т $̈$ вітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2021) 45: 1801 - 1808
© TÜBİTAK
doi:10.3906/mat-2006-8

New results on derivatives of the shape operator of a real hypersurface in a complex projective space

Juan de Dios PÉREZ* © ${ }^{\text {(}}$, David PÉREZ-LÓPEZ ©
Department of Geometry and Topology, University of Granada, Granada, Spain

Received: 02.06.2020 • Accepted/Published Online: 01.06.2021 \quad - Final Version: 27.07.2021

Abstract

We consider real hypersurfaces M in complex projective space equipped with both the Levi-Civita and generalized Tanaka-Webster connections. For any nonnull real number k and any symmetric tensor field of type $(1,1)$ L on M we can define a tensor field of type $(1,2)$ on $M, L_{F}^{(k)}$, related to both connections. We study symmetry and skewsymmetry of the tensor $A_{F}^{(k)}$ associated to the shape operator A of M.

Key words: g-Tanaka-Webster connection, complex projective space, real hypersurface, k-th Cho operator

1. Introduction

Consider a real hypersurface without boundary M of the complex projective space $\mathbb{C} P^{m}, m \geq 2$, endowed with the Fubini-Study metric g of constant holomorphic sectional curvature 4 . We will denote by ∇ the Levi-Civita connection on M and by J the Kaehlerian structure of $\mathbb{C} P^{m}$. Take a locally defined unit normal vector field N on M and denote by $\xi=-J N$. This tangent vector field to M is called the structure vector field on M. From the Kahlerian structure of $\mathbb{C} P^{m}$, we can induce on M an almost contact metric structure (φ, ξ, η, g), where φ is the tangent component of J, η is an one-form given by $\eta(X)=g(X, \xi)$ for any X tangent to M and g is the induced metric on M. The classification of homogeneous real hypersurfaces in $\mathbb{C} P^{m}$ was obtained by Takagi, see [6], [14], [15], [16]. His classification contains 6 types of real hypersurfaces. Among them, we find type $\left(A_{1}\right)$ real hypersurfaces that are geodesic hyperspheres of radius $r, 0<r<\frac{\pi}{2}$ and type (A_{2}) real hypersurfaces that are tubes of radius $r, 0<r<\frac{\pi}{2}$, over totally geodesic complex projective spaces $\mathbb{C} P^{n}, 0<n<m-1$. Type $\left(A_{1}\right)$ real hypersurfaces have two distinct constant principal curvatures and type $\left(A_{2}\right)$ have three distinct constant principal curvatures. We will call both types of real hypersurfaces type (A) real hypersurfaces. Type (B) real hypersurfaces are tubes of radius $r, 0<r<\frac{\pi}{4}$, over totally geodesic real projective space $\mathbb{R} P^{m}$. This kind of real hypersurfaces has three distinct constant principal curvatures.

Kimura, [6], proved that any real hypersurface M in $\mathbb{C} P^{m}$ whose structure vector field is principal for the shape operator A of M and all whose principal curvatures are constant must be one in Takagi's list.

A ruled real hypersurface of $\mathbb{C} P^{m}$ satisfies that the maximal holomorphic distribution on M, \mathbb{D}, given at any point by the vectors orthogonal to ξ, is integrable, and its integral manifolds are totally geodesic $\mathbb{C} P^{m-1}$, or, equivalently, $g(A \mathbb{D}, \mathbb{D})=0$. For the examples of ruled real hypersurfaces, see [7] or [9].

We will say that a type $(1,1)$ tensor field L defined on M is parallel if $\nabla_{X} L=0$ for any X tangent to

[^0]M, where $\left(\nabla_{X} L\right) Y=\nabla_{X} L Y-L \nabla_{X} Y$, for any Y tangent to M.
The notion of L being parallel can be generalized by the concept of L being Codazzi, which means that $\left(\nabla_{X} L\right) Y=\left(\nabla_{Y} L\right) X$ for any X, Y tangent to M. Due to Codazzi equation (see Section 2) for the case $L=A$ we conclude that there does not exist any real hypersurface in $\mathbb{C} P^{m}$ whose shape operator is Codazzi, and, therefore, it cannot be parallel.

Blair, [1], also generalized the notion of L being parallel, giving the definition of L being Killing if $\left(\nabla_{X} L\right) X=0$ for any X tangent to M, which is equivalent to the fact that $\left(\nabla_{X} L\right) Y+\left(\nabla_{Y} L\right) X=0$ for any X, Y tangent to M. Codazzi equation also yields non-existence of real hypersurfaces in $\mathbb{C} P^{m}$ whose shape operator is Killing.

The Tanaka-Webster connection, [17], [19], is the canonical affine connection defined on a non-degenerate, pseudo-Hermitian CR-manifold. As a generalization of this connection, Tanno, [18], defined the generalized Tanaka-Webster connection for contact metric manifolds by

$$
\begin{equation*}
\hat{\nabla}_{X} Y=\nabla_{X} Y+\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi-\eta(X) \varphi Y \tag{1.1}
\end{equation*}
$$

Using the naturally extended affine connection of Tanno's generalized Tanaka-Webster connection, Cho defined the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$ for a real hypersurface M in $\mathbb{C} P^{m}$ given, see [4], [5], by

$$
\begin{equation*}
\hat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+g(\varphi A X, Y) \xi-\eta(Y) \varphi A X-k \eta(X) \varphi Y \tag{1.2}
\end{equation*}
$$

for any X, Y tangent to M, where k is a non-zero real number. Then the four elements of the almost contact metric structure on M are parallel for this connection, that is, $\hat{\nabla}^{(k)} \eta=0, \hat{\nabla}^{(k)} \xi=0, \hat{\nabla}^{(k)} g=0, \hat{\nabla}^{(k)} \varphi=0$. In particular, if the shape operator of a real hypersurface satisfies $\varphi A+A \varphi=2 k \varphi$, the real hypersurface is contact and the g-Tanaka-Webster connection coincides with the Tanaka-Webster connection.

Here, we can consider the tensor field of type (1,2) given by the difference of both connections $F^{(k)}(X, Y)=$ $g(\varphi A X, Y) \xi-\eta(Y) \varphi A X-k \eta(X) \varphi Y$, for any X, Y tangent to M, see [8] Proposition 7.10, pages 234-235. We will call this tensor the k-th Cho tensor on M. Associated to it, for any X tangent to M and any nonnull real number k, we can consider the tensor field of type $(1,1) F_{X}^{(k)}$, given by $F_{X}^{(k)} Y=F^{(k)}(X, Y)$ for any $Y \in T M$. This operator will be called the k-th Cho operator corresponding to X. The torsion of the connection $\hat{\nabla}^{(k)}$ is given by $\hat{T}^{(k)}(X, Y)=F_{X}^{(k)} Y-F_{Y}^{(k)} X$ for any X, Y tangent to M.

Let now L be a symmetric tensor of type $(1,1)$ defined on M. We can consider then the type $(1,2)$ tensor $L_{F}^{(k)}$ associated to L in the following way: $L_{F}^{(k)}(X, Y)=\left[F_{X}^{(k)}, L\right] Y=F_{X}^{(k)} L Y-L F_{X}^{(k)} Y$, for any X, Y tangent to M. The corresponding operator $L_{F_{X}}^{(k)} Y=L_{F}^{(k)}(X, Y)$ gives a measure of how far are $F_{X}^{(k)}$ and L of being commutative. We will say that L is $\left(\hat{\nabla}^{(k)}, \nabla\right)$-parallel if $\left(\hat{\nabla}_{X}^{(k)}-\nabla_{X}\right) L=0$, for any X tangent to M. This condition is equivalent to the fact that $L_{F}^{(k)}=0$.

Generalizing such a concept, we will say that L is $\left(\hat{\nabla}^{(k)}, \nabla\right)$-Codazzi if $\left(\hat{\nabla}_{X}^{(k)} L\right) Y-\left(\hat{\nabla}_{Y}^{(k)} L\right) X=$ $\left(\nabla_{X} L\right) Y-\left(\nabla_{Y} L\right) X$ for any X, Y tangent to M. This condition is equivalent to $L_{F}^{(k)}$ being symmetric.

On the other hand, we will say that L is $\left(\hat{\nabla}^{(k)}, \nabla\right)$-Killing if $\left(\hat{\nabla}_{X}^{(k)} L\right) Y+\left(\hat{\nabla}_{Y}^{(k)} L\right) X-\left(\nabla_{X} L\right) Y-\left(\nabla_{Y} L\right) X=$ 0 for any X, Y tangent to M. This condition is equivalent to $L_{F}^{(k)}$ being skewsymmetric.

PÉREZ and PÉREZ-LÓPEZ/Turk J Math

In [13] we proved non-existence of real hypersurfaces in $\mathbb{C} P^{m}, m \geq 3$, such that the shape operator is $\left(\hat{\nabla}^{(k)}, \nabla\right)$-parallel, that is, $A_{F}^{(k)}=0$, for any nonnull real number k.

The purpose of the present paper is to study real hypersurfaces M in $\mathbb{C} P^{m}$ such that the shape operator is either $\left(\hat{\nabla}^{(k)}, \nabla\right)$-Codazzi or $\left(\hat{\nabla}^{(k)}, \nabla\right)$-Killing. In fact we will obtain the following
Theorem 1 Let M be a real hypersurface in $\mathbb{C} P^{m}, m \geq 3$. Let k be a nonnull real number. Then $A_{F}^{(k)}(X, Y)=A_{F}^{(k)}(Y, X)$ for any $X, Y \in \mathbb{D}$ if and only if M is locally congruent to a ruled real hypersurface. and
Corollary 1 There does not exist any real hypersurface M in $\mathbb{C} P^{m}, m \geq 3$, such that for a nonnull real number $k A_{F}^{(k)}$ is symmetric.

On the other hand, we also have
Theorem 2 Let M be a real hypersurface in $\mathbb{C} P^{m}, m \geq 3$, and k a nonnull real number. Then $A_{F}^{(k)}(X, Y)=$ $-A_{F}^{(k)}(Y, X)$ for any $X, Y \in \mathbb{D}$ if and only if M is locally congruent to either a real hypersurface of type (A) or to a tube of radius $\frac{\pi}{4}$ over a complex submanifold of $\mathbb{C} P^{m}$ or to a ruled real hypersurface.
and
Corollary 2 There does not exist any real hypersurface M in $\mathbb{C} P^{m}, m \geq 3$, such that for a nonnull real number k the tensor field $A_{F}^{(k)}$ is skewsymmetric.

2. Preliminaries

Throughout this paper, all manifolds, vector fields, etc. will be considered of class C^{∞} unless otherwise stated. Let M be a connected real hypersurface in $\mathbb{C} P^{m}, m \geq 2$, without boundary. Let N be a locally defined unit normal vector field on M. Let ∇ be the Levi-Civita connection on M and (J, g) the Kaehlerian structure of $\mathbb{C} P^{m}$ 。

For any vector field X tangent to M, we write $J X=\varphi X+\eta(X) N$ and $-J N=\xi$. Then, (φ, ξ, η, g) is an almost contact metric structure on M, see [2]. That is, we have

$$
\begin{equation*}
\varphi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.1}
\end{equation*}
$$

for any tangent vectors X, Y to M. From (2.1), we obtain

$$
\begin{equation*}
\varphi \xi=0, \quad \eta(X)=g(X, \xi) \tag{2.2}
\end{equation*}
$$

From the parallelism of J, we get

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{X} \xi=\varphi A X \tag{2.4}
\end{equation*}
$$

for any X, Y tangent to M, where A denotes the shape operator of the immersion. As the ambient space has holomorphic sectional curvature 4 , the equations of Gauss and Codazzi are given, respectively, by

$$
\begin{array}{r}
R(X, Y) Z=g(Y, Z) X-g(X, Z) Y+g(\varphi Y, Z) \varphi X-g(\varphi X, Z) \varphi Y \tag{2.5}\\
-2 g(\varphi X, Y) \varphi Z+g(A Y, Z) A X-g(A X, Z) A Y
\end{array}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\eta(X) \varphi Y-\eta(Y) \varphi X-2 g(\varphi X, Y) \xi \tag{2.6}
\end{equation*}
$$

for any tangent vectors X, Y, Z to M, where R is the curvature tensor of M. We will call the maximal holomorphic distribution \mathbb{D} on M to the following one: at any $p \in M, \mathbb{D}(p)=\left\{X \in T_{p} M \mid g(X, \xi)=0\right\}$. We will say that M is Hopf if ξ is principal, that is, $A \xi=\alpha \xi$ for a certain function α on M.

In the sequel, we need the following results:
Theorem 2.1, [12] Let M be a real hypersurface of $\mathbb{C} P^{m}, m \geq 2$. Then, the following are equivalent:

1. M is locally congruent to either a geodesic hypersphere or a tube of radius $r, 0<r<\frac{\pi}{2}$, over a totally geodesic $\mathbb{C} P^{n}, 0<n<m-1$.
2. $\varphi A=A \varphi$.

Theorem 2.2, [10] If ξ is a principal curvature vector with corresponding principal curvature α, this is locally constant, and if $X \in \mathbb{D}$ is principal with principal curvature λ, then $2 \lambda-\alpha \neq 0$ and φX is principal with principal curvature $\frac{\alpha \lambda+2}{2 \lambda-\alpha}$.

3. Proofs of Theorem 1 and Corollary 1

If $A_{F}^{(k)}(X, Y)=A_{F}^{(k)}(Y, X)$, for any X, Y tangent to M we get

$$
\begin{gather*}
g(\varphi A X, A Y) \xi-\eta(A Y) \varphi A X-k \eta(X) \varphi A Y-g(\varphi A X, Y) A \xi+\eta(Y) A \varphi A X \\
+k \eta(X) A \varphi Y=g(\varphi A Y, A X) \xi-\eta(A X) \varphi A Y-k \eta(Y) \varphi A X \tag{3.1}\\
-g(\varphi A Y, X) A \xi+\eta(X) A \varphi A Y+k \eta(Y) A \varphi X
\end{gather*}
$$

If we suppose that $X, Y \in \mathbb{D}$, (3.1) becomes

$$
\begin{gather*}
g(\varphi A X, A Y) \xi-\eta(A Y) \varphi A X-g(\varphi A X, Y) A \xi=g(\varphi A Y, A X) \xi \tag{3.2}\\
-\eta(A X) \varphi A Y-g(\varphi A Y, X) A \xi
\end{gather*}
$$

If M is Hopf (3.2) gives $g(\varphi A X, A Y) \xi-\alpha g(\varphi A X, Y) \xi=g(\varphi A Y, A X) \xi-\alpha g(\varphi A Y, X) \xi$ for any $X, Y \in \mathbb{D}$, where we suppose $A \xi=\alpha \xi$. This yields $g(\varphi A X, A Y)-\alpha g(\varphi A X, Y)=g(\varphi A Y, A X)-\alpha g(\varphi A Y, X)$ for any $X, Y \in \mathbb{D}$. Therefore, for any $X \in \mathbb{D}$, we obtain

$$
\begin{equation*}
2 A \varphi A X=\alpha \varphi A X+\alpha A \varphi X \tag{3.3}
\end{equation*}
$$

Let $X \in \mathbb{D}$ be a unit vector field such that $A X=\lambda X$. Then, from Theorem 2.2, $A \varphi X=\mu \varphi X$ with $\mu=\frac{\alpha \lambda+2}{2 \lambda-\alpha}$. From (3.3) for such an X we get $2 \lambda \mu \varphi X=\alpha(\lambda+\mu) \varphi X$. That is, $2 \lambda \mu=\alpha(\lambda+\mu)$ or $\frac{2 \alpha \lambda^{2}+4 \lambda}{2 \lambda-\alpha}=\alpha\left(\lambda+\frac{\alpha \lambda+2}{2 \lambda-\alpha}\right)=\alpha\left(\frac{2 \lambda^{2}+2}{2 \lambda-\alpha}\right)$. Thus, we have $\alpha \lambda^{2}+2 \lambda=\alpha \lambda^{2}+\alpha$. This means that $2 \lambda=\alpha$, which is impossible by Theorem 2.2

Now we suppose M is non Hopf. Thus, at least on a neighbourhood of a certain point of M, we can write $A \xi=\alpha \xi+\beta U$, where U is a unit vector field in \mathbb{D} and β a non-vanishing function. All the computations are made on such a neighbourhood. From now on, we will denote $\mathbb{D}_{U}=\{X \in \mathbb{D} \mid g(X, U)=g(X, \varphi U)=0\}$. Taking

PÉREZ and PÉREZ-LÓPEZ/Turk J Math

the scalar product of (3.2) and φU, we obtain $-\eta(A Y) g(A X, U)=-\eta(A X) g(A Y, U)$ for any $X, Y \in \mathbb{D}$. Taking $Y \in \mathbb{D}$ orthogonal to U we get $-\eta(A X) g(A Y, U)=0$ for any $X \in \mathbb{D}$. If $X=U$ we arrive at $-\beta g(A Y, U)=0$ for any $Y \in \mathbb{D}$ orthogonal to U. That is

$$
\begin{equation*}
A U=\beta \xi+\gamma U \tag{3.4}
\end{equation*}
$$

for a certain function γ. The scalar product of (3.2) and U yields

$$
\begin{equation*}
-\eta(A Y) g(\varphi A X, U)-\beta g(\varphi A X, Y)=-\eta(A X) g(\varphi A Y, U)-\beta g(\varphi A Y, X) \tag{3.5}
\end{equation*}
$$

for any $X, Y \in \mathbb{D}$. Taking $X=U$ in (3.5) and bearing in mind (3.4) it follows $-\beta g(\varphi A U, Y)=-2 \beta g(\varphi A Y, U)=$ $2 \beta g(A \varphi U, Y)$ for any $Y \in \mathbb{D}$. This yields $-\varphi A U=2 A \varphi U$ or $2 A \varphi U=-\gamma \varphi U$. Therefore,

$$
\begin{equation*}
A \varphi U=-\frac{\gamma}{2} \varphi U \tag{3.6}
\end{equation*}
$$

The scalar product of (3.2) and ξ implies

$$
\begin{equation*}
g(\varphi A X, A Y)-\alpha g(\varphi A X, Y)=g(\varphi A Y, A X)-\alpha g(\varphi A Y, X) \tag{3.7}
\end{equation*}
$$

for any $X, Y \in \mathbb{D}$. If $X=U, Y=\varphi U$ it follows $g(\varphi A U, A \varphi U)-\alpha g(\varphi A U, \varphi U)=g(\varphi A \varphi U, A U)-\alpha g(\varphi A \varphi U, U)$. Therefore, $g(\varphi A U, A \varphi U)-\alpha g(A U, U)=-g(A \varphi U, \varphi A U)+\alpha g(A \varphi U, \varphi U)$. From (3.4) and (3.6) we have $-\frac{\gamma^{2}}{2}-\alpha \gamma=\frac{\gamma^{2}}{2}-\frac{\alpha \gamma}{2}$. It follows $\gamma\left(\gamma+\frac{\alpha}{2}\right)=0$ and this yields either $\gamma=0$ or $\gamma=-\frac{\alpha}{2}$.

Suppose now $X, Y \in \mathbb{D}_{U}$. Then (3.5) yields $g(\varphi A X, Y)=g(\varphi A Y, X)$. From (3.4) and (3.6) we obtain $A \varphi X+\varphi A X=0$ for any $X \in \mathbb{D}_{U}$. Then, if $X \in \mathbb{D}_{U}$ is unit and $A X=\lambda X, A \varphi X=-\lambda \varphi X$. Now from (3.7) we get $A \varphi A X-\alpha \varphi A X=-A \varphi A X+\alpha A \varphi X$. That is, $2 A \varphi A X=\alpha(\varphi A+A \varphi) X=0$ for any $X \in \mathbb{D}_{U}$. This implies $-2 \lambda^{2}=0$. Therefore, on \mathbb{D}_{U} the unique principal curvature is 0 .

Then, if $\gamma=0$, we obtain that M is locally congruent to a ruled real hypersurface.
If $\gamma=-\frac{\alpha}{2}, A X=0$ for any $X \in \mathbb{D}_{U}$. Take a unit $X \in \mathbb{D}_{U}$. The Codazzi equation gives $\left(\nabla_{X} A\right) \varphi X-$ $\left(\nabla_{\varphi X} A\right) X=-2 \xi$. As $A X=A \varphi X=0$ this yields $-A \nabla_{X} \varphi X+A \nabla_{\varphi X} X=-2 \xi$. Its scalar product with ξ gives $-g\left(\nabla_{X} \varphi X, \alpha \xi+\beta U\right)+g\left(\nabla_{\varphi X} X, \alpha \xi+\beta U\right)=-2$. This implies

$$
\begin{equation*}
g([\varphi X, X], U)=-\frac{2}{\beta} \tag{3.8}
\end{equation*}
$$

From its scalar product with U we obtain $-g\left(\nabla_{X} \varphi X, \beta \xi-\frac{\alpha}{2} U\right)+g\left(\nabla_{\varphi X} X, \beta \xi-\frac{\alpha}{2} U\right)=0$. That is, $-\frac{\alpha}{2} g([\varphi X, X], U)=0$. But from (3.8) $g([\varphi X, X], U) \neq 0$. Thus $\alpha=0$ and M should be locally congruent to a minimal ruled real hypersurface. This finishes the proof of Theorem 1.

In order to prove Corollary 1 , take $X=\xi, Y \in \mathbb{D}$ in (3.1). We get

$$
\begin{gather*}
g(\varphi A \xi, A Y) \xi-\eta(A Y) \varphi A \xi-k \varphi A Y-g(\varphi A \xi, Y) A \xi+k A \varphi Y \tag{3.9}\\
=g(\varphi A Y, A \xi) \xi-\eta(A \xi) \varphi A Y+A \varphi A Y
\end{gather*}
$$

for any $Y \in \mathbb{D}$. From Theorem 1, we suppose that M is ruled. Then, (3.9) yields

$$
\begin{gather*}
-\beta \eta(A Y) \varphi U-k \varphi A Y-\beta g(\varphi U, Y) A \xi+k A \varphi Y \tag{3.10}\\
=-\alpha g(\varphi A Y, U) \xi-\alpha \varphi A Y+A \varphi A Y
\end{gather*}
$$

for any $Y \in \mathbb{D}$. The scalar product of (3.10) and φU gives $-\beta \eta(A Y)=0$. Taking $Y=U$ we obtain $\beta^{2}=0$, which is impossible and proves the Corollary.

4. Proofs of Theorem 2 and Corollary 2

If $A_{F}^{(k)}(X, Y)+A_{F}^{(k)}(Y, X)=0$, for any X, Y tangent to M we have

$$
\begin{gather*}
\quad-\eta(A Y) \varphi A X-k \eta(X) \varphi A Y-g(\varphi A X, Y) A \xi+\eta(Y) A \varphi A X+k \eta(X) A \varphi Y \\
-\eta(A X) \varphi A Y-k \eta(Y) \varphi A X-g(\varphi A Y, X) A \xi+\eta(X) A \varphi A Y+k \eta(Y) A \varphi X=0 . \tag{4.1}
\end{gather*}
$$

If $X, Y \in \mathbb{D}$ (4.1) becomes

$$
\begin{equation*}
-\eta(A Y) \varphi A X-g(\varphi A X, Y) A \xi-\eta(A X) \varphi A Y-g(\varphi A Y, X) A \xi=0 \tag{4.2}
\end{equation*}
$$

Let us suppose that M is Hopf, and write $A \xi=\alpha \xi$. Then (4.2) gives

$$
\begin{equation*}
\alpha g(\varphi A X, Y) \xi+\alpha g(\varphi A Y, X) \xi=0 \tag{4.3}
\end{equation*}
$$

for any $X, Y \in \mathbb{D}$. If $X \in \mathbb{D}$ is unit and principal with principal curvature λ, as φX is principal with principal curvature $\mu=\frac{\alpha \lambda+2}{2 \lambda-\alpha}$, (4.3) yields $\alpha \lambda g(\varphi X, Y)-\alpha \mu g(\varphi X, Y)=0$ for any $Y \in \mathbb{D}$. Thus $\alpha(\lambda-\mu) \varphi X=0$ and either $\alpha=0$ or $\lambda=\mu$. If $\alpha=0$, from [3], M must be locally congruent to a tube of radius $\frac{\pi}{4}$ over a complex submanifold of $\mathbb{C} P^{m}$. If $\lambda=\mu, \varphi A=A \varphi$ and from Theorem $2.1 M$ is locally congruent to a real hypersurface of type (A).

If M is non Hopf with $A \xi=\alpha \xi+\beta U$, the scalar product of (4.2) and φU gives $-\eta(A Y) g(A X, U)-$ $\eta(A X) g(A Y, U)=0$. If we take $Y \in \mathbb{D}$ and orthogonal to U we get $-\eta(A X) g(A U, Y)=0$ and taking $X=U$ we obtain $-\beta g(A U, Y)=0$. Therefore, $g(A U, Y)=0$ for any $Y \in \mathbb{D}$ orthogonal to U and

$$
\begin{equation*}
A U=\beta \xi+\gamma U \tag{4.4}
\end{equation*}
$$

for a certain function γ. Taking $Y=U$ in (4.2) we have $-\beta \varphi A X-g(\varphi A X, U) A \xi-\eta(A X) \varphi A U-$ $g(\varphi A U, X) A \xi=0$ for any $X \in \mathbb{D}$. Its scalar product with U yields $2 \beta g(A \varphi U, X)-\beta g(\varphi A U, X)=0$ for any $X \in \mathbb{D}$. Thus $2 A \varphi U=\varphi A U=\gamma \varphi U$ and

$$
\begin{equation*}
A \varphi U=\frac{\gamma}{2} \varphi U \tag{4.5}
\end{equation*}
$$

The scalar product of (4.2) and ξ gives $-\alpha g(\varphi A X, Y)-\alpha g(\varphi A Y, X)=0$. Thus, either $\alpha=0$ or $\alpha \neq 0$ and $g(\varphi A X, Y)+g(\varphi A Y, X)=0$ for any $X, Y \in \mathbb{D}$.

In the second case, taking $X=U, Y=\varphi U$ we have $g(\varphi A U, \varphi U)+g(\varphi A \varphi U, U)=0$. Then, $g(A U, U)=$ $g(A \varphi U, \varphi U)$, that is, $\gamma=\frac{\gamma}{2}$ and $\gamma=0$. Therefore $A \xi=\alpha \xi+\beta U, A U=\beta \xi, A \varphi U=0$ and \mathbb{D}_{U} is A-invariant.

Taking $X \in \mathbb{D}_{U}, Y=U$ in (4.2) we get $-\beta \varphi A X=0$. This yields $A X=0$ for any $X \in \mathbb{D}_{U}$ and M must be ruled. Any ruled real hypersurface satisfies (4.2).

Suppose now $\alpha=0$. Then, $A \xi=\beta U$ and (4.2) becomes $-\eta(A Y) \varphi A X-\beta g(\varphi A X, Y) U-\eta(A X) \varphi A Y-$ $\beta g(\varphi A Y, X) U=0$ for any $X, Y \in \mathbb{D}$. Taking $Y=U, X \in \mathbb{D}_{U}$ we get $-\beta \varphi A X=0$. Then $\varphi A X=0$ for any $X \in \mathbb{D}_{U}$ and this yields $A X=0$ for any $X \in \mathbb{D}_{U}$. For such an X Codazzi equation implies $-A \nabla_{X} \varphi X+A \nabla_{\varphi X} X=-2 \xi$ and its scalar product with ξ yields

$$
\begin{equation*}
g([\varphi X, X], U)=-\frac{2}{\beta} \tag{4.6}
\end{equation*}
$$

and its scalar product with U implies $\gamma g([\varphi X, X], U)=0$. From (4.6) $g([\varphi X, X], U) \neq 0$ and then we should have $\gamma=0$. In this case M is ruled and minimal and we conclude the proof of Theorem 2.

In order to prove Corollary 2, taking $X=\xi, Y \in \mathbb{D}$ in (4.1) we get

$$
\begin{equation*}
-\eta(A Y) \varphi A \xi-k \varphi A Y-g(\varphi A \xi, Y) A \xi+k A \varphi Y-\eta(A \xi) \varphi A Y+A \varphi A Y=0 \tag{4.7}
\end{equation*}
$$

for any $Y \in \mathbb{D}$. If M is Hopf with $A \xi=\alpha \xi$, (4.7) gives $-k \varphi A Y+k A \varphi Y-\alpha \varphi A Y+A \varphi A Y=0$ for any $Y \in \mathbb{D}$. Suppose $Y \in \mathbb{D}$ is unit and $A Y=\lambda Y$. We know $A \varphi Y=\mu \varphi Y$ with $\mu=\frac{\alpha \lambda+2}{2 \lambda-\alpha}$. Then it follows $-k \lambda \varphi Y+k \mu \varphi Y-\alpha \lambda \varphi Y+\lambda \mu \varphi Y=0$. That is, $-k \lambda+k \mu-\alpha \lambda+\lambda \mu=0$ and bearing in mind the expression of μ we obtain

$$
\begin{equation*}
-(2 k+\alpha) \lambda^{2}+\left(2 \alpha k+\alpha^{2}+2\right) \lambda+2 k=0 . \tag{4.8}
\end{equation*}
$$

If $2 k+\alpha=0$ we have $2 \lambda+k=0$. Therefore $2 \lambda-\alpha=0$ and from Theorem 2.2 this is impossible. From (4.8) on M there are, at most, three distinct constant principal curvatures and then, [6], M must be locally congruent to a real hypersurface either of type (A) or of type (B).

Looking at Theorem 2, if $\alpha=0$, (4.8) yields $k \lambda^{2}-\lambda-k=0$. If M is of type $(A), \lambda=\mu=\frac{1}{\lambda}$. As $\lambda^{2}=1$, it follows $\lambda=0$, a contradiction. On the other hand, type (B) real hypersurfaces do not have $\alpha=0$.

If $\alpha \neq 0, M$ must be of type (A). In this case $\alpha=2 \cot (2 r)$ and one of the principal curvatures on \mathbb{D} is $\lambda=\cot (r)$. This principal curvature does not satisfy (4.8) and this case does not occur.

Then, M must be ruled and taking $X=\xi, Y \in \mathbb{D}$ in (4.1) we get

$$
\begin{equation*}
-\beta \eta(A Y) \varphi U-k \varphi A Y-\beta g(\varphi U, Y) A \xi+k \varphi A Y-\alpha \varphi A Y+A \varphi A Y=0 \tag{4.9}
\end{equation*}
$$

for any $Y \in \mathbb{D}$. The scalar product of (4.9) and φU gives $-\beta \eta(A Y)=0$, for any $Y \in \mathbb{D}$. If, in particular, we take $Y=U$ we obtain $\beta^{2}=0$, which is impossible, finishing the proof.

Aknowledgements

This work was supported by MINECO-FEDER Project MTM 2016-78807-C2-1-P.

PÉREZ and PÉREZ-LÓPEZ/Turk J Math

References

[1] Blair DE. Almost contact manifolds with Killing structure tensor. Pacific Journal of Mathematics 1971; 39: 285-292.
[2] Blair DE. Riemannian Geometry of contact and symplectic manifolds. Progress in Mathematics. Birkhauser. Boston 2002; 203.
[3] Cecil TE, Ryan PJ. Focal sets and real hypersurfaces in complex projective space. Transactions of the American Mathematical Society 1982; 269: 481-499.
[4] Cho JT. CR-structures on real hypersurfaces of a complex space form. Publicationes Mathematicae Debrecen 1999; 54: 473-487.
[5] Cho JT. Pseudo-Einstein CR-structures on real hypersurfaces in a complex space form. Hokkaido Mathematical Journal 2008; 37: 1-17.
[6] Kimura M. Real hypersurfaces and complex submanifolds in complex projective space. Transactions of the American Mathematical Society 1986; 296: 137-149.
[7] Kimura M. Sectional curvatures of holomorphic planes of a real hypersurface in $P^{n}(\mathbb{C})$. Mathematische Annalen 1987; 276: 487-497.
[8] Kobayashi S, Nomizu K. Foundations on Differential Geometry. Volume 1. New York, NY, USA: Interscience, 1963.
[9] Lohnherr M, Reckziegel H. On ruled real hypersurfaces in complex space forms. Geometriae Dedicata 1999; 74: 267-286.
[10] Maeda Y. On real hypersurfaces of a complex projective space. Journal of the Mathematical Society of Japan 1976; 28: 529-540.
[11] Niebergall R, Ryan PJ. Real hypersurfaces in complex space forms. Tight and Taut Submanifolds. MSRI Publications 1997; 32: 233-305.
[12] Okumura M. On some real hypersurfaces of a complex projective space. Transactions of the American Mathematical Society 1975; 212: 355-364
[13] Pérez JD, Suh YJ. Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space. Monatshefte für Mathematik 2015; 177: 637-647.
[14] Takagi R. On homogeneous real hypersurfaces in a complex projective space. Osaka Journal of Mathematics 1973; 10: 495-506.
[15] Takagi R. Real hypersurfaces in complex projective space with constant principal curvatures. Journal of the Mathematical Society of Japan 1975; 27: 43-53.
[16] Takagi R. Real hypersurfaces in complex projective space with constant principal curvatures II. Journal of the Mathematical Society of Japan 1975; 27: 507-516.
[17] Tanaka N. On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japanese Journal of Mathematics 1976; 2: 131-190.
[18] Tanno S. Variational problems on contact Riemannian manifolds. Transactions of the American Mathematical Society 1989; 314: 349-379.
[19] Webster SM. Pseudohermitian structures on a real hypersurface, Journal of Differential Geometry 1978; 13: 25-41.

[^0]: *Correspondence: jdperez@ugr.es

