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Abstract: A reformulation of the Transmission Line Matrix (TLM) method is presented to model
non-dispersive anisotropic media. Two TLM-based solutions to solve this problem can already be
found in the literature, each one with an interesting feature. One can be considered a more conceptual
approach, close to the TLM fundamentals, which identifies each TLM in Maxwell’s equations with
a specific line. But this simplicity is achieved at the expense of an increase in the memory storage
requirements of a general situation. The second existing solution is a more powerful and general
formulation that avoids this increase in memory storage. However, it is based on signal processing
techniques and considerably deviates from the original TLM method, which may complicate its
dissemination in the scientific community. The reformulation presented in this work exploits the
benefits of both methods. On the one hand, it maintains the direct and conceptual approach of the
original TLM, which may help to better understand it, allowing for its future use and improvement by
other authors. On the other hand, the proposal includes an optimized treatment of the signals stored
at the stub lines in order to limit the requirement of memory storage to only one accumulative term
per field component, as in the original TLM versions used for isotropic media. The good behavior of
the proposed algorithm when applied to anisotropic media is shown by its application to different
situations involving diagonal and off-diagonal tensor properties.

Keywords: TLM method; anisotropic media; low-frequency numerical methods

1. Introduction

The Transmission Line Matrix (TLM) method is a low-frequency, time-domain numer-
ical method originally proposed by Johns and coworkers in the early 1970s [1] to solve
electromagnetic wave propagation problems from a different point of view. The method
was not a classical numerical one directly involved in solving the equations governing
a certain phenomenon, as is the case with the Finite-Difference Time-Domain (FDTD)
numerical method. In contrast, the TLM method is mainly based on finding an analogous
transmission line circuit to describe the original problem by means of the study of the
propagation of voltage and current pulses through it. The circuit (the TLM mesh) is formed
by interconnecting elementary circuits (the TLM nodes), which are specifically designed to
model a particular propagation or diffusion problem. Figure 1 shows the basic node used
for the modeling of three-dimensional (3D) electromagnetic problems: the 3D Symmetrical
Condensed Node (3DSCN). The node is said to be condensed because all the field compo-
nents are defined at the node center and at the same time, which is a remarkable feature
of the TLM method. The 3DSCN basically consists of twelve lines which are connected
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to similar lines of adjacent nodes. These twelve ports are termed the link lines, and they
are mainly responsible for propagation. It is worth noting that connections at the node
center are not actual connections; they are to be understood in a formal sense instead, in
order to reproduce the coupling existing in the original differential equations governing the
phenomenon, which is Maxwell’s equations in this work [2]. On occasion, additional capac-
itive, inductive, or electric and magnetic loss lines are also formally connected at the node
center to allow for a specific control of properties such as the electric permittivity, magnetic
permeability, or electric and magnetic conductivity [3,4]. Although the electrical origin
of the method has caused most of its applications to be of the electromagnetic type [5-8],
TLM has also been successfully applied to particle or thermal diffusion problems [9] as
well as to acoustic situations [10].

v,

Vs
Figure 1. The 3D Symmetrical Condensed Node (3DSCN). Basic structure only containing the link
lines. Extra stubs must be also added to independently adjust electromagnetic properties. The red
box at the center denotes formal connections that describe Maxwell’s equations.

The fundamentals of TLM are similar, whatever the application. First, the medium to
be modelled is discretized into elementary volumes, which are replaced with an analogous
mesh of interconnected TLM nodes. Time is also considered at discrete time samples,

—i
ty = nAt. A set of incident pulses, ,V , reaches the node center at each time step and

-7
produces a set of reflected pulses, ,,V , for that particular time step and node in the mesh.
The time-marching scheme is quite simple; for time iteration or time calculation, n, both
voltage sets are connected through the scattering matrix, S, characteristic of a particular

node, in the following formula:
7 _—

2V =S,V 1)

Finally, these reflected pulses become the incident pulses for the next time step at
the adjacent nodes for the link lines, and at the same node for the extra capacitive and
inductive stubs. The process is repeated for the next time iteration. The singularity of the
problem under study forces the particular geometry of the node and the scattering matrix
elements, but the process is quite similar for different types of phenomena.

The time-marching scheme described above makes of TLM an alternative low-frequency
numerical method with second-order accuracy, which provides appropriate results as long
as the space sampling is below one-tenth of the minimum wavelength [11]. This is a
common feature with other low-frequency numerical methods such as FDTD, a method
with which certain equivalences have been found during the initial stages of TLM [12]. A
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detailed description of the TLM fundamentals and its most relevant applications, electro-
magnetic or not, may be found in [7].

An important feature of TLM is that it can be considered more of a conceptual ap-
proach than a purely mathematical numerical method, as is the case with the FDTD method,
for instance. As might be expected, this property of the TLM method has advantages and
drawbacks. From among the advantages, the most outstanding one is that the physical
content of the different lines in the TLM node is clearly identified. This means that includ-
ing a particular element in the node implies that all the aspects regarding this element
are automatically implemented. As an example, exchanging the role or inductances and
capacitances not only allows for the modeling of properties below the vacuum values or
even negative values [13], but also reproduces the dispersive behavior to be expected if
the corresponding metamaterial is manufactured in this way. However, some drawbacks
must be mentioned. First, the algorithm devised for one type of problem is not directly
extrapolated to another problem. A certain familiarization with transmission line concepts
is required to take full advantage of the method and the ability to design appropriated TLM
nodes for specific situations. Second and more importantly, obtaining the scattering matrix
for a given node is usually a difficult task. Despite these difficulties and under this general
scheme, the TLM method has proven to be a versatile and powerful numerical technique for
solving different challenging electromagnetic situations. Some examples are the modeling
of thin conducting plate situations, time-varying media, far-field calculations, dispersive
and nonlinear materials, left-handed materials, just to name a few [6,14,15]. As regards
the antenna analysis and design—a challenging problem for a low-frequency numerical
method such as the FDTD or TLM methods—the addition of a specific sub-circuit repre-
senting the effects of the thin-wire antenna to the standard TLM node, shown in Figure 1,
was first proposed in [16] to model antennas whose radius is significantly smaller than the
node size. This was an imaginative and efficient solution which generated a number of
subsequent works with new thin-wire models and even more complex situations [17-20].
Other applications of the TLM method to different antenna analysis and design problems
can also be found in [21].

The conceptual TLM point of view favors the versatility of the method, but also
that numerical procedures followed by the different research groups working on TLM
are often quite independent, apparently different, and difficult to relate to. This may
cause that some relevant advances from one group are not always completely exploited
by other researchers, although the basic aspects of the TLM method are well-known
within the TLM community. This is possibly the case with the modeling of anisotropic
media for which the electromagnetic properties are now defined by tensor quantities.
Although these media were already modeled in the early TLM works for the simple case in
which principal directions are considered and thus only diagonal elements are present [7],
the general case that includes off-diagonal elements introduces a coupling between the
different field components, which makes the task considerably more difficult to deal with.
Two qualitatively different TLM solutions have been reported to solve this difficulty in a
different manner.

The first proposal is from Paul et al., who, in a brilliant set of three consecutive
works [22-24], reformulated the TLM method to deal with general materials through a
series of normalizations and schemes in which signal processing techniques, and specially
the bilinear transform, played a fundamental role. This revised and elegant TLM scheme
was then specified to model anisotropic and nonlinear media. The presented reformulation
showed the important benefit that no matter how many effects had to be added to a series
or a shunt sub-node, all these effects were comprised in one single accumulator quantity
per field component. But this compact and elegant formulation separates the algorithm
from the original version of the TLM and may complicate its application by other authors.

The second existing solution resulted later from a new reformulation of the TLM
method [25]. This approach maintained the classical and conceptual origin of the TLM
method in which an additional extra stub is identified for each component of the different
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tensor electromagnetic properties. However, despite this scheme being considered closer
to the original TLM formulation and conceptually easier to understand for a wider TLM
community, this independent treatment of tensor components necessitates the storage
of the voltages at these extra stubs, which noticeably increases the memory and time-
computing requirements of the algorithm in general situations in which several off-diagonal
components of the tensor quantities must be considered.

The purpose of this paper is to reformulate the TLM treatment of anisotropic materials
in a new way that combines the advantages of the two existing solutions: the conceptually
clear scheme of the original TLM described in [25], and the efficient reduction of memory
storage and time-computing resources used in [22]. As a result, a relatively powerful but
still simple algorithm is produced, which may help in making the treatment of anisotropic
media with TLM an easier and more widely used methodology.

The paper is organized as follows: Section 2 describes a new TLM algorithm for
the modeling of non-dispersive anisotropic media. Section 3 includes two numerical
applications. The comparison of the obtained results with independent reference solutions
shows the good behavior of the proposed model. Finally, conclusions are presented in
Section 4.

2. A TLM Node for an Anisotropic Non-Dispersive Medium

In this section, a new reformulation of the TLM algorithm for dealing with non-
dispersive anisotropic media is considered. The description is carried out by following a
scheme which resembles the procedures in the original TLM method. First, the topology
of the node proposed is presented, identifying each term in Maxwell’s equations with
individual ports at the node, which may ease the choice of the circuit parameters. Second,
the description of the Thevenin equivalent circuits, the modifications required by the
presence of coupling elements caused by anisotropy and a novel unified treatment of the
signal at the stubs are proposed and discussed to obtain the field and reflected pulses at
each time step.

2.1. The TLM Node and the Parameters

Let us consider an anisotropic and non-dispersive material. The medium properties are
defined by tensor quantities which couple the different electromagnetic field components.
In the absence of coupling between the electric and the magnetic properties, the constitutive
relations of such a material are given by the following formula:

— — - -
D =¢E =¢)(I+%°)E, 2
— = - —

B =fiH = po(I+X")H, ®)

— — —
where E stands for the electric field, H is the magnetic field, D is the electric displacement

field, E is the magnetic flux density, and I is the identity tensor. A more general case
would include a magneto-electric tensor to describe the magnetic field effects on the electric
displacement field and the electro-magnetic coupling tensor to describe the effect of the
electric field on the magnetic flux density. For brevity’s sake, these two effects have not
been considered in this work, although they could be included without great difficulty, if
required.

Regarding the constitutive parameters, £ and {° denote the electric permittivity and
electric susceptibility tensors, respectively, while ji and " are the magnetic permeability

and magnetic susceptibility tensors, respectively. Concerning the electric and magnetic
—se Zsm
current densities, | and | , their relationship with the electromagnetic field and the
sources are as follows:
e —ses

J =7 +oE, @
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where ¢ and " are the electric and the magnetic conductivity tensors, respectively, and

_sse —ysm
the source terms, | and | , are the free electric current density and the free magnetic

voltage density, respectively. It is worth noting that multiplications in Equations (2)—(5)
should be replaced with time-domain convolution in the case of considering dispersive
media, whose treatment is left for a subsequent work.

The phenomenon is governed by Maxwell’s equations, Ampere’s law, and Faraday’s
laws, given by the following:

o _7° .
VAH=] +%, ©
2 _ 7" s

To help in the understanding of the procedure described in the following paragraphs,
let us explicitly show the x component of Ampere’s law and the x component of Faraday’s
law for the anisotropic material under study:

oH. oHy e JE oE oEy e
o — oz = I T e+ Xux€o G+ O Ex + Xay€o 57 + 0y Ey+ @
JoE
+sz€Oth + O'QECZEZI
oE JE 9H oH 9H,
o T o = I+ no S + moXxx TG+ oxe Hy + Hox¥y 5+ ®)

+oyy Hy + Hox’t 3;% + o H,.

For the usual case of an isotropic medium, these two equations define E, and Hy
and only require the first three terms on the right side. These are the uncoupled terms.
However, for the anisotropic medium considered in this work, the last two pairs of extra
coupling terms on the right side of (7) are to be considered in order to deal with the effect
of E, and E; on E; or with an analogous coupling between the magnetic field components
in (8).

The basic form of the TLM node for modeling this anisotropic medium is the 3DSCN
shown in Figure 1, where only the main or link lines are represented. Extra lines, not
represented, must also be included to model the deviation of the anisotropic medium
from the vacuum behavior. In this work, the numbering of the ports corresponds to the
original proposal in [26], with minor modifications to describe coupling effects. In this
manner, link lines are ports 1-12, extra capacitive lines are lines 13-15, inductive lines are
16-18, electric loss lines are lines 19-21, and magnetic loss lines are numbered as lines 22-24.
Appropriated subscripts for the extra lines will be added to this numbering scheme in order
to denote the tensor quantity element with which a particular line is associated. The node
length is Ax, Ay, and Az along the three Cartesian directions. The characteristic impedance
of the link lines is, as usual, chosen to be the vacuum impedance, Zy = Y;;’ 1=/ Ho/ €0,
while the time step value will be specified later.

As regards the additional lines to adjust the properties of the medium, let us think of
the node in Figure 1 as a vector circuit, since it must contain information on the full set of
Maxwell’s equations in their vector form expressed in (6). As it happens with Maxwell’s
vector equations, the 3DSCN may be split into coupled sub-circuits or scalar circuits: three
shunt nodes to model the three components of Ampere’s law, and three series nodes to
describe the three components of Faraday’s law. Figure 2a shows, for time ¢,, the node to
describe the x component of Ampere’s law, scalar Equation (7), while Figure 2b shows the
sub-node corresponding to the x component of Faraday’s law, scalar Equation (8). These
nodes will be referred to hereinafter as the shunt node for Ey and the series node for Hy,
respectively.
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Figure 2. (a) The Shunt node for E, at time f,,. Link lines represented in dark blue are connected to adjacent nodes. In

pale blue: lines 13xj are open stubs and lines 19xj are infinitely long stubs. The red boxes at terminals AB denote a formal

connection indicating that voltage V 4 at common terminals AB is ,, Vy for the link lines and for lines 13xx and 19xx, ,,Vy, for

lines 13xy and 19xy, and ,, V;, for lines 13xz and 19xz. (b) The series node for Hy at time t;,. Link lines, represented in dark

blue, are connected to adjacent nodes. In pale blue: lines 16xj are short-circuited stubs, while lines 22xj are infinitely long

stubs. The red boxes denote a formal connection indicating that the current is ,iy for the link lines and lines 16xx and 22xx,
niy for lines 16xy and 22xy, and ,i; for lines 16xz and 22xz.

The electromagnetic field components associated with this pair of scalar circuits are
defined through the following analogy of the fields, with the common voltage at the shunt
circuit and the common current at the series circuit:

L T )

E —n .
Ax = TF Ax

X

n

It is worth noting that the minus sign used for calculating ,Hy, which is not strictly
necessary but is maintained for historical reasons and used to make both analogies qual-
itatively similar, requires that the current at the series node is defined with the current
opposite to the usual case, the right-hand rule, as shown in Figure 2b. Let us describe each
one of these sub-nodes.

Concerning the shunt node for Ey, four main or link lines, ports 1, 2, 9, and 12, are
those mainly responsible for the propagation of adjacent nodes through its connection to
link lines. Ports 2 and 9 define E, and Hy, propagating along the z direction, while ports 1
and 12 define E, and H, propagating along the y direction. They model the curl term on the
left side of (7), and depending on the choice of At, partially or totally describe the vacuum
electric permittivity term associated with ¢y through the capacitance YyAt/2 introduced by
each link line to the circuit. In order to complete the model of the rest of terms on the right
side of (7), an extra capacitive or open stub for each susceptibility term, Xij, is included,
with j = x, y, z. These lines are denoted as ports 13xj, they have a characteristic admittance
of Y¢Y,;j, and they introduce a capacitance Y(Y,;At/2 to the circuit. An extra electric loss
stub is also needed for each conductivity term, o7 - These lines are denoted as ports 19xj
and have a characteristic admittance of Y(G,;, which is directly the admittance introduced
by the line to the circuit since no reflected voltage is expected on this line. An independent
current source, , I7, takes into account the free electric current density term appearing in
(7). Similar nodes for E, and E, can be defined with the appropriated link and source lines,
together with extra capacitive ports, 14yj and 15zj, and electric loss lines, 20yj and 21zj,
respectively.

As regards the series node for Hy sketched in Figure 2b at time ¢, it consists of the
series connection of different lines. As regards the link lines, ports 4, 5, 7, and 8, they
describe the curl terms on the left side of (8), and depending on At, partially or totally
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define the vacuum permeability value, j, through the inductance ZyAt/2 introduced
by each link line to the circuit. An inductive or short-circuited stub, 16xj, describes the
magnetic susceptibility term due to x7; and a loss stub, 22xj, models the magnetic loss term
due to O’Z; appearing in (8). Line 16xj has a characteristic impedance of ZyZ,; and introduces
a total inductance of ZyZ,;At/2 to the circuit, while line 22xj has a characteristic impedance
of ZyR,;, which represents a resistance with this same value added in a series connection to
the circuit for Hy. In these lines, the index j takes the values x, y, and z. An independent
voltage source, , V)", takes into account the free magnetic voltage density term appearing
in (8). The polarity of the link lines is fixed and shown in Figure 1; therefore, lines 5 and 8
contribute positively to iy, while link lines 4 and 7 do the opposite. The polarity of the rest
of the lines is chosen to positively contribute to iy, as shown in Figure 2b.

In order to define the value of the characteristic admittances of the capacitive and loss
lines at the circuit for Ey, let us proceed as follows. As regards the capacitive lines 13xj, the
circuit must define the three capacitive terms of the medium associated with the permittivity
elements ¢,; appearing in (7), with j = x, y, and z. The capacitances corresponding to index j
is that of a parallel plate capacitor formed by a medium with permittivity ¢,; between
two parallel plates, with an area of Sy = AyAz and separated by a distance of Aj. Taking
into account that the link lines only contribute to the diagonal element, j = x, and that a
capacitive line adds a capacitance equal to At/2 times its characteristic admittance, the
following equality must be met:

At At &S, €0 (Xfcj + 5xf) Sx
4 Y()*éx]' + Yx]'Y()f = — = : .
2 2 Aj Aj

(10)

Similarly, the loss line 19xj in the circuit of Figure 2a adds an admittance Y(G,; to the
circuit that must define the admittance of a cubic volume with an area of Sy and a width of
Aj, filled with a medium of conductivity of (T; i3 thus,

%5,

The more general case corresponding to the shunt node for E;, with i = x, y and z, can
simply be derived by replacing Sy in the previous equations, with S; = AaAb, where Aa and
Ab are the node dimensions along the two directions normal to the i direction. By doing so,
the relative admittance on the capacitive and electric loss lines at the shunt nodes can be

obtained through:

Y; = (i + )8 26 (12)
v cAtA] )
o'l.e.S‘
]t
L , 1
Gl] Y()Aj ( 3)

An analogous calculation can be carried out for the inductive and magnetic loss lines
at the series nodes. In this manner, the inductive lines corresponding to H; are defined by
the following relative characteristic impedances:

4 2 (XZL—HSU)Si 29, 14
ij = TAJ-* ij | (14)

while the relative characteristic impedance of the magnetic loss lines is given by the
following:
U;;?Si

R;; = .
i ZoAj

(15)
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A maximum allowable time step may be obtained by imposing non-negative values
for each diagonal element Y;; and Z;; in (12) and (14). This maximum value is usually
chosen as the time step for the TLM algorithm. With this choice, the link lines define the
vacuum properties if the node length is identical for all directions, while the capacitive
and the inductive added stubs describe the susceptibility, which distinguishes the medium
properties from the vacuum ones.

The analogy is completed by including the source elements through an electric source
current at the shunt node and a magnetic source voltage at the series node, which are ob-
tained simply by multiplying each source density quantity by the corresponding transversal
area, S;:

I =JiS, Vi" = Ji"Si. (16)

2.2. The Field Definition and the Scattering Process

The propagation of voltage pulses through a transmission line is a dynamic process
in which, at a specific moment, incident pulses disappear and become reflected ones.
The situation becomes difficult when several transmission lines are to be considered
simultaneously. The Thevenin Theorem is a useful tool to ease this task. The situation
is depicted at the top of Figure 3. At the incident stage, an incident voltage pulse, , V7,
propagates towards terminals AB, reaches these terminals at a certain time, t,;, and produces
a reflected voltage, ,V'. This process is described at ¢, by the Thevenin equivalent circuit
shown at the bottom of Figure 3 [7]. Despite the fact that the reflected pulse does not
appear in the Thevenin circuit, it may be obtained in terms of the incident pulse and the
total voltage or current on the line as follows:

WV =,V = V= Vi~ 7. (17)
Zﬂ A ZO A
— RO ——— RO ———
v ,
‘H\/\/ Vs ‘HV
—(IEmE e——— ——— IR e ————
B

Figure 3. Thevenin equivalent circuit to describe the reflection process at terminals AB. The circuit is
valid at t,;, the moment in which the reflection occurs.

Let us now consider Figure 4, which shows the Thevenin equivalent circuit corre-
sponding to the parallel node for Ey in Figure 2a, when all the incident pulses reach the
node center at the n-th time step. The elements associated with ,V, are shown against
a white background. As regards the coupling terms, two lines represented in the pale
blue region stand for the terms ¢y, and 0y, lines 13xy and lines 19xy. The connection with
the lines associated to ,Vy must be understood in a formal sense, since they are actually
current sources which depend on the voltage , V. This fact is described in Figure 4 by
specifying a different voltage, , V), at this pair of lines. A similar situation is found for the
lines associated with ey, and o7, ports 13xz and lines 19xz, depicted in the pale red region
and with a different voltage, , V', at their terminals.
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Figure 4. Thevenin equivalent circuit of the shunt node for Ey at time t,,. Green boxes denote a formal
connection, allowing for the voltage at the upper terminals to be ,V, for the link lines, the source,
and lines 13xx and 19xx, while the voltage is ,, Vy, for lines 13xy and 19xy (in the pale blue region) and
nV for lines 13xz and 19xz (in the pale red region).

The current flowing through line 1 is given by the following equation:
A (2"V{ - an)- (18)

As regards the rest of the lines, analogous expressions can be obtained by simply using
the appropriate admittance and eliminating the incident voltage pulse in the case of loss
lines. According to Kirchhoff’s current law, the sum of currents along all the lines connected
to the ground terminal must be zero. By doing so and after some simple calculations, the
following is produced:

3
2,L5 +2,85 +,Vi =Y A%V (19)
k=1
where, ' ‘ ‘ ‘
anc = nvll + nVZZ + nV9Z + nVllZf

. . . 3 .
nsfc = YXXn Vllex + nynvll?)xy + YXZn 1l3xz = k§1 Yxkn ll3xk’ (20)

nVJ‘ce = nIJe(/YOI
A;k =40 + Yy + ij.

The terms are organized according to their conceptual content. Thus, the first term,
L%, refers to the contribution to ,, Vy of the incident voltage pulses at the link lines with E,
polarization. The ,S% term is due to the signal stored at the stubs associated or coupled
with Ey at previous time steps. This term corresponds with the accumulator term in [22], al-
though in this work, it requires neither a node with equal length for all Cartesian directions
nor a time step fixed by At = Al/(2c), with ¢ being the vacuum speed of light. Finally, the
term ,, Vy models the excitation term contributing to ,, V.

At this point it is worth noting that the calculation of ,,E, using (19) requires storing
pulses at three stubs per field, while the formulation presented in [22] only uses one
accumulator term per component. The situation would be even worse, requiring three
more stubs, if magneto-electric coupling had to be considered.

A new method of solving this important drawback is proposed in this work in order to
optimize the scheme and reduce the memory requirements to one term per field component.
The solution is based on the fact that stub voltages remain at the same node, which allows
for the calculation of this term in a unique and global form. To do so, let us remember
that for any capacitive stub, the incident voltage at the n-th time step is equivalent to the
reflected voltage at the previous time step, at the same node. Since the line of relative
admittance Y, connects to voltage ,, Vi, time step n results in the following equation:

nV113xk = n—1V1r3xk =, Vi~ n—1V113xk‘ (21)
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Substituting (21) into ,,S% and using (19) for time step n — 1, the term due to the stubs
can be expressed as:

3 , 3 3 ' 3
2S5 =Y YaeuVigk = Y Yakn 1V — Y Yokn1Viswk = 2 Yakn 1V —n15% (22
k=1 k=1 k=1 k=1

which reduces the effect of the three stubs to a single accumulator parameter that only
depends on the previous values of this parameter and the voltage.

In order to describe the information contained in the three shunt nodes, or equivalently,
the three voltage components, the following compact form involving the column vector
and tensor quantities can be obtained as follows:

e v s _>e
nS =Yy V=155 (23)
— — — - =
2,L°+2,5°+ V=A%V, (24)

N
where each link line contributes to ,, L ¢ according to the electric field component it defines,
that is to say:
= WiVt aVo+aVy,
LL¢ = WVitaVit+aVs+.V] (25)
W5+ Ve V7 Vi

and the rest of vector and matrix terms are evident.

The situation defining the magnetic field components is analogous, but the series
circuits must now be used. The Thevenin equivalent circuit for the series node to define the
x-oriented current at the n-th time step is shown in Figure 5. The lines directly associated
with iy are represented against a white background. As regards the off-diagonal elements
of the permeability and magnetic conductivity tensors, an inductive stub and a magnetic
loss line are shown against a blue background, lines 15xy and 22xy, to describe the coupling
terms due to pyy and U,’Z}L/. Analogous lines 15xz and 22xz model the effect of yy, and 07,
represented against a red background. The connection to the lines associated with i, are
again formal, since the current flowing through these lines is not iy, but ,i, and ;..

0,

Z() Zxx ZOR.U(
Z Z :x'.i!/juz

i
(iR

:ré[OZ =

0

2,05 7 24

L
27 L
Figure 5. Thevenin equivalent circuit of the series node for Hy at time t,. Green boxes denote a
formal connection, allowing for the current to be ,iy at the link lines, the source, and lines 16xx and
22xx, while the current is iy for lines16xy and 22xy (in the pale blue region) and i for lines16xz and
22xz (in the pale red region).
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Now, imposing the Kirchhoff’s voltage law on the circuit in Figure 5 and rearranging
the terms, the following is produced:

3
2,L0 42,87 +,VE =Y Al (26)
k=1

where, . ' ‘ '
nLZl = _nvil +nV15 - an7 + VlVl’

. . . 3 .
HS? = nVll6xx + nVll6xy + nVlléxz = kgl nvlléxk (27)
A?k = Zy (4‘Sxk + Zxk + ka)'

As with the shunt circuits, the first term describes the contribution of the link lines,
the second term is due signal stored at the inductive stubs, the third term stands for the
source, and the right side of (26) describes the coupling between the different magnetic
field components. The sign with which each link line contributes to ,, L}’ depends on the
voltage polarity of each line: according to Figure 5, lines 5 and 8 generate a current oriented
along ,iy, while lines 4 and 7 have the opposite effect.

As with the shunt circuit for Ey, the need to store incident voltages at the stubs in
(27) implies an undesired increase in memory storage and time-computing resources. An
optimized solution for this inconvenience is also proposed for this circuit. To do so, let us
proceed as with the shunt circuits. Since an inductive stub is a short-circuited stub, the
incident field is related with the reflected voltage for the same line at the previous time
step. Concretely and using the scheme of Figure 3, the following formula is produced:

nvlléxk = 7nflvg6xk = 7n71Vll6xk + ZOZanflik' (28)

Substituting (28) into ,SY and using (26) for time step 1 — 1, the term due to the stubs
can be reduced to the following:

3 3

3 , 3
aSY =Y Ve = = 2 n1Viexk T 20Y Zakn-1ix = —n-15% +Z0 ) Zxkn-1ir, (29)
=1 =1 =1 =1

which means that an optimized scheme with only one storage term per field component is
derived and makes that memory storage and time computing requirements for modeling
anisotropic media are almost identical to those of the original TLM method when applied
to isotropic media.

Considering the three series circuits for the magnetic field, a compact form using the
column vector and tensor quantities may be derived with the following:

%m - = m
TZS - Z()Zn71 1 — 1S ’ (30)

— — — ~ =
2,LM42,8M4 V" =A" i, (31)

where the vector and matrix terms in (30) are evident, except for nfm, in which the
contribution of a certain link line depends on the current or magnetic field component
it defines and its voltage polarity, which defines the appropriated sign for this current.
Namely, for this case:

“nVit Vs = VotV
LM = 7Vo—nVe—nVo+aVig |- (32)
= V1 +aVs =V +aVi
Once the voltage and current components at the node are obtained through (24) and

(30), the reflected pulse at each link line must be obtained. This can be performed by
considering two opposite lines and the common voltage and current they define at the n-th
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time step, , V. and ,i.. The situation is shown in Figure 6. The box at the center represents
the effect of other lines coupled with this pair by means of the shunt and series circuits
involved with these two opposite lines.

Z, : Z, A
— O T
i — i
n V 05 \/\/‘ ./\/\ V g
P n" neg
n V))OS r f" n Vi’lq,
N n I/pas 7 V( Ny, ]/m‘_;'
—TTTT—
B

Figure 6. Circuit involving two opposite link lines associated with a common voltage, ,V,, and a
common current, ,ic. The box at the center denotes a formal coupling with other lines also present in
the shunt node associated with ;, V., and the series node associated with ;.

The voltage on the line contributing positively to ,i. is denoted as anos, and the
voltage on the opposite line is denoted as V. It can be seen that the reflected pulses can
be obtained using the following simple equations [27]:

nV;os =nVe— Zoyic — nVlr:leg/ (33)
nV;rwg = Vet Zoyic — l’lleOS'

As an example, this expression applied to link lines 1 and 12 yields the following:

nV; =, Vi+ Zoyiz — nV112/ (34)
Vi =V — Zoyiz —,Vi.

The rest of the link lines can be treated in a similar way. It is worth noting that the
optimization scheme proposed in this work makes the voltage pulses reflected at the stubs
unnecessary, since their global contribution per field component is considered through
the electric and magnetic accumulators, ,,S¢ and ,,S¥', respectively, which are updated, as
indicated by Equations (23) and (30).

Summarizing, the procedure is as follows:

1. At the variable initiation stage:

O The node size is chosen according to the desired maximum valid frequency of
the results;

O The time step, together with the characteristic admittance or impedance of
each line in the node, are calculated using (12), (13), (14), and (15);

O Matrices A® and A™, together with their corresponding inverse matrices, are
obtained from the last equation in (20) and (27);

@) Incident voltages on the link lines are set to zero;

O Initial voltage and current vectors, together with the terms due signals previ-
ously stored at the stubs, are set to zero: 0‘_} = 0? = Ogi = OET = 8.;

O The number of time step calculations, #,,y, is calculated according to the

desired frequency resolution, Af =(At Momax) L.

2. The time-marching process is started. For the calculation at time step n:

— —
O The column vector terms due to the incident pulses at link lines, ,L¢ and ,, L™,
are calculated from (25) and (32);
— —
O The source terms, , V¢ and , V", are obtained from (16);
— —
O The accumulator vectors, , S ¢ and , 5™, are updated as indicated in (23) and

(30);
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O Equations (24) and (31) are used to obtain the voltage and current vectors, n?
and , i, respectively. The output fields are obtained and stored from these
Vectors using Equation (9) or its equivalent;

O The reflected pulses at the link lines are obtained using (33);

O Reflected pulses are transformed into incident pulses for the next time step
calculation;

O Finally, index n is updated to n + 1, and the process is repeated until n reaches

the final time step, nmax.

As mentioned before, the procedure is a reformulation intended to combine the
advantages of two existing solutions: (i) The conceptual clarity provided by the individual
treatment of each term in Maxwell’s equations in a way that is similar to that present in
the original TLM [25], and (ii) the optimization of memory storage and time calculation
provided by [22]. The first aspect may help to provide a better understanding of the method,
its dissemination, and the subsequent improvement for researchers more familiar with the
initial TLM works, while the second aspect avoids the important drawback concerning
memory and time-calculation requirements.

As a final comment, the procedure presented here does not include magneto-electric
coupling, thus resulting in two independent calculations—one for voltage calculation
and the other for current calculation—which involve matrix and vector quantities with
three components. The inclusion of a more general situation in which magneto-electric
coupling is present would be qualitatively similar, but all the six field components would
be simultaneously required for each calculation. As a consequence, for instance, the field
summations in (19) and (26) should be evaluated for the 6-field components, using only
one 6 x 6 element matrix, A, instead of two independent 3 x 3 matrices, A¢ and A™.

3. Numerical Results

The TLM algorithm presented in the previous sections was applied to different situa-
tions to test its capability in successfully modeling non-dispersive anisotropic media.

The first problem considered the reflection of a plane wave, which, when propagating
through vacuum in the x direction, reaches a carbon-fiber composite material. This is an
anisotropic conducting material used for aircraft construction. The situation is sketched in
Figure 7. The three slabs had identical widths, d = 3.75 mm, were normally oriented to the
x-axis, and were supposed to be of infinite extension in the y and z directions, which turned
it into a one-dimensional (1D) situation. The three slabs presented identical and isotropic
values for the dielectric permittivity, 43¢y, and magnetic permeability, ;9. The magnetic
conductivity tensor was zero. As regards the electrical conductivity, it increased along the
carbon fiber directions and was almost negligible for normal directions. The fibers were
contained in the x plane in all cases, but they were oriented differently for each slab: along
the y-axis, at 45° from the y- and the z-axis, and along the z-axis, for the first, second, and
third slabs, respectively. The only non-zero elements of the electric conductivity tensor at
each layer were 0, ‘31 =12S/m, (732 = (7;% = 55 = (7;; =8S/m,and 0 = 12S/m.

The slab was surrounded by infinite vacuum regions at both ends. A z-polarized
incident wave was excited and the reflected fields, E; and E,, were calculated to obtain the
corresponding reflection coefficients for the layered material, I';; and I';,. Nodes of equal
length of 93.75 pum for the three Cartesian directions were used, which means that each slab
width was 40 nodes. This node size ensured proper modeling up to frequencies slightly
below 50 GHz [11]. The maximum allowable time step was fixed by the vacuum regions,

= Al/(2c) = 156.36 fs.
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Figure 7. A z-polarized plane wave propagating in the x direction towards a three-layered carbon-
fiber composite material, with anisotropic electrical conductivity behavior. The vacuum regions
on the left and the right have dimensions large enough to separate incident from reflected fields.
Symmetry conditions are applied at the y and z boundaries.

The plane wave situation allowed for imposing symmetry conditions at the y and z
limits, thus only one node was used for those two directions. As regards the x direction,
the medium was truncated at distances d; and d,, large enough so as to separate and
better identify the incident from the reflected fields. In our case, d; = 2000 and 4, = 380.
The global mesh size was of 2500 x 1 x 1 nodes. Absorbing boundary conditions were
imposed at both limits in the x direction by simply connecting the link lines reaching
the boundaries, x = 0 and x = 2500, to a discrete load with the vacuum impedance value.
This is a remarkable simple condition available for the TLM method, which shows perfect
absorption for normal incidence.

A Gaussian shaped electric current along the z direction was used to excite a z-
polarized electric field with spectral information up to around 10 GHz:

I = [pe= & (t=tn)® (35)

with g =15.34 X 10° s71, t,, = 0.3127 ns, and the value of Iy was chosen to obtain a unitary
maximum amplitude for the generated electric field. A total of 21> = 32768 time steps were
calculated, which produced a frequency resolution of 0.195 GHz.

Figure 8 is a plot of the time evolution of the incident of the z-polarized electric field
and the two relevant components of the reflected electric field (calculated 10 nodes away
from the left numerical limit). The y-component of the reflected field had a significantly
lower amplitude than the z-component; hence, it was scaled by a factor of 10.

1.2 ; ; ; ;
10L ... —Incident field |
—— z-component of reflected field
0.8l — y.component of reflected field(x10)
06 ‘

04r
02
0.0
-0.2
-04
-0.6

-0.8
0

Electric field (V/m)

Time (ns)

Figure 8. Incident and reflected electric fields at a three-layered carbon-fiber material. The y-oriented
reflected field was magnified by a factor of 10.
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Figure 9 shows the magnitude of the reflection coefficients versus frequency. An
independent FDTD solution presented in [28] was included for comparison. A good
qualitative agreement was clearly seen between both independent results, were almost
coincidental, which validated the presented algorithm.
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Figure 9. Magnitude of the reflection coefficients versus frequency for a three-layered carbon-fiber

material.

Although the proposed TLM results and the FDTD ones are almost indistinguishable
in Figure 9, a quantitative comparison was carried out by evaluating the relative differ-
ence between both reflection coefficient magnitudes, defined as the difference between
the magnitude of both reflection coefficients normalized to the FDTD magnitude used
as reference. This relative error versus frequency is plotted in Figure 10, which shows
differences below 1%, thus corroborating the validity of the TLM results. The increase in
the difference at higher frequencies is explained by the different dispersion behavior of the

TLM and FDTD methods [11].

0.4
0.2

Relative reflection cosfficient difference {%)

T
_Alr.zzll‘rzzrefl ‘Er ””””

1.0 —————— -
L ! li
I
0.8 !; ,,,,,,,,,,,
I --=—AIl_|/T .
06 | zyl ‘ zynefl _::

o

[
o S
-

Frequency (GHz)

Figure 10. Relative difference obtained in the reflection coefficient magnitude for the TLM results and
the FDTD results used as reference. The difference of TLM and FDTD results has been normalized to

the FDTD reference results.
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The second example is not an actual medium with anisotropic behavior at certain
properties, but a hypothetical one in which a more difficult case is considered since all
the properties are simultaneously anisotropic. Two situations were considered, which
only differed in the choice of co-ordinate axes. The first one considered Cartesian co-
ordinate axes that coincided with the principal directions, while the second one used
rotated co-ordinate axes, which would require using non-diagonal tensor properties. Since
the situation was only a mathematical artifact, both results had to coincide and would thus
serve as a test for the TLM method solution proposed in this work.

For the co-ordinate axes along the principal directions, the medium had vacuum prop-
erties, except for the following parameters: exy = 4eg, 0%, = 2.65-107°S/m, pzz = 4po,
and off = 3.763 () /m. The values of both conductivities were chosen to meet the condition
o5/ €0 = 022/ no. This relation between the electric and the magnetic conductivity ensured
propagation without frequency dispersion, which allowed for the prediction of a common
attenuation factor for all frequencies in the case of plane wave propagation [2,29]. In this
example, the specific values of both conductivity terms had been chosen for an attenuation
factor of exp(—1) after travelling 100 nodes. It is worth noting that this attenuation factor is
only approximated since the medium considered here has permittivity and permeability
values which differ from the vacuum ones, the medium was not isotropic, and the wave
was not a plane wave but an elliptical one.

A z-oriented magnetic field was excited inside this medium. With the aid of symme-
try conditions for the z direction, the medium could be considered as two-dimensional
(2D) contained in the xy plane. As in the first example, discrete loads with the vacuum
impedance were connected to the link lines reaching the boundaries at the x and y limits.
This absorbing condition is not so efficient for arbitrary incidence but this fact is not rele-
vant for the example considered, since the mesh is large enough to avoid pulses reflected
at the boundaries.

A mesh of 600 x 600 x 1 TLM nodes was used, with a uniform size of 1 m in the three
Cartesian directions. The maximum allowable time step for this node size was again used,
which was At = 1.6678 ns. Under these conditions, the Ey, Ey, and H; fields were expected
to propagate with an elliptical front wave with a different phase velocity for the x and y

directions. Namely:

vy = 1 o _ 1 _¢ (36)

VEyyHzz szy v ExxHzz 4’
which means that a wave spends four time steps to travel a node distance along the x
direction, while it takes eight time steps for the y direction.

A relevant property of this medium is that the wavelength for propagation along
the y direction at a given frequency is one half of the wavelength for the x direction at
that frequency. Since the numerical results are expected to be valid for frequencies whose
wavelength is sampled at least ten times, the node size and vy limit the validity of the
results to frequencies approximately below fy,x =7.5 MHz. Bearing this in mind, a Gaussian-
shaped source similar to that in (35) was used to excite the H, field at the mesh center, with
g= 14.99-10° s~ and t,,, = 219.2 ns, in order to not excite frequencies above fgx.

Figure 11 is a plot of H; at time step 1000. The elliptical shape is evident, with the
vertical axis length one-half of the horizontal axis length, as expected from the velocity
values in (36). Disregarding the delay term t;, at around 130 time steps, the field propagated
a distance of around 250 nodes and 125 nodes along the x and y directions, respectively, as
expected. In addition, the signal attenuated in the x direction due to the effect of 0%, but
attenuation was higher for the y direction since the effect of 0]} was combined to that of

e
Oyx-



Electronics 2021, 10, 2071

17 of 22

%107

600
2
500 15
400
g
% 300 05
i
>_
200
100 -0.5
0 -1

0 100 200 300 400 500 600
X-axis (m)

-

o

Figure 11. Magnetic field H; at time step 1000 for a medium with anisotropic behavior of electric
permittivity and conductivity, and magnetic permittivity and conductivity. Cartesian axes are
principal axes for these properties. Node size is 1 m for the three Cartesian directions. Points A, B,
and C are used for comparison with an independent solution in the following Figure.

Figure 12 shows the magnetic field at the three points represented in Figure 11: the
source point, A, and two points, B and C, separated by 104 nodes along the x and y
directions, with coordinates (300, 300, 1), (404, 300, 1), and (300, 404, 1), respectively.
The field at the source point was scaled to one-fifth of its value to better appreciate the
attenuated field at points B and C. The figure clearly shows the expected higher attenuation
for the field propagating along the y direction. The time delay between the field at points
A with respect to the field at points B and C is 419 and 828 time steps, respectively, which
is in good agreement with the expected delays of 416 and 832 time steps, according to
the distance travelled and the phase velocities shown in (36). Independent TLM results
obtained with the method proposed in [22] are also represented to validate the method
proposed in this work. A qualitative good agreement is clearly observed in the Figure.

1.0x10* :
E —— A this work
7 .5x10° H_i5 e B reference
F e Cth|s Work
5 ans = Areference ||
N0t + B this work
'E'~ . H.g A 4 C reference
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2 Bt
T 00 Lamst
-;."
-2.5x10° :
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Time (ns)
Figure 12. Magnetic field H, at points A, B, and C, with coordinates (300, 300, 1), (404, 300, 1),
and (300, 404, 1). Principal axes are oriented along the Cartesian axes. The node size is 1 m for all

directions. The field at point A was divided by a factor of five to better appreciate the three fields
despite the attenuation at B and C.
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The quantitative comparison of the TLM results proposed in this work with the
TLM reference results is shown in Figure 13, where the difference between both solutions
normalized to the reference solution is plotted. The difference is considerably lower than in
Figure 10 since the proposed and the reference solutions are now based on the TLM method.
The good agreement validates the obtained results when the principal axes coincide with
the co-ordinate axes.
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Figure 13. Relative difference in H, between the TLM results proposed in this work and the indepen-
dent TLM results used as a reference.

The capability of the algorithm to deal with non-principal axes was tested by rotating
the medium around an axis, which passes through point A and is parallel to the z direction.
Although this rotation considerably complicated the description because the off-diagonal
elements of the properties had to be considered, the results should be clearly comparable
and only be affected by this same rotation. A counter-clockwise rotation of 120° was chosen
to test possible undesired effects of negative stubs. The medium parameters with respect
to these axes were: exy = 1.75¢¢, &y = 3.25¢p, &xy = —1.299¢, 0y, = 6.662 - 1076S/m,
of, = 19.875-107°S/m, 0§, = —11.475-107°S/m, pzz = 4pg, 0% = 3.763 O/ m, while
the remaining parameters were symmetrical or corresponded to the vacuum values.

For this case, and to test its versality in dealing with nodes of different sizes, the length
of each node was chosen to be 1 m for the x and z directions, and 0.5 m for the y direction.
The equivalent TLM mesh was then of 600 x 1200 x 1 nodes and the time step was one-
half of the value used in the previous example. The maximum frequency of the valid
results was slightly more difficult to predict due to the axes rotation but was still around
or slightly below the previous value of 7.5 MHz. As before, symmetry conditions were
applied in the z direction and the connection of link lines to load impedances at the x and y
limits. After the rotation, points A, B, and C were approximately described by co-ordinates
(300, 600, 1), (248, 780,1), and (210, 496, 1), respectively. Figure 14 shows H, at time step 2000,
equivalent to time step 1000 represented in Figure 11, for a counter-clockwise rotation
of 120°. As expected, the results are qualitatively coherent with those sketched in Figure 11.



Electronics 2021, 10, 2071

19 of 22

%10
600 2
500 15
400 1
£
£ 300 05
¢
b
200 0
100 -0.5
0 -1
0 100 200 300 400 500 600

X-axis (m)

Figure 14. Magnetic field H; at time step 2000 for a medium with anisotropic electric permittivity
and conductivity, and magnetic permittivity and conductivity. The principal axes were rotated by
120° with respect to the Cartesian ones. Node size is 1 m for the x and z directions and 0.5 m for the y
direction. The time step used is one-half of that used for the example in Figure 11; therefore, both
Figures represent the same instant.

The comparison of the magnetic field at points B and C for the case in Figure 11 (using
uniform mesh and principal axes) with results in the case considered now (with rotated axis
and non-uniform mesh) is shown in Figure 15. Both figures are almost indistinguishable
from each other in the time domain.
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Figure 15. Magnetic field H, at points B and C in Figures 11 and 14—obtained using a uniform
mesh with principal axes oriented along the Cartesian axes, compared with results obtained using a
non-uniform mesh with principal axes rotated by 120° with respect to the Cartesian ones.

The relative difference at points B and C versus frequency between the results in
Figure 15 is shown in Figure 16. Each absolute difference was normalized to the magnitude
of the solution obtained for the uniform mesh and for the Cartesian axes at its respective
point. This plot is actually a good example with which to test the TLM limits fixed by
the phase velocities and the node size; in our case, it was a maximum valid frequency of
around 7.5 MHz. As expected, results show good agreement with the reference for low
frequency values, but present an increasing degradation as the limit frequency is reached.
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Figure 16. Relative difference in H, between the TLM results proposed in this work using a uniform
mesh with principal axes oriented along the Cartesian axes, compared with results obtained using
a non-uniform mesh with principal axes rotated by 120° with respect to the Cartesian ones. The
difference was normalized to the solution obtained for principal axes oriented along the Cartesian
axes.

The following is a summary of the results of this section:

e A first example of an actual medium exhibiting anisotropic behavior of the electrical
conductivity shows that the proposed algorithm provides results in good agreement
with independent FDTD results;

e A second example considers a more challenging case with simultaneous anisotropic
contributions of all the electromagnetic properties under study:

@) First, a mesh with nodes of equal length for all the Cartesian co-ordinate
direction was tested when these co-ordinate axes were oriented along the
principal axes of the electromagnetic properties, therefore making all the tensor
properties diagonal. The comparison with an independent TLM solution
validated the proposed method;

O The final test considered a more complicated situation in which the node had
a different length for each direction and the principal axes were rotated with
respect to the co-ordinate axes, thus requiring the use of non-diagonal tensors;

O This last situation clearly showed the expected limits of the method: good
performance for low frequencies, with poorer results as the frequencies were
high enough, implying the need to take approximately less than ten samples
per wavelength.

4. Conclusions

A new reformulation of the TLM method for modeling non-dispersive anisotropic
media is presented in this work. The algorithm is proposed in a way that resembles the
original TLM formulation, based on the assignment of a specific transmission line to each
term in Maxwell’s equations. Although this scheme may be considered by some authors
as conceptually simpler than other approximations and may therefore help to provide
a better understanding, use, and possibility for further development by other authors,
it presents the important disadvantage of requiring a priori the storage of an individual
voltage pulse for each element of the electromagnetic tensor quantities. This is not a minor
drawback in the case of anisotropic media, in which an important number of off-diagonal
tensor properties are to be considered. To solve this difficulty, an optimized treatment
of the signal stored on the capacitive and inductive lines is proposed, which reduces the
memory storage requirements to one term per field component. As a result, the algorithm
proposed combines and exploits the advantages of two previous existing solutions: a direct
and conceptual approach close to the original TLM method, together with an optimized
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treatment of the signals stored on the stub lines, which reduces the memory storage and
time-computing requirements of those used in the original TLM scheme for modeling
isotropic media.

The good behavior of the proposed method is tested through a pair of examples
involving non-dispersive anisotropic media. Their comparison with independent existing
solutions proves the good behavior of the proposed method at the usual frequency limit
for which the wavelength has been sampled at least ten times. Results in the time domain
are virtually indistinguishable from the reference works, although some differences may
be observed in the frequency domain, specially at frequencies near the expected limit of
the method.

The extension to deal with frequency-dependent properties bridging the difficulties
inherent to signal processing models seems to be the next problem to be considered and is
left for a subsequent work.
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