the set⋃
S1∈L(W1), v(S1)=0

S1(W1)

is dense in W1, implies G ◦ I1 = 0. Next, we fix y0 ∈ SY , w∗0 ∈ SW∗1 , we define w∗ =

(w∗0 , 0, . . . , 0) ∈ SW∗ and the rank-one operator T = w∗ ⊗ y0 ∈ SL(W,Y ), and we shall
prove vG(T ) = 0. To do so, since

vG(T ) = inf
δ>0

sup{|y∗(Tw)| : y∗ ∈ SY ∗ , w ∈ SW , Re y∗(Gw) > 1− δ}

for every k ∈ N we can take wk = (wk,1, . . . , wk,n) ∈ SW and y∗k ∈ SY ∗ satisfying

lim
k

Re y∗k(Gwk) = 1 and lim
k
|y∗k(Twk)| = vG(T ).

By passing to a subsequence, we may assume that {‖wk,j‖}k is convergent for every
j = 1, . . . , n. So, since the norm in E is absolute, we can define elements

e+ =
(

lim
k
‖wk,1‖, lim

k
‖wk,2‖, . . . , lim

k
‖wk,n‖

)
,

e− =
(
− lim

k
‖wk,1‖, lim

k
‖wk,2‖, . . . , lim

k
‖wk,n‖

)
,

ẽ =
(

0, lim
k
‖wk,2‖, . . . , lim

k
‖wk,n‖

)
=

1

2
(e+ + e−),

which clearly satisfy ‖ẽ‖ ≤ ‖e+‖ = ‖e−‖ ≤ 1. Since G◦I1 = 0, we can estimate as follows:

1 = lim
k

Re y∗k(Gwk) = lim
k

Re y∗k(G(0, wk,2, . . . , wk,n))

≤ lim
k
‖(0, wk,2, . . . , wk,n)‖ ≤ lim

k

∥∥(0, ‖wk,2‖, . . . , ‖wk,n‖)
∥∥
E

= ‖ẽ‖ ≤ 1

which gives ẽ ∈ SE and thus e± ∈ SE . So, we deduce that limk ‖wk,1‖ = 0 since SE is
rotund in the direction of the first coordinate. To finish the proof, observe that

vG(T ) = lim
k
|y∗k(Twk)| = lim

k
|y∗k(y0)| |w∗(wk)| ≤ lim

k
‖w∗0‖ ‖wk,1‖ = 0.

Therefore, we get vG(T ) = 0 and nG(W,Y ) = 0.

Remark 4.9. The smoothness and rotundity hypotheses in Proposition 4.8 cannot be
omitted. Indeed, on the one hand, the rank-one operator G ∈ L(`22 ⊕∞ R,R) given by
G = (0, 0, 1) ⊗ 1 is a spear operator by Proposition 3.6 as 1 is a spear vector in R and
(0, 0, 1) is a spear vector in (`22 ⊕∞ R)∗ = `22 ⊕1 R. Thus, the assumption of smoothness
in Proposition 4.8(a) is essential. On the other hand, the operator G∗ ∈ L(R, `22 ⊕1 R) is
also a spear operator by the same argument, showing that we cannot omit the rotundity
in Proposition 4.8(b).

The next example is even more surprising.

Example 4.10. There exists a Banach space X with n(X) = 0 such that L(X) contains
a spear operator. Indeed, consider X = (`22⊕∞ R)⊕1 R, which clearly satisfies n(X) = 0,
and G ∈ L((`22⊕∞R)⊕1R) given by G = (0, 0, 0, 1)⊗(0, 0, 0, 1), which is a spear operator
by Proposition 3.6.
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Our next result estimates the numerical indices with respect to operators whose do-
main or range is an `p-space.

Proposition 4.11. Let 1 < p <∞, 1 < q <∞ with 1
p + 1

q = 1, let Mp = sup
t∈[0,1]

|tp−1−t|
1+tp ,

and let Γ be either an infinite set or a finite set with an even number of elements. Then

N (L(X, `p(Γ))) ⊆ [0,Mp] and N (L(`p(Γ), Y )) ⊆ [0,Mp]

hold in the real case for all Banach spaces X and Y .

Proof. The argument is very similar to the one given at the end of the proof of
Theorem 4.7. By the assumption on the set Γ we may write `p(Γ) = [

⊕
λ∈Λ `

2
p]`p for a

suitable index set Λ. Defining A ∈ L(`2p) by A(x, y) = (y,−x), the operator given by

J [(xλ)λ∈Λ] = (Axλ)λ∈Λ ((xλ)λ∈Λ ∈ `p(Γ))

is then a surjective isometry. As v(A) = Mp (see the comments after [27, Theorem 1]),
we get v(J) ≤Mp. Now, Corollary 3.11 gives the result.

We now pass to study some results for complex spaces. As a first result, we may
calculate the set of values of the numerical indices with respect to operators between two
Hilbert spaces.

Proposition 4.12. Let H1, H2 be complex Hilbert spaces with dimension greater
than 1. Then N (L(H1, H2)) = {0, 1/2} if H1 and H2 are isometrically isomorphic and
N (L(H1, H2)) = {0} in the other case.

Proof. L(H1, H2) is a JB∗-triple (see [9, §2.2.27, §4.1.39] for the definition) under the
triple product

{xyz} = 1
2 (xy∗z + zy∗x) (x, y, z ∈ L(H1, H2)),

as it is a closed subtriple of the C∗-algebra L(H1⊕2H2) (we may use [9, Facts 4.1.40 and
4.1.41]). Now, as L(H1, H2) is not abelian since dim(H1) ≥ 2 and dim(H2) ≥ 2 (see [9,
§4.1.47]), it follows from [9, Theorem 4.2.24] that the quantity nG(H1, H2) is equal to 0

or 1/2 for every norm-one operator G ∈ L(H1, H2).
Next, we take into account that, by [9, Theorem 4.2.24], J = L(H1, H2) contains

a geometrically unitary element if and only if J contains a unitary element as Jordan
∗-triple, that is, if there is U ∈ J such that {UUT} = T for every T ∈ J (see [9,
Definition 4.1.53]). This implies that H1 and H2 are isometrically isomorphic, as is known
to experts, but we give an easy argument. Taking into account the formula for the product
in J , we get

UU∗T + TU∗U = 2T

for every T ∈ L(H1, H2). Just considering rank-one operators T ∈ L(H1, H2), we obtain

UU∗ = IdH2
and U∗U = IdH1

,

which gives the desired result.

Following an argument similar to the one given in Theorem 4.5, we can establish the
next result.
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Proposition 4.13. Let H be a complex Hilbert space with dim(H) ≥ 2. Then

N (L(X,H)) ⊆ [0, 1/2] and N (L(H,Y )) ⊆ [0, 1/2]

for all complex Banach spaces X and Y .

Proof. For each u ∈ SH , let v ∈ SH with 〈u, v〉 = 0 and define

T : H → H, T (x) = 〈x, v〉u,

which satisfies v(T ) ≤ 1/2. An application of Proposition 3.9 gives the result.

Our next aim is to study the set N (L(C(K1), C(K2))), where K1 and K2 are compact
Hausdorff topological spaces. Recall that, by Lemma 3.1, if nG(C(K1), C(K2)) > 0 for
some G ∈ L(C(K1), C(K2)), then G is an extreme operator. There is a well studied
special kind of extreme operators between C(K) spaces, the nice operators. A norm-one
operator G ∈ L(C(K1), C(K2)) is said to be nice if

G∗(δt) ∈ T{δs : s ∈ K1}

for every t ∈ K2 (that is, G∗ carries extreme points of BC(K2)∗ to extreme points of
BC(K1)∗). It is immediate that nice operators are extreme, but the converse result is
not always true (see Remark 4.16 below). We claim that a nice operator G satisfies
nG(C(K1), C(K2)) = 1. Indeed, this is easy to show by hand using the properties of the
δ-functions in the dual of a C(K) space, but also follows directly from [26, Proposition 4.2]
and [26, Example 2.12(a)]. Therefore, if for a pair of compact Hausdorff topological spaces
(K1,K2) it is known that every extreme operator in L(C(K1), C(K2)) is nice, then the
only possible values of the numerical index of operators in L(C(K1), C(K2)) are 0 and 1.
This idea leads to a couple of results, one for the real case and another one for the complex
case.

Theorem 4.14. Let K1, K2 be compact Hausdorff topological spaces such that at least
one of them has more than one point. Then, in the real case, one has

N (L(C(K1), C(K2))) = {0, 1}

provided at least one of the following assumptions holds:

(1) K1 is metrizable,
(2) K1 is Eberlein compact and K2 is metrizable,
(3) K2 is extremally disconnected,
(4) K1 is scattered.

Proof. First, as at least one of the spaces C(K1) and C(K2) has dimension greater
than 1, Proposition 4.1 gives 0 ∈ N (L(C(K1), C(K2))). By considering the rank-one op-
erator G = δt ⊗ 1, we immediately obtain 1 ∈ N (L(C(K1), C(K2))) by Proposition 3.6.
Finally, to get the reverse inclusion, by the comments before the statement of the the-
orem, we just have to check that under the given conditions, every extreme operator in
L(C(K1), C(K2)) is actually nice. For (1), this is shown in [5, Theorem 1]; for (2) in [1,
Theorem 7]; [47, Theorem 4] gives (3); finally, (4) follows from [47, Theorem 5].

For the complex case, we have a similar result.
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Theorem 4.15. Let K1, K2 be compact Hausdorff topological spaces such that at least
one of them has more than one point. Then, in the complex case, one has

N (L(C(K1), C(K2))) = {0, 1}

provided at least one of the following assumptions holds:

(1) K2 is extremally disconnected,
(2) K1 is metrizable and K2 is basically disconnected (i.e. the closure of every Fσ-open

is open),
(3) K1 is scattered.

Proof. We just need to follow the lines of the proof of Theorem 4.14, but here we have
to provide references for the fact that, in the complex case, every extreme operator in
L(C(K1), C(K2)) is actually nice under the presented conditions. For (1), this is shown
in [47, Theorem 4]; (2) is proved in [17, Theorem 1.4]; finally, (3) follows from [47,
Theorem 5].

Remark 4.16. There are examples showing that it is not true in general that all extreme
operators between spaces of continuous functions are nice [49, 50]. The underlying idea in
these examples is to consider for an arbitrary compact Hausdorff space K the canonical
inclusion G given by

G : C(K)→ C(BC(K)∗ , w
∗)

which satisfies
G∗(δµ) = µ

for every µ ∈ BC(K) and so it is not nice. Additional hypothesis on the compact space K
(e.g. K perfect in the complex case, see [49, Theorem 2.5]) ensure, however, that G is an
extreme point. We do not know whether the numerical index with respect to operators G
defined as above has to be always 0 or 1.

Remark 4.17. Let us also comment that, in the real case, examples as the ones in
the previous remark cannot be compact: for arbitrary compact Hausdorff topological
spaces K1 and K2, every compact extreme operator G ∈ L(C(K1), C(K2)) is nice [40,
Theorem 4.5] (see [54, Theorem 2.4] for an extension of this result). Moreover, if K2 is
separable, every weakly compact extreme operator G ∈ L(C(K1), C(K2)) is nice [14,
Proposition 2.8].

As a consequence of Theorems 4.14 and 4.15, we get the following particular case.

Corollary 4.18. Let K1 be a compact Hausdorff topological space and let (Ω,Σ, µ) be a
σ-finite measure space such that at least one of the spaces C(K1) or L∞(µ) has dimension
at least 2. Then

N (L(C(K1), L∞(µ))) = {0, 1}

in both the real and the complex case.

Indeed, this is a consequence of the fact that every L∞(µ) space can be identified with
a C(Kµ)-space where Kµ is extremally disconnected. With this in mind, the following
particular case also holds.
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Corollary 4.19. Let (Ωi,Σi, µi), i = 1, 2, be σ-finite measure spaces such that at least
one of the spaces L∞(µi), i = 1, 2, has dimension at least 2. Then

N (L(L∞(µ1), L∞(µ2))) = {0, 1}
in both the real and the complex case.

We get an analogous result for L1(µ) spaces.

Corollary 4.20. Let (Ωi,Σi, µi), i = 1, 2, be σ-finite measure spaces. Then

N (L(L1(µ1), L1(µ2))) ⊆ {0, 1}
in both the real and the complex case.

Proof. Fix a norm-one operator G ∈ L(L1(µ1), L1(µ2)). If G is not extreme,
Lemma 3.1 gives nG(L1(µ1), L1(µ2)) = 0. If, otherwise, G is an extreme operator, then
G∗ ∈ L(L∞(µ2), L∞(µ1)) is nice by [48, Corollary 2.4], so nG∗(L∞(µ2), L∞(µ1)) = 1

from the discussion preceding Theorems 4.14 and 4.15. But then nG(L1(µ1), L1(µ2)) = 1

by Lemma 3.5. This shows N (L(L1(µ1), L1(µ2))) ⊆ {0, 1}.
Let us show that the set N (L(L1(µ1), L1(µ2))) does not always contain the value 1.

Example 4.21. N (L(`1, L1[0, 1])) = {0}.
Indeed, by [26, Proposition 3.3] any norm-one operator G ∈ L(`1, L1[0, 1]) satisfying

nG(`1, L1[0, 1]) = 1 would carry the elements of the basis of `1 to spear vectors of L1[0, 1]

and thus to extreme points of the unit ball of L1[0, 1] [26, Proposition 2.11(b)], so there
are no such operators. On the other hand, 0 ∈ N (L(`1, L1[0, 1])) by Proposition 4.1.



5. Lipschitz numerical range

We would like to deal now with the Lipschitz numerical range introduced in [51, 52] and
show that it can be viewed as a particular case of the numerical range with respect to
a linear operator. We need some notation. Let X, Y be Banach spaces. We denote by
Lip0 (X,Y ) the set of all Lipschitz maps F : X → Y such that F (0) = 0. This is a Banach
space when endowed with the norm

‖F‖L = sup

{
‖F (x)− F (y)‖
‖x− y‖

: x, y ∈ X, x 6= y

}
.

Following [51, 52], the Lipschitz numerical range of F ∈ Lip0(X,X) is

WL(F ) :=

{
ξ∗(F (x)− F (y))

‖x− y‖
: ξ∗ ∈ SX∗ , x, y ∈ X, x 6= y, ξ∗(x− y) = ‖x− y‖

}
,

the Lipschitz numerical radius of F is

wL(F ) := sup{|λ| : λ ∈WL(F )},

and the Lipschitz numerical index of X is

nL(X) := inf{wL(F ) : F ∈ Lip0(X,X), ‖F‖L = 1}
= max{k ≥ 0: k‖F‖L ≤ wL(F ) ∀F ∈ Lip0(X,X)}.

We would like to show that the closed convex hull of the Lipschitz numerical range is
equal to the numerical range with respect to a linear operator. To do so, we need to recall
the concept of Lipschitz free space. First, observe that we can associate to each x ∈ X
an element δx ∈ Lip0 (X,K)

∗ which is just the evaluation map δx(F ) = F (x) for every
F ∈ Lip0(X,K). The Lipschitz free space over X is defined as

F(X) := span‖·‖{δx : x ∈ X} ⊆ Lip0 (X,K)
∗
.

The space F(X) is an isometric predual of Lip0 (X,K). Moreover, the inclusion map
δ : x δx establishes an isometric (non-linear) embedding X ↪→ F(X) since

‖δx − δy‖F(X) = ‖x− y‖X
for all x, y ∈ X. The term “Lipschitz free space” comes from [20], but the concept was
studied much earlier and it is also known as the Arens–Eells space of X. We refer the
reader to the paper [18] and the book [53] for more information and background. The
main features of the Lipschitz free space we are going to use here are contained in the
following result which is nowadays considered folklore in the theory of Lipschitz maps
and can be found in the cited references [18], [20], or [53, Chapter 3].

[34]
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Lemma 5.1. Let X, Y be Banach spaces.

(a) For every F ∈ Lip0(X,Y ) there exists a unique linear operator TF : F(X)→ Y such
that TF ◦δ = F and ‖TF ‖ = ‖F‖L. Moreover, Lip0(X,Y ) is isometrically isomorphic
to L(F(X), Y ). In particular, Lip0(X,K) = F(X)∗.

(b) When the above is applied to Id ∈ Lip0(X,X), we get the operator GX : F(X) → X

given by
GX
(∑
x∈X

axδx

)
=
∑
x∈X

axx,

which has norm 1 and satisfies GX ◦ δ = IdX .
(c) The set

BX :=

{
δx − δy
‖x− y‖

: x, y ∈ X, x 6= y

}
⊆ F(X)

is norming for F(X)∗ = Lip0(X,K), i.e. BF(X) = aconv(BX).

Our result for Lipschitz numerical ranges is the following.

Theorem 5.2. Let X be a Banach space. Then

conv(WL(F )) = V (L(F(X), X),GX , TF ) = V (Lip0(X,X), Id, F )

for every F ∈ Lip0(X,X).

The result will be a consequence of two lemmas. The first one follows directly from
Proposition 2.14, as the set

C =

{
x∗ ⊗ δx − δy

‖x− y‖
: x, y ∈ X, x 6= y, x∗ ∈ SX∗

}
⊆ L(F(X), X)∗

satisfies BL(F(X),X)∗ = convw
∗
(C) by Lemma 5.1(c).

Lemma 5.3. Let X be a Banach space. Then

V (L(F(X), X),GX , T ) =

conv
⋂
δ>0

{
x∗(T (δx − δy))

‖x− y‖
: x, y ∈ X, x 6= y, x∗ ∈ SX∗ , Re

x∗(GX(δx − δy))

‖x− y‖
> 1− δ

}
for every T ∈ L(F(X), X). Equivalently,

V (Lip0(X,X), IdX , F ) =

conv
⋂
δ>0

{
x∗(F (x)− F (y))

‖x− y‖
: x, y ∈ X, x 6= y, x∗ ∈ SX∗ , Re

x∗(x− y)

‖x− y‖
> 1− δ

}
for every F ∈ Lip0(X,X).

The second preliminary result follows from the Bishop–Phelps–Bollobás theorem.

Lemma 5.4. Let X be a Banach space. Then

WL(F ) =
⋂
δ>0

{
x∗(F (x)− F (y))

‖x− y‖
: x, y ∈ X, x 6= y, x∗ ∈ SX∗ , Re

x∗(x− y)

‖x− y‖
> 1− δ

}
for every F ∈ Lip0(X,X).
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Proof. The inclusion “⊆” is obvious, so let us prove the reverse one. Fix F in
Lip0(X,X). For every δ > 0, write

Wδ :=

{
x∗(F (x)− F (y))

‖x− y‖
: x, y ∈ X, x 6= y, x∗ ∈ SX∗ , Re

x∗(x− y)

‖x− y‖
> 1− δ

}
.

It is enough to show that for every ε > 0, there is δ > 0 such that Wδ ⊆ WL(F ) + εBK.
So let us fix 0 < ε < 1 and consider δ > 0 such that 2‖F‖L

√
2δ < ε. Given x, y ∈ X with

x 6= y and x∗ ∈ SX∗ satisfying

Rex∗
(

x− y
‖x− y‖

)
> 1− δ,

we can use the Bishop–Phelps–Bollobás theorem (see [13, Corollary 2.4] for this version)
to find u ∈ SX , 0 < ρ <

√
2δ and z∗ ∈ SX∗ such that

z∗
(

x− y
‖x− y‖

+ ρu

)
=

∥∥∥∥ x− y
‖x− y‖

+ ρu

∥∥∥∥ = 1 and
∥∥x∗ − z∗‖ < √2δ.

Write x′ := x+ ρ‖x− y‖u and y′ := y, and observe that

‖x′ − y′‖ =
∥∥x− y + ρ‖x− y‖u

∥∥ = ‖x− y‖
∥∥∥∥ x− y
‖x− y‖

+ ρu

∥∥∥∥ = ‖x− y‖

and so
z∗
(

x′ − y′

‖x′ − y′‖

)
= z∗

(
x− y
‖x− y‖

+ ρu

)
= 1.

Therefore, z
∗(F (x′)−F (y′))
‖x′−y′‖ ∈WL(F ). Moreover,∥∥∥∥z∗(F (x′)− F (y′))

‖x′ − y′‖
− x∗(F (x)− F (y))

‖x− y‖

∥∥∥∥
≤
∥∥∥∥F (x′)− F (y′)

‖x′ − y′‖
− F (x)− F (y)

‖x− y‖

∥∥∥∥+

∥∥∥∥[z∗ − x∗]F (x)− F (y)

‖x− y‖

∥∥∥∥
≤
∥∥∥∥F (x′)− F (y′)− F (x) + F (y)

‖x− y‖

∥∥∥∥+ ‖F‖L ‖z∗ − x∗‖

< ‖F‖L
∥∥∥∥ x′ − x
‖x− y‖

∥∥∥∥+ ‖F‖L
√

2δ = ‖F‖L(ρ+
√

2δ) < 2‖F‖L
√

2δ < ε.

We have shown x∗(F (x)−F (y))
‖x−y‖ ∈WL(F ) + εBK, so Wδ ⊆WL(F ) + εBK as desired.



6. Some stability results

In this chapter we collect some results which show the behaviour of the value of the
numerical index when we apply some Banach space operations. We have divided the
chapter into several subsections.

6.1. Diagonal operators. The next result allows us to calculate the numerical index
with respect to a diagonal operator between c0-, `1- and `∞-sums of Banach spaces.

Proposition 6.1. Let {Xλ : λ ∈ Λ}, {Yλ : λ ∈ Λ} be two families of Banach spaces and
let Gλ ∈ L(Xλ, Yλ) be a norm-one operator for every λ ∈ Λ. Let E be one of the Banach
spaces c0, `∞, or `1, let X = [

⊕
λ∈ΛXλ]E and Y = [

⊕
λ∈Λ Yλ]E, and define the operator

G : X → Y by
G[(xλ)λ∈Λ] = (Gλxλ)λ∈Λ

for every (xλ)λ∈Λ ∈ [
⊕

λ∈ΛXλ]E. Then

nG(X,Y ) = inf
λ
nGλ(Xλ, Yλ).

Proof. We follow the lines of [37, proof of Proposition 1]. Given κ ∈ Λ, we first
have to show nG(X,Y ) ≤ nGκ(Xκ, Yκ). Observe that setting W = [

⊕
λ 6=κXλ]E and

Z = [
⊕

λ6=κ Yλ]E , we can write X = Xκ⊕∞W and Y = Yκ⊕∞Z when E is `∞ or c0 and
X = Xκ⊕1 W and Y = Yκ⊕1 Z when E is `1. Given S ∈ L(Xκ, Yκ), define T ∈ L(X,Y )

by
T (xκ, w) = (Sxκ, 0) (xκ ∈ Xκ, w ∈W )

which obviously satisfies ‖T‖ = ‖S‖. We claim vG(T ) = vGκ(S). In order to obtain
vG(T ) ≤ vGκ(S), given δ > 0, we may suppose vG,δ(T ) > 0. For our goal, it is sufficient
to prove vG,δ(T ) ≤ vGκ,δ̂(S) where δ̂ = 2δ/vG,δ(T ). For every 0 < ε < vG,δ(T )/2, we
may find x = (xκ, w) ∈ SX and y∗ = (y∗κ, z

∗) ∈ SY ∗ such that |y∗(Tx)| > vG,δ(T )− ε >
vG,δ(T )/2 and

1− δ < Re y∗(Gx) ≤ Re y∗κ(Gκxκ) + ‖z∗‖ ‖w‖.
Moreover,

‖y∗κ‖ ‖xκ‖+ ‖z∗‖ ‖w‖ ≤ ‖y∗‖ ‖x‖ = 1.

Consequently,

‖y∗κ‖ ‖xκ‖+ ‖z∗‖ ‖w‖ − δ ≤ 1− δ < Re y∗κ(Gκxκ) + ‖z∗‖ ‖w‖
and so Re y∗κ(Gκxκ) > ‖y∗κ‖ ‖xκ‖ − δ. Since

vG,δ(T )

2
< |y∗(Tx)| = |y∗κ(Sxκ)| ≤ ‖y∗κ‖ ‖xκ‖,

[37]
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we deduce

Re
y∗κ
‖y∗κ‖

(
G1

xκ
‖xκ‖

)
> 1− δ

‖y∗κ‖ ‖xκ‖
> 1− δ̂.

Then

vG,δ(T )− ε < |y∗(Tx)| = |y∗κ(Sxκ)| ≤
∣∣∣∣ y∗κ‖yκ‖

(
S
xκ
‖xκ‖

)∣∣∣∣ ≤ vGκ,δ̂(S),

and hence vG(T ) ≤ vGκ(S).

To prove the reverse inequality, we fix δ > 0 and xκ ∈ SXκ , y∗κ ∈ SY ∗κ satisfying
Re y∗κ(Gκxκ) > 1 − δ, and define x = (xκ, 0) ∈ SX and y∗ = (y∗κ, 0) ∈ SY ∗ . We clearly
have

Re y∗(Gx) > 1− δ and |y∗κ(Sxκ)| = |y∗(Tx)| ≤ vG,δ(T ).

Consequently, vGκ,δ(S) ≤ vG,δ(T ) and the claim follows by letting δ ↓ 0.
To sum up, we have proved that given S ∈ L(Xκ, Yκ) there is T ∈ L(X,Y ) with

‖T‖ = ‖S‖ and vG(T ) = vGκ(S); consequently,

nG(X,Y )‖S‖ = nG(X,Y )‖T‖ ≤ vG(T ) = vGκ(S)

and the arbitrariness of S ∈ L(Xκ, Yκ) gives nG(X,Y ) ≤ nGκ(Xκ, Yκ).
We now prove the reverse inequalities when E is c0 or `∞. In both cases, an operator

T ∈ L(X,Y ) can be seen as a family (Tλ)λ∈Λ, where Tλ ∈ L(X,Yλ) for every λ, and
‖T‖ = sup{‖Tλ‖ : λ ∈ Λ}. Given ε > 0, we may find κ ∈ Λ such that ‖Tκ‖ > ‖T‖−ε, and
write X = Xκ⊕∞W where W = [

⊕
λ 6=κXλ]E . Since BX is the convex hull of SXκ×SW ,

we may find x0 ∈ SXκ and w0 ∈ SW such that

‖Tκ(x0, w0)‖ > ‖T‖ − ε.

Now, fix x∗0 ∈ SX∗κ with x∗0(x0) = 1 and define the operator S ∈ L(Xκ, Yκ) by

Sx = Tκ(x, 0) + x∗0(x)Tκ(0, w0) = Tκ(x, x∗0(x)w0) (x ∈ Xκ)

which satisfies

‖S‖ ≥ ‖Sx0‖ = ‖Tκ(x0, x
∗
0(x0)w0)‖ = ‖Tκ(x0, w0)‖ > ‖T‖ − ε.

Given δ > 0, we claim that vGκ,δ(S) ≤ vG,δ(T ). Indeed, we may find u ∈ SXκ and
v∗ ∈ SY ∗κ with Re v∗(Gλ0

u) > 1− δ. Now, we write

x = (u, x∗0(u)w0) ∈ SX , y∗ = (v∗, 0) ∈ SY ∗

which satisfy Re y∗(Gx) = Re v∗(Gκu) > 1− δ, hence

|v∗(Su)| = |v∗[Tκ(u, x∗0(u)w0)]| = |y∗(Tx)| ≤ vG,δ(T ).

Then we deduce vGκ,δ(S) ≤ vG,δ(T ). From this, we get

vG(T ) ≥ vGκ(S) ≥ nGκ(Xκ, Yκ)‖S‖ ≥ nGκ(Xκ, Yκ)[‖T‖ − ε].

Therefore,
vG(T ) ≥ inf

λ
nGλ(Xλ, Yλ)‖T‖

and so nG(X,Y ) ≥ infλ nGλ(Xλ, Yλ), as required.
Suppose now E = `1. In this case, we can write every operator T ∈ L(X,Y ) as

a family (Tλ)λ∈Λ of operators where Tλ ∈ L(Xλ, Y ) for every λ ∈ Λ, and satisfying



On the numerical index with respect to an operator 39

‖T‖ = sup{‖Tλ‖ : λ ∈ Λ}. Given ε > 0, find κ ∈ Λ such that ‖Tκ‖ > ‖T‖ − ε, and write
X = Xκ⊕1W , Y = Yκ⊕1Z, and Tκ = (A,B) whereW = [

⊕
λ 6=κXλ]`1 , Z = [

⊕
λ6=κ Yλ]`1 ,

A ∈ L(Xκ, Yκ) and B ∈ L(Xκ, Z). Now, we choose x0 ∈ SXκ such that

‖Tκx0‖ = ‖Ax0‖+ ‖Bx0‖ > ‖T‖ − ε,

we find a0 ∈ SY ∗κ and z∗ ∈ SZ∗ satisfying

Ax0 = ‖Ax0‖a0 and z∗(Bx0) = ‖Bx0‖,

and define an operator S ∈ L(Xκ, Yκ) by

Sx = Ax+ [z∗(Bx)]a0 (x ∈ Xκ).

Then
‖S‖ ≥ ‖Sx0‖ = ‖Ax0 + z∗(Bx0)a0‖ = ‖Ax0‖+ ‖Bx0‖ > ‖T‖ − ε.

Given δ > 0, we prove vGκ,δ(S) ≤ vG,δ(T ). To do so, given u ∈ SXκ and v∗ ∈ SY ∗κ with
Re v∗(Gκu) > 1− δ, we define

x = (u, x∗0(u)w0) ∈ SX and y∗ = (v∗, 0) ∈ SY ∗ .

Since Re y∗(Gx) = Re v∗(Gκu) > 1− δ, we get

|v∗(Su)| = |v∗(Au) + v∗(a0)z∗(Bu)| = |y∗(Tκu)| = |y∗(Tx)| ≤ vG,δ(T ),

which gives vGκ,δ(S) ≤ vG,δ(T ) thanks to the arbitrariness of u and v∗. Finally, we can
write

vG(T ) ≥ vGκ(S) ≥ nGκ(Xκ, Yκ)‖S‖ ≥ nGκ(Xκ, Yκ)[‖T‖ − ε]

and so we deduce vG(T ) ≥ infλ nGλ(Xλ, Yλ)‖T‖, from which the desired inequality
nG(X,Y ) ≥ infλ nGλ(Xλ, Yλ) follows.

Let us observe that the first part of the above proof is valid for general absolute sums.

Proposition 6.2. Let X1, X2, Y1, Y2 be Banach spaces and let E be R2 endowed with
an absolute norm. Given norm-one operators Gi ∈ L(Xi, Yi) for i = 1, 2, define G ∈
L(X1 ⊕E X2, Y1 ⊕E Y2) by

G(x1, x2) = (G1x1, G2x2) ∈ Y1 ⊕E Y2

for every (x1, x2) ∈ X1 ⊕E X2. Then

nG(X1 ⊕E X2, Y1 ⊕E Y2) ≤ min{nG1
(X1, Y1), nG2

(X2, Y2)}.

The associativity of `p-sums allows us to get the following result from the above one.

Corollary 6.3. Let {Xλ : λ ∈ Λ}, {Yλ : λ ∈ Λ} be two families of Banach spaces,
let Gλ ∈ L(Xλ, Yλ) be a norm-one operator for every λ ∈ Λ, let 1 < p < ∞, and let
X = [

⊕
λ∈ΛXλ]`p and Y = [

⊕
λ∈Λ Yλ]`p . Define the operator G : X → Y by

G[(xλ)λ∈Λ] = (Gλxλ)λ∈Λ

for every (xλ)λ∈Λ ∈ [
⊕

λ∈ΛXλ]`p . Then

nG(X,Y ) ≤ inf
λ
nGλ(Xλ, Yλ).
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The main application of Proposition 6.1 is the following important example.

Theorem 6.4. In both the real and the complex case, there exist Banach spaces X such
that

N (L(X)) = [0, 1].

The proof will follow immediately from Proposition 6.1 and the next example.

Example 6.5. For every γ ∈ [0, 1] there exist a real or complex Banach space Yγ and
norm-one operators Gγ,1, Gγ,2 ∈ L(Yγ) with nGγ,1(Yγ , Yγ) = γ and nGγ,2(Yγ , Yγ) = 1.

Proof. We start by showing the existence of a real or complex space Zγ such that there
exists a norm-one operator G ∈ L(Zγ) satisfying nG(Zγ , Zγ) = γ. For γ ∈ [1/2, 1], it is
enough to use the fact that the set {n(W ) : W two-dimensional space} covers the interval
[0, 1] in the real case and [1/ e, 1] in the complex case [16, Theorems 3.5 and 3.6]. So, for
γ ∈ [1/2, 1] there is a two-dimensional (real or complex) space Zγ satisfying n(Zγ) = γ

and it suffices to take G = IdZγ .
For γ ∈ [0, 1/2], let Xγ = K2 endowed with the norm

‖(x1, x2)‖γ = max{|x2|, |x1|+ (1− γ)|x2|} ((x1, x2) ∈ K2),

let Z = `2∞, and let Zγ = Xγ ⊕∞ Z. Take x∗0 = (0, 1) ∈ SX∗γ , z0 = (1, 1) ∈ SZ ,
x0 = (1, 0) ∈ SXγ , z∗0 = (1, 0) ∈ SZ∗ , and define J1 = x∗0 ⊗ z0, J2 = z∗0 ⊗ x0, and
G = (J1, J2). Let us prove the equality nG(Zγ , Zγ) = γ.

Observe first that X∗γ is K2 endowed with the norm

‖(x∗1, x∗2)‖ = max{|x∗1|, γ|x∗1|+ |x∗2|} ((x1, x2) ∈ K2).

Since ‖J1‖ = ‖J2‖ = 1 and z0 ∈ Z, z∗0 ∈ Z∗ are spear vectors, by Propositions 6.1 and 3.6
we have

nG(Zγ , Zγ) = min{nJ1(Xγ , Z), nJ2(Z,Xγ)}
= min{n(X∗γ , x

∗
0)n(Z, z0), n(Z∗, z∗0)n(Xγ , x0)} = min{n(X∗γ , x

∗
0), n(Xγ , x0)}.

So it suffices to show n(X∗γ , x
∗
0) = γ and n(Xγ , x0) ≥ 1 − γ. To do so, we fix x∗ =

(x∗1, x
∗
2) ∈ SX∗γ and we compute v(X∗γ , x

∗
0, x
∗). The points x ∈ SXγ satisfying x∗0(x) = 1

are of the form x = (tθ, 1) with t ∈ [0, γ] and θ ∈ T. Thus we have

v(X∗γ , x
∗
0, x
∗) = sup{|tθx∗1 + x∗2| : t ∈ [0, γ], θ ∈ T} = γ|x∗1|+ |x∗2| ≥ γ‖x∗‖,

which implies n(X∗γ , x
∗
0) ≥ γ. Finally, v(X∗γ , x

∗
0, x
∗) = γ for x∗ = (1, 0) ∈ SX∗γ and so

n(X∗γ , x
∗
0) = γ as desired.

To prove n(Xγ , x0) ≥ 1− γ, we fix x = (x1, x2) ∈ SXγ and we estimate v(Xγ , x0, x).
The points x∗ ∈ SX∗γ satisfying x∗(x0) = 1 are of the form x∗ = (1, tθ) with t ∈ [0, 1− γ]

and θ ∈ T. Thus we have

v(Xγ , x0, x) = sup{|x1 + tθx2| : t ∈ [0, 1− γ], θ ∈ T} = |x1|+ (1− γ)|x2| ≥ (1− γ)‖x‖,

which implies n(Xγ , x0) ≥ 1− γ. This finishes the proof of the existence of Zγ .
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Now, for each γ ∈ [0, 1], we take Yγ = (Zγ ⊕∞ K) ⊕1 K. On the one hand, define
Gγ,1 ∈ L(Yγ) by

Gγ,1(z, α, β) = (Gz, α, β) (z ∈ Zγ , α, β ∈ K),

which satisfies nGγ,1(Yγ , Yγ) = nG(Zγ , Zγ) = γ by Proposition 6.1. On the other hand,
observe that Y ∗γ = (Z∗γ ⊕1 K) ⊕∞ K, so the elements y = (0, 0, 1) ∈ SYγ and y∗ =

(0, 1, 1) ∈ SY ∗γ are spear vectors in Yγ and Y ∗γ respectively. Therefore, the norm-one
operator Gγ,2 = y∗ ⊗ y ∈ L(Yγ) satisfies nGγ,2(Yγ , Yγ) = 1 by Proposition 3.6.

We are now able to provide the pending proof.

Proof of Theorem 6.4. For each γ ∈ [0, 1], consider the space Yγ given in Example 6.5
and consider the norm-one operators Gγ,1, Gγ,2 ∈ L(Yγ) satisfying nGγ,1(Yγ , Yγ) = γ and
nGγ,2(Yγ , Yγ) = 1. Now, let X = [

⊕
γ∈[0,1] Yγ ]c0 , and for every ξ ∈ [0, 1], consider the

norm-one operator Gξ ∈ L(X) to be the diagonal operator given by [Gξ]γ = Gγ,2 if γ 6= ξ

and [Gξ]ξ = Gξ,1. By Proposition 6.1, nGξ(X,X) = ξ, finishing the proof.

6.2. Composition operators on vector-valued function spaces. The first result
here gives the numerical index with respect to composition operators between spaces of
vector-valued continuous functions.

Proposition 6.6. Let X, Y be Banach spaces, let K be a compact Hausdorff topological
space and G ∈ L(X,Y ) be a norm-one operator. Consider the norm-one composition
operator G̃ : C(K,X)→ C(K,Y ) given by G̃(f) = G ◦ f for every f ∈ C(K,X). Then

nG̃(C(K,X), C(K,Y )) = nG(X,Y ).

Proof. We follow the lines of [37, proof of Theorem 5]. To show

nG̃(C(K,X), C(K,Y )) ≥ nG(X,Y ),

we fix T ∈ L(C(K,X), C(K,Y )) with ‖T‖ = 1 and prove the inequality vG̃(T ) ≥
nG(X,Y ). Given ε > 0, we may find f0 ∈ C(K,X) with ‖f0‖ = 1 and t0 ∈ K such
that

(6.1) ‖[Tf0](t0)‖ > 1− ε.

Define z0 = f0(t0) and find a continuous function ϕ : K → [0, 1] such that ϕ(t0) = 1 and
ϕ(t) = 0 if ‖f0(t)− z0‖ ≥ ε. Now write z0 = (1−λ)x1 +λx2 with 0 ≤ λ ≤ 1, x1, x2 ∈ SX ,
and consider the functions

fj = (1− ϕ)f0 + ϕxj ∈ C(K,X) (j = 1, 2).

Then ‖ϕf0 − ϕz0‖ < ε meaning that

‖f0 − ((1− λ)f1 + λf2)‖ < ε,

and, by (6.1), we must have

‖[Tf1](t0)‖ > 1− 2ε or ‖[Tf2](t0)‖ > 1− 2ε.

By making the right choice of x0 = x1 or x0 = x2, we get x0 ∈ SX such that

(6.2) ‖[T ((1− ϕ)f0 + ϕx0)](t0)‖ > 1− 2ε.
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Next, we fix x∗0 ∈ SX∗ with x∗0(x0) = 1, denote

Φ(x) = x∗0(x)(1− ϕ)f0 + ϕx ∈ C(K,X) (x ∈ X),

and consider the operator S ∈ L(X,Y ) given by

Sx = [T (Φ(x))](t0) (x ∈ X)

which, by (6.2), obviously satisfies ‖S‖ ≥ ‖Sx0‖ > 1− 2ε.
Now, given δ > 0, and x ∈ SX , y∗ ∈ SY ∗ such that Re y∗(Gx) > 1 − δ, we define

f ∈ SC(K,X) by f = Φ(x), and consider the functional g∗ ∈ SC(K,Y )∗ given by

g∗(h) = [y∗ ⊗ δt0 ](h) = y∗(h(t0)) (h ∈ C(K,Y )).

Since f(t0) = x, we have Re g∗(G̃f) > 1− δ and

|y∗(Sx)| =
∣∣y∗([T (Φ(x))](t0))

∣∣ = |g∗(Tf)| ≤ vG̃,δ(T ),

hence vG,δ(S) ≤ vG̃,δ(T ). Therefore,

vG̃(T ) ≥ vG(S) ≥ nG(X,Y )‖S‖ ≥ (1− 2ε)nG(X,Y ),

and the arbitrariness of ε > 0 gives vG̃(T ) ≥ nG(X,Y ), as desired.
To prove the reverse inequality, we take an operator S ∈ L(X,Y ) and define the

operator T ∈ L(C(K,X), C(K,Y )) by

[T (f)](t) = S(f(t)) (t ∈ K, f ∈ C(K,X)).

Clearly, ‖T‖ = ‖S‖. To estimate the value of vG̃(T ) we use Lemma 3.4 considering
A = SC(K,X) and B = {y∗⊗δt : y∗ ∈ SY ∗ , t ∈ K}, where (y∗⊗δt)(g) = y∗(g(t)) for every
g ∈ C(K,Y ) (as these subsets satisfy conv(A) = BC(K,X) and convw

∗
(B) = BC(K,Y )∗).

Now, for every δ > 0, f ∈ SC(K,X), t ∈ K, and y∗ ∈ SY ∗ satisfying Re y∗(G(f(t))) > 1−δ,
we set x = f(t) ∈ SX and observe that Re y∗(Gx) > 1− δ and

|y∗([Tf ](t))| = |y∗(S(f(t)))| = |y∗(Sx)| ≤ vG,δ(S).

Consequently, vG̃,δ(T ) ≤ vG,δ(S) and

vG(S) ≥ vG̃(T ) ≥ nG̃(C(K,X), C(K,Y ))‖T‖ = nG̃(C(K,X), C(K,Y ))‖S‖,

so nG(X,Y ) ≥ nG̃(C(K,X), C(K,Y )), as desired.

We next deal with Köthe–Bochner vector-valued function spaces, for which we need
to introduce some terminology.

Let (Ω,Σ, µ) be a complete σ-finite measure space. We denote by L0(µ) the vector
space of all (equivalent classes modulo equality a.e. of) Σ-measurable locally integrable
real-valued functions on Ω. A Köthe function space is a linear subspace E of L0(µ)

endowed with a complete norm ‖ · ‖E satisfying the following conditions:

(i) If |f | ≤ |g| a.e. on Ω, g ∈ E and f ∈ L0(µ), then f ∈ E and ‖f‖E ≤ ‖g‖E .
(ii) For every A ∈ Σ with 0 < µ(A) <∞, the characteristic function 1A belongs to E.

We refer the reader to the classical book by J. Lindenstrauss and L. Tzafriri [31] for more
information and background on Köthe function spaces. Let us recall some useful facts



On the numerical index with respect to an operator 43

about these spaces. First, E is a Banach lattice in the pointwise order. The Köthe dual
E′ of E is the function space defined as

E′ =

{
g ∈ L0(µ) : ‖g‖E′ := sup

f∈BE

∫
Ω

|fg| dµ <∞
}
,

which is again a Köthe space on (Ω,Σ, µ). Every element g ∈ E′ defines naturally a
continuous linear functional on E by the formula

f 7→
∫

Ω

fg dµ (f ∈ E),

so we have E′ ⊆ E∗ and this inclusion is isometric.
Let E be a Köthe space on a complete σ-finite measure space (Ω,Σ, µ) and let X

be a real or complex Banach space. A function f : Ω → X is said to be simple if f =∑n
i=1 xi1Ai for some x1, . . . , xn ∈ X and some A1, . . . , An ∈ Σ. The function f is said

to be strongly measurable if there exists a sequence {fn}n∈N of simple functions such
that lim ‖fn(t)− f(t)‖X = 0 for almost all t ∈ Ω. Given a strongly measurable function
f : Ω → X we use the notation |f | for the function |f |(·) = ‖f(·)‖X . We write E(X)

to denote the space of (classes of) strongly measurable functions f : Ω → X such that
|f | ∈ E and we endow E(X) with the norm

‖f‖E(X) =
∥∥|f |∥∥

E
.

Then E(X) is a real or complex (depending on X) Banach space and it is called a
Köthe–Bochner function space. We refer the reader to the book [30] for background. For
an element f ∈ E(X) we consider a strongly measurable function f̃ : Ω→ SX such that
f = |f | f̃ a.e.

Our result for composition operators between Köthe–Bochner function spaces is the
following inequality.

Proposition 6.7. Let X, Y be Banach spaces, let (Ω,Σ, µ) be a σ-finite measure space,
let E be a Köthe space on (Ω,Σ, µ) such that E′ is norming for E, and let G ∈ L(X,Y )

be a norm-one operator. Consider the norm-one composition operator G̃ : E(X)→ E(Y )

given by G̃(f) = G ◦ f for every f ∈ E(X). Then

nG̃(E(X), E(Y )) ≤ nG(X,Y ).

We need a preliminary lemma which is considered folklore in the theory of Köthe–
Bochner spaces. As we have not found direct references, we will include a short sketch of
its proof. Let us introduce some notation. Let E be a Köthe space on a σ-finite measure
space (Ω,Σ, µ) and let Y be a Banach space. If Φ: Ω→ Y ∗ belongs to E′(Y ∗), then the
integral functional on E(Y ) defined by Φ is given by

(6.3) 〈Φ, f〉 =

∫
Ω

〈Φ(t), f(t)〉 dµ(t) (f ∈ E(Y )).

We keep the notations |Φ| = ‖Φ(·)‖Y ∗ ∈ E′ and Φ̃ : Ω→ SY ∗ , which satisfy Φ = |Φ|Φ̃ a.e.
It is possible to define integral functionals as in (6.3) for functions satisfying weaker
requirements but, actually, here we are only interested in those integral functionals coming
from functions Φ in E′(Y ∗) having countably many values.
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Lemma 6.8. Let E be a Köthe space on a σ-finite measure space (Ω,Σ, µ) and let Y be
a Banach space.

(a) The set of measurable functions from Ω to Y having countably many values is dense
in E(Y ).

(b) If Φ ∈ E′(Y ∗) has countably many values, then the integral functional defined as
in (6.3) belongs to E(Y )∗ and satisfies ‖Φ‖E(Y )∗ = ‖Φ‖E′(Y ∗) =

∥∥|Φ|∥∥
E′
.

(c) If E′ is norming for E, then the set B of all integral functionals defined by norm-one
functions in E′(Y ∗) having countably many values satisfies convw

∗
(B) = BE(Y )∗ .

Sketch of the proof. (a) Fix f ∈ E(Y ) and ε > 0. We consider a partition of Ω into
countably many pairwise disjoint measurable sets Ω =

⋃
n∈N∪{0}Ωn with µ(Ω0) = 0,

0 < µ(Ωn) < ∞ for all n ∈ N, and such that f(Ωn) is separable for all n ∈ N. Now, for
every n ∈ N we use the Bochner measurability of f1Ωn to find a measurable function
gn : Ω→ Y with gn(Ω \ Ωn) = {0}, having countably many values and satisfying

‖f(t)− gn(t)‖ ≤ ε

2n‖1Ωn‖
(t ∈ Ωn)

(see [15, Corollary 3, p. 42], for instance). We have

|f1Ωn − gn| ≤
ε1Ωn

2n‖1Ωn‖
,

so gn ∈ E(Y ) and ‖f1Ωn −gn‖ ≤ ε
2n . It is now clear that the sum g of the (formal) series∑

n≥1 gn belongs to E(Y ), has countably many values, and satisfies ‖f − g‖ ≤ ε.
(b) Our Φ is of the form

Φ(t) =

∞∑
n=1

y∗n1An(t) (t ∈ Ω)

for suitable sequences {y∗n}n∈N of elements of Y ∗ and {An}n∈N of pairwise disjoint ele-
ments of Σ such that the scalar function

t 7→
∞∑
n=1

‖y∗n‖1An(t)

belongs to E′. Then the action of Φ on E(Y ) is given by

〈Φ, f〉 =

∫
Ω

〈Φ(t), f(t)〉 dµ(t) =

∞∑
n=1

∫
An

y∗n(f(t)) dµ(t) (f ∈ E(Y )).

It is now routine to show Φ ∈ E(Y )∗ and ‖Φ‖E(Y )∗ =
∥∥|Φ|∥∥

E′
.

Assertion (c) follows routinely from the density in E(Y ) of the set of countably-valued
functions, from the fact that E′ is norming for E, and from the density in E′ of the set
of countably-valued functions.

Proof of Proposition 6.7. We follow the lines of [36, proof of Theorem 4.1]. Take an
operator S ∈ L(X,Y ) with ‖S‖ = 1, and define T ∈ L(E(X), E(Y )) by

[T (f)](t) = S(f(t)) = |f |(t)S(f̃(t)) (t ∈ Ω, f ∈ E(X)).
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We claim that T is well defined and ‖T‖ = 1. Indeed, for f ∈ E(X), T (f) is strongly
measurable and

‖[T (f)](t)‖Y = |f |(t)‖S(f̃(t))‖ ≤ |f |(t) (t ∈ Ω),

so T (f) ∈ E(Y ) with ‖T (f)‖E(Y ) ≤
∥∥|f |∥∥

E
= ‖f‖E(X). This gives ‖T‖ ≤ 1. Conversely,

fix A ∈ Σ with 0 < µ(A) < ∞ and for each x ∈ SX consider f = ‖1A‖−1
E x1A ∈ SE(X).

Then ‖f‖ = 1 and

‖[T (f)](t)‖Y =
1A(t)‖S(x)‖Y
‖1A‖E

,

so

‖T‖ ≥ ‖T (f)‖E(Y ) =

∥∥∥∥1A ‖S(x)‖Y
‖1A‖E

∥∥∥∥
E

≥ ‖S(x)‖Y .

Taking supremum over x ∈ SX , we get ‖T‖ ≥ ‖S‖ = 1 as desired.
Next, we fix 0 < δ < 1, f = |f | f̃ ∈ SE(X) and Φ = |Φ|Φ̃ ∈ B satisfying the condition

Re 〈Φ, G̃(f)〉 > 1− δ, where B ⊂ E(Y )∗ is the set given in Lemma 6.8(c). Let 0 < α < 1

be such that 1− α =
√
δ and write

Ω1 = {t ∈ Ω: Re 〈Φ̃(t), G(f̃(t))〉 ≤ α} and Ω2 = {t ∈ Ω: Re 〈Φ̃(t), G(f̃(t))〉 > α}.

Then

1− δ < Re 〈Φ, G̃(f)〉 = Re

∫
Ω

|Φ|(t) |f |(t) 〈Φ̃(t), G(f̃(t))〉 dµ(t)

= Re

∫
Ω1

|Φ|(t)|f |(t)〈Φ̃(t), G(f̃(t))〉 dµ(t) + Re

∫
Ω2

|Φ|(t)|f |(t)〈Φ̃(t), G(f̃(t))〉 dµ(t)

≤ α
∫

Ω1

|Φ|(t)|f |(t) dµ(t) +

∫
Ω2

|Φ|(t) |f |(t) dµ(t)

≤ α
∫

Ω1

|Φ|(t), |f |(t) dµ(t) + 1−
∫

Ω1

|Φ|(t) |f |(t) dµ(t),

hence
∫

Ω1
|Φ|(t)|f |(t) dµ(t) < δ

1−α . Moreover,

|〈Φ, Tf〉| =
∣∣∣∣∫

Ω

|Φ|(t) |f |(t) 〈Φ̃(t), S(f̃(t))〉 dµ(t)

∣∣∣∣
≤
∫

Ω2

|Φ|(t)|f |(t) vG,1−α(S) dµ(t) +

∫
Ω1

|Φ|(t) |f |(t)|〈Φ̃(t), S(f̃(t))〉| dµ(t)

≤ vG,1−α(S) +
δ

1− α
= vG,

√
δ(S) +

√
δ.

Thus, we get vG̃,δ(T ) ≤ vG,
√
δ(S) +

√
δ by Lemmas 3.4 and 6.8(c). So, taking infimum

over 0 < δ < 1, we obtain nG̃(E(X), E(Y )) ≤ vG̃(T ) ≤ vG(S) and the desired inequality
follows.

For G = IdX , the above result improves [36, Theorem 4.1]:

Corollary 6.9 (Extension of [36, Theorem 4.1]). Let X be a Banach space, let (Ω,Σ, µ)

be a σ-finite measure space, and let E be a Köthe space on (Ω,Σ, µ) such that E′ is
norming for E. Then

n(E(X)) ≤ n(X).
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There are Köthe spaces which do not satisfy the norming requirement of Proposi-
tion 6.7 (see [31, Remark 1, p. 30] for instance). We next present some particular cases
in which the previous proposition applies. First, we deal with order continuous spaces.
We say that a Köthe space E is order continuous if 0 ≤ xα ↓ 0 and xα ∈ E imply
lim ‖xα‖ = 0 (this is known to be equivalent to the fact that E does not contain an
isomorphic copy of `∞). If E is order continuous, then E′ = E∗ (see [30, p. 169] or [31,
p. 29]).

Corollary 6.10. Let X,Y be Banach spaces, let (Ω,Σ, µ) be a probability space, let
E be an order continuous Köthe space on (Ω,Σ, µ), and let G ∈ L(X,Y ) be a norm-
one operator. Consider the norm-one composition operator G̃ : E(X) → E(Y ) given by
G̃(f) = G ◦ f for every f ∈ E(X). Then

nG̃(E(X), E(Y )) ≤ nG(X,Y ).

For 1 ≤ p <∞, Lp-spaces over σ-finite measures are order continuous Köthe spaces;
for p = ∞, this is no longer true, but L∞(µ)′ is norming for L∞(µ) (see [31, Remark 1,
p. 30] for instance). Therefore, we get the following consequence:

Corollary 6.11. Let X, Y be Banach spaces, let (Ω,Σ, µ) be a σ-finite measure space,
let 1 ≤ p ≤ ∞, and let G ∈ L(X,Y ) be a norm-one operator. Consider the norm-
one composition operator G̃ : Lp(µ,X) → Lp(µ, Y ) given by G̃(f) = G ◦ f for every
f ∈ Lp(µ,X). Then

nG̃(Lp(µ,X), Lp(µ, Y )) ≤ nG(X,Y ).

Equality does not hold in general, since for p 6= 1,∞ we have n(`2p) < 1. On the other
hand, we will show that equality holds for p = 1 and p =∞.

We start by dealing with spaces of Bochner integrable functions.

Proposition 6.12. Let X, Y be Banach spaces, let (Ω,Σ, µ) be a σ-finite measure space,
and let G ∈ L(X,Y ) be a norm-one operator. Consider the norm-one composition oper-
ator G̃ : L1(µ,X)→ L1(µ, Y ) given by G̃(f) = G ◦ f for every f ∈ L1(µ,X). Then

nG̃(L1(µ,X), L1(µ, Y )) = nG(X,Y ).

Proof. We follow the lines of [37, proof of Theorem 8]. Without loss of generality,
(Ω,Σ, µ) can be considered a probability space, as vector-valued L1-spaces associated to
σ-finite measures are (up to an isometric isomorphism) vector-valued L1-spaces associated
to probability measures (see [12, Proposition 1.6.1] for instance).

In order to prove nG̃(L1(µ,X), L1(µ, Y )) ≥ nG(X,Y ), we need to introduce some
notation. If (Ω,Σ, µ) is a probability space, we write Σ+ := {B ∈ Σ: µ(B) > 0}. Given
Banach spaces X and Y , the set

B :=
{∑
B∈π

y∗B1B : π ⊆ Σ+ finite partition of Ω, y∗B ∈ SY ∗
}
⊆ SL∞(µ,Y ∗)

satisfies

(6.4) BL1(µ,Y )∗ = convw
∗
(B)

since TB = B and it is clearly norming for the simple functions of L1(µ, Y ). On the other
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hand, we will write

A :=

{
x

1A

µ(A)
: x ∈ SX , A ∈ Σ+

}
,

which satisfies

(6.5) BL1(µ,X) = conv(A).

Indeed, it is enough to notice that every simple function f ∈ SL1(µ,X) belongs to the
convex hull of A: such an f can be written as f =

∑
A∈π xA1A, where π ⊆ Σ+ is a finite

family of pairwise disjoint sets of Ω and xA ∈ X \ {0} for each A ∈ π. Then

‖f‖ =
∑
A∈π
‖xA‖µ(A) = 1,

and hence
f =

∑
A∈π
‖xA‖µ(A)

xA
‖xA‖

1A

µ(A)
∈ conv(A).

Now, fix T ∈ L(L1(µ,X), L1(µ, Y )) with ‖T‖ = 1 and ε > 0. We may find by (6.5)
elements x0 ∈ SX and A ∈ Σ+ such that∥∥∥∥T(x0

1A

µ(A)

)∥∥∥∥ > 1− ε.

By (6.4), there exists f∗ =
∑
B∈π y

∗
B1B , where π is a finite partition of Ω into sets of Σ+

and y∗B ∈ SY ∗ for each B ∈ π, satisfying

(6.6) Re f∗
(
T

(
x0

1A

µ(A)

))
= Re

∑
B∈π

y∗B

(∫
B

T

(
x0

1A

µ(A)

)
dµ

)
> 1− ε.

Then we can write

T

(
x0

1A

µ(A)

)
=

∑
B∈π

µ(A∩B)6=0

µ(A ∩B)

µ(A)
T

(
x0

1A∩B

µ(A ∩B)

)

so, by a standard convexity argument, we can assume that there is B0 ∈ π such that,
if we take the set A ∩ B0 in the role of new A, the inequality (6.6) remains true. After
this modification of A, we additionally obtain A ⊆ B0. By the density of norm-attaining
functionals, we can assume that every y∗B is norm-attaining, so there is yB0

∈ SY such
that y∗B0

(yB0
) = 1. Define the operator S : X → Y by

S(x) =

∫
B0

T

(
x

1A

µ(A)

)
dµ+

[ ∑
B∈π\{B0}

y∗B

(∫
B

T

(
x

1A

µ(A)

)
dµ

)]
yB0

(x ∈ X).

It is easy to check that ‖S‖ ≤ 1, and moreover ‖S‖ > 1 − ε since, as a consequence
of (6.6), we obtain

‖S(x0)‖ ≥ |y∗B0
(Sx0)| =

∣∣∣∣f∗(T(x0
1A

µ(A)

))∣∣∣∣ > 1− ε.

Now, fixed δ > 0, we consider x ∈ SX and y∗ ∈ SY ∗ with Re y∗(Gx) > 1− δ. Take f ∈ A
defined by

f = x
1A

µ(A)
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and g∗ ∈ B by

g∗(h) = y∗
(∫

B0

h dµ

)
+

∑
B∈π\{B0}

y∗B

(∫
B

h dµ

)
y∗(yB0

) (h ∈ L1(µ, Y )).

We have

G̃f = G̃

(
x

1A

µ(A)

)
= G(x)

1A

µ(A)
,

and, since A ⊆ B0 and a partition is a family of pairwise disjoint sets, we deduce

Re g∗(G̃f) = Re

(
y∗
(∫

B0

G(x)
1A

µ(A)
dµ

)
+

[ ∑
B∈π\{B0}

y∗B

(∫
B

G(x)
1A

µ(A)
dµ

)]
y∗(yB0

)

)
= Re y∗(Gx) > 1− δ.

Moreover,

|y∗(Sx)| =
∣∣∣∣y∗(∫

B0

T

(
x
1A

µ(A)

)
dµ

)
+

[ ∑
B∈π\{B0}

y∗B

(∫
B

T

(
x

1A

µ(A)

)
dµ

)]
y∗(yB0

)

∣∣∣∣
= |g∗(Tf)| ≤ vG̃,δ(T ).

So, vG,δ(S) ≤ vG̃,δ(T ) and hence

vG̃(T ) ≥ vG(S) ≥ nG(X,Y )‖S‖ ≥ (1− ε)nG(X,Y ).

Taking ε ↓ 0, we get vG̃(T ) ≥ nG(X,Y ), and the arbitrariness of T gives the desired
inequality.

The reverse inequality nG̃(L1(µ,X), L1(µ, Y )) ≤ nG(X,Y ) follows directly from
Corollary 6.11.

The last result on composition operators on vector-valued function spaces deals with
spaces of essentially bounded vector-valued functions.

Proposition 6.13. Let X,Y be Banach spaces, let (Ω,Σ, µ) be a σ-finite measure space,
and let G ∈ L(X,Y ) be a norm-one operator. Consider the norm-one composition oper-
ator G̃ : L∞(µ,X)→ L∞(µ, Y ) given by G̃(f) = G ◦ f for every f ∈ L∞(µ,X). Then

nG̃(L∞(µ,X), L∞(µ, Y )) = nG(X,Y ).

The proof of this result borrows ideas from [38, proof of Theorem 2.3]. We also borrow
from [38] two preliminary lemmas that we state for the convenience of the reader.

Lemma 6.14 ([38, Lemma 2.1]). Let f ∈ L∞(µ,X) with ‖f(t)‖ > λ a.e. Then there exists
B ∈ Σ with 0 < µ(B) <∞ such that∥∥∥∥ 1

µ(B)

∫
B

f(t) dµ(t)

∥∥∥∥ > λ.

Lemma 6.15 ([38, Lemma 2.2]). Let f ∈ L∞(µ,X), C ∈ Σ with positive measure, and
ε > 0. Then there exist x ∈ X and A ⊆ C with 0 < µ(A) < ∞ such that ‖x‖ = ‖f1C‖
and ‖(f − x)1A‖ < ε. Accordingly, the set

{x1A + f1Ω\A : x ∈ SX , f ∈ BL∞(µ,X), A ∈ Σ with 0 < µ(A) <∞}

is dense in SL∞(µ,X).
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Proof of Proposition 6.13. In order to show nG̃(L∞(µ,X), L∞(µ, Y )) ≥ nG(X,Y ),

we fix an operator T ∈ L(L∞(µ,X), L∞(µ, Y )) with ‖T‖ = 1. Given ε > 0, we may find
f0 ∈ SL∞(µ,X) and C ⊆ Ω with µ(C) > 0 such that

(6.7) ‖[Tf0](t)‖ > 1− ε (t ∈ C).

On account of Lemma 6.15, there exist y0 ∈ BX and A ⊆ C with 0 < µ(A) < ∞ such
that ‖(f0 − y0)1A‖ < ε. Now, write y0 = (1 − λ)x1 + λx2 with 0 ≤ λ ≤ 1, x1, x2 ∈ SX ,
and consider the functions

fj = xj1A + f01Ω\A ∈ L∞(µ,X) (j = 1, 2).

which clearly satisfy ‖f0 − ((1− λ)f1 + λf2)‖ < ε. Since A ⊆ C, by (6.7) we have

‖[Tf1](t)‖ > 1− 2ε or ‖[Tf2](t)‖ > 1− 2ε

for every t ∈ A. Now, we choose i ∈ {1, 2} such that

Ai = {t ∈ A : ‖[Tfi](t)‖ > 1− 2ε}

has positive measure, we write x0 = xi, and we finally use Lemma 6.14 to get B ⊆ Ai ⊆ A
with 0 < µ(B) <∞ such that

(6.8)
∥∥∥∥ 1

µ(B)

∫
B

T (x01A + f01Ω\A) dµ

∥∥∥∥ > 1− 2ε.

Next, we fix x∗0 ∈ SX∗ with x∗0(x0) = 1, we write

Φ(x) = x1A + x∗0(x) f01Ω\A ∈ L∞(µ,X) (x ∈ X).

and we define the operator S ∈ L(X,Y ) by

Sx =
1

µ(B)

∫
B

T (Φ(x)) dµ (x ∈ X)

which, by (6.8), satisfies ‖S‖ ≥ ‖Sx0‖ > 1− 2ε.
Given δ > 0, we fix x ∈ SX and y∗ ∈ SY ∗ with Re y∗(Gx) > 1−δ. Define f ∈ SL∞(µ,X)

by
f = Φ(x) = x1A + x∗0(x)f01Ω\A

and g∗ ∈ SL∞(µ,Y )∗ by

g∗(h) = y∗
(

1

µ(B)

∫
B

h dµ

)
(h ∈ L∞(µ, Y )).

Since B ⊆ A, we have

Re g∗(G̃f) = Re y∗
(

1

µ(B)

∫
B

G(f(t)) dµ(t)

)
= Re y∗

(
1

µ(B)

∫
B

G(x1A(t) + x∗0(x) f0(t)1Ω\A(t)

)
dµ(t))

= Re y∗
(

1

µ(B)

∫
B

G(x)1B(t) dµ(t)

)
= Re y∗(Gx) > 1− δ.

Moreover,

|y∗(Sx)| =
∣∣∣∣y∗( 1

µ(B)

∫
B

T (Φ(x)) dµ

)∣∣∣∣ = |g∗(Tf)| ≤ vG̃,δ(T )
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so vG,δ(S) ≤ vG̃,δ(T ) and hence

vG̃(T ) ≥ vG(S) ≥ nG(X,Y )‖S‖ ≥ (1− 2ε)nG(X,Y ).

Taking ε ↓ 0, we get vG̃(T ) ≥ nG(X,Y ), and the arbitrariness of T gives the desired
inequality.

The reverse inequality is a consequence of Corollary 6.11.

6.3. Adjoint operators. As shown in Lemma 3.5, the numerical index with respect
to an operator always dominates the numerical index with respect to its adjoint. Our
aim here is to give some particular cases in which the two indices coincide. First, we
have to recall that this is not always the case, as there are Banach spaces X for which
n(X∗) < n(X) (see [27, §2] for instance). We also provide an easier example which does
not use the identity operator.

Example 6.16. The inclusion G : c0 → c satisfies nG(c0, c) = 1, whereas its adjoint
G∗ : `1⊕1 K→ `1, given by (x, λ) 7→ x, is not even a vertex of L(c∗, c∗0) and so it satisfies
nG∗(c

∗, c∗0) = 0.
Indeed, G is a spear operator by, for instance, [26, Proposition 4.2], so nG(c0, c) = 1.

To prove G∗ is not a vertex, consider the operator T : `1⊕1K→ `1 given by T (x, λ) = λe∗1
for x ∈ `1 and λ ∈ K. Then we have

‖G∗(x, λ) + θT (x, λ)‖ =
∥∥∥(x(1) + θλ)e∗1 +

∞∑
k=2

x(k)e∗k

∥∥∥
= |x(1)|+ |λ|+

∞∑
k=2

|x(k)| = ‖x‖+ |λ| = ‖(x, λ)‖

for every θ ∈ T, every x ∈ `1, and every λ ∈ K. This shows ‖G∗ + θT‖ ≤ 1 and so G∗ is
not an extreme operator. Therefore, G∗ is not a vertex by Lemma 2.3.

If X and Y are both reflexive spaces, the numerical index with respect to every norm-
one operator G ∈ L(X,Y ) coincides with the numerical index with respect to G∗. Indeed,
the inequality

nG∗∗(X
∗∗, Y ∗∗) ≤ nG∗(Y ∗, X∗) ≤ nG(X,Y )

gives the result. Actually, it is enough that Y is reflexive, or even a much weaker hypoth-
esis: we show that the numerical index with respect to an operator coincides with the one
with respect to its adjoint when the range space is L-embedded. Recall that a Banach
space Y is L-embedded if Y ∗∗ = JY (Y ) ⊕1 Ys for suitable closed subspace Ys of Y ∗∗.
We refer to the monograph [23] for background. Examples of L-embedded spaces are
reflexive spaces (trivial), preduals of von Neumann algebras, in particular L1(µ) spaces,
the Lorentz spaces d(w, 1) and Lp,1, the Hardy space H1

0 , and the dual of the disk alge-
bra A(D) (see [23, Examples IV.1.1 and III.1.4]).

Proposition 6.17. Let X be a Banach space, let Y be an L-embedded space, and let
G ∈ L(X,Y ) be a norm-one operator. Then nG(X,Y ) = nG∗(Y

∗, X∗).

Proof. We follow the lines of [26, proof of Proposition 5.21]. Write Y ∗∗ = JY (Y )⊕1Ys
and let PY : Y ∗∗ → JY (Y ) be the natural projection. For a fixed T ∈ L(Y ∗, X∗) consider
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the operators

A := PY ◦ T ∗ ◦ JX : X → JY (Y ), B := [Id− PY ] ◦ T ∗ ◦ JX : X → Ys.

Then T ∗ ◦ JX = A ⊕ B. Given ε > 0, since JX(BX) is dense in BX∗∗ by the Goldstine
Theorem and T ∗ is weak∗-to-weak∗ continuous, we may find x0 ∈ SX such that

‖T ∗JX(x0)‖ = ‖Ax0‖+ ‖Bx0‖ > ‖T ∗‖ − ε.

Now, we may find y0 ∈ SY and y∗s ∈ SY ∗s such that

‖Ax0‖y0 = Ax0 and y∗s (Bx0) = ‖Bx0‖.

Define S : X → Y by
S(x) = Ax+ y∗s (Bx)y0 (x ∈ X).

For this operator

‖S‖ ≥ ‖Sx0‖ = ‖Ax0 + y∗s (Bx0)y0‖ = ‖Ax0‖+ ‖Bx0‖ > ‖T ∗‖ − ε.

Given δ > 0, we take x ∈ SX and y∗ ∈ SY ∗ with Re y∗(Gx) > 1− δ, and consider

z = JX(x) ∈ SX∗∗ and z∗ = (JY ∗(y
∗), y∗(y0)y∗s ) ∈ SY ∗∗∗

as Y ∗∗∗ = JY ∗(Y
∗)⊕∞Y ∗s . Now, Re z∗(G∗∗z) = Re y∗(Gx) > 1−δ sinceG∗∗◦JX = JY ◦G.

Moreover,

|z∗(T ∗z)| = |JY ∗(y∗)(Ax+ y∗(y0)y∗s (Bx))| = |y∗(Sx)|,

hence |y∗(Sx)| = |z∗(T ∗z)| ≤ vG∗∗,δ(T
∗) and, taking supremum, vG,δ(S) ≤ vG∗∗,δ(T

∗).
Therefore,

vG∗(T ) = vG∗∗(T
∗) ≥ vG(S) ≥ nG(X,Y )‖S‖ > nG(X,Y )[‖T‖ − ε].

The arbitrariness of ε > 0 and of T ∈ L(Y ∗, X∗) gives nG(X,Y ) ≤ nG∗(Y ∗, X∗), and the
other inequality is always true.

Particular cases of the above result are the following.

Corollary 6.18. Let X be a Banach space and let Y be a reflexive space. Then

nG(X,Y ) = nG∗(Y
∗, X∗)

for every norm-one G ∈ L(X,Y ).

Corollary 6.19. Let X be a Banach space and let µ be a positive measure. Then
nG(X,L1(µ)) = nG∗(L1(µ)∗, X∗) for every norm-one G ∈ L(X,L1(µ)).

Finally, we show that, for rank-one operators, the numerical index is preserved by
passing to the adjoint.

Proposition 6.20. Let X,Y be Banach spaces, and let G ∈ L(X,Y ) be a rank-one
operator of norm 1. Then nG(X,Y ) = nG∗(Y

∗, X∗) and so the same happens to all the
successive adjoints of G.

Proof. We can write G = x∗0 ⊗ y0 for some x∗0 ∈ SX∗ and y0 ∈ SY , so

nG(X,Y ) = n(X∗, x∗0)n(Y, y0)
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by Proposition 3.6. Furthermore, as G∗ = JY (y0)⊗ x∗0, we have

nG∗(Y
∗, X∗) = n(Y ∗∗, JY (y0))n(X∗, x∗0)

again by Proposition 3.6. But n(Y ∗∗, JY (y0)) = n(Y, y0) by Lemma 2.6 and we are done.

6.4. Composition of operators. The next result allows us to control the numerical
index with respect to the composition of two operators in two particular cases.

Lemma 6.21. Let X,Y, Z be Banach spaces and let G1 ∈ L(X,Y ) and G2 ∈ L(Y,Z) be
norm-one operators.

(a) If G2 is an isometric embedding, then nG2◦G1(X,Z) ≤ nG1(X,Y ).
(b) If G1(BX) = BY , then nG2◦G1

(X,Z) ≤ nG2
(Y,Z).

Proof. Both (a) and (b) follow from Lemma 2.4. In the first case, it is enough to
see that the map T 7→ G2 ◦ T from L(X,Y ) to L(X,Z) is an isometric embedding by
the hypothesis on G2. For (b), we see that S 7→ S ◦ G1 from L(Y,Z) to L(X,Z) is an
isometric embedding by the hypothesis on G1.

We now collect some consequences of this result.
The first immediate consequence is that the restriction of the codomain of an operator

cannot decrease the numerical index.

Proposition 6.22. Let X,Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator,
and let Z be a closed subspace of Y with G(X) ⊆ Z. Consider the operator G : X → Z

given by Gx = Gx for every x ∈ X. Then nG(X,Y ) ≤ nG(X,Z).

Proof. This follows from Lemma 6.21(a) as G = I ◦ G where I : Z → Y denotes the
inclusion.

The inequality in the above result can be strict:

Example 6.23. The operator G : K → K ⊕∞ K given by G(x) = (x, 0) satisfies
nG(K,K⊕∞ K) = 0, whereas G : K→ K satisfies nG(K,K) = 1.

Another consequence of Lemma 6.21 is that the numerical index with respect to the
injectivization of an operator is an upper bound for the numerical index with respect to
the original operator.

Proposition 6.24. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one
operator, and let q : X → X/kerG be the quotient map. Consider the injectivization
Ĝ ∈ L(X/kerG, Y ) satisfying Ĝ ◦ q = G. Then

nG(X,Y ) ≤ nĜ(X/kerG, Y ).

Proof. This follows from Lemma 6.21(b) as Ĝ ◦ q = G and q(BX) = BX/kerG.

In the particular case when nG(X,Y ) = 1, we obtain the following result which gives
a partial answer to [26, Problem 9.14].

Corollary 6.25. Let X, Y be Banach spaces, let G ∈ L(X,Y ) be a norm-one operator.
Then, under the notation of Proposition 6.24, if G is a spear operator, then so is its
injectivization Ĝ.
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Again, the inequality in Proposition 6.24 may be strict, as the following example
shows. It also proves that Corollary 6.25 is not an equivalence.

Example 6.26. The operator G : `1⊕1K→ `1 given by G(x, λ) = x satisfies the condition
nG(`1 ⊕1 K, `1) = 0 (as proved in Example 6.16), whereas the injectivization Ĝ is the
identity operator in `1 and so it satisfies nĜ(`1, `1) = n(`1) = 1.

With the aid of all of these examples and some others from previous sections, we may
prove the following assertion.

Remark 6.27. There is no general function Υ: [0, 1]×[0, 1]→ [0, 1] such that the equality

nG2◦G1
(X,Z) = Υ(nG2

(Y,Z), nG1
(X,Y ))

holds for all Banach spaces X,Y, Z and for all norm-one operators G1 ∈ L(X,Y ) and
G2 ∈ L(Y, Z).

Indeed, suppose that such a function Υ exists. In Remark 4.9 an example is given
of a real Banach space Z with n(Z) = 0 and a norm-one operator G ∈ L(Z,R) such
that nG(Z,R) = 1. As G = G ◦ IdZ , it follows that 1 = Υ(1, 0). Moreover, there is a
similar example in Remark 4.9 showing 1 = Υ(0, 1). On the other hand, if X, Y are
two-dimensional Banach spaces, we may always find G ∈ L(X,Y ) with nG(X,Y ) = 0 by
Proposition 4.1. As G = G ◦ IdX = IdY ◦G, it follows that 0 = Υ(0, n(X)) = Υ(n(Y ), 0).
It is enough to consider X = Y = `2∞ to get a contradiction.

Now, we may wonder whether a further relationship with the composition is valid in
general. We answer this question in the negative giving some counterexamples.

Example 4.10 shows that, in general, there is no inequality

nG2◦G1
(X,Z) ≤ max{nG1

(X,Y ), nG2
(Y, Z)},

with G playing the role of G1 and the identity operator playing the role of G2.
Example 6.23 also shows the absence, in general, of the inequality

nG2◦G1(X,Z) ≥ max{nG1(X,Y ), nG2(Y, Z)}.

Actually, it is possible that the inequality nG2◦G1
(X,Z) ≥ min{nG1

(X,Y ), nG2
(Y, Z)}

fails, as the following example shows, since n(`p) > 0 for p 6= 2 by [35].

Example 6.28. Let 1 ≤ p < q < ∞. The canonical inclusion G : `p → `q satisfies
nG(`p, `q) = 0.

Proof. Consider the norm-one operator T ∈ L(`p, `q) given by T = e∗2 ⊗ e1. Given a
scalar 0 < ε < 1/4, our goal is to prove vG(T ) ≤ max{ε1/p, (1− (1− 2ε)q)1/q}. To do so
we need the following claim.

Claim. Let 0 < δ < 1/2 be such that (1 − δ)p/(q−p) > 1 − ε. Given x ∈ S`p such that
‖x‖q > (1− 2δ2)1/q, there exists a unique k0 ∈ N satisfying |x(k0)|p > 1− ε.

Indeed, the uniqueness of k0 is clear because |x(k0)|p > 1− ε, ε < 1/4, and ‖x‖p = 1.
Let us show the existence of k0. Since 1 − 2δ2 < ‖x‖qq, there is n ∈ N satisfying
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1− δ2 <
∑n
k=1 |x(k)|q, and thus

n∑
k=1

|x(k)|p − δ2 ≤ 1− δ2 <

n∑
k=1

|x(k)|q =

n∑
k=1

|x(k)|p|x(k)|q−p.

Let I = {k ∈ {1, . . . , n} : |x(k)|q−p > 1 − δ}. Using [26, Lemma 8.14] with λk = |x(k)|p,
βk = 1 and αk = |x(k)|q−p, we get

∑
k/∈I |x(k)|p < δ. So we can write

1− δ2 <

n∑
k/∈I

|x(k)|q +

n∑
k∈I

|x(k)|q ≤
n∑
k/∈I

|x(k)|p +

n∑
k∈I

|x(k)|q < δ +

n∑
k∈I

|x(k)|q,

which gives
∑
k∈I |x(k)|q > 1− δ2 − δ > 0 and therefore I 6= ∅. For k0 ∈ I, we have

|x(k0)|p > (1− δ)
p
q−p > 1− ε,

finishing the proof of the claim.
To estimate the numerical radius of T , let 0 < δ̃ < ε be such that 1− δ̃ > (1− 2δ2)1/q

and take x ∈ S`p and y∗ ∈ S`∗q satisfying Re y∗(x) > 1− δ̃, which implies

‖x‖q > Re y∗(x) > 1− δ̃ > (1− 2δ2)1/q.

The claim tells us that there is k0 ∈ N such that |x(k0)|p > 1−ε and so
∑∞
k 6=k0 |x(k)|p < ε.

Now, we can estimate |y∗(Tx)| = |y∗(1)| |x(2)| depending on the value of k0. If k0 6= 2

then |x(2)| < ε1/p and |y∗(Tx)| ≤ |x(2)| < ε1/p. Suppose, otherwise, k0 = 2. Then, as

1− δ̃ < Re y∗(x) = |y∗(2)| |x(2)|+
∞∑
k 6=2

|y∗(k)| |x(k)|

≤ |y∗(2)|+ ‖y∗‖q
∞∑
k 6=2

|x(k)|p ≤ |y∗(2)|+ ε,

we get |y∗(2)| > 1− δ̃ − ε > 1− 2ε. Therefore,

|y∗(2)|q > (1− 2ε)q and |y∗(Tx)| ≤ |y∗(1)| < (1− (1− 2ε)q)1/q.

Hence, in any case,

vG(T ) ≤ vG,δ̃(T ) ≤ max
{
ε1/p, (1− (1− 2ε)q)1/q

}
and the arbitrariness of ε gives vG(T ) = 0 and so, nG(`p, `q) = 0.

6.5. Extending the domain and the codomain. Our final aim in this chapter is to
study ways of extending the domain and the codomain of an operator maintaining the
same numerical index. For the domain, we have the following result.

Proposition 6.29. Let X,Y, Z be Banach spaces, let G ∈ L(X,Y ) be a norm-one oper-
ator, and consider the norm-one operator G̃ : X ⊕∞ Z → Y given by G̃(x, z) = G(x) for
every (x, z) ∈ X ⊕∞ Z. Then

nG̃(X ⊕∞ Z, Y ) = nG(X,Y ).

Proof. Fix T ∈ L(X ⊕∞ Z, Y ) with ‖T‖ > 0 and 0 < ε < ‖T‖. We may find x0 ∈ SX
and z0 ∈ SZ satisfying ‖T (x0, z0)‖ > ‖T‖ − ε. Now take x∗0 ∈ SX∗ with x∗0(x0) = 1 and
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define the operator S ∈ L(X,Y ) by

S(x) = T (x, x∗0(x)z0) (x ∈ X),

which satisfies ‖S‖ ≥ ‖Sx0‖ = ‖T (x0, z0)‖ > ‖T‖ − ε.
Now, given δ > 0, x ∈ SX , and y∗ ∈ SY ∗ with Re y∗(Gx) > 1 − δ, we consider

(x, x∗0(x)z0) ∈ SX⊕∞Z . Clearly, Re y∗(G̃(x, x∗0(x)z0)) = Re y∗(Gx) > 1− δ. Moreover,

|y∗(Sx)| = |y∗(T (x, x∗0(x)z0))| ≤ vG̃,δ(T ),

hence vG,δ(S) ≤ vG̃,δ(T ). Therefore,

vG̃(T ) ≥ vG(S) ≥ nG(X,Y )‖S‖ > nG(X,Y )[‖T‖ − ε].
The arbitrariness of ε > 0 and T ∈ L(X ⊕∞ Z, Y ) gives nG̃(X ⊕∞ Z, Y ) ≥ nG(X,Y ).

The reverse inequality follows immediately from Lemma 6.21(b) as G̃ = G ◦ P where
P : X ⊕∞ Z → X denotes the natural projection.

For the range space, the result is the following.

Proposition 6.30. Let X,Y, Z be Banach spaces, let G ∈ L(X,Y ) be a norm-one op-
erator, and consider the norm-one operator G̃ : X → Y ⊕1 Z given by G̃x = (Gx, 0) for
every x ∈ X. Then

nG̃(X,Y ⊕1 Z) = nG(X,Y ).

Proof. Fix T ∈ L(X,Y ⊕1 Z) with ‖T‖ > 0, ‖T‖ > ε > 0, and x0 ∈ SX such that
‖Tx0‖ > ‖T‖ − ε. Denote by PY and PZ the projections from Y ⊕1 Z to Y and Z,
respectively. Take y0 ∈ SY so that PY Tx0 = ‖PY Tx0‖y0 and z∗0 ∈ SZ∗ satisfying
z∗0(PZTx0) = ‖PZTx0‖. Now define S ∈ L(X,Y ) by

Sx = PY Tx+ z∗0(PZTx)y0 (x ∈ X),

which satisfies

‖S‖ ≥ ‖Sx0‖ = ‖PY Tx0 + ‖PZTx0‖y0‖ = ‖PY Tx0‖+ ‖PZTx0‖ > ‖T‖ − ε.
Given δ > 0, x ∈ SX , and y∗ ∈ SY ∗ with Re y∗(Gx) > 1− δ, we consider (y∗, y∗(y0)z∗0) ∈
S(Y⊕1Z)∗ as (Y ⊕1 Z)∗ = Y ∗ ⊕∞ Z∗. Clearly,

Re(y∗, y∗(y0)z∗0)(G̃x) = Re y∗(Gx) > 1− δ.
Moreover,

|y∗(Sx)| = |y∗(PY Tx+ z∗0(PZTx)y0)| = |(y∗, y∗(y0)z∗0
)
(Tx)| ≤ vG̃,δ(T ),

and then vG,δ(S) ≤ vG̃,δ(T ). Therefore,

vG̃(T ) ≥ vG(S) ≥ nG(X,Y )‖S‖ > nG(X,Y )[‖T‖ − ε].
The arbitrariness of ε and T gives nG̃(X,Y ⊕1 Z) ≥ nG(X,Y ).

The reverse inequality is an immediate consequence of Lemma 6.21(a) as G̃ = I ◦ G
where I : Y → Y ⊕1 Z denotes the natural inclusion.
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