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ABSTRACT: The challenging process of high-quality food authentication takes advantage of highly informative chromatographic
fingerprinting and its identitation potential. In this study, the unique chemical traits of the complex volatile fraction of extra-virgin
olive oils from Italian production are captured by comprehensive two-dimensional gas chromatography coupled to time-of-flight
mass spectrometry and explored by pattern recognition algorithms. The consistent realignment of untargeted and targeted features
of over 73 samples, including oils obtained by different olive cultivars (n = 24), harvest years (n = 3), and processing technologies,
provides a solid foundation for sample identification and discrimination based on production region (n = 6). Through a dedicated
multivariate statistics workflow, identitation is achieved by two-level partial least-square (PLS) regression, which highlights region
diagnostic patterns accounting between 58 and 82 of untargeted and targeted compounds, while sample classification is performed
by sequential application of soft independent modeling for class analogy (SIMCA) models, one for each production region. Samples
are correctly classified in five of the six single-class models, and quality parameters [i.e., sensitivity, specificity, precision, efficiency,
and area under the receiver operating characteristic curve (AUC)] are equal to 1.00.

KEYWORDS: comprehensive two-dimensional gas chromatography, extra-virgin olive oil,
combined untargeted and targeted (UT) fingerprinting, identitation and authentication, geographical origin

■ INTRODUCTION

Olive oil (OO) is one of the pillars of theMediterranean diet and
represents the main source of fats in the countries of the
Mediterranean basin.1 In particular, extra-virgin olive oil
(EVOO) is recognized as the most valuable product among
the edible oils;2 it is extracted from fresh olive fruits (Olea
europeae L.) by mechanical or physical technologies that
preserve the composition of the lipid fraction while limiting
autoxidation reactions and alterations of its native quality.3

The reason for the increasing demand for olive oil of high
quality, i.e., EVOO (Commission of the European Commun-
ities, 1991; “EU Food Qual. Labels”, 2021; IOC, 2015), is not
only because of its nutritional and health values, due to the
presence of antioxidants (i.e., tocopherols and phenolic
compounds) and high oleic acid content, but also because of
its peculiar sensory characteristics2 strongly related to olive
cultivar, pedoclimatic conditions of the harvest region, olive
ripeness, and extraction technology (EU Food Qual. Labels,
2021).
In this context, any analytical methodology capable of

delineating chemical patterns informative of the different
functional variables influencing the composition of EVOO is
useful and has the potential to support the valorization of high-
quality products, facilitate sensory quality evaluation/screenings
on the basis of commercial classification, as well as to counteract
fraudulent practices.4−7 In this latter context, the accurate
fingerprinting of the unsaponifiable fraction and of minor
components by comprehensive two-dimensional (2D) gas
chromatography coupled to mass spectrometry (GC × GC−

MS) and/or to parallel flame ionization detection (MS/FID)
was successful in identifying admixtures of OO with other fats
and/or establish the product freshness/shelf life.8

Active research in the development of GC fingerprinting
methodologies includes also investigations on EVOO volatiles.
Monodimensional (1D)-GC fingerprinting accompanied by
accurate profiling was recently applied to validate the role of
sesquiterpene hydrocarbons as geographical origin markers7 in
EVOOs from different cultivars and production areas. In their
study, Quintanilla-Casas et al.7 confirmed the superior
discrimination power of the total volatile fingerprint (100%
correct classification) obtained by GC−MS raw data processing
followed by suitable supervised chemometrics, compared to the
targeted profiling of selected sesquiterpenoids, whose correct-
ness ranged between 46 and 100% of the correct classification, as
a function of the production country.
Moreover, using volatile fingerprinting based on 1D-GC, it

was also possible to support the commercial classification of OO
based on sensory panel evaluation.9 EVOOs are in fact
characterized by peculiar yet essential aroma qualities such as
green, grassy, and fruity notes, whose perception is at the basis of
commercial classification based on EU regulations. Sensory
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quality in fact, together with compositional/chemical standards
to be complied,5 and absence of off-flavors guide the OO
classification in EVOO (median of the defects = 0.0 and median
of the positive attribute > 0.0), virgin olive oil (VOOmedian
of the defects between 0.0 and 3.5 and median of the positive
attribute > 0.0), and lampante olive oil (LOOmedian of the
defects > 6.0) in the presence of sensory defects (rancid, fusty/
muddy, musty, and winey/vinegary), even at lower levels (e.g.,
median of the defects ≠ 0).5

In this study, we take a step forward in the direction of
validating a powerful and highly flexible chromatographic
fingerprinting workflow with superior identitation (i.e., defining
the identity of a particular food based on the characteristic
features that make it singular or unique10) and classification
effectiveness compared to existing tools based on 1D-GC data.
The improved separation capacity of GC × GC, the analyte
retention logic over the separation space,11 and the compre-
hensive capture of a component’s features generated by time-of-
flight mass spectrometry (TOF MS) detection make the
resulting 2D fingerprints the sample’s unique traits for effective
and reliable authentication. Moreover, the specificity of the third
information dimension of the system (i.e., EI-MS fragmentation
patterns) gives access to a higher informative level as any
confirmatory analytical technique.
Compared to existing studies adopting GC × GC as the

profiling and/or fingerprinting technique,12−14 the combined
information derived from untargeted and targeted (UT) features
is here explored in the challenging scenario of Italian high-
quality EVOO production connoted by an impressive heritage
of olive genetic varieties, with about 540 different registered
cultivars15 and 46 protected designation of origin (PDO)
products from different geographical locations (i.e., regions)
over the entire territory.
The challenge posed by the complexity and high chemical

dimensionality of EVOO volatiles is tackled by a dedicated
workflow, named combined untargeted and targeted finger-
printing (UT fingerprinting),16 where the information from
known and unknown components patterns are accurately
tracked across many samples and their identitation, discrim-
ination, and classification power is examined in great detail with
a focus on regional characters. Furthermore, the synergy
between profiling and fingerprinting is also examined by
observing the distribution of key-aroma compounds and potent
odorants strongly correlated to positive and/or negative odor
qualities.17−19

■ MATERIALS AND METHODS
Chemicals. Pure reference standards of α- and β-thujone and

methyl-2-octynoate used as internal standards (ISs), n-alkanes (from n-
C7 to n-C25) used for linear retention index (IT) calibration, and pure
reference compounds for identity confirmation were supplied byMerck
(Milan, Italy). Cyclohexane (HPLC grade) for n-alkane dilution and
pure dibutyl phthalate used to prepare IS working solutions were also
from Merck (Milan, Italy).
Extra-Virgin Olive Oil Samples. Extra-virgin olive oils (EVOOs)

were supplied within the VIOLIN project20 selection. They were
obtained from olives of different cultivars harvested between 2016 and
2018 over the Italian territory; all samples were certified as EVOOs by
accredited laboratories (ISO 17025:2018) and by the official sensory
panel test. Details on the sample set under study, counting 73 samples,
are provided in the Supporting Information Table S1 together with
harvest/production regions (i.e., Umbria n = 7, Garda lake n = 10, Lazio
n = 11, Puglia n = 12, Sicilia n = 13, and Toscana n = 20). Supporting

Information Figure S1 shows geographical locations of selected EVOO
production sites.

Headspace (HS) Solid-Phase Microextraction (SPME) Devi-
ces and Sampling Conditions. Volatiles were sampled by headspace
(HS) solid-phase microextraction (SPME). A divinylbenzene/carbox-
en/polydimethylsiloxane (DVB/CAR/PDMS) df 50/30 μm 2 cm
length fiber (Supelco, Bellefonte, PA) was chosen based on its sampling
effectiveness on EVOO volatiles and previous research.17,21−23 SPME
fibers were conditioned before use as recommended by the
manufacturer.

The ISs were preloaded onto the SPME device by sampling 5.0 μL of
α/β-thujone and methyl-2-octynoate IS solution (100 mg L−1) placed
in a 20mL headspace vial. IS preloading was performed by exposing the
SPME device to the HS kept at 40 °C for 5 min.

Sampling was carried out on 0.100± 0.005 g of oil samples, precisely
weighed in 20 mL headspace vials, at 40 °C for 60 min under constant
stirring. The amount of sample was chosen matching for HS linearity
conditions for most of the characteristic analytes of the EVOO volatile
fraction.21,24,25 After extraction, the SPME device was automatically
transferred to the split/splitless injection port of the GC × GC system
kept at 250 °C, and thermal desorption was for 5 min.

GC × GC-TOF MS: Instrument Setup and Conditions. GC ×
GC analyses were performed on an Agilent 7890B GC unit (Agilent
Technologies, Wilmington DE) coupled to aMarkes BenchTOF-Select
mass spectrometer featuring tandem ionization (Markes International,
Llantrisant, U.K.). The GC transfer line was set at 270 °C. TOF MS
tuning parameters were set for single ionization at 70 eV, and the scan
range was set at 40−350 m/z with a spectra acquisition frequency of
100 Hz. The system was equipped with a two-stage KT 2004 loop-type
thermal modulator (Zoex Corporation, Houston, TX) cooled with
liquid nitrogen and controlled by Optimode v2.0 (SRA Intruments,
Cernusco sul Naviglio, Milan, Italy). Modulation period (PM) and hot
jet pulse times were set, respectively, at 3.5 s and 300 ms, with a cold jet
stream at the mass flow controller (MFC) from 40 to 8% of the total
flow along the run duration. No secondary oven was adopted in the GC
× GC setup.

GC × GC Columns and Settings. The column set was configured
as follows: 1D DB-HeavyWax column (100% polyethylene glycol; 30 m
× 0.25 mm dc × 0.25 μm df) from Agilent J&W (Wilmington, DE)
coupled with a 2D OV1701 column (86% polydimethylsiloxane, 7%
phenyl, 7% cyanopropyl; 1 m × 0.1 mm dc × 0.10 μm df) from Agilent
Technologies (Wilmington, DE). A fused silica capillary loop (1.0 m ×
0.1 mm dc) was used in the modulator slit.

The GC split/splitless injector port was kept at 250 °C and operated
in the split mode with a split ratio of 1:20. The carrier gas was helium at
a constant nominal flow of 1.3 mL min−1. The oven temperature
programming was set as follows: from 40 °C (2 min) to 240 °C (10
min) at 3.5 °C min−1.

The n-alkane solution for IT determination was analyzed under the
following conditions: split/splitless injector in the split mode, split ratio
1:50, injector temperature 250 °C, and injection volume 1 μL.

Combined Untargeted and Targeted (UT) Fingerprinting
Workflow. The data processing workflow was designed to
comprehensively capture the chemical signature of volatiles from
EVOO samples by computing both peak and peak-region features from
untargeted (unknowns) and targeted components located over the 2D
space. The approach, named UT fingerprinting, was designed on
EVOO volatile patterns and further adapted to compositional
peculiarities of samples in other fields.11 In this study, the targeting
(i.e., identification) of analytes was done as the last step of the process
after chromatogram realignment over reliable peaks from untargeted
components/features.

The generation of untargeted features (i.e., peaks and peak regions)
and their realignment across all sample chromatograms were performed
by template matching26 and actively uses metadata, collected for 2D
peaks and peak regions (i.e., retention times, MS spectrum, and
detector response) above a signal-to-noise (S/N) threshold value of
100,23 to establish correspondences across 2D patterns. Realignment
specificity is done by active constraints on MS similarity [i.e., a
threshold value of 750 for direct match factor DMF and reverse match
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Figure 1. Pseudocolor image (A) of a Sicilian EVOO (Sicilia originID#S1) volatile fraction comprehensively mapped through untargeted and
targeted (UT) peak regions (red graphics); identified/targeted analytes (i.e., targeted compounds) are highlighted by green circles. (B) Patterns of
analytes, following a retention logic based on the relative retention exerted by the polar × semipolar column combination adopted (alkanes, cyano;
alkenes, blue; saturated, brown aldehydes; unsaturated, orange aldehydes; alcohols, purple; terpenoids, gray; and fatty acids, black), are highlighted.
(C) Enlarged area of lipoxygenase (LOX) derivatives (red circles).
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Table 1. List of 159 Target Peaks, Together with Retention Times in the Two Analytical Dimensions (1tR,
2tR), % Relative

Standard Deviation (% RSD) Calculated over Six Analytical Replicates over 2 Weeks and Referred to Retention Times and 2D
Peak Volumes; Experimental 1D IT and Tabulated IT Values; Identification Criteria (a) Reference Compound Confirmation or
(b) Spectral Direct Match Similarity and IT ± 20Tentative Identificationa

chemical class compound name
1tR

(min)
1tR %
RSD

2tR
(s)

2tR %
RSD

2D peak volumes %
RSD exp IT Lit IT

identifica-
tion

alcohols 2-propanol 7.64 0.39 0.26 1.33 5.37 907 912 a
2-methyl-1-propanol 12.48 0.76 0.34 0.79 14.20 1064 1081 a
1-butanol 14.41 0.87 0.36 2.75 13.89 1116 1124 a
1-penten-3-ol 15.05 0.73 0.36 1.71 6.94 1133 1139 a
3-methyl-1-butanol 16.92 0.79 0.40 0.88 6.94 1180 1184 b
1-pentanol 18.08 0.75 0.48 2.91 20.83 1210 1216 a
(Z)-2-penten-1-ol 20.94 0.50 0.34 0.92 15.22 1282 1289 a
(E)-2-penten-1-ol 21.29 0.72 0.34 4.50 10.55 1291 1296 a
(Z)-3-hexen-1-ol 22.58 0.99 0.46 3.54 4.05 1324 1344 a
1-hexanol 22.98 0.69 0.50 1.37 4.72 1335 1338 a
(Z)-2-hexen-1-ol 23.74 0.74 0.42 3.78 6.08 1355 1375 a
(E)-2-hexen-1-ol 24.21 0.00 0.70 3.85 4.66 1367 1379 a
1-butoxy-2-propanol 24.56 0.29 0.40 3.60 2.77 1376 1363 b
1-heptanol 26.43 0.88 0.52 2.60 14.77 1425 1423 a
1-octen-3-ol 26.72 0.91 0.56 0.64 2.47 1433 1437 a
2-ethyl-1-hexanol 27.77 0.20 0.60 2.12 3.32 1462 1470 a
1-octanol 29.75 0.23 0.66 0.86 13.60 1517 1518 a
1-nonanol 33.02 0.55 0.66 1.59 14.41 1610 1616 a
4-butoxy-1-butanol 34.83 0.04 0.54 1.21 2.64 1664 1668 b
1-decanol 36.98 0.87 0.70 3.16 4.15 1730 1738 a
2-(2-butoxyethoxy)-ethanol 37.92 0.94 0.52 0.93 19.81 1759 1364 b
benzyl alcohol 40.37 0.87 0.28 3.79 14.78 1839 1846 a
1,4-butanediol 41.30 0.83 0.28 0.71 5.05 1867 1861 b
phenylethyl alcohol 41.48 0.66 0.34 0.10 2.45 1875 1877 a
1-dodecanol 42.88 0.08 0.68 0.77 9.55 1921 1924 a
phenol 43.93 0.77 1.60 3.59 12.40 1956 1957 a
1-tetradecanol 47.56 0.48 0.65 2.55 11.68 2118 2137 b
2-phenoxyethanol 47.83 0.29 1.58 4.54 15.91 2130 2145 b
1-hexadecanol 54.25 0.34 1.06 3.01 4.02 2345 2356 b

esters ethyl acetate 6.88 0.35 0.42 3.94 13.34 866 875 a
2,2-dimethylpropanoate 7.70 0.58 0.72 2.18 16.23 909 913 a
butyl acetate 12.13 0.73 0.84 3.12 14.29 1055 1064 a
isoamyl acetate 13.94 0.91 1.02 0.85 18.09 1104 1109 a
2-methylpropyl butanoate 14.82 0.01 1.08 1.39 7.43 1127 1139 b
butyl isobutyrate 14.99 0.28 1.36 1.11 15.72 1131 1140 b
butanoic butanoate 17.73 0.43 1.28 4.96 19.18 1201 1212 a
3-hydroxy-2-butanone 20.01 0.84 0.34 2.91 12.18 1259 1270 a
hexyl acetate 20.42 0.81 1.14 3.31 19.31 1269 1275 a
(Z)-3-hexenyl acetate 21.47 0.49 0.92 3.33 19.79 1296 1310 a
butyl 2-ethylhexanoate 27.42 0.54 1.88 4.55 6.49 1452 1459 a
methyl benzoate 30.67 0.59 0.58 3.50 10.67 1546 1560 a
ethyl benzoate 32.55 0.40 0.72 4.92 3.38 1597 1612 a
methyl salicylate 37.57 0.00 0.56 2.37 3.99 1748 1755 b
butyl benzoate 40.31 0.79 0.82 1.30 20.29 1837 1846 a

lactones 4-hydroxy-2-hexenoic acid lactone 31.50 0.35 0.46 3.27 15.41 1567 b
butyrolactone 32.20 0.72 0.42 2.15 20.63 1587 1601 a
β-angelica lactone 34.24 0.15 0.42 1.45 15.98 1647 1664 b
δ-pentalactone 35.12 0.59 0.52 0.56 3.22 1672 1684 a
λ-hexalactone 38.09 0.35 0.60 3.51 5.84 1765 a

fatty acids acetic acid 26.43 0.13 0.12 3.94 15.78 1425 1427 a
propanoic acid 29.52 0.23 0.14 3.99 18.99 1510 1516 a
butanoic acid 31.97 0.35 0.62 3.17 20.39 1580 1581 a
pentanoic acid 36.05 0.96 0.30 0.24 5.53 1700 1704 a
hexanoic acid 39.55 0.15 0.20 0.13 13.26 1812 1817 a
heptanoic acid 42.64 0.23 0.26 4.87 14.40 1914 1920 a
octanoic acid 45.73 0.04 0.26 4.27 5.55 2053 2058 a
nonanoic acid 48.59 0.02 0.42 1.11 10.84 2181 2180 a
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Table 1. continued

chemical class compound name
1tR

(min)
1tR %
RSD

2tR
(s)

2tR %
RSD

2D peak volumes %
RSD exp IT Lit IT

identifica-
tion

decanoic acid 51.63 0.54 0.30 4.35 16.35 2239 2240 a
hydrocarbons n-hexane 3.91 0.40 0.34 1.50 10.88 600 a

cyclopentane 4.20 0.95 0.22 2.12 3.19 631 b
2,4-dimethylhexane 4.38 0.39 0.54 0.92 10.70 649 b
1,4-pentadiene 4.61 0.79 0.26 2.53 16.93 675 b
cyclohexane 4.96 0.92 0.50 0.31 14.37 700 719 a
n-heptane 4.96 0.16 0.72 4.22 15.01 700 a
2-methylheptane 5.31 0.27 0.88 3.15 6.70 754 b
n-octane 5.72 0.99 1.06 2.15 15.96 800 a
1-octene 6.24 0.95 1.00 0.84 5.71 822 838 b
2,3-dimethylheptane 6.48 0.64 1.64 0.57 9.44 839 847 b
2,4-dimethyl-1-heptene 6.77 0.83 1.12 2.12 18.67 859 878 b
n-nonane 7.62 0.33 1.72 3.00 4.08 900 a
benzene 8.11 0.37 0.48 1.61 15.84 924 934 a
3,4-diethyl-1,5-hexadiene (meso) 8.87 0.50 1.54 3.34 6.90 952 966 a
3,4-diethyl-1,5-hexadiene (RS +
SR)

9.10 0.59 1.52 1.50 15.25 961 968 a

n-decane 10.21 0.97 2.44 1.90 5.35 1000 a
(5Z)-3-ethyl-1,5-octadiene 10.33 0.62 1.70 4.40 18.95 1005 1006 a
(5E)-3-ethyl-1,5-octadiene 10.79 0.04 1.72 4.27 13.16 1018 1012 a
4-methyldecane 10.79 0.89 2.72 0.23 10.79 1018 1022 b
toluene 11.03 0.54 0.68 4.86 13.14 1024 1024 a
1-decene 11.43 0.88 2.04 0.73 20.43 1035 1039 b
(E,Z)-3,7-decadiene 12.66 0.36 1.82 0.49 19.42 1069 1069 a
(E,E)-3,7-decadiene 12.95 0.87 1.80 1.42 6.64 1077 1077 a
n-undecane 13.77 0.44 2.86 1.99 10.91 1100 a
1,3-dimethylbenzene 14.12 0.69 0.86 0.50 14.17 1109 1122 b
ethylbenzene 14.47 0.62 0.86 4.45 11.26 1118 1125 b
1-dodecene 17.56 0.62 2.50 0.89 19.10 1197 1192 b
n-dodecane 17.68 0.22 3.04 0.89 2.11 1200 a
Styrene 19.13 0.56 0.66 0.29 8.42 1237 1242 b
(E)-4,8-dimethylnona-1,3,7-triene 20.07 0.59 1.46 4.56 8.14 1260 1266 b
1,2,3-trimethylbenzene 20.18 0.78 0.96 1.11 13.72 1263 1282 b
n-tridecane 21.64 0.90 3.08 3.31 10.77 1300 a
1-ethenyl-4-ethylbenzene 26.13 0.51 0.86 4.38 13.83 1417 b

terpenoids α-pinene 10.68 0.88 1.62 1.26 17.60 1015 1017 a
β-pinene 13.07 0.84 1.60 2.12 3.80 1081 1072 a
ß-myrcene 15.69 0.54 1.32 2.11 15.33 1149 1154 a
limonene 17.09 0.68 1.40 4.56 18.55 1185 1190 a
eucalyptol 17.38 0.59 1.54 1.17 6.53 1192 1195 a
terpinene 18.43 0.81 1.24 2.99 12.14 1219 1221 a
(E)-ß-ocimene 19.13 0.79 1.24 0.58 11.92 1237 1239 a
α-copaene 28.35 0.70 2.16 1.24 17.55 1478 1485 a
linalool 29.40 0.78 0.90 1.21 8.86 1507 1507 a
α-muurolene 36.40 0.92 1.54 1.43 17.84 1711 1714 b
α-farnesene 36.98 0.16 1.44 1.30 10.91 1730 1740 a

saturated aldehydes propanal 5.43 0.05 0.28 1.73 4.23 769 762 a
butanal 6.71 0.43 0.42 2.09 14.68 856 861 a
pentanal 9.10 0.01 0.64 2.06 19.63 961 965 a
hexanal 12.43 0.40 0.86 4.41 14.35 1063 1066 a
heptanal 15.87 0.55 1.02 1.18 20.24 1154 1161 a
2-ethylhexanal 16.45 0.74 1.32 0.89 18.25 1169 1187 a
octanal 19.78 0.19 1.14 2.02 14.25 1253 1268 a
nonanal 24.44 0.39 1.22 1.24 20.93 1373 1380 a
decanal 28.35 0.09 1.30 3.84 5.74 1478 1475 a
undecanal 32.08 0.57 1.34 3.93 12.16 1583 1585 a
dodecanal 35.64 0.78 1.40 2.65 14.35 1688 1688 a
tridecanal 38.79 0.74 1.42 1.18 7.32 1787 1792 b

unsaturated/aromatic
aldehydes

(E)-2-butenal 10.27 1.00 0.90 0.66 14.45 1003 1002a a
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factor RMF according to the NIST MS Search algorithm, ver. 2.0
(National Institute of Standards and Technology, Gaithersburg, MD)]
between template (reference) and candidate (analyzed) “peak
spectra”.23,27−29

The chromatographic fingerprinting was performed automatically by
the GC Image Investigator V2.9 (GC Image LLC, Lincoln NE) on a
random selection of sample chromatograms (n = 25) acquired across a
time-frame of 2 weeks. It aligned the 25 chromatograms through
reliable peaks for registration and generated a composite chromatogram
over which peak-region features were delineated and extracted to form a
feature template for further processing. Reliable peaks in this study were
those that positively matched across all but one of the selected 25
chromatograms (i.e., most constrained condition option).

The resulting feature template includes untargeted (reliable) peaks
and peak regions comprehensively capturing the chemical composition
of samples. Figure 1A shows the pseudocolor image of a Sicilian EVOO
(#S1) overlaid with 591 peak regions (red graphics) and 159 targeted
peaks (green circles). Targeting of informative compounds, including
EVOO key-aroma compounds, ripening indicators, and potent
odorants responsible for coded defects,30 was performed at the end
of the realignment process over the entire set of chromatograms (n =
73). Identifications were confirmed by authentic standards when
available in the authors’ laboratory (criterion “a” in Table 1) or by
spectral similarity DMF≥ 900, RMF≥ 950, and IT tolerance± 20 units
(criterion “b”, corresponding to tentative identification in Table 1).
Table 1 lists target analytes with 1D and 2D retention times (1tR;

2tR),

Table 1. continued

chemical class compound name
1tR

(min)
1tR %
RSD

2tR
(s)

2tR %
RSD

2D peak volumes %
RSD exp IT Lit IT

identifica-
tion

(Z)-2-pentenal 13.24 0.01 0.64 4.81 13.17 1085 1101 a
(E)-2-pentenal 14.06 0.96 0.64 2.76 13.05 1107 1111 a
3-methyl-2-butenal 16.16 0.67 0.58 0.61 19.81 1161 1164 a
(Z)-2-hexenal 16.86 0.13 0.78 3.32 14.98 1179 1183 a
(E)-2-hexenal 17.50 0.80 0.82 1.59 2.06 1195 1204 a
(Z)-2-heptenal 18.32 0.96 0.72 3.02 8.08 1216 1218 a
2-ethyl-2-hexenal 20.83 0.45 1.14 1.94 13.83 1279 1285 a
(E)-2-heptenal 21.93 0.51 1.06 0.69 15.83 1307 1318 a
(E,Z)-2,4-hexadienal 24.38 0.29 0.58 4.48 16.10 1371 1373 a
(E,E)-2,4-hexadienal 24.50 0.38 0.61 2.32 12.38 1375 1376 a
(E)-2-octenal 24.97 0.29 0.86 1.01 19.78 1386 1391 a
(E,E)-2,4-heptadienal 26.89 0.83 0.68 0.96 15.59 1438 1441 a
benzaldehyde 29.05 0.16 0.50 3.46 10.58 1497 1499 a
(E)-2-nonenal 29.28 0.76 1.10 4.60 17.09 1503 1509 a
(E)-2-decenal 33.43 0.44 1.36 3.20 13.67 1622 1625 a
(E,E)-2,4-decadienal 37.22 0.74 0.90 1.98 3.81 1737 1740 a
2,4-dimethylbenzaldehyde 38.68 0.21 0.64 4.59 4.09 1783 1789 b

ketones acetone 5.72 0.08 0.30 4.97 14.82 800 819 a
2-butanone 7.12 0.83 0.44 1.48 10.16 880 887 a
3-buten-2-one 8.17 0.40 0.40 2.16 13.95 926 931 a
2,3-butanedione 8.75 0.27 0.38 0.41 13.05 948 954 a
1-penten-3-one 10.27 0.27 0.56 2.38 6.61 1003 1019 a
2,3-pentanedione 10.97 0.14 0.52 2.12 14.05 1023 1026 a
3-penten-2-one 13.88 0.63 0.58 2.75 19.70 1103 1106 a
4-heptanone 14.06 0.47 1.10 0.25 19.18 1107 1118 b
3-heptanone 15.11 0.26 1.08 4.68 9.32 1134 1141 a
2-heptanone 16.33 0.27 1.02 2.66 5.21 1166 1169 a
2-octanone 19.22 0.45 1.10 1.97 13.31 1239 1244 a
6-methyl-5-hepten-2-one 21.70 0.11 0.90 3.33 18.52 1302 1313 a
(E)-3-octen-2-one 24.68 0.69 0.92 4.03 12.79 1379 1384 a
5-methyl-2-(1-methylethyl)-
cyclohexanone

27.13 0.07 1.30 2.64 11.88 1444 1448 b

3,5-octadien-2-one 28.88 0.24 0.76 0.14 10.74 1492 1492 a
2-decanone 29.46 0.38 1.54 2.53 11.03 1508 1515 a

others tetrahydrofuran 6.48 0.29 0.46 3.65 16.69 838 845 b
1-methoxyhexane 8.46 0.86 1.12 0.81 11.63 937 941 b
2-ethylfurane 8.46 0.03 0.54 3.58 2.11 937 944 a
acetonitrile 9.74 0.75 0.26 2.91 10.67 985 988 b
furfural 28.18 0.84 0.40 3.16 4.56 1473 1477 a
dimethyl sulfoxide 30.28 0.13 0.38 0.19 3.85 1532 1549 b
1-chloro dodecane 34.48 0.98 1.76 3.71 20.48 1653 1661 b
3,4-dimethyl-2,5-furandione 35.41 0.52 0.66 4.77 2.66 1681 1685 b
acetamide 36.46 0.01 0.18 3.30 9.61 1713 1725 b
phthalide 53.43 0.66 1.76 3.84 17.87 2312 2323 a
diethyl phthalate (IS dilution
solvent)

53.84 0.07 0.62 0.12 18.26 2329 2332 a

average % RSD value 0.34 3.01 11.98
aOdor descriptors as reported in the reference literature.17,19,36,37,44
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precision data (see the Method Performance Parameters section),
experimental (Exp.) and tabulated (Lit.) 1D IT values, and odor
descriptors as reported in the reference literature.
The output table collecting 2D peaks and peak regions aligned across

all chromatograms with feature-related metadata (1D and 2D retention
times, MS spectrum, base peak and molecular ion m/z, and TIC
response) was stored and made available for further processing.
Supporting Information Table S2 lists untargeted and targeted peak-

region features included in the UT template, together with their
experimental 1D IT values, retention times in the two analytical
dimensions (1tR,

2tR), % relative standard deviation (% RSD) on
retention times across all analyses, and reference MS spectral signature
from the peak-apex spectrum.
Method Performance Parameters. Repeatability was evaluated

on analytical descriptors considered fundamental for an accurate
chromatographic fingerprinting based on both 2D peak patterns and
analyte responses. Therefore, % RSD was calculated on retention times
and analyte % response (% normalized 2D volumes over IS) for all
targeted compounds and on analytical replicates of the same sample
analyzed every 2 days over the 2 weeks of the study (n = 6). Results are
reported in Table 1. Mean % RSDs on retention times were 0.34% for
1D (1tR) and 3.01% for 2D (2tR). Maximum% RSD on percent response
was instead 20.93%, reported for nonanal, while the mean value was
11.98%.
Data Acquisition and 2D Data Processing. Data were acquired

by TOF-DS software (Markes International, Llantrisant, U.K.) and
processed by the GC Image V2.9 suite (GC Image, LLC Lincoln, NE).
The data files of peak-region features from each chromatogram were

exported in the “.xls” format (Microsoft Excel) and then converted to
theMATLAB format (version R2017b). All of the multivariate analyses
were performed using PLS_Toolbox 8.6.1 (Eigenvector Research,
Manson, WA) for the MATLAB environment (MathWorks Inc.,
Massachusetts, R2017b). Principal component analysis (PCA), partial
least-squares regression (PLS), and soft independent modeling for class
analogy (SIMCA) were applied as exploratory analysis, variable
selection, and classification method, respectively. In addition, data
were preprocessed by autoscaling before model development. Micro-
soft Excel spreadsheet was used for similarity analysis.

■ RESULTS AND DISCUSSION

Chromatographic fingerprinting based on comprehensive two-
dimensional separations has a great potential for discrimination
and identification of samples based on their chemical signatures,
a process described as identitation.10 Moreover, it offers further
advantages when mass spectrometry is used at the detection
level, providing additional information for analyte putative
identification. This step gives access to a higher information level
on sample properties and characteristics.7,18,31

The strategy adopted to decrypt the hidden information from
volatile patterns of EVOOs harvested in different Italian regions
collects information from untargeted and targeted (UT)
features. It is a fingerprinting approach designed to compre-
hensively map all detectable volatiles from GC × GC-TOF MS
analyses.16 Chromatogram processing was done by a validated
workflow described in the Combined Untargeted and Targeted
(UT) Fingerprinting Workflow section; the output was a data
matrix of dimensions 73 × 519 (i.e., samples × features) with a
subset of 159 identified (targeted) compounds.
The next section highlights the fundamental role of high-

resolution separations and retention pattern logic based on
effective identitation of samples. Machine learning, based on
multivariate statistics and modeling algorithms, will be
presented as a key tool to access a higher level of information
to identify distinctive regional marker patterns.
Complex and Multidimensional EVOO Volatilome.

EVOO is highly appreciated by consumers because of its unique

and characteristic flavor, which reflects the chemical complexity
and dimensionality32 of its volatile fraction, characterized by the
presence of many compounds, especially carbonyls (e.g.,
aldehydes, ketones), esters, alcohols, and hydrocarbons (e.g.,
linear, aromatic, terpenoids, etc.). Odor-active compounds, with
a low odor perception threshold, and volatiles lacking sensory
features (i.e., interferents),33 concur in the modulation of the
“odor code” while triggering aroma perception, whose
objectification by instrumental methods is challenging.9,34

However, EVOO volatiles encrypt additional information
about relevant functional variables including olive cultivars,
the olive tree’s harvest region and local pedoclimatic conditions,
olive ripeness, technological processes, and storage condi-
tion.1,2,35,36

Figure 1A shows the pseudocolor image of a Sicilian EVOO
(Sicilia origin#S1) volatile fraction comprehensively mapped
through untargeted and targeted (UT) peak regions (red
graphics); identified/targeted analytes (i.e., targeted com-
pounds) are highlighted by green circles. Patterns of analytes,
following a retention logic based on the relative retention
exerted by the polar × semipolar column combination adopted,
are highlighted in Figure 1B,C.
Compounds derived from oxidative cleavage of linoleic and

linolenic acids, promoted by lipoxygenase (LOX) and hydro-
peroxide lyase (HPL) pathways, constitute the LOX signature
(green-color area in Figure 1B and enlarged area in Figure 1C),
which is the most abundant fraction in high-quality EVOOs.1,13

It is characterized by the presence of C6 and C5 compounds, in
particular aldehydes, alcohols, ketones, and esters (e.g., hexanal,
(E)-2-hexenal, 1-penten-3-ol, 1-hexanol, 1-penten-3-one, hexyl
acetate, etc.), fundamental to define positive attributes as fruity
and green.14,21

Saturated and unsaturated aldehydes (respectively, in brown
and orange) are mainly produced by oxidation of unsaturated
fatty acids.37 While C6 and C5 unsaturated aldehydes from LOX
are correlated to positive attributes, the others, with a higher
molecular weight and low odor threshold (e.g., (E)-2-heptenal,
(E)-2-octenal, (E)-2-decenal, heptanal, octanal, and nonanal),
are indicated in many studies as responsible for the rancid off-
flavor with unpleasant and penetrating notes.19,37−39 Alcohols
(purple line in Figure 1B), represented by 30 congeners here
identified, have a strong retention in the 1D polar column and
are well separated by informative carbonyls. Of them, the most
relevant are 1-octen-3-ol, 1-nonanol, and 1-decanol because of
their decisive role in defining sensory defects eliciting fatty,
rancid, earthy, and mushroom-like notes.24,36

Short-chain fatty acids (Figure 1B black line) derive from the
oxidation of the corresponding aldehydes19,37 with propanoic
and butanoic acids as the most odor-active, followed by
pentanoic and heptanoic acids. Their presence was correlated
to the perception of rancid and fusty defects.1,37,38

Hydrocarbons (Figure 1B in cyano) have a negligible
contribution in the definition of the EVOO flavor, although
some unsaturated derivatives (i.e., 3-ethyl-1,5-octadiene and
4,8-dimethyl-1,3,7-nonatriene) were linked to green and fruity
notes13 or to rancid and fishy aroma.1 Moreover, a series of C10
alkenes, i.e., 3,4-diethyl-1,5-hexadiene (RS or SR), 3,4-diethyl-
1,5-hexadiene (meso), (5Z)-3-ethyl-1,5-octadiene, (5E)-3-
ethyl-1,5-octadiene, (E,Z)-3,7-decadiene, and (E,E)-3,7-deca-
diene, whose elution region is highlighted in blue in Figure 1B,
are known to be diagnostic markers of early ripening stages of
olives (Angerosa, Camera, D’Alessandro, & Mellerio, 1998),
while n-octane is an indicator of over-ripening.3,16,24
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Figure 2. Workflow including data processing (i.e., fingerprinting and profiling) and machine learning.

Figure 3. Principal component analysis (PCA) score plot on PC1 vs PC2 accounting for 79.73% of the total explained variance. The PCA model is
based on the TIC % response from UT peak regions comprehensively covering the chromatographic space. EVOOs from different Italian regions are
displayed in different colors.
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The presence and abundance of terpenes (gray rectangles in
Figure 1B) are of particular interest because of their role as
indicators of geographical origin7,14 or of ripening, e.g., α-
farnesene.3 Moreover, they contribute to defining positive
attributes, such as wood, lemon, and roselike odors.13,40

Lactones are generally detected in low but variable amounts in
EVOO, and their relative concentration is cultivar-specific.36

Esters as well, closely eluting to lactones, contribute to defining
fruity notes, with C6 and C5 derivatives deriving from the LOX
pathway that dominates the class.1,21,36

Multivariate Analysis. First, an exploratory unsupervised
analysis was carried out applying PCA; data structure was
examined to check whether geographical-origin-related intrinsic
groupings of olive oil samples were detectable. Then, six two-
level PLS regression models (one for each concerned Italian
region) were built to obtain the variable importance in
prediction (VIP) scores and to select the variables that
contribute the most to characterize each EVOO belonging to
a particular Italian region against the rest of the samples. From
these PLS models, the six characteristic volatile patterns, one for
each geographical region, were delineated and a similarity
analysis of the characteristic pattern of each region was carried
out by applying the nearness index. Finally, six one-input class
SIMCA classification models were developed and validated.
Figure 2 shows the multivariate analysis workflow designed to
capture informative and diagnostic patterns capable of correctly
classifying/discriminating EVOO production regions.
Exploratory Analysis. PCA was initially performed

considering the 591 variables (i.e., peak-region features) per
sample (n = 73). After inferring from this first PCAmodel, three
variables were removed: phthalide, (E)-2-hexenal, and toluene
because the related loadings were very large in all cases, and they
were masking the behavior of the other variables. Finally, a new
PCA with 588 variables was developed and all of the successive
multivariate analysis steps were carried out with these variables.
The new PCAmodel was built with 12 principal components,

which explained a total variance of 79.73%. Figure 3 displays the
score plot on PC1 vs PC2. Some particular grouping trends were
observed for the olive oil samples from Sicilia, Lazio, and
Umbria. In addition, Garda and Puglia were spread over the
bottom and top halves of PC1. Notice that the variance
explained by both PCs is approximately 30% of the total
variability. This implies that the main source of variability in the
data is not related to geographical origin. Nevertheless, it is
sufficient to propose classificatory models.
Variable Selection: Characteristic Profile. The variable

importance in the projection (VIP) score, which summarizes the
overall contribution of each variable to the PLS model, was used
as the variable selection strategy to highlight characteristic
volatile patterns for each region. The “greater-than-one-rule”
was applied for selecting the VIP scores, and only about 12% of
the total number of variables (588) were selected as character-
istics. In this way, the number of selected variables per region
was Garda, 76; Sicilia, 58; Toscana, 71; Lazio, 82; Puglia, 71; and
Umbria, 70; accounting for a total of 121 variables. Table 2
shows the numbers of LVs chosen as well as the percentage of
variance explained for each model.
Tables S3−S8 list, for each Italian region, the specific variables

and include both untargeted and targeted components.
Similarity Study. The similarity analysis among the region

characteristic patterns was carried out by calculating similarity
indices. Such indices are defined as a number between 0 and 1,
which describes the equivalence of two objects characterized by

multivariate data; the value 0 indicates maximum difference and
1 implies maximum similarity. In this study, the nearness index
(NEAR)41 was employed; it can be calculated by eq 1
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x x

x x
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where xci and xri symbolize each element of the considered and
reference characteristic profiles, respectively. Note that eq 1 has
two terms. The second term is a quotient between the sum of
distances between the different elements of the two vectors
(global distance) and the value of the sum of these elements. In
this way, a normalized global distance between 0 and 1 is
calculated. This second term is subtracted from 1 to convert the
distance (which measures dissimilarity) into similarity so that 1
represents the total coincidence and 0 represents the null
coincidence.
Equation 1 could also be reformulated in the matrix notation

as reported in eq 2
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where, correspondingly, Xci and XRi
are the considered and

reference characteristic profile vectors, respectively (the super-
script T denotes the transposed matrix).
To carry out the similarity study, a new reduced tertiary vector

consisting of 0, 1, and 2 codes for each region was built from the
regional characteristic profiles; results are reported in Table 3.
The following rules were applied to establish the aforemen-
tioned codes:

• 0: It was assigned to those variables not selected as part of
the regional characteristic pattern, e.g., variable 32
corresponding to methyl benzoate was selected only for
the Puglia profile, and thus, this variable was codified with
the value 0 for the remaining reduced tertiary vectors.

• 1: It was assigned to those variables whose VIP scores
ranged from 0 to 1, e.g., variable 46 corresponding to ethyl
benzoate was selected for Lazio, Puglia, and Umbria
profiles.

• 2: It was assigned to those variables whose VIP scores
were greater than 1, e.g., variable 8 corresponding to α-
copaene had a VIP score greater than 1 for Garda, Sicilia,
Toscana, Lazio, and Puglia profiles and a VIP score
between 0 and 1 for the Umbria profile. Thus, in the five
patterns (Garda, Sicilia, Toscana, Lazio, and Puglia), this
variable was codified with value 2 and in Umbria having
value 1.

Table 2. Characteristics of the PLS Models

model LVs % variance

Garda 8 93.72
Sicilia 4 86.80
Toscana 8 94.80
Lazio 8 95.06
Puglia 7 91.46
Umbria 9 95.78
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Table 3. Reduced Tertiary Vector from Six Studied Regions from Italy
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Table 3. continued
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Table 3. continued
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Once the reduced tertiary vectors from characteristic patterns
were pairwise compared, a similarity matrix was constructed
from the found NEAR values, which is shown in Figure 4.
As can be seen in the similarity matrix, in all cases, the NEAR

value is significantly less than 1, indicating that the volatile
profile/pattern between the regions is significantly dissimilar.
Therefore, it may be used to classify samples according to
geographical origin. In addition, there were five variables out of
the 121 selected that were present in all characteristic patterns
having a code higher than 1. It was therefore decided to remove
them from the classification models as their contribution to the
discrimination among regions would not be relevant.
Classification According to Harvest/Production Re-

gion Unique Signature. The most conventional way to
develop a classification model is based on building a model with
two input classes, the target class and the nontarget class, but a
valid alternative is performing the same classification method by
training with a single input class, i.e., the target class.42 Working
with one input class classification has significant advantages in
food authentication: the model is trained using the data from
representative samples from genuine foods (target class) and no
other samples are required. In fact, some authors have stated that
it is advisable to developmodels using a one-class classifier in the
case of food authentication. Indeed, if a well-known discriminant
method such as partial least squares-discriminant analysis (PLS-
DA) is used and a new sample does not belong to any such class,
the discriminant analysis is unable to properly define the
belonging of the sample to one particular class. Conversely, a
one-class classifier such as SIMCA establishes if the acceptance
is around the target class, delimiting the target samples from
other classes.43

SIMCA involves building a classification method in which
each class of training set is modeled independently and the

assignment of an unknown sample as belonging to a specific class
is based on the nearest distance to the corresponding regions
established in the space of principal components. Six one-input
class SIMCAmodels were built, one for each Italian region. Each
individual model was developed using the 116 untargeted/
targeted features, which were selected in at least one of the
regional characteristic patterns. The aim was to generate overall
models suitable for application in routine analysis. Otherwise,
should it be required to classify a sample of unknown origin,
whose characteristic variables would be selected or chosen? In
this way, any classification model developed can be applied, and
it will be possible to assign a class to the sample. Table 4 shows
the numbers of PCs chosen for eachmodel and the samples used
in the training and validation steps.

Class boundaries were established for each predefined target
class model on the basis of the values of Hotelling’s T2 and
residual Q statistics. The classification criteria of the samples
regarding each region were defined using a combination of the
reduced T2 and Q statistic values. Thus, for a sample to be
considered as belonging to a certain target class, both values
must be less than 1.0.

Table 3. continued

Figure 4. Similarity matrix based on the NEAR index resulting from pairwise comparison of regional patterns.

Table 4. Characteristics of the SIMCA Models

origin PCs % variance training set validation seta

Garda 7 99.97 10 samples (Garda) 73 samples
Sicilia 8 93.77 13 samples (Sicilia) 73 samples
Toscana 12 94.11 20 samples (Toscana) 73 samples
Lazio 7 99.82 11 samples (Lazio) 73 samples
Puglia 8 94.49 12 samples (Puglia) 73 samples
Umbria 5 97.23 7 samples (Umbria) 73 samples

aFor the validation, all of the samples analyzed were employed.
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Because the number of available samples from each Italian
region was limited, each single-class model training was carried
out employing all of the samples belonging to the concerned
target class. Then, all 73 samples, both those belonging to the
target class and those not, were used for validation purposes. All
of the samples were correctly classified in five of the six single-
class models, and the quality parameters such as sensitivity,
specificity, precision, efficiency (accuracy), and area under the
receiver operating characteristic curve (AUC) were equal to
1.00.42 The only model that misclassified one of the samples was
the Garda model, in which a Garda sample was considered as
non-Garda. Thus, in this model, the sensitivity, specificity,
precision, efficiency (accuracy), and AUC were equal to 0.90,
1.00, 1.00, 0.99, and 0.95, respectively. The classification plots of
each model are shown in the supplementary material
(Supporting Information Figures S3−S8).
Regional Signatures and GC × GC Identitation

Potential. Based on the information shown in Table 3, it is
possible to derive some conclusions about peculiar chemical
traits specific to certain regions. For example, compounds #28
(n-hexane), #109 (1-penten-3-ol), and #386, #475, and #510
(all unidentified) are characteristic of the Garda region. In the
same way, compound #141 ((E,E)-2,4-hexadienal) is specific of
Sicilia samples, compound #95 (2-ethyl-2-hexenal) of Lazio, and
compound #27 (n-octane) of Umbria. Further assignments
could be identified as characteristic of more than one region, e.g.,
compound #245 (unidentified) is associated with Garda and
Umbria. In the same way, following this assignment method-
ology, and considering the presence/absence of a few volatile
compounds previously selected, a classification tree rule could
be deduced to classify undoubtedly any sample of EVOO from
any of the six considered regions. However, it might be beneficial
to have a larger set of representative olive oil samples from each
of the regions for such a classification tree to be sufficiently
reliable.
The classification strategy proposed in this study is based on

using the whole UT fingerprint of volatiles that is established by
considering simultaneously all of the compounds that have been
selected as characteristic of at least one of the regions concerned.
In this way, the one-class SIMCA classification models are
applied sequentially to any EVOO sample, regardless of
geographic origin, so that the oil is assigned to one of the
regions. This overall classification approach based on the use of
UT fingerprinting, i.e., identitation, overcomes the main
drawback for the routine application of single-step multivariate
models.
Moreover, the strategy takes full advantage of the high-

resolution power of GC × GC that effectively maps all
detectable volatile components including (a) those related to
major functional variables (e.g., olive cultivar,13 olive ripening
stage,16 harvest year, and processing technology12), here playing
a confounding role in regional classification; and (b) several
potent odorants delineating EVOO sensory features. The latter
might be masked by coelution phenomena occurring in 1D-
GC18 while resulting in less effective identitation and poorly
informative profiling processes.
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