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so much when I started, Raúl and Jesús, who were always willing to talk and help

me see things with perspective, and all other former members of the lab (Jaime,

Mart́ın, Javi, and everyone else). Thank you as well to Stefan and Íñigo. Both were
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Abstract

This Thesis has been devoted to study a new technique based on two simultaneously

trapped ions with prospects for high-accuracy Penning-trap mass spectrometry. One

of the two ions (called sensor) can be laser cooled, either to the Doppler limit or to

the ground state. The other ion (called target), although not directly interacting

with any laser, is sympathetically cooled to the same temperature by the Coulomb

interaction. In this scenario, a crystal is formed. Information about the oscillations

of the crystal is read out through photons scattered by the sensor ion.

The unbalanced two-ion crystal has been theoretically studied for the first time in

a Penning trap in the course of this Thesis. A detailed study and analysis of the

motional frequencies of the crystal has been carried out. The implications of the

anharmonicities introduced by the Coulomb interaction in the frequency measure-

ment process, quantifying shifts in the classical and in the quantum regime, have

been studied. Part of these results have been published in Physical Review A and

the software package built for this is available to the ion-trapping community.

The experimental component of this thesis has two parts: i) the implementation of

a new control and data acquisition system based on ARTIQ (Advanced Real-Time

Infrastructure for Quantum physics), and ii) the study, modifications and improve-

ments around the open-ring Penning trap, where the crystal is formed. The work

with ARTIQ has integrated the devices needed for ion trapping, dipolar/quadrupo-

lar driving and image collection. The work on the open-ring Penning trap started by

implementing a custom Laplace-solver program to stablish a tuning procedure that

minimizes anharmonic terms. After that, technical issues related to ion production

and lasers were overcome. The results, including the first evidence of laser cooling

of 40Ca+ under 7 Tesla, have been published in New Journal of Physics. The Thesis

ends by showing our first two-ion crystal, an unique experimental platform for the

envisaged studies.
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Resumen

Esta Tesis doctoral ha estado dedicada al estudio de una nueva técnica basada en

dos iones atrapados de forma simultánea, de cara a la realización de espectrometŕıa

de masas de alta precisión con trampas Penning. Uno de los iones (sensor) puede

enfriarse mediante láseres hasta el ĺımite Doppler, o incluso hasta su estado funda-

mental. El otro ion (de interés) es enfriado al mismo nivel gracias a la interacción

de Coulomb. En este escenario se forma un cristal. La información sobre las oscila-

ciones del cristal se obtiene a través de los fotones dispersados por el ion sensor.

En esta Tesis se ha estudiado el cristal asimétrico de dos iones en una trampa Pen-

ning, con especial atención a los modos de movimiento del mismo, aśı como a los

corrimientos en frecuencia que surgen debido a la no-armonicidad de la interacción

de Coulomb. Parte de estos resultados se han publicado en la revista Physical Re-

view A, y el paquete informático construido para este estudio está disponible para

todos los grupos que trabajan con iones atrapados.

La parte experimental de la Tesis tiene dos componentes importantes: i) la imple-

mentación de un nuevo sistema de control y adquisición de datos basado en ARTIQ

(Advanced Real-Time Infrastructure for Quantum physics) y ii) el estudio y mejo-

ras en torno a la trampa de anillos abierta, donde se forma dicho cristal. En el

trabajo llevado a cabo con ARTIQ se han integrado los dispositivos necesarios para

atrapar, aplicar campos dipolares o cuadrupolares y registrar la imagen del ion

sensor. El trabajo sobre la trampa Penning comenzó instaurando un protocolo de

sintonización, basado en un programa de resolución de potenciales electrostáticos

propio, para establecer un procedimiento de sintonización que minimice términos

no armónicos. También se ha trabajado en mejoras técnicas como la producción

de iones y en el sistema de láseres. Los resultados, incluyendo enfriamiento láser

de 40Ca+ en 7 Tesla, se publicaron en la revista New Journal of Physics. La Tesis

termina presentando un cristal de dos iones, que constituye una plataforma única

para llevar a cabo los estudios aqúı propuestos.
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Chapter 1

Introduction

When attempting to measure a physical magnitude, it is often advantageous to map

it to a frequency [1]. Two oscillations with very close frequencies can be discrimi-

nated if left to evolve for a long enough time, so that their relative phase changes.

The phenomenon of interference can also be exploited to large gains, allowing e.g. an

optical frequency measurement into a radiofrequency or microwave measurement, as

it is done in a frequency comb [2]. Many experiments have used frequency measure-

ments to determine other quantities, such as the proton radius (where the results

obtained from spectroscopy of electronic [3] and muonic [4] hydrogen result in uncer-

tainties significantly lower than those obtained from other methods [5]), the proton

[6], antiproton [7] and electron [8] magnetic moments, fundamental constants (such

as the Rydberg constant, one of the most precisely determined) and limits to their

temporal variation [9].

Mass measurements in Penning traps are also a prime example [10]. The mass-to-

charge ratio of the trapped particle is measured through its cyclotron frequency,

that is, the frequency of the particle’s motion in the presence of a magnetic field B,

ωc = qB/m. The trapping electrostatic field perturbs the particle’s motion, but the

cyclotron frequency can nevertheless be reconstructed by measuring the resulting

motional frequencies [11, 12], or a linear combination of the radial ones [13].

There are many reasons to measure masses precisely, with precisions that depend

on the goal in question. For example, a comparison of the proton and antiproton

masses provides a test of CPT (Charge, Parity and Time reversal) symmetry [14].

In the realm of nuclear physics, since nuclei are composite systems, mass measure-

ments enable a direct measurement of their binding energy. This is done, thanks to

the mass-energy equivalence, by comparing the difference between the mass of the
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2 CHAPTER 1. INTRODUCTION

nucleus and the sum of the masses of its components. The values of some masses

provide insight into certain stellar nucleosynthesis processes [15, 16]. Nuclear masses

are also used to perform fundamental tests, such as the unitarity of the Cabibbo-

Kobayashi-Maskawa matrix [17]. They have been used for studies on double-beta

or double-electron capture decays (see Ref. [18] and references therein). Especially

interesting are the ongoing efforts to pin down the neutrino mass through the study

of different decays [19]. One of these experiments, KATRIN [20], which studies the

beta decay of tritium, has already halved the previous upper bound of the neutrino

mass, down to 1.1 eV [21]. Other decays are also been studied, such as the electron

capture decay of 163Ho, within the ECHo project [22].

The main motivation of this work, however, are the so-called SuperHeavy Elements

(SHEs). Also known as transactinides, SHEs are produced in minute rates in a few

facilities worldwide [23, 24, 25, 26]. Currently known SHEs are unstable – however,

the existence of an island of stability, a region of the nuclide chart where nuclear shell

effects greatly increase stability, was first postulated as early as 1926 [27]. There

are several proposed locations of the island of stability. There is an ongoing effort

by the SHIPTRAP collaboration at GSI to map the binding energies of the SHEs

through precise Penning trap mass measurements [28, 29, 30], which will shed light

on the location of the island.

The technique currently in use for Penning-trap mass spectrometry of SHEs is Phase-

Imaging Ion-Cyclotron-Resonance (PI-ICR). It measures the radial frequencies (or

their sum) by projecting the ion motion into a position sensitive micro-channel plate

detector. It has already been proven with success for the first SHE ever measured

directly [30]. However, this detection process is destructive, and around ten ions are

needed for a measurement. This fact, coupled to the rapidly dropping production

cross section of the SHEs, makes this technique impractical for the heaviest ones.

Another technique, based on the detection of the minute image currents the ion

induces in the trap electrodes, is capable of single ion sensitivity, and has provided

the highest precisions for stable elements [31]. However, it has two major drawbacks

in this context: the time required for a measurement (which directly determines

the achievable precision) and, most importantly, the signal-to-noise ratio of the

induced image current, which goes down with the ion’s mass-to-charge ratio – so far,

measurements above ∼ 65 u/e have not been performed [32]. Since the electronic

charge of the SHEs that can be delivered to a Penning trap is limited [33], new

stopping techniques [34] or faster, more sensitive detection setups based on quartz
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resonators and radial pick-up [35, 36, 37], or perfection of more traditional setups

using superconducting coils [38] are needed before induced image current techniques

can be applied to SHEs.

In other areas of physics, laser-cooled ions (which can be detected through the

photons they scatter) are being used as auxiliary systems to cool [39] or study [40, 41]

other species that do not have suitable transitions, even with the ultimate goal of

using these for quantum information processing [42]. Similarly, a proposal was made

to use a laser-cooled 40Ca+ ion as a detector for mass spectrometry, sensitive to a

single ion regardless of its mass-to-charge ratio [43]. This technique would have the

two ions (which in this work will be referred to as target and sensor ions) stored

in physically separated traps with a common endcap, so that the interaction takes

place through the current the ions induce in the shared electrode. A first prototype

was designed and constructed [44], fluorescence from an ion cloud under operation

as a Paul trap was observed [45]. A second prototype is in the design phase right

now.

This Thesis sets out to study the feasibility of an alternative approach. Instead

of storing the two ions in physically separated traps, a single trap is used. Both

ions form a crystal when the sensor ion is laser cooled. The interaction between

both ions is much stronger, so much so that it is no longer possible to speak of

the individual ions’ motion – instead, a description of the dynamics of the whole

system is required. The strong anharmonicity of the Coulomb interaction introduces

amplitude dependent shifts that must be characterized and taken into account if any

sort of measurement is to be carried out, either in the classical or quantum regime.

The layout of this work, around three pillars comprising theory and experiment,

is as follows. Chapter 2 presents an overview of the Penning trap and the related

techniques relevant to this work, namely, the interaction of the trapped ion with

additional radiofrequency fields and laser cooling. Chapter 3 presents the existing

Penning-trap mass spectrometry techniques in detail. Chapter 4, which constitutes

a large parte of this Thesis, presents the analysis of the dynamics of the Coulomb

crystal formed by the target and sensor ions when laser cooled. Such a system is

referred to as an unbalanced two-ion crystal, to distinguish it from the case where

the ions conforming the crystal are of the same species. Chapter 5 presents the

integration of the devices required for unbalanced crystal experiments into a new

control and data acquisition system. Finally, Chapter 6 presents the modifications

and experimental progress in the facility carried out in the course of this work until
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the creation of the first two-ion crystals, underlining a first possible measurement.

Chapter 7 analyzes the work carried out during this Thesis, as well as the future

work that lays ahead.



Chapter 2

The Penning trap

When one wants to study the properties of a particle, confining it to a small region

of space makes any manipulation or observation process much easier. To achieve

confinement, a restoring force of some sort is required. In the case of ion traps, the

electric charge of the ion is exploited for this purpose.

As a starting point, a hypothetical restoring electrostatic field in free space, E (r), is

assumed. Due to its restoring nature, the force it exerts on a particle with charge q

in any small displacement around the equilibrium position, r0, must point towards

r0. This gives rise to a non-vanishing flux of the electric field vector through a

surface S enclosing r0,

∮
S

E (r) · dS 6= 0 .

However, by virtue of Gauss’s flux theorem, the flux of the electric field through any

closed surface S is determined by the net charge it encloses, i.e.,

∮
S

E (r) · dS =
Q

ε
.

Therefore, the hypothetical restoring electrostatic field E cannot exist in free space.

This result, known as Earnshaw’s theorem (see Ref. [46]), implies that a charged

particle cannot be trapped by means of a purely electrostatic field. Two well-known

ways have been developed to work around this restriction, namely,

• Paul or RF traps, which use a time-varying electric field that gives rise to net

confinement of the charged particle (see e.g. Ref. [47]), and

• Penning traps, which combine electro- and magnetostatic fields, also giving

5



6 CHAPTER 2. THE PENNING TRAP

rise to overall confinement.

This Chapter will elaborate on the latter. First, the creation of the electromagnetic

field of a Penning trap will be discussed. The electrostatic field creation will be dis-

cussed at length, since it is relevant for the discussion about trap geometries. The

equations of motion of a single trapped ion in the Penning trap’s electromagnetic

field will then be solved. After the trap geometries are presented, the ion manipu-

lation techniques used in this Thesis, including cooling of the ion’s motion, will be

introduced.

2.1 Generation of the electromagnetic field

A Penning trap is created by superimposing an electrostatic field to a uniform mag-

netic field. The means by which both are created will be outlined in the following.

Electrostatic field

The potential inside the trap must follow the differential form of Gauss’s law, that

is,

∇2ϕ =
ρq
ε
, (2.1)

where ρq is the electric charge density and ε is the electric permittivity of the

medium. Since this is a particular case of Poisson’s equation,

∇2ϕ = f (r) ,

it must comply with the uniqueness theorem (see e.g. Ref. [48]), that can be summed

up in the phrase the electrostatic potential inside a given volume is uniquely deter-

mined by the potential on a closed surface bounding that volume. Therefore, the

simplest way to generate a given electric field starts by identifying a set of equipo-

tential surfaces that define a closed region of space. Metal pieces (called electrodes)

can be machined to conform to these surfaces. If the potential on the electrodes

is set to those of the equipotential surfaces, a boundary condition is set, and the

electric field within the trap must conform to the desired one.

In order to make the ion’s motion easy to characterize, a harmonic field is desirable.

The associated potential can be written as
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ϕ (r) =
(
αx2 + βy2 + γz2

)
. (2.2)

This potential must fulfill the differential form of Gauss’ law (Eq. 2.1), which, in

free space (ρq = 0), leads to

∇2ϕ (r) =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= α + β + γ = 0 . (2.3)

This implies that at least one of the constants (α, β or γ) must be negative, resulting

in a repulsive force along the direction corresponding to the constant. In Penning

traps, the common choice is to make the electrostatic potential confining in the axial

direction (γ > 0) as well as imposing revolution symmetry around the axial direction

(α = β). The electrostatic potential within the trap can then be written as

ϕ (r) = γ

(
z2 − 1

2
x2 − 1

2
y2

)
= γ

(
z2 − 1

2
r2

)
. (2.4)

The equipotential surfaces can be found by forcing the potential to be constant:

ϕ (r) = γ

(
z2 − 1

2
x2 − 1

2
y2

)
= ϕ0 =⇒ x2∣∣∣2ϕ0

γ

∣∣∣ +
y2∣∣∣2ϕ0

γ

∣∣∣ − z2∣∣∣ϕ0

γ

∣∣∣ = −
2ϕ0

γ∣∣∣2ϕ0

γ

∣∣∣ = − sgnϕ0 .

(2.5)

Here, sgn is the sign function. This equation is that of a hyperboloid,

x2

A2
+
y2

B2
− z2

C2
= ±1 , (2.6)

where the + sign corresponds to the hyperboloid of one sheet, and the − sign to

the hyperboloid of two sheets. A, B and C are the distances from the surface to

the center of coordinates in the x, y and z direction, respectively. The hyperboloids

of one and two sheets with the same parameters are asymptotic to the same cone

– therefore, it is clear that they define a closed region of space. The first Penning

traps were machined with electrodes following these surfaces, as shown in Fig. 2.1.

If voltages are applied to the ring and endcap electrodes so that the potential dif-

ference between them is U , the potential

ϕ (r) =
U

2z2
0 + r2

0

(
2z2 − r2

)
=

U

4d2
0

(
2z2 − r2

)
, (2.7)
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z0
r0

B

U

Figure 2.1: Sketch of the original geometry of a Penning trap, with a ring electrode
(depicted in orange) and two endcap electrodes (depicted in red). The electrodes
follow the shape of a one and two-sheet hyperboloid, respectively, therefore creating
a quadrupolar potential when voltages are applied.

which fulfills the boundary conditions at the electrodes’s surfaces, must be the po-

tential at any point within the trap. Here, z0 and r0 are the distances from the trap

center to the endcaps and ring electrodes, respectively, and d0 =
√

2z2
0 + r2

0/2 is the

so-called characteristic distance of the trap.

Magnetic field

The magnetic field used in an ideal Penning trap is uniform and oriented along the

trap’s symmetry axis, i.e., B = Bẑ. It is common to specify the field homogeneity as

parts-per-million (or similar) of variation in the field intensity B in a given volume,

usually 1 cm3, around the trap center. Creating such a field with high homogeneity

is only viable in limited regions of space.

Although permanent magnets have been used, and are in some cases preferable (see

e.g. Ref. [49]), superconducting electromagnets are widely extended. A more in-

depth discussion on electromagnet geometries can be found in Ref. [50] and references

therein. Superconducting electromagnets are quite complex to design, requiring

several shimming coils used to correct field inhomogeneities to very high orders. For

example, the superconducting magnet used in the present Thesis (see Ref. [51]) has

eight shim coils, whose currents are adjusted individually on installation. Besides

the coils, some passive elements are also added to shape the field with the desired

specifications at a fixed intensity.
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2.2 Eigenmotions of a single trapped ion

The motion of a single ion in a Penning trap is defined by the Lorentz force, F =

q (E + v ×B). In this work the Lagrangian formalism will be used, as this treatment

is more adequate to analyze the dynamics of the unbalanced two-ion crystal.

The potential energy of the trapped particle due to the trap’s electric and magnetic

fields is1

V = qϕ− qv ·A =
qU

4d2
0

(
2z2 − x2 − y2

)
− q (ẋx̂ + ẏŷ + żẑ) ·

(
1

2
B× r

)
=

=
qU

4d2
0

(
2z2 − x2 − y2

)
+
qB

2
(ẋy − ẏx) , (2.8)

resulting in the Lagrangian function

L = K − V =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
− qU

4d2
0

(
2z2 − x2 − y2

)
− qB

2
(ẋy − ẏx) . (2.9)

The equations of motion can be readily obtained by using the Euler-Lagrange equa-

tion:

∂L
∂ri
− d

dt

∂L
∂ṙi

= 0 , ri ∈ {x, y, z} =⇒


ẍ− qB

m
ẏ − 1

2
qU
md20

x = ẍ− ωcẏ − 1
2
ω2
zx = 0

ÿ + qB
m
ẋ− 1

2
qU
md20

y = ÿ + ωcẋ− 1
2
ω2
zy = 0

z̈ + qU
md20

z = z̈ + ω2
zz = 0

.

(2.10)

Here, ωc is the free cyclotron frequency (the frequency of the circular motion a

particle of charge q and mass m would follow when moving perpendicular to a

uniform magnetic field of intensity B), and ωz =
√
qU/md2

0 is the frequency of the

(harmonic) axial motion.

The motions in the radial plane are coupled. The usual way to work around this

is to introduce the variable u = x + iy – this yields a single equation for the radial

motion (ü + iωcu̇ − 1
2
ω2
zu = 0) that is trivial to solve. However, since this work is

1The equivalency A = 1
2B × r holds true as long as (r · ∇)B = 0. This can be proven using

B = ∇ × A and the properties of the curl of a vector product. Our case (uniform B) trivially
verifies this condition. Note that a choice of gauge was made by using this particular value of A.
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devoted to study a two-ion crystal, the motion of the single ion will be studied using

the same tools that will be utilized later. To proceed, the equations are written in

matrix form


ẍ

ÿ

z̈

− ωc


0 1 0

−1 0 0

0 0 0



ẋ

ẏ

ż

− 1

2
ω2
z


1 0 0

0 1 0

0 0 −2



x

y

z

 = O3×1 . (2.11)

Here, O is the zero matrix. If the ansatz r = ρe−iωt is introduced and the equation

is divided by ω2
c , the algebraic matrix equation

( ωωc
)2


1 0 0

0 1 0

0 0 1

− i( ωωc
)

0 1 0

−1 0 0

0 0 0

+
1

2

(
ωz
ωc

)2


1 0 0

0 1 0

0 0 −2




ρx

ρy

ρz

 =

= Q

(
ω

ωc

)
ρx

ρy

ρz

 = O3×1 (2.12)

is obtained. This is known as a quadratic eigenvalue problem [52], which is a gen-

eralization of the usual eigenvalue problems found in undergraduate Linear Algebra

courses. There are two main solving strategies:

• Find the eigenvalues by solving det [Q (ω)] = 0 and the eigenvectors by solving

Q (ω) · ρ = 0, or

• Linearize the original differential equations by introducing the additional vari-

ables v = ṙ; this is a particular case of a linearization of the first companion

form [52]. A standard eigenvalue problem results after some transformations.

The first approach will be used here. The eigenvalues are

det [Q (ω)] = 0 =⇒ ω =


±ωc

2

(
1±

√
1− 2

(
ωz
ωc

)2
)

= ±1
2

(ωc ± ω1) = ±ω±

±ωz

.

(2.13)
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Axial Modified
cyclotron

Magnetron

Overall
motion

Figure 2.2: Trajectory of a single ion confined in a Penning trap. The individual
modes are highlighted in color to illustrate the results obtained in this section.

The associated eigenvectors are shown in Tab. 2.1. Note that each radial eigenvector

is associated with both radial eigenvalues. It is possible to obtain the trajectories

from either of the radial eigenvectors – in both cases, the y coordinate has an

additional π/2 phase with respect to the x coordinate.

The frequency ω+ is known as reduced-cyclotron frequency, since for normal opera-

tion conditions (ωz � ωc) ω+ is slightly below the cyclotron frequency ωc. On the

other hand, ω− is known as magnetron frequency. The frequency ω1 = ω+ − ω− =√
ω2
c − 2ω2

z is introduced here, since it will appear often in later calculations.

Returning to the cartesian coordinate system, the trajectory is given by


x = ρ+ cos (ω+t+ φ+) + ρ− cos (ω−t+ φ−)

y = −ρ+ sin (ω+t+ φ+)− ρ− sin (ω−t+ φ−)

z = ρz cos (ωzt+ φz)

. (2.14)

Note that ω± have the same sign as ωc ∝ q. Therefore, a charge reversal results in a

Table 2.1: Eigenvalues and eigenvectors of the quadratic eigenvalue problem given
by Eq. 2.12.

Eigenvalue +ω+ −ω+ +ω− −ω− +ωz −ωz

Eigenvector 1√
2

 1
−i
0

 1√
2

1
i
0

 1√
2

 1
−i
0

 1√
2

1
i
0

 0
0
1

 0
0
1
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sign change for the y coordinate – in other words, the trajectory in the radial plane

changes from clockwise to counterclockwise. Figure 2.2 illustrates the individual

modes of motion of the trapped ion, as well as their superposition.

A stability condition can be derived from the frequencies (Eq. 2.13). Given the

ansatz, r = ρe−iωt, an imaginary component in ω results in an unbound mode. For

the confinement to be stable, therefore,

ωz
ωc

<
1√
2
. (2.15)

Note that at the edge of stability (ωz/ωc = 1/
√

2) the radial frequencies become

ω+ = ω− = ωc/2.

The stability condition is usually seen as a way to judge the maximum axial fre-

quency (i.e. the maximum trapping potential U) that can be used in a given ex-

periment, that is, for a given magnetic field intensity B and a certain species with

charge q and mass m. There is another way to look at it that will be useful in

Chapter 4: for a fixed trap configuration (fixed values of B and U), the range of

mass-to-charge ratios that can be confined is

ωz
ωc

=

√
qU
md20
q
m
B

<
1√
2

=⇒ m

q
<

1

2

U

B2d2
0

. (2.16)

This will be revisited when discussing the stability of the two-ion crystal.

Expanding the radial frequencies (Eq. 2.13) as a function of the ratio ωz/ωc yields

ω+ = ωc−
ω2
z

2ωc
+O

([
ωz
ωc

]4
)

and ω− =
ω2
z

2ωc
+O

([
ωz
ωc

]4
)

=
U

2Bd2
0

+O

([
ωz
ωc

]4
)
.

(2.17)

The very low mass sensitivity of the magnetron frequency has become apparent.

This feature can be exploited to discriminate among a variety of species trapped

simultaneously (resulting e.g. from fusion-evaporation nuclear reactions) with fairly

high resolving power (see Ref. [53]).

Some frequency relationships of great value can be obtained by operating on Eq. 2.13,

namely

ωc = ω+ + ω− (2.18a)
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ω2
c = ω2

+ + ω2
z + ω2

− (2.18b)

ω2
z = 2ω+ω− . (2.18c)

Equations 2.18a and 2.18b are commonly used in Penning-Trap Mass Spectrometry,

since they allow the determination of the free cyclotron frequency from the actual

motional frequencies. Equation 2.18b, known as invariance theorem (see Ref. [12]),

is of special significance. Trap imperfections will, in general, shift the motional fre-

quencies; however, if the imperfections are of a certain kind2 the resulting motional

frequencies still verify the invariance theorem. This makes it very useful in high-

precision mass measurements – measuring all three of the ion’s motional frequencies

makes the resulting mass value robust against those kinds of imperfections.

It is very useful to know the energy content of each of the modes of motion. It can

be done by calculating the Hamiltonian of the system via the Legendre transfor-

mation of the Lagrangian3. The canonical momenta associated with the cartesian

coordinates are

pi =
∂L
∂ṙi
∀i ∈ {x, y, z} =⇒


px = mẋ− 1

2
qBy

py = mẏ + 1
2
qBx

pz = mż

, (2.19)

and the resulting Hamiltonian is

H =
∑
i

piṙi − L =
1

2
mṙ2 + qϕ =

(p− qA)2

2m
+ qϕ . (2.20)

Note that the canonical momentum does not match the kinetic momentum for the

radial coordinates.

Finding the energy of the ion is a matter of substituting the ion’s trajectories

(Eq. 2.14) into the Hamiltonian. This is easiest if the second to last expression

(involving velocities instead of canonical momenta) is used:

2The imperfections considered in Ref. [12] are misalignments between the electric and magnetic
fields or harmonic electrostatic fields that lack revolution symmetry (e.g. a trapping potential with
a certain degree of elipticity).

3The Lagrangian of this system fulfills the conditions stated in Ref. [54] to verify H = E.
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E =
1

2
mṙ2 +

qU

4d2
0

(
2z2 − x2 − y2

)
=

=
1

2
m

(
ω2

+ −
1

2
ω2
z

)
ρ2

+ +
1

2
m

(
ω2
− −

1

2
ω2
z

)
ρ2
−+

+m

(
ω+ω− −

1

2
ω2
z

)
ρ+ρ− cos ([ω+ − ω−] t+ [φ+ − φ−]) +

1

2
mω2

zρ
2
z =

=
1

2
mω+ω1ρ

2
+ −

1

2
mω−ω1ρ

2
− +

1

2
mω2

zρ
2
z , (2.21)

where the identity ω2
z = 2ω+ω− and the definition of ωz have been used. The average

energy content of each mode can be found simply by zeroing out the amplitudes of

the remaining ones.

It is important to remark that the total energy of the magnetron motion is negative.

This illustrates its most fundamental property: instability. Any source of dissipation

results in an increase of the magnetron radius. Eventually, the ion would either

collide with the trap electrodes. However, if the vacuum in the trap is good enough,

the damping time will be on the order of years [11] or longer, so it does not play a

role in the experiments.

It is useful to present the system’s Hamiltonian in a different coordinate system

to study the ion behavior under additional, time-dependent electromagnetic fields

(drivings). The canonical transformation is (see Ref. [55])

q+ = 1√
2

(√
mω1

2
x−

√
2

mω1
py

)
p+ = 1√

2

(√
mω1

2
y +

√
2

mω1
px

)
q− = 1√

2

(√
mω1

2
x+

√
2

mω1
py

)
p− = 1√

2

(
−
√

mω1

2
y +

√
2

mω1
px

)
q3 =

√
mωzz p3 = 1√

mωz
pz

. (2.22)

The canonical nature of this transformation can be verified by calculating the cor-

responding Poisson brackets (see e.g. Ref. [54]) and verifying that

[qi, qj] = [pi, pj] = 0 and [qi, pj] = δij , (2.23)

where δij is the Kronecker delta.

By isolating the old coordinates as a function of the new ones in Eq. 2.22 and

substituting in the original Hamiltonian (Eq. 2.20), it becomes [55]

H =
1

2
ω+

(
p2

+ + q2
+

)
− 1

2
ω−
(
p2
− + q2

−
)

+
1

2
ωz
(
p2

3 + q2
3

)
. (2.24)
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Solving Hamilton’s equations is now easier – q+, q− and q3, unlike the eigenvectors

shown in Tab. 2.1, oscillate only with ω+, ω− and ωz, respectively. Therefore, from

this point onwards they will be referred to as the eigenmode basis. Furthermore, since

the coordinates and momenta verify Eq. 2.23, i.e. they are canonical conjugates, it

is easy to move on to a quantum-mechanical description of the motion [55]. The

associated operators verify

[q̂i, q̂j] = [p̂i, p̂j] = 0 and [q̂i, p̂j] = i~δij , (2.25)

and the annihilation and creation operators for each mode are

âi =
1√
2~

(qi + ipi) and â†i =
1√
2~

(qi − ipi) . (2.26)

Using this definition and Eq. 2.25 the Hamiltonian operator of the single ion can be

written as

Ĥ = ~ω+

(
â†+â+ +

1

2

)
− ~ω−

(
â†−â− +

1

2

)
+ ~ωz

(
â†3â3 +

1

2

)
, (2.27)

which, except for the sign in the magnetron contribution, is the sum of three har-

monic oscillators. The eigenstates of each of the terms of the Hamiltonian are the

eigenstates of â†â = N̂ (the number operator), which are known as Fock states and

have a well-defined number of quanta,

N̂λ |nλ〉 = nλ |nλ〉 , λ ∈ {+,−, 3} , (2.28)

and energy ~ωλ (nλ + 1/2). The overall state will be of the form |n+〉 ⊗ |n−〉 ⊗ |nz〉
(or a combination of these).

2.3 Electromagnetic driving of trapped ions

One of the most useful manipulation techniques in ion traps is the driving of the

charged particles using electromagnetic fields. These allow for manipulation of the

ion’s motion, controlling the amplitudes and phases of the different eigenmotions,

or even transferring energy between modes. In this Section, the effects of dipolar

and quadrupolar driving on the trapped ions will be presented.

Drivings consist of oscillating potentials superimposed to the static trapping poten-
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tials on suitable electrodes. For example, to drive the axial motion, the correction

or endcap electrodes of an open-endcap cylindrical trap can be used (marked in red

in Fig. 2.3). By superimposing an oscillating voltage, an additional electric field

approximating ERF = ERF cos (ωRF t+ φRF ) ẑ appears at the trap center and its

surroundings, modifying the ion’s motion. The driving electric field will have higher

order components; for example, if the ion is off-axis it will experiment a radial force.

Nevertheless, these higher order components can be neglected, since the ion will

react to small driving amplitudes [50]. The relationship between ERF and VRF is

usually approximated by that of a pair of infinite parallel plates, corrected with a

geometrical constant α such that ERF = αVRF/delec (where delec is the distance from

the electrode to the trap center) to quantify the deviation from the parallel plate

shape.

In the case of the radial motion, since the trap has revolution symmetry, segmenta-

tion of the electrodes is needed. Figure 2.3 shows a sketch with a typical cylindrical

trap with segmented electrodes, together with the configuration used for different

driving schemes.

2.3.1 Dipolar driving

Each of the three modes of motion of the trapped ion is a harmonic oscillator (see

Sec. 2.2). Therefore, to study the effect of a dipolar driving on the ion’s motion,

it suffices to study the transient behavior of the driven harmonic oscillator; this is

described in Appendix A.1. The results presented there are directly applicable to

the driven axial motion. The differential equation for the axial coordinate while

driven is

z̈ + ω2
zz =

q

m

αVRF
delec

sin (ωRF t) . (2.29)

The amplitude of an ion, initially at rest, that is driven near resonance, is given by

(see Eq. A.11)

ρz '
q

m

αVRFTRF
2ωzdelec

sinc

(
∆ω

2
TRF

)
(2.30)

and the energy gained by the ion is

E ' 1

8m

(
αqVRFTRF

delec

)2

sinc2

(
∆ω

2
TRF

)
, (2.31)
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B

V = V0 + VRF cos (ωRF t+ φRF )

V = V0 − VRF cos (ωRF t+ φRF )

Figure 2.3: Left panel: cylindrical trap showing the four-fold segmentation of the
ring electrode (blue) and two-fold segmentation of the correction electrodes (green).
The electrodes closer to the reader are made transparent to improve visibility of
the ring electrode segmentation. Right panel: electrodes’ configurations used in the
different driving schemes. Top: two possible configurations to apply dipolar driving
to the radial motions. The configurations will differ in the geometrical parameter
α (Eq. 2.29). Bottom: two possible configurations to apply quadrupolar driving
to the radial motions. Again, they will differ on the geometrical parameter α. The
configurations on the right will also modulate the potential at the trap center slightly,
since there is no out-of-phase counterpart (blue).
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where ∆ω = ωRF−ωz. Figure A.1 is a graphical representation of the amplitude (and

phase) after the dipolar driving. When the ion starts with non-vanishing amplitude,

Eq. A.19 should be used instead of Eq. A.11, and Fig. A.2 shows the amplitude and

phase under those conditions.

In the case of the radial motions, the simpler way to describe the effect of the driving

is to use the Hamiltonian as shown in Eq. 2.24. One possible electric potential to

originate the electric field ERF = αVRF
delec

sin (ωRF t) x̂ is ϕRF = −xαVRF
delec

sin (ωRF t).

This can be written in the eigenmode basis and inserted into the Hamiltonian,

yielding

H =
1

2
ω+

(
q2

+ + p2
+

)
−1

2
ω−
(
q2
− + p2

−
)
+

1

2
ωz
(
q2

3 + p2
3

)
− αqVRF
delec
√
mω1

(q+ + q−) sin (ωRF t) .

(2.32)

Using the Hamilton equations of motion one obtains

∂H
∂qi

= ∓ṗi
∂H
∂pi

= ±q̇i
=⇒

ṗ± = ∓ω±q± + αqVRF
delec

1√
mω1

sin (ωRF t)

q̇± = ±ω±p±
=⇒

=⇒ q̈± + ω2
±q± = ± αqVRFω±

delec
√
mω1

sin (ωRF t) . (2.33)

In this case, two eigenmotions are driven. However, their frequencies under normal

operating conditions (ωz � ωc) are far apart. Since the full solution for the driven

harmonic oscillator (Eq. A.4) vanishes when the driving is far from resonance, only

one of the radial modes is affected. If the ion is initially at rest, the amplitude after

driving near resonance is

A± '
αqVRFTRF
2delec

√
mω1

sinc

(
∆ω

2
TRF

)
, (2.34)

which in cartesian coordinates translates into the radii

ρ± '
αqVRFTRF
2delecmω1

sinc

(
∆ω

2
TRF

)
. (2.35)

This is consistent with the radii shown in Ref. [56] for on-resonance excitation (since

sinc (x) −−→
x→0

1). The overall ± sign in Eq. 2.33 can be accounted for with an

additional phase of π for the magnetron mode.
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The energy gained by the ion is

E =
1

2
mω2

±ρ
2
± '

1

8m

(
αqVRFTRF

delec

ω±
ω1

)2

sinc2

(
∆ω

2
TRF

)
. (2.36)

The resulting amplitude and phase of the radial motions after the driving are also

the ones shown in Fig. A.1 (or Fig. A.2 if the ion is not initially at rest).

2.3.2 Quadrupolar driving

A quadrupolar potential in the radial plane originates an electric field E such that

E · x̂ ∝ y and E · ŷ ∝ x. One possible potential that fulfills these is ϕRF =

−xy 2αVRF
d2elec

cos (ωRF t+ φRF ), where again α quantifies the deviation with respect to

the ideal geometry (in this case, a quadrupole). The modified Hamiltonian in the

eigenmode basis is then

H =
1

2
ω+

(
q2

+ + p2
+

)
− 1

2
ω−
(
q2
− + p2

−
)

+
1

2
ωz
(
q2

3 + p2
3

)
− k0 cos (ωRF t+ φRF ) (q+ + q−) (p+ − p−) , (2.37)

where k0 = 2αqVRF
mω1d2elec

. The resulting equations of motion can be solved under certain

assumptions (see Appendix A.2). The radii of the radial motions are

ρ± (t) = ρ± (0) cos (ωBt)∓
eiπ/2∆ω · ρ± (0) + k0e

±i∆φρ∓ (0)

2ωB
sin (ωBt) , (2.38)

where ∆ω = ωRF − ωc is the detuning, ωB =
√

∆ω2 + k2
0/2 is the beat frequency

(frequency at which the radii oscilate) and ∆φ = φRF − φ+ − φ− depends on the

relative phases of the driving and the initial modified-cyclotron and magnetron mo-

tions. There is also an overall phase φ = ±∆ω
2
t that has been omitted, since it does

not affect the actual attained radii.

Finally, it is also possible to couple the radial and axial motions. Ref. [57] shows

that an electric field of the form

E ∝ cos (ωRF t+ φRF ) (xẑ + zx̂) (2.39)
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with driving frequencies ωRF ' |±ω± − ωz| couples the corresponding radial motion

to the axial one. This is used in mass measurements featuring induced image current

detection of the axial motion (see Sec. 3.2.1) to determine the frequencies of the

radial motions.

2.4 Laser cooling of trapped ions

For most experiments involving ion traps, the initial energy of the ions is in the eV

range. Such energies can complicate experiments because of e.g. Doppler broadening

of any transitions of interest, frequency shifts due to the large oscillation amplitudes,

short oscillation times, . . .

There are a number of methods of ion cooling (see e.g. Ref. [58] and references

therein). To choose a method one has to balance the experiment’s features and

needs, especially when it comes to the ionic species to be cooled. In the following

the most common techniques are outlined.

Resistive cooling dampens the oscillation amplitude through the image current the

ion induces in the trap electrodes, commonly using a resonant circuit. It also enables

a non-destructive ion detection method by amplifying the induced image current.

This method has been used with great success to perform precision measurements

(see e.g. Refs. [6, 31] for two recent examples). However, since the current induced

by the ion is proportional to the motional frequencies to be measured, and because of

the way these frequencies scale with ion mass, these techniques have not been proven

yet with heavier ions at low charge states. Nevertheless, recent results obtained

by implementing quartz resonators instead of superconducting coils have yielded

promising results (see Refs. [59, 35, 36, 37]).

Buffer gas cooling, on the other hand, can be applied to heavier particles, and it

can even be used to remove unwanted species present in the trap (see Ref. [53]). It

also has some drawbacks; collisions with the background gas perturb the particle’s

internal energy levels, affect its motion and reduce the storage time. In some cases

collisions can also result in changes in the charge state of the ions. These issues

are often circumvented by performing the cooling and measurement procedures in

different traps (see e.g. Refs. [60, 61]).

The technique of interest for this Thesis, laser cooling, can reduce the energy to the

µeV range and lower (Doppler cooling) or even reach the ground state of the ion’s

motion (resolved sideband cooling). Furthermore, it enables an additional method
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of non-destructive, very sensitive method of detection (via imaging of the photons

scattered by the laser-cooled ion). However, since it relies on the internal structure

of the ion, only a few species can be used directly; sympathetic cooling, where the

ion of interest is cooled by exchanging energy with a laser-cooled ion, can be used

to extend the technique to other species (see e.g. Ref. [39]).

This Section will explore laser cooling with some detail, with the ultimate goal of

being able to detect a generic ion’s mass via the optical imaging of a laser-cooled

ion.

2.4.1 Doppler cooling

Doppler cooling takes advantage of the change in momentum a particle experiences

when it absorbs a photon of energy ~ω – the particle must therefore have some

internal structure. The absorption can either increase or decrease the particle’s

kinetic energy, depending on the direction of motion with respect to the laser beam

at the time of absorption. The latter is favored if the photons are red-detuned, that

is, their energy is slightly below that of the transition between the two levels, ~ωge.
The detuning is ∆ = ω − ωge. In this case, absorption will happen preferably when

the laser photons and the trapped particle are moving in opposite directions, since

the apparent photon frequency will shift towards resonance.

The de-excitation process (spontaneous or stimulated emission) limits the minimum

energy achievable via Doppler cooling. If the ion decays to its ground state via

stimulated emission, the momentum kick due to emission balances the one due to

absorption, since the absorbed and emitted photons are identical. Therefore, mo-

mentum and kinetic energy remain the same. If the emission happens spontaneously,

however, the momentum kicks will average to zero, since spontaneous emission pat-

terns are usually symmetric; the kinetic energy change, however, will not. This gives

rise to recoil heating, which balances the cooling at a certain temperature; the lowest

possible value of the equilibrium temperature is referred to as Doppler limit. The

spontaneously emitted photons can be detected with a suitable optical system. This

provides a non-destructive detection method that is single ion sensitive. Figure 2.4

depicts the process of Doppler cooling.

A mathematical description that summarizes the cooling mechanism is given in the

following. Refs. [47, 58, 62] present more accurate descriptions of the process.

The wavevectors of the absorbed and spontaneously emitted photons are represented
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pħk

p'=pħk 2ħk

p - 2ħk < p' < p

Figure 2.4: Schematic explanation of the Doppler cooling process. See text for
details.

by k and k′, respectively, and the velocities of the trapped particle before and after

the absorption-emission cycle, in turn, are v and v′. If the system is in the weak

binding regime, where the natural linewidth of the transition, Γ, is much larger than

the motional frequencies of the trapped particle, Γ� ωm (weak binding regime), no

significant change in the particle speed happens between absorption and emission.

In that case, imposing the conservation of energy and momentum, the change in

kinetic energy is

mv + ~k = mv′ + ~k′

1
2
mv2 + ~ω = 1

2
mv′ 2 + ~ω′

=⇒ ∆K = ~v · (k− k′) +R
(
k̂2 − 2k̂ · k̂′ + k̂′ 2

)
,

(2.40)

where R = (~k)2 /2m and k̂ and k̂′ are the unit vectors with the same direction

as k and k′. The wavevectors can be assumed to verify |k| ' |k′| ' k, since the

maximum frequency shift of the emitted photon with respect to the absorbed one is

twice the frequency shift due to the Doppler effect, much smaller than the frequency

of the transition, which usually lies in the optical regime. Separating the different

components,

∆Ki = ~vi (ki − k′i) +R
(
k̂2
i − 2k̂ik̂

′
i + k̂′ 2i

)
(2.41)

where ki and k̂i are the i component of k and k̂, respectively.

The cooling process requires many absorption-emission cycles, so one has to take
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into account the direction of the spontaneously emitted photons. These are emitted

randomly, following a certain probability distribution, P
(
k̂′
)

4. Since the emission

patterns are symmetric for dipole transitions, that is, P
(
k̂′
)

= P
(
−k̂′

)
, the av-

erage value of the terms k′i and k̂ik̂
′
i vanish over many cycles, while the average of

the k̂′ 2i terms does not. The constants fsi =
〈
k̂′ 2i

〉
, characteristic of the type of

transition involved, are introduced. The average change in the energies due to the

motion in each direction are then

〈∆Ki〉 = R
(
k̂2
i + fsi

)
+ ~kivi . (2.42)

If the coordinate system is chosen so that the cooling beam is aligned with one of

the axes,

〈∆Ki〉 = R (1 + fsi) + ~kivi (2.43a)

〈∆Kj〉 = Rfsj , j 6= i (2.43b)

.

The overall energy change rate over each direction will be equal to Eqs. 2.43 multi-

plied by the rate at which the absorption-emission cycles take place. This is equal to

the spontaneous decay rate (i.e. the linewidth of the transition, Γ) times the prob-

ability of the trapped particle to be in the excited state; the underlying assumption

is that decays are much faster than absorptions. This probability is given by

P (exc) =
s/2

1 + s+ (2∆app/Γ)2 . (2.44)

Here, ∆app = ∆− kvi is the apparent detuning experienced by the trapped particle,

and s is the saturation parameter. The latter is given by s = 2Ω2
r/Γ

2, where Ωr is

the Rabi frequency5. Thus, in the direction of the cooling beam,

〈
K̇i

〉
= [R (1 + fsi) + ~kvi] Γ

s/2

1 + s+ [2 (∆− kvi) /Γ]2
. (2.45)

Close to the Doppler limit, the velocity of the trapped particle is small. Expanding

Eq. 2.45 to first order in vi and averaging over many absorption-emission cycles (so

4These are given by the electric dipole moment of the transition between the two internal states,
〈g |d| e〉 (see Ref. [62]).

5The Rabi frequency is the frequency at which the populations of a two-level system oscillate
when the transition is driven on resonance. See e.g. Ref. [47] for a more complete discussion.
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that all terms proportional to vi vanish, remaining only the term proportional to

v2
i ), the equilibrium energy is

〈
K̇i

〉
'

〈
K̇i

∣∣∣
v=0

+ vi
∂K̇i

∂vi

∣∣∣∣∣
v=0

〉
= 0 =⇒

=⇒ 〈Ki〉∞ =
1

2
m
〈
v2
i

〉
∞ =

~Γ

16
(1 + fsi)

[
(1 + s)

Γ

2∆
+

2∆

Γ

]
. (2.46)

The equilibrium temperature, understood as a quantity proportional to the energy

stored in a given mode of motion, is then

T =
m 〈v2〉
kB

=
~Γ

8kB
(1 + fs)

[
(1 + s)

Γ

2∆
+

2∆

Γ

]
. (2.47)

The detuning ∆ that minimizes this temperature is readily found to be Γ/2 ·
√

1 + s.

The resulting temperature

Tmin =
~Γ

4kB
(1 + fs)

√
1 + s , (2.48)

is the aforementioned Doppler limit.

In the remaining directions of motion, the average rate of energy change is given by

〈
K̇j

〉
= RfsjΓ

s/2

1 + s+ [2 (∆− kvi) /Γ]2
. (2.49)

Since all the quantities are positive,
〈
K̇j

〉
> 0, that is, the trapped particle is

heated along these directions of motion. The laser beam provides no cooling in

these directions, unless the associated modes of motion are coupled in some way to

a mode with a component in the direction of the laser beam.

2.4.2 Ground state cooling

There are several ways to use the interaction between the trapped ion and the laser

field to achieve cooling to the ground state with high probability. A well known one

is resolved sideband cooling [63], although cooling by Electromagnetically Induced

Transparency [64, 65] or resolved-sideband Raman Cooling [66] are in some cases

more advantageous.
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The first report of the use of sideband cooling to reach the ground state [63] summed

up the process with an energetic argument. If the trapped particle oscillates with

frequency ωm, its absorption/emission profile as seen in the laboratory frame will

have sidebands at ωge ± nωm. If the laser is tuned to the first red sideband, ω =

ωge−ωm, the photons absorbed by the particle have energy ~ (ωge − ωm), while those

that are re-emitted will average to ~ωge. Therefore, on average, each absorption-

emission cycle reduces the particle energy by a motional quantum, ~ωm.

The absorption profile is calculated in a semiclassical picture in Ref. [58]. The ion

is assumed to be in the strong binding regime (i.e. ωm � Γ – in other words,

that the absorption-emission cycles are slower than the oscillation of the trapped

particle, unlike what was assumed to Doppler cooling). Further, the particle is

assumed to be in the Lamb-Dicke regime, i.e. the Lamb-Dicke parameter verifies

η = 2πρ/λ� 1. This means that the oscillation amplitude ρ must be smaller than

the laser wavelength λ. This condition is usually achieved with a previous Doppler

cooling stage. The spectral absorption cross-section then reads [58]

σ (ω) = σ0

+∞∑
n=−∞

|Jn (η)|2 (Γ/2)2

(Γ/2)2 + [ωge − (ω + nωm)]2
, (2.50)

where Jn are the Bessel functions of the first kind. The trapped particle is thus able

to absorb radiation at ωge ± nωm, with a probability weighted by |Jn (η)|2. Since

the asymptotic behavior of the Bessel functions for η � 1 is |Jn (η)| ∼ η|n|, the

carrier (n = 0) line dominates, and only the first few sidebands have a significant

contribution. It is possible to obtain the temperature from the relative amplitude

of the sidebands. Note that the Bessel functions have zeros for certain values of η;

this means that the cooling using a given sideband can stop at certain oscillation

amplitudes (or phonon numbers).

The speed of the process is limited by the strong binding condition, ωm � Γ,

i.e., by the long de-excitation times. To circumvent this, the excited state can be

depopulated by other means, e.g. by coupling it to a different state with a lower

lifetime.

This semiclassical picture will not be sufficient when the number of quanta is small.

It is possible to obtain an approximate, but accurate, explanation, in terms of rate

equations for the population of the different states of the motional degree of freedom.

Such an analysis can be found e.g. in Ref. [47]. Two heating processes play a role,

with similar probabilities: absorption at the carrier frequency followed by emission
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at the first blue sideband and absorption at the first blue sideband followed by

emission at the carrier frequency. The cooling and heating rates are again given by

the average change in energy multiplied by the rate at which the cycles take place.

At the final stages of the cooling process the study may be restricted to the ground

and first excited states, whose occupation probabilites follow the rate equations6


ṗ0 = p1

(ηΩ2
r)

Γ
− p0

[(
Ωr η̃
2ωm

)2

Γ +
(
ηΩr
4ωm

)2

Γ

]
ṗ1 = −ṗ0

. (2.51)

In the steady state, ṗi = 0∀ i and p0 + p1 = 1. This yields an average occupation

number

〈n〉 =
∑
n

npn ' p1 =

(
Γ

2ωm

)2
[(

η̃

η

)2

+
1

4

]
. (2.52)

Since the particle is assumed to be in the strong binding regime (ωm � Γ) and the

term in square brackets is ∼1, 〈n〉 � 1, and the particle is cooled to the ground

state with high probability.

In the case of 40Ca+ the transition that will be used for sideband cooling is the one

that from the S1/2 state with mJ = ±1/2 to the D5/2 state with mJ = ±5/2 or

mJ = ±3/2. The orientation of the laser beam required to induce such a transition

was studied in Ref. [67].

2.4.3 Laser cooling of the magnetron motion

In the previous sections the particle was assumed to be confined in a stable harmonic

potential well. In a Penning trap, however, one of the motions is unstable – thus,

cooling of the ion is more complex. Further, the strong magnetic field perturbs the

internal states of the ion. This Section, as well as the following one, address these

issues.

The total energy associated to a magnetron motion of radius ρ− is E− = −1
2
mω−ω1ρ

2
−

(see Sec. 2.2). Since it is negative, cooling of the motion (reduce the amplitude of

oscillation/speed) must be done by incresing its energy. There are two well-known

ways to achieve this:

6η̃ is the Lamb-Dicke parameter of the emission at the first blue sideband. It appears in the
heating term due to absorption at the carrier frequency.
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• Spatial discrimination: instead of discriminating the relative direction of the

ion and the laser photons by means of the Doppler effect, the laser beam is

offset from the trap center. If the laser beam points in the same direction as

the magnetron orbit, the change in magnetron energy is Ė− = F·v− ∼ k·v− >
0. Since ω+ � ω−, it is reasonable to expect that for normal experimental

conditions the initial radii verify ρ− � ρ+. Therefore, the laser can cover

the full modified-cyclotron orbits while only within the favorable half of the

magnetron orbit. Thus, cooling of the modified-cyclotron motion happens as

described in Sec. 2.4.1. This approach was proposed in Ref. [62] and has been

realized at several places [68, 69]. It is now considered less desirable than the

second approach.

• The magnetron and modified-cyclotron motions are coupled by means of a

quadrupolar drive (see Sec. 2.3.2). The working principle is similar to that of

the technique presented in Ref. [53] – the magnetron motion, which cannot be

cooled by itself, is coupled to the modified-cyclotron motion, which is being

cooled. Therefore, there is a competition between the laser (which increases

ρ−) and the coupling (which, if the parameters are set correctly, decreases

ρ−). This can be written in terms of two coupled differential equations for the

magnetron and modified-cyclotron radii [70],

ρ̇+ = −γ+ρ+ + δρ−

ρ̇− = −δρ+ + γ−ρ−
, (2.53)

where γ± are the damping constants for each of the motions due to the laser

and δ indicates the coupling strength. Note that ρ̇− > 0 in the absence

of coupling) Introducing an ansatz of the form ρ± = ρ
(0)
± e
−γt, an eigenvalue

problem is obtained,

(
γ − γ+ δ

δ γ + γ−

)(
ρ

(0)
+

ρ
(0)
−

)
, (2.54)

from which, by zeroing out the determinant, the overall damping constants

are obtained:

γ =
(γ+ − γ−)±

√
(γ+ − γ−)2 − 4 (δ2 − γ+γ−)

2
. (2.55)
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To have cooling (γ > 0 for both signs of the square root) the individual

damping constants must verify γ+ > γ−, and the square root must be smaller

than γ+ + γ−. This is achieved if the coupling is strong enough that δ2 >

γ+γ−. As in buffer gas cooling, if the coupling is too strong the square root

becomes imaginary and the radii oscillate at a frequency ωB = Im (γ) =√
4 (δ2 − γ+γ−)− (γ+ − γ−)2, but overall ρ± → 0 with a damping constant

Re (γ) = γ+ − γ−, the maximum attainable value.

2.4.4 Zeeman splitting and J-mixing under intense mag-

netic fields

Since the laser cooling mechanisms rely on the internal structure of the trapped

particle, the effects of the magnetic field on it need to be adressed. The electronic

structure of the species in question,40Ca+, in absence of magetic field is presented in

Fig. 2.5, and the precise parameters of the relevant transitions are given in Tab. 2.2.

The presence of a magnetic field breaks the 2J + 1-fold degeneracy of the levels;

this is known as Zeeman splitting. For relatively low magnetic field intensities, the

correction to any energy level is given by ∆E = µBBgJmJ , where µB is Bohr’s

magneton, gJ is the Landé g-factor of the state in question and mJ is the third com-

ponent of the total angular momentum. This results in a set of sublevels with equal

spacing among them. However, this correction, obtained from first order perturba-

tion theory, is not sufficient. In previous Penning-trap experiments using calcium

ions (B ∼ 1 T [68]) the size of the second order corrections are close to the linewidth

of the transitions – this is of course far from the case when B ∼ 7 T, where even the

third order corrections are, in the worst case, barely within the power broadened

linewidth. This Section will employ perturbation theory directly to calculate the

second and third order energy shifts, and estimate those of the fourth order. The

procedure is well described in Ref. [71]. Note that even though the initial levels are

degenerate, the perturbation is diagonal within each of the degenerate subspaces.

This simplifies the calculations, enabling the use of the expressions derived for non-

degenerate perturbation theory.

As usual, the total Hamiltonian can be written as

Ĥ = Ĥ0 + Ĥ′ , (2.56)

where Ĥ0 is the original Hamiltonian (including fine structure) and
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S1/2

D3/2

D5/2

P3/2

P1/2

397 nm 866 nm

854 nm

Figure 2.5: Atomic level scheme of 40Ca+ in absence of magnetic field. The colored
arrows are the transitions presented in Tab. 2.2. The transition used for Doppler
cooling is S1/2 → P1/2. From the P1/2 state, the ion can decay to the ground state
S1/2 or to the D3/2 state (with a branching ratio∼ 1 : 16 [68]). Given the long lifetime
of the metastable D3/2 state (since D3/2 → S1/2 is dipole-forbidden), the level must
be depopulated using the 866 nm transition. The presence of the magnetic field will
make the 854 nm transition needed as well.

Ĥ′ = µBB

~

(
L̂z + gŜz

)
(2.57)

is the term arising from the trapping magnetic field. Here, g is the electron’s gy-

romagnetic ratio (see e.g. [79]). It is important to note that the eigenstates of Ĥ0

have well-defined quantum numbers L, S, J and MJ , while the eigenstates of the

perturbation Ĥ′ are characterized by L, ML, S and MS. The coefficients that are

used to go from one base to another, 〈LMLSMS| LS; JMJ〉, are the well-known

Clebsch-Gordan coefficients. The use of gL = 1 and the free electron’s gyromagnetic

ratio instead of the experimentally measured gJ provides enough precision for the

purposes of Doppler cooling.

The corrections to the energy can be written in a compact form if one uses the

matrix representation of the perturbation, Ĥ′, in the base of the eigenstates of the

original Hamiltonian, Ĥ0, are used. Each of the matrix elements, represented by

hij = 〈i| Ĥ′ |j〉, is calculated in Appendix A.3. Note that the resulting matrix is

Table 2.2: Transitions in the internal structure of 40Ca+ relevant for laser cooling
[72, 73, 74, 75, 76, 77, 78] .

Transition Frequency (MHz) Γ (MHz) Saturation intensity (µW/mm2)
S1/2 → P1/2 755 222 766.2 (1.7) 21.57(8) 433
D3/2 → P1/2 346 000 234.867 (96) 1.482(8) 3.4
D5/2 → P3/2 350 862 882.830 (91) 1.350(6) 3.3
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quite sparse, since for each state there is at most one non-zero element outside the

diagonal. Using this notation, the first order correction to the energy of the state

|i〉 = |LS; JMJ〉 is simply given by ∆E
(1)
LS J MJ

= hii = 〈LS; JMJ | Ĥ′ |LS; JMJ〉. For

example, for the D5/2 state with MJ = +3/2,

∆E
(1)
2, 1/2, 5/2,+3/2 = +

(
6

5
+

3g

10

)
µBB . (2.58)

The result, as expected, matches the value obtained using the ubiquitous Zeeman

splitting formula. The results for all states are presented in Tab. 2.3.

The second order energy correction to a level |i〉 is calculated as

∆E(2) =
∑

j:E
(0)
i 6=E

(0)
j

|hij|2

E
(0)
i − E

(0)
j

, (2.59)

where the sum condition (non-degeneracy of |i〉 and |j〉 in the original Hamiltonian)

means in this case that the initial and final states must differ either in J or in L.

Appendix. A.3 shows that for a given state |i〉 = |LS; JMJ〉 there is at most a state

|j〉 6= |i〉 so that hij 6= 0. The condition for such a |j〉 to exist for an ion with

S = 1/2 is that L 6= 0 and |MJ | < L+ 1/2. Equation 2.59 can therefore be written

as

∆E
(2)
LS J MJ

=


|hJJ′ |

2

E
(0)
J −E

(0)

J′
if L 6= 0 and |MJ | < L+ 1/2

0 otherwise
. (2.60)

Note that the labels i and j of the two states connected by the perturbation have

been substituted on the right-hand side with J and J ′. This has been done because

J is the only quantum number that differs among two such states.

The correction to e.g. the D5/2 state with MJ = +3/2 is

∆E
(2)
2, 1/2, 5/2,+3/2 =

∣∣h5/2, 3/2

∣∣2
E5/2 − E3/2

=
4

25
(g − 1)2 (µBB)2

E5/2 − E3/2

. (2.61)

If the state D3/2 with MJ = +3/2 had been considered instead, the only differ-

ence would be the order reversal in the denominator, resulting in an overall neg-

ative sign. This sort of symmetry applies to all other pairs with non-zero second

order corrections. The results are presented in Tab. 2.3. While the first order

corrections were proportional to µBB, second order corrections are proportional to
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(µBB)2 /
(
E

(0)
J − E

(0)
J ′

)
= (µBB)2 /∆E

(0)
JJ ′ , that is, their weight is reduced by a factor

µBB/∆E
(0)
JJ ′ .

Third order corrections are given by [80]

∆E
(3)
i =

=
∑

j:E
(0)
j 6=E

(0)
i

∑
k:E

(0)
k 6=E

(0)
i

hijhjkhki(
E

(0)
i − E

(0)
j

)(
E

(0)
i − E

(0)
k

) − ∑
j:E

(0)
j 6=E

(0)
i

hijhjihii(
E

(0)
i − E

(0)
j

)2 .

(2.62)

Making the same considerations as for the second order corrections regarding the

sparseness of the Ĥ′, one obtains

∆E
(3)
LS J MJ

=


|hJJ′ |

2(
E

(0)
J −E

(0)

J′

)2 (hJJ − hJ ′J ′) if L 6= 0 and |MJ | < L+ 1/2

0 otherwise

. (2.63)

Note that this expression can be rewritten in terms of the first and second order

energy corrections as

∆E
(3)
LS J MJ

=


∆E

(2)
LS J MJ

E
(0)
J −E

(0)

J′

(
∆E

(1)
LS J MJ

−∆E
(1)
LS J ′MJ

)
if L 6= 0 and |MJ | < L+ 1/2

0 otherwise

.

(2.64)

The fraction on the right-hand side of the equation is always positive (see Eq. 2.60).

Therefore, the magnitude of the correction is again the same for the states with

L = L′, S = S ′ and |MJ | = |M ′
J |, but the sign is determined by the size of the first

order corrections ∆E(1), and not by the unperturbed energies E(0).

As an example, the third order correction the D5/2 level with MJ = +3/2 is
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Table 2.3: Zeeman shifts in 40Ca+. The linear terms are divided by µBB, quadratic

terms by (µBB)2/
∣∣∣∆E(0)

JJ ′

∣∣∣ and the cubic terms by (µBB)3/(∆E
(0)
JJ ′)

2.

Level Linear term Quadratic term Cubic term
S1/2, MJ = ±1/2 ±g/2 0 0

P1/2, MJ = ±1/2 ± (2/3− g/6) −2/9 · (g − 1)2 ∓2/27 · (g − 1)3

P3/2, MJ = ±1/2 ± (1/3 + g/6) +2/9 · (g − 1)2 ±2/27 · (g − 1)3

P3/2, MJ = ±3/2 ± (1 + g/2) 0 0

D3/2, MJ = ±1/2 ± (3/5− g/10) −6/25 · (g − 1)2 ∓6/125 · (g − 1)3

D3/2, MJ = ±3/2 ± (9/5− 3g/10) −4/25 · (g − 1)2 ∓12/125 · (g − 1)3

D5/2, MJ = ±1/2 ± (2/5 + g/10) +6/25 · (g − 1)2 ±6/125 · (g − 1)3

D5/2, MJ = ±3/2 ± (6/5 + 3g/10) +4/25 · (g − 1)2 ±12/125 · (g − 1)3

D5/2, MJ = ±5/2 ± (2 + g/2) 0 0

∆E
(3)
2, 1/2, 5/2,+3/2 =

∣∣h5/2, 3/2

∣∣2(
E

(0)
5/2 − E

(0)
3/2

)2

(
h5/2, 5/2 − h3/2, 3/2

)
=

=

∣∣−2
5
µBB (g − 1)

∣∣2(
E

(0)
5/2 − E

(0)
3/2

)2 µBB

(
6

5
+

3g

10
− 9

5
+

3g

10

)
=

= +
3

5
(g − 1)3 (µBB)3(

E
(0)
D5/2
− E(0)

D3/2

)2 . (2.65)

The weight of the correction is again lowered with respect to the previous term by

a factor µBB/∆E
(0)
JJ ′ . The results for all levels are presented in Tab. 2.3. The size

of the third order corrections (in terms of frequency) for B = 7 T is ∼ 1 MHz for

the P states and ∼ 10 MHz for the D states. These are of the same order as the

linewidths of the transitions involved when power broadening is accounted for. The

fourth order corrections, whose weights will be further reduced by an additional

factor of µBB/∆E
(0)
JJ ′ , would be about 0.01 MHz for the P states and 0.1 MHz, for

the D states, irrelevant for Doppler cooling. Figure 2.6 shows the final energy of

the levels of the 40Ca+ ion in the magnetic field, with the intensity determined in

Sec. 6.2.

There is a second effect of the magnetic field that must be taken into account: mod-

ification of the eigenstates, that gain small components along the other eigenstates

of the unperturbed Hamiltonian. The first order correction to a state |i〉 reads [71]
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∣∣i(1)
〉

=
∑

j:E
(0)
i 6=E

(0)
j

hji

E
(0)
i − E

(0)
j

∣∣j(0)
〉
. (2.66)

Accounting again for the sparseness of the matrix, most of the sum elements vanish,

as in the second and third order corrections:

∣∣LS; J MJ
(1)
〉

=


hJJ′

E
(0)
J −E

(0)

J′

∣∣LS; J ′MJ
(0)
〉

if L 6= 0 and |MJ | < L+ 1/2

0 otherwise
.

(2.67)

Only the states with non-zero second order corrections will have corrections to the

states themselves. In particular, the perturbed D3/2 sublevels gain a small compo-

nent in the D5/2, that is, the perturbed states are of the form

∣∣D3/2,mJ

〉
=
∣∣∣D(0)

3/2,mJ

〉
+ ε
∣∣∣D(0)

5/2,mJ

〉
. (2.68)

The same occurs to P1/2 and P3/2 states. This causes a non-vanishing probability

of the ion in the modified P1/2 state to decay to the modified D5/2, as reported in

Ref. [83]. The probability of a transition between two states |i〉 and |j〉 is quantified

by the squared modulus of the electric-dipole matrix element,

M = 〈j|d · E |i〉 . (2.69)

Studying which combinations result in non-zero values gives rise to the selection

rules. In particular, since ∆J 6= 0, ±1, M is identically zero for any pair of (unper-

turbed) P1/2 and D5/2 states,

M =
〈

P1/2
(0),M ′

J

∣∣∣d · E ∣∣∣D5/2
(0),MJ

〉
= 0 . (2.70)

However, if the states are perturbed, i.e. if

∣∣D5/2,MJ

〉
'
∣∣∣D5/2

(0),MJ

〉
+ εD

∣∣∣D3/2
(0),MJ

〉
(2.71)

and

∣∣P1/2,M
′
J

〉
'
∣∣∣P1/2

(0),M ′
J

〉
+ εP

∣∣∣P3/2
(0),M ′

J

〉
, (2.72)
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with

εP =

√
2

3

µBB

E
(0)
P1/2
− E(0)

P3/2

and εD =

{
2

5
,

√
6

5

}
µBB

E
(0)
D5/2
− E(0)

D3/2

(2.73)

being two small numbers (note that εD takes either of the values between curly

brackets depending on the value ofMJ), the probability of the P1/2 → D5/2 transition

scales as

P
(
P1/2 → D5/2

)
∼ |M ′|2 =

∣∣〈P1/2,M
′
J

∣∣d · E ∣∣D5/2,MJ

〉∣∣2 '
'
∣∣∣εP 〈P3/2

(0),M ′
J

∣∣∣d · E ∣∣∣D5/2
(0),MJ

〉
+ εD

〈
P1/2

(0),M ′
J

∣∣∣d · E ∣∣∣D3/2
(0),MJ

〉∣∣∣2 ∼
∼ (µBB)2 , (2.74)

where a term in ε2 is neglected, since ε � 1 =⇒ ε2 � ε, and only the non-

zero electric-dipole matrix elements are shown. The branching ratio, obtained by

evaluating the matrix elements in the previous expression for 40Ca+ [83], is

P
(
P1/2 → D5/2

)
P
(
P1/2 → S1/2

) ' 4.2× 10−7B2 T−2 . (2.75)

The value at B ∼ 7 T is ∼ 1/50 000. This means that, in average, an ion undergoing

Doppler cooling will decay to the perturbed D5/2 state once every 50 000 absorption

emission cycles. i.e. in ∼ 50 000/ (Γ/4) ∼ 10 ms. Given the long half-life of the D5/2

state, in the order of 1 s (since the transition D5/2 → S1/2 is forbidden even in the

presence of the magnetic field) cooling will not take place during 99 % of the time.

Pumping of the D5/2 state is therefore mandatory to successfully perform Doppler

cooling of 40Ca+ in a Penning trap.
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Figure 2.6: Atomic level scheme of 40Ca+ in a ∼ 7 T magnetic field. The exact
value of B was obtained from a time-of-flight resonance for 40Ca+ (see Chapter 6).
∆ is the energy splitting due to the first order Zeeman effect, and δ is the size of
the second and third order corrections. The magnitude of the latter is the same
between P and D states with equal MJ (see Tab. 2.3). The blue arrows are the
transitions used for Doppler cooling, whereas the red ones are the transitions driven
to depopulate the metastable D states – in all cases, ∆MJ = ±1 is chosen, so that
the lasers can induce transitions regardless of the alignment of the beam with respect
to the magnetic field [81, 82]. Solid arrows represent the transitions driven directly
by lasers, while the dashed ones indicate transitions that are driven using sidebands
generated by an Electro-Optic Modulator (see Sec. 6.1.2). The 854 nm lasers used to
pump the D5/2 state are detuned by +33 and +70 MHz (see Chapter 6 for details).





Chapter 3

Mass measurements with Penning

traps

This Chapter provides an overview of the Penning-Trap Mass Spectrometry (PTMS)

techniques that are currently in use. What all techniques have in common is that the

quantities that are actually measured are motional frequencies. As a consequence,

the achievable precisions are very high, regardless of the particular technique that

is used. The goal in PTMS is to measure the ratio of the free cyclotron frequencies

of the target particle with respect to a reference, which is related to the quotient

of their mass-to-charge ratios (see Sec. 2.2). The different PTMS techniques differ

in the method of determination of the free cyclotron frequency. Since the present

work is oriented towards techniques with single ion sensitivity in the SuperHeavy

Elements (SHE) region of the nuclear chart, whose production rate is very limited,

the techniques will be grouped according to the nature of the detection method used

(destructive/non-destructive).

3.1 Destructive detection techniques

Only two PTMS have been successfully applied to SHE so far, and both of them fea-

ture destructive detection. These are the Time-Of-Flight Ion-Cyclotron-Resonance

(TOF-ICR) [13] and the Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) [84]

techniques. This section will introduce both.

37
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3.1.1 Time-Of-Flight Ion-Cyclotron-Resonance

The TOF-ICR technique exploits the force a non-uniform magnetic field exerts on

a magnetic dipole,

Vdipole = −µ ·B =⇒ F = ∇ (µ ·B) . (3.1)

In the following, its use to determine the trapped ion’s free cyclotron frequency will

be shown. More details can be found in Ref. [85] and references therein.

In a TOF-ICR measurement, the trapped ion is ejected towards a detector placed

outside the magnetic field, and its time-of-flight is recorded. When the potentials in

the trap change to eject the ion, it no longer follows the equations of motion derived

in Sec. 2.2. Instead, its motion can be seen as the superposition of pure cyclotron

orbits, unaffected by the electric field, plus the axial motion. When the potential

changes, position and speed must be continuous, and so must the kinetic energy:

K =
1

2
mω2

cρ
2
c =

1

2
mω2

−ρ
2
− +

1

2
mω2

+ρ
2
+ '

1

2
mω2

+ρ
2
+ . (3.2)

The ion, now moving in circular trajectories within the magnetic field, can be seen

as a current loop. The magnetic dipolar moment of such a loop is given by the

current times the area enclosed by the loop. The direction of the dipolar moment

is given by the right-hand rule. Therefore,

µ = IS = qνc · πρ2
c (−ẑ) = −1

2
qωcρ

2
c ẑ = −K

B
ẑ . (3.3)

The energy of such a dipole in the magnetic field is

V = −µ ·B =
1

2
qωcρ

2
cB . (3.4)

The same potential can be derived using V = −qv ·A (see Sec. 2.2). This potential

originates a force whose axial component,

F · ẑ = −qωcρ2
c/2

∂B

∂z
, (3.5)

accelerates the ion as it leaves the magnetic field (∂B/∂z < 0 =⇒ F · ẑ > 0). The

force (and therefore the time-of-flight reduction) is larger if the radius of the ion

orbit (and therefore its magnetic dipole moment) is larger.
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at ωRF =ωc+Δω

Dip. driving
at ω–
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Td

Figure 3.1: TOF-ICR measurement scheme. The ions must be centered before
the dipolar driving at the magnetron frequency. The duration of the quadrupolar
pulse that converts magnetron motion into modified-cyclotron motion determines
the linewidth. See text for details.

The time of flight can be determined as [13]

tflight =

zdet∫
ztrap

dz

ż
=

zdet∫
ztrap

dz

√
m

2K
=

zdet∫
ztrap

dz

√
m

2 (E − qV (z)− µB (z))
, (3.6)

where E is the total energy of the ion. Note that the magnetic moment has been

assumed to be constant throughout the extraction process – this is an approximation,

since the ion cannot have an orbital magnetic moment if there is no magnetic field

to sustain its orbit.

The sequence to perform a TOF-ICR measurement is shown in Fig. 3.1. The ions

must start at the trap center. This is usually achieved via cooling resonance in a

Preparation Trap (PT). Once the ions are centered, they are driven to a certain

magnetron radius ρ− (see Sec. 2.3.1). The quadrupolar driving (see Sec. 2.3.2) is

carried out with amplitude Vd and duration Td such that full conversion is achieved

if ωRF = ωc, and partial conversion otherwise. This results in a magnetic moment

that depends on ∆ω = ωRF − ωc as

|µ| = 1

2
qωc

(
ρini−
)2 · π

2

4
sinc

π
2

√(
∆ω · Td

π

)2

+ 1

 (3.7)

(see Eq. A.30). This, combined with Eq. 3.6 can be used to fit the datapoints and

obtain the free cyclotron frequency of the ions. Figure 3.2 shows the typical line

shape obtained after such a measurement.

Expanding Eq. 3.7 in a Taylor series allows for an approximate determination of the

Full Width Half Maximum (FWHM) of the TOF curve:
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Figure 3.2: Theoretical line shape of a TOF-ICR measurement. The time-of-flight
curve (dark line) is calculated inserting the magnetic moment after the quadrupolar
driving (Eq. 3.7, presented in the light line) into Eq. 3.6 with reasonable V (z) and
B (z) profiles.

|µ|
|µmax|

=
π2

4
sinc

π
2

√(
∆ω · Td

π

)2

+ 1

 ' [1−
(

∆ω · Td
π

)2
]

=⇒

=⇒ |µ (∆ωFWHM)|
|µmax|

=
1

2
=⇒ ∆ωFWHM =

π

Td
√

2
=⇒

=⇒ FWHM = 2∆νFWHM =
∆ωFWHM

π
=

1

Td
√

2
' 0.8

Td
. (3.8)

The actual statistical uncertainty of the resulting cyclotron frequency, however, is

smaller than the linewidth. It is given by [86]

∆νc ∝
1

Td
√
N
, (3.9)

where the exact value of the proportionality constant (around 0.9) is determined

experimentally for a particular setup.

As per the resolving power, using the Rayleigh criterion for resolution (which states

that the two spectra are resolved if their centers are further apart than the distance

from either center to the first minimum [87]) it is given by
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R =
m

∆m
=

νc
∆ν

= νcTd . (3.10)

These expressions would suggest that the performance may be increased arbitrarily

by increasing the driving time Td. However, there are experimental limits to Td,

such as the effects of collisions with any gas particles that remain in the trap, or

even the disintegration of the ion in the case of radioactive species. However, the

performance may be improved instead using other driving configurations:

1. Ramsey excitation: instead of a single quadrupolar RF driving pulse of length

Td, several equispaced pulses of the same length and phase coherent are applied

[55]. The optimal number of pulses is two [88], and the smallest possible

FWHM for a total measurement time Td is ∼ 0.5/Td.

2. Octupolar excitation: if the radial electrode is split into eight segments instead

of four (see Fig. 2.3), an octupolar RF driving (VRF ∝ x4−6x2y2+y4) could be

used to couple the magnetron and modified-cyclotron motions. The resonant

frequency in this case can be shown to be ωRF = 2ωc, and the resolving power

is improved by over a factor of 10 [89].

Regardless of the driving configuration, several tens of ions are needed to perform

a mass measurement with TOF-ICR. Their times of flight have to be registered for

a set of values of the driving frequency around the expected cyclotron frequency.

This limits its applicability to SHEs, which are produced in minute quantities using

fusion-evaporation reactions. The species with the lowest production rate that has

been studied using this technique is 256Lr [28, 29]. Due to the low production cross-

section, 256Lr2+ were detected at a rate of ∼ 0.5 h−1. With an excitation time of

200 ms, the resulting uncertainty in the cyclotron frequency was ∼ 3 · 10−7.

3.1.2 Phase-Imaging Ion-Cyclotron-Resonance

The working principle of the PI-ICR technique relies on the revolution symmetry of

the time-of-flight section. From that, it follows that two ions ejected from the trap

at positions that form a relative angle φ will have detector hits that also form an

angle φ. The image recorded by the detector will, however, be magnified by a factor

G, that is sensitive to the configuration of the time-of-flight section. A position

sensitive detector [90] can be used to determine these relative angles and, knowing
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Figure 3.3: PI-ICR measurement scheme when the magnetron and reduced-cyclotron
frequencies are measured separately. Left: typical image obtained for each of the
frequencies. Right: measurement procedure for each of the frequencies. The center
spot (which can be common) is obtained by ejecting the ion with no dipolar driving.
A possible centering pulse at ω− to compensate for e.g. misalignment between the
preparation and measurement traps is omitted here.

the time difference between ejections (the phase accumulation time T ) the frequency

is then ω = (2πN + φ) /T , where φ is the observed angle and N is the number of

full turns that the ion performs in the accumulation time. Some foreknowledge

of ω is required in order to determine N . An initial measurement with a smaller

accumulation time can be carried out to avoid errors in N .

In practice, the ions must be prepared consistently with the same initial radii and

phase. The starting point are ions cooled at the preparation trap, as in the TOF-ICR

technique. An additional pulse at ω− could be used at the beginning of the measure-

ment to eliminate some residual magnetron motion arising from e.g. a misalignment

between traps. The ions are then driven with a dipolar RF field with well-defined

amplitude, phase and duration. Since a reference is needed to determine the an-

gle, some ions must be ejected with no driving applied. The spots recorded by the

position sensitive detector are shown in the left part of Fig. 3.3.

A practical consideration has to be made when measuring the reduced-cyclotron

frequency. Since ω+ � ω−, small changes in the accumulation time T can result

in a wide angular distribution of ions that are otherwise prepared identically (i.e.

smearing of the spots). Therefore, it is preferable to use a quadrupolar RF field to

convert the modified-cyclotron motion to magnetron motion before ejecting the ion

– the resulting magnetron phase is related to the original reduced-cyclotron phase

as φ− = φconv−φ+, where φconv is a constant (see Sec. A.2). Some foreknowledge of

the free cyclotron frequency in order to perform the conversion is needed, although
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Figure 3.4: PI-ICR measurement scheme for direct free cyclotron determination.
See text for details.

it does not have to be too precise, since the pulse can be made quite short, as long

as the amplitude required for full conversion does not become too large.

The obvious way to use a position-sensitive detector to determine the free cyclotron

frequency is to measure the magnetron and reduced-cyclotron frequencies separately,

as shown in Fig. 3.3. In the case of the reduced-cyclotron frequency (bottom part of

the same figure) the φconv term appears in both spots after the conversion, and will

therefore result in a rotation that preserves the relative angle between the spots.

However, an alternative exists that requires less ions.

The alternative procedure to directly determine the free cyclotron frequency was

presented in Ref. [84]. In this case, the ions are driven at ω+, and the conversion

happens either soon after (magnetron spot) or after some accumulation time (cy-

clotron spot). In both cases, phase accumulation time is the same – the difference is

in the eigenmotion that has non-zero amplitude during that time. The phase intro-

duced by the quadrupolar pulse, φconv, again results in a rotation common to both

spots. If the full number of turns for each of the spots is N+ and N−, respectively,

the free cyclotron frequency is given by

ωc =
2π (N+ +N−) + φc

T
, (3.11)

where φc is the observed angle between the spots. This procedure needs half the

spots compared to the previous one, so it is very advantageous for cases where the

number of ions is limited, namely in SHEs.

Two spots can be resolved if their centers are further apart than two standard de-

viations, 2σR (see Fig. 3.4). The angle subtended by the arc 2σR at a radius R is

δφ ' 2σR/R if σR � R. If two ions are close enough to be concerned about resolu-

tion, their magnetron frequencies will be identical, and only the spots associated to

the modified-cyclotron motion will differ. The resolving power is then
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R =
ω+

δω+

=
2πN+ + φ+

δφ
=

2πN+ + φ+

2σR/R
=
ω+TR

2σR
=
πν+TR

σR
, (3.12)

which is related to that of TOF-ICR (Eq. 3.10) as

RPI

RTOF

= π
R

σR
(3.13)

(the difference between this value and the one given in Ref. [84] boils down to

a different resolution criterion in TOF-ICR). Using the values given in the same

reference (σR ' 45 µm and R = 0.7 mm), the improvement in resolving power is

∼ 50.

Since each spot is the combination of several repetitions, ideally with a single ion

each, the distribution of the hits will contribute to the uncertainty in the measured

frequency values. Assuming that the spread in all directions is similar, i.e. σx = σy =

σR, the uncertainty in the center coordinates of the spots scales with the number of

counts as ∆xi = σR/
√
N . The coordinates of a spot with respect to the central spot

are (Xi, Yi) = (xi − xc, yi − yc). Given that the center spot can be measured using

the reference ion, for which the number of events is not a concern, its contribution

to the uncertainty can be neglected, and ∆Xi ' ∆xi = σR/
√
N . The uncertainty

in the angle of each spot as obtained under quadratic error propagation is then

φ = atan

(
Yi
Xi

)
=⇒ ∆φ =

√
X2
i (∆Yi)

2 + Y 2
i (∆Xi)

2

R2
=

∆R

R
=

1√
N

σR
R
. (3.14)

In terms of frequency, whose uncertainty is affected by both spots, this translates

into

∆ωc =
∆φc
T

=

√
(∆φ1)2 + (∆φ2)2

T
=

1√
N

√
2

T

σR
R
. (3.15)

Comparing with the most favorable uncertainty possible in TOF-ICR (that of the

two-pulse Ramsey scheme) it follows that PI-ICR can obtain the same uncertainty

with reduced statistics, in particular, with NTOF/NPI ' 25 [84]. This is of course a

great advantage when the ion of interest is a SHE.
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3.2 Non-destructive detection techniques

A detection technique is non-destructive if a measurement does not require the ejec-

tion or otherwise loss of the ion in question. Up to date, only one non-destructive

detection method has been applied in high-precision PTMS: the induced image cur-

rent detection (of which several variants exist). It relies on the image current an ion

moving within the trap induces in the trap electrodes. In the following, the method

will be outlined.

3.2.1 Induced image current detection: FT-ICR

According to Ref. [91], the image charge qind (r) induced by an ion of charge q at a

position r on an electrode is given by

qind (r)

q
= −ϕ (r)

∆U
(3.16)

(see Ref. [92] for proof), where ∆ϕ (r) is the change in potential at r when the

electrode in question (the so-called pick-up electrode) experiences a voltage change

∆U . If a pair of infinite parallel plates, defined by z = ±D/2, are assumed, the

electrostatic potential between them is ϕ (z) = U− + (U+ − U+) (z +D/2) /D, and

the charge induced in e.g. the plate at z = +D/2 is

qind (r)

q
= − ∂ϕ

∂U+

= − z

D
=⇒ Q (z) = −q z

D
. (3.17)

Real electrodes deviate from this geometry – a geometric factor α is introduced to

account for the deviation. It is the ratio of the electric field E created by the pickup

electrode and the field an infinite parallel plate at the same potential and distance

would create, V/d: α = Ed/V . The effective distance, defined as Deff = D/α, can

be used to simplify later expressions. When the electrode geometry differs too much

from the parallel-plate one, this correction does not suffice. In that case, non-linear

terms in z may be needed (see e.g. Ref. [50]).

If the ion performs a harmonic motion, using Eq. 3.17, the induced current is

Iind =
dqind

dt
= −q ż

Deff

= iqω
z

Deff

, (3.18)

where ż = −iωz has been used in the last step. It is noteworthy that the induced
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Figure 3.5: Simplified equivalent circuit for induced image current detection. The
ion oscillating between the trap electrodes is modelled as a current source. The
capacitance and resistor account for all parasitic capacities and losses in the system,
respectively. See text for details.

current amplitude is proportional to the motional frequency involved.

Since α and the ratio between oscillation amplitude and trap size are bounded by

one, I ≤ ωq. Even for the reduced-cyclotron frequency of 40Ca+ in B = 7 T,

Imax ∼ 3 pA, scaling with q2/m. Amplification is therefore crucial to be able to

observe these minute currents.

Let us consider a setup where an amplifier is directly connected to the pick-up

electrode. The parasitic capacitances of the trap electrodes and other elements are

merged into an equivalent capacitance C, and losses also merged into an equivalent

resistor R. Assuming an ideal amplifier (i.e. infinite input impedance) the equivalent

impedance of the circuit is

Z =
1

1
R

+ iωC
. (3.19)

This is a low pass filter, since at high frequencies the capacitor acts as a shortcut.

More precisely, the cutoff frequency (frequency at which the power dissipated at the

resistor is half of the maximum, RI2
ind) can be calculated as

P = V IR =
V 2

R
=
I2
ind |Z|

2

R
=
RI2

ind

2
=⇒ |Z|2

R2
=

1

2
=⇒ ω =

1

RC
. (3.20)

To avoid this suppression at higher frequencies, a resonator in the form of a coil of

inductance L1 is introduced [59, 93]. Now the circuit is that of Fig. 3.5, and the

combined impedance is

1The actual physical component does not have to be a coil, see e.g. Refs. [35, 36, 37].



3.2. NON-DESTRUCTIVE DETECTION TECHNIQUES 47

Z =
1

1
R

+ i
(
ωC − 1

ωL

) , (3.21)

whose squared modulus has a maximum |Z|2 = R2 at ωLC = 1/
√
LC.

The bandwidth δω is usually defined, much as the cutoff frequency of the low-pass

filter, as the distance between the frequencies at which the dissipated power is half

of the maximum dissipated power:

|Z (ω)|2

R2
=

1

2
=⇒ |ω| =

√
1
R2 + 4C

L
± 1

R

2C
=⇒ δω =

1

RC
, (3.22)

The Q factor is then

Q =
ω

δω
= ωLCRC = R

√
L

C
. (3.23)

The RMS voltage in resonance (Z = R), that is, the signal, is

V
(signal)
RMS =

R |Iind|√
2

. (3.24)

The thermal noise at the resistor R in the relevant frequency band is calculated from

the Johnson-Nyquist noise’s Power Spectral Density (PSD) [94] as

V
(noise)
RMS =

√∫
PSD dν =

√
PSD ∆ν =

√
4kBTR

√
∆ν , (3.25)

since the PSD of thermal noise is constant (except at very high frequencies). Here,

kB is Boltzmann’s constant, T is the temperature and ∆ν is the width of the ion

signal as seen in the resulting spectrum, that is, the largest value between the

actual signal width or the resolution after performing the Fourier transform of the

waveform. Assuming the latter dominates, ∆ν is the inverse of the measurement

time Tmeas. The resulting Signal to Noise Ratio (SNR) is therefore

SNR =
|Iind|√
8kBT

√
R
√
Tmeas =

|Iind|√
8kBT

√
Q

ωLCC

√
Tmeas . (3.26)

This gives an idea on how one can improve the sensitivity of the technique. Two

very important factors are the temperature and the capacitance. This means that

sensitivity can be improved with cryogenic amplification and with short distances
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between electrodes and detection board.

None of this, however, has considered the effects of the detection on the ion itself.

A simple energetic argument shows that, since the ion motion is the only source of

energy in the circuit shown in Fig. 3.5, the amplitude of the ion’s oscillation must

go down over time. The voltage drop due to the presence of the detector creates a

force on the ion that has two effects [93]: resistive cooling of the ion motion (caused

by the real part of Z) and a frequency shift, called image current shift, caused by

the imaginary part of Z. The ion’s equation of motion, assuming axial pick-up and

including the voltage drop, is

z̈ + ω2
zz =

Fe
m

= −q V

mDeff

= −q ZIind
mDeff

. (3.27)

Using Eq. 3.18,

ZIind = −qRe (Z)

Deff

ż − qωIm (Z)

Deff

z , (3.28)

and therefore

z̈ +
q2Re (Z)

mD2
eff

ż +

(
ω2
z +

q2ωIm (Z)

mD2
eff

)
z = 0 , (3.29)

which is the equation of a damped harmonic oscillator. The impedance can be

rewritten as

Z =
1

1
R

+ i
(
ωC − 1

ωL

) 1
R
− i
(
ωC − 1

ωL

)
1
R
− i
(
ωC − 1

ωL

) =
1
R

+ i
(

1
ωL
− ωC

)
1
R2 +

(
ωC − 1

ωL

)2 . (3.30)

Therefore, Im (Z) ∝
(

1
ωL
− ωC

)
, and the direction of the frequency shift depends on

whether ω ≶ ωLC . On the other hand, Re (Z) > 0 ∀ω, that is, the ions are always

cooled. Assuming that the oscillator is underdamped, the result is a harmonic

oscillator whose amplitude decays2 with time constant

Tc =
2mD2

eff

q2Re (Z)
. (3.31)

Once the ion has been cooled (thermalized), the only remaining source of energy

is the thermal noise of the resistor R. In order to study the behavior of the ion-

2At this point the equality ż = −iωz used in Eq. 3.18 becomes an approximation (the speed
due to the amplitude decay is neglected with respect to that of the oscillation itself.)
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Figure 3.6: Simplified circuit for induced current detection including ion-detector
interaction. The ion is substituted for a series LC circuit, and the thermal noise of
the resistor R is explicitly shown. See text for details.

detector combined system, the ion can be modeled as an equivalent circuit [95].

Using Eq. 3.18 the equation of motion can be rewritten using the current as the

dependent variable:

mD2
eff

q2

dIind
dt

+ ω2
z

mD2
eff

q2

∫
Iinddt = V . (3.32)

The voltage drops at an inductance L and a capacitance C through which a current

I flows are LdI/dt and Q/C =
∫
Idt/C, respectively. This allows the modeling

of the ion as a series LC circuit with Li = mD2
eff/q

2 and Ci = 1/ω2
zLi. The full

equivalent circuit is shown in Fig. 3.6. The impedance is

Z =
1

1
R

+ i

[(
ωC − 1

ωL

)
−
(
ωLi − 1

ωCi

)−1
] . (3.33)

At the ion’s resonant frequency, ωi = 1/
√
LiCi = ωz,

(
ωLi − 1

ωCi

)
= 0. The

amplifier input is shorted by the ion’s equivalent LC circuit. This is known as a dip.

Its width for a single ion is [95]

∆ν =
R

Li
. (3.34)

There is an additional way to observe a dip in the signal without the attainment of

equilibrium between the ion and the oscillator. If the oscillator is energized, energy

will be transferred to the ion and a dip will still form until the oscillator’s energy is

dissipated in the circuit [37].

Both of the detection methods outlined before only allow the direct detection of one
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of the eigenfrequencies (usually the axial). There are several methods to translate

this into a mass measurement (see e.g. Ref. [96]). Most often, the two radial

eigenfrequencies are determined through the axial motion by driving them to a

certain radius and then coupling to the axial motion using a quadrupolar drive.

The free cyclotron frequency can then be calculated from the three eigenfrequencies

using the invariance theorem (Eq. 2.18b).

Mass measurements obtained using induced image current detection are the most

precise to date (see e.g. Ref. [31] for a recent measurement with parts-per-trillion

relative uncertainty). The main issue when it comes to SHEs, however, is sensitivity

– the technique has not been applied so far to mass measurements of single ions

with mass-to-charge ratios above ∼65 u/e (see e.g. Ref. [32]). This is not enough

to study species in the SHE region of the nuclear chart, since the charge state

distribution after cooling and trapping is not expected to reach higher than 2+ or

3+ [33]. Developments on this front are, however, ongoing, both in terms of more

sensitive detectors [35, 36, 37, 38] or alternative cooling methods [39, 34].



Chapter 4

The unbalanced two-ion crystal

The previous chapter showed how different PTMS techniques determine a mass

value by measuring a trapped ion’s motional frequencies (or linear combinations).

The detection methods employed are either destructive or have not been proven for

single ions with mass-to-charge ratios over ∼ 65 u/e. Doppler cooling enables the

detection of a single ion through the photons it scatters – however, only a few species

can be observed in this way. There has been significant work devoted to the use

of one of these ions as an auxiliary system to cool [39] and/or study the properties

[40, 41] of an ion that cannot be observed optically in a direct manner.

In the same spirit, Ref. [43] proposed the use of a laser-cooled ion (the sensor ion)

as a detector to measure the motional frequencies (and therefore the mass) of a

generic target ion. This method would have the ions stored in physically separated

traps and interacting through the current induced in a common electrode. The

resulting coupling is small, which comes with advantages (the target ion’s motion is

not perturbed), but also requires an extremely well controlled setup, in particular,

with very low heating rates. Progress on the construction and commissioning of the

first prototype of the dual trap system was reported in Refs. [44, 45]. A new concept

is currently being studied.

In this Chapter an alternative to the previous technique is developed. The target

and sensor ions are stored in the same trap, experiencing an interaction of the same

magnitude as the trapping field. When the sensor ion is laser cooled, an unbalanced1

Coulomb crystal is formed. The eigenmotions of the crystal will be characterized

(generalizing the results that were presented in Ref. [97]), and a relationship between

the crystal’s eigenfrequencies and the individual ions’ free cyclotron frequencies will

1This Chapter refers to unbalanced two-ion crystals when the ions are of different species.

51
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be presented.

The work presented in this Chapter rests on several previous studies. For example,

Ref. [98], where the dynamics of balanced Coulomb crystals of two or three ions were

studied. Some mass measurement techniques based on induced current detection

also use two simultaneously trapped ions, in this case with the goal of minimizing

the systematic uncertainties due to magnetic field fluctuations (see Ref. [99]). In

this case the ions are placed at opposite ends of a common magnetron orbit with

a large radius, so that the distance among them makes the frequency shifts arising

from the Coulomb interaction negligible. Ref. [100] studies two-dimensional Penning

trap arrays, where a single ion is placed on each trap, and the interaction among

these is studied. The mathematical description is often equivalent to that of the un-

balanced two-ion crystal. Furthermore, the generalized invariance theorem derived

for the array also holds for the case studied here. Last, but not least, Ref. [101]

presents a technique to use optical detection for mass measurements in Paul traps.

Its applicability in Penning traps was discussed in Ref. [102].

4.1 Modes of motion of an unbalanced two-ion

crystal

The Lagrangian function of the unbalanced two-ion crystal is comprised of the La-

grangian functions of the two individual ions (Eq. 2.9), which will be referred to as

’target’ and ’sensor’ ions, minus the interaction potential. If the charge and mass

ratios (κ = qt/qs and µ = mt/ms, respectively) are introduced, the crystal’s La-

grangian function can be written in terms of the sensor ion’s axial (ωzs) and free

cyclotron (ωcs) frequencies as

Lcrystal =
1

2
µmsṙ

2
t − κ

1

4
msω

2
zs

(
2z2

t − x2
t − y2

t

)
− κ1

2
msωcs (ẋtyt − ẏtxt)

+
1

2
msṙ

2
t −

1

4
msω

2
zs

(
2z2

s − x2
s − y2

s

)
− 1

2
msωcs (ẋsys − ẏsxs)

− 1

4πε0

κq2
s

|rt − rs|
. (4.1)

Using the sensor ion’s eigenfrequencies instead of the trap parameters (U , B and

d0) is convenient to link the crystal’s eigenfrequencies with those of the individual
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ions.

The resulting equations of motion, obtained using the Euler-Lagrange equation, are

µẍt = κ
1

2
ω2
zsxt + κωcsẏt + κ

1

ms

q2
s

4πε0

(xt − xs)
|rt − rs|3

(4.2a)

ẍs =
1

2
ω2
zsxs + ωcsẏs − κ

1

ms

q2
s

4πε0

(xt − xs)
|rt − rs|3

(4.2b)

µÿt = κ
1

2
ω2
zsyt − κωcsẋt + κ

1

ms

q2
s

4πε0

(yt − ys)
|rt − rs|3

(4.2c)

ÿs =
1

2
ω2
zsys − ωcsẋs − κ

1

ms

q2
s

4πε0

(yt − ys)
|rt − rs|3

(4.2d)

µz̈t = κω2
zszt + κ

1

ms

q2
s

4πε0

(zt − zs)
|rt − rs|3

(4.2e)

z̈s = ω2
zszs − κ

1

ms

q2
s

4πε0

(zt − zs)
|rt − rs|3

. (4.2f)

These equations can be partially solved if the two ions are identical (µ = κ = 1).

Introducing the center of mass coordinates, R = rt− rs
2, the Coulomb term cancels

out, and the equations of motion are identical to those of the single ion (Eq. 2.10).

The relative motion, however, remains unsolved, as does the general case µ 6= 1.

Some approximations will be needed to find the crystal’s modes of motion.

In order to simplify the Coulomb interaction, an equilibrium configuration of the

crystal needs to be found. The electrostatic potential can then be expanded to

second order around this configuration. This approximated model of the crystal can

be solved, and the effects of the neglected terms can be considered afterwards as a

perturbation.

There are three equilibrium configurations for a two-ion crystal, depending on the

trap parameters (specified through ωzs and ωcs in this case) and, to a lesser extent,

the angular momentum of the crystal. A given trap configuration can be specified

for the purposes of this work through the frequency ratio r = ωzs/ωcs (see Sec. 4.1.4).

For a balanced two-ion crystal [98]

2In general, to improve readability, this Thesis will differentiate quantities that refer to a single
ion from those that refer to the crystal as a whole with capitalization. For example, individual
ions’ positions, amplitudes and frequencies have been labeled using r, ρ and ω, respectively. The
crystal’s coordinates (e.g. center of mass coordinates), amplitudes and frequencies will be labeled
as R, P and Ω. Greek letters will be used to label quantities of the crystal’s modes of motion, and
Latin letters to label quantities of the individual ions.
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• The ions line up with the z axis if ωzs < ω1 =
√
ω2
cs − 2ω2

zs =⇒ ωzs/ωcs <

1/
√

3, or

• they orbit within the radial plane if ωzs > ω1 =⇒ ωzs/ωcs > 1/
√

3, or

• the crystal is tilted if ωzs < ω1 and the ions have some rotational energy.

If the crystal is comprised of two ions with charge qt = κqs and mass mt = µms,

the orientation criterion is instead r ≶
√
κ/µ/

√
3. If the crystal is unbalanced, it is

only logical to assume that the change of orientation occurs somewhere in between

r = 1/
√

3 and r =
√
κ/µ/

√
3. The point is moot, however, because it will be shown

that a new stability criterion, stricter than both, will arise.

To perform laser cooling it is desirable that the equilibrium configuration keeps the

ions stationary; therefore, the axial orientation is chosen, and the trap potentials will

be tuned in consequence. All that remains to determine the equilibrium positions

is to zero out the electrostatic field’s gradient:

∇Vcrystal|eq = 0 =⇒

msω
2
zszs + κq2s

4πε0
zt−zs
|zt−zs|3

= 0

κmsω
2
zszt −

κq2s
4πε0

zt−zs
|zt−zs|3

= 0
=⇒

=⇒

zs = −κzt

d = |zt − zs| =
[
q2s/4πε0
msω2

zs
(κ+ 1)

]1/3 . (4.3)

The ions are separated by a distance d, with the sensor ion a factor κ further away

from the trap center. Abusing the notation, from this point onwards all coordinates

are relative to the equilibrium configuration, i.e., zt ··= zt − d/ (κ+ 1) and zs ··=
zs + dκ/ (κ+ 1). The constants accompanying the Coulomb interaction will also be

rewritten as κq2
s/4πε0 = msω

2
zsd

3κ/ (κ+ 1).

Around this equilibrium position the potential can be approximated by its expansion

to second order. The zero order term (a shift in potential) can be ignored, and the

first order vanishes at the equilibrium position. Therefore, only the second order

term contributes. It can be written in terms of the Hessian matrix of the potential

at the equilibrium position, HVcrystal|eq (H in short), as
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Vcrystal '
1

2

(
xt xs yt ys zt zs

)
H
(
xt xs yt ys zt zs

)>
' 1

4
msω

2
zs

{
−
[(
κ+

2κ

κ+ 1

)
x2
t −

2κ

κ+ 1
2xtxs +

(
1 +

2κ

κ+ 1

)
x2
s

]
−
[(
κ+

2κ

κ+ 1

)
y2
t −

2κ

κ+ 1
2ytys +

(
1 +

2κ

κ+ 1

)
y2
s

]
+2

[(
κ+

2κ

κ+ 1

)
z2
t −

2κ

κ+ 1
2ztzs +

(
1 +

2κ

κ+ 1

)
z2
s

]}
,

(4.4)

where > denotes transposition. The Lagrangian is then

Lcrystal =
1

2
µmsṙ

2
t +

1

2
msṙ

2
s − κ

1

2
msωcs (ẋtyt − ẏtxt)−

1

2
msωcs (ẋsys − ẏsxs)

+
1

4
msω

2
zs

{
−
[(
κ+

2κ

κ+ 1

)
x2
t −

2κ

κ+ 1
2xtxs +

(
1 +

2κ

κ+ 1

)
x2
s

]
−
[(
κ+

2κ

κ+ 1

)
y2
t −

2κ

κ+ 1
2ytys +

(
1 +

2κ

κ+ 1

)
y2
s

]
+2

[(
κ+

2κ

κ+ 1

)
z2
t −

2κ

κ+ 1
2ztzs +

(
1 +

2κ

κ+ 1

)
z2
s

]}
,

(4.5)

and the equations of motion are

µmsẍt =
1

2
msω

2
zs

(
κ+

2κ

κ+ 1

)
xt + κmsωcsẏt −

1

2
msω

2
zs

2κ

κ+ 1
xs (4.6a)

msẍs =
1

2
msω

2
zs

(
1 +

2κ

κ+ 1

)
xs +msωcsẏs −

1

2
msω

2
zs

2κ

κ+ 1
xt (4.6b)

µmsÿt =
1

2
msω

2
zs

(
κ+

2κ

κ+ 1

)
yt − κmsωcsẋt −

1

2
msω

2
zs

2κ

κ+ 1
ys (4.6c)

m̈sys =
1

2
msω

2
zs

(
1 +

2κ

κ+ 1

)
ys −msωcsẋs −

1

2
msω

2
zs

2κ

κ+ 1
yt (4.6d)

µmsz̈t = −
(
κ+

2κ

κ+ 1

)
ω2
zszt +msω

2
zs

2κ

κ+ 1
zs (4.6e)

m̈szs = −msω
2
zs

(
1 +

2κ

κ+ 1

)
zs +msω

2
zs

2κ

κ+ 1
zt . (4.6f)
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These are equivalent to the equations presented in Ref. [97]3 for κ = 1. To write

these in matrix form in a compact manner, it is useful to define the matrices

M = ms



µ 0 0 0 0 0

0 1 0 0 0 0

0 0 µ 0 0 0

0 0 0 1 0 0

0 0 0 0 µ 0

0 0 0 0 0 1


(4.7)

(known as the mass matrix ),

B = mωcs



0 0 κ 0 0 0

0 0 0 1 0 0

−κ 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (4.8)

which captures the effects of the magnetic field,

V =
1

2
msω

2
zs



κ 0 0 0 0 0

0 1 0 0 0 0

0 0 κ 0 0 0

0 1 0 1 0 0

0 1 0 0 −2κ 0

0 1 0 0 0 −2


, (4.9)

which accounts for the effects of the trapping field, and

K =
1

2
msω

2
zs

2κ

κ+ 1



1 −1 0 0 0 0

−1 1 0 0 0 0

0 0 1 −1 0 0

0 0 −1 1 0 0

0 0 0 0 −2 2

0 0 0 0 2 −2


, (4.10)

3The order of the equations has changed, however, to instead match that of Ref. [100]. That
makes Secs. 4.1.5 and 4.1.6 easier to read.
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which comprises all terms arising from the Coulomb interation. Eqs. 4.6 can then

simply be written as

Mr̈> − Bṙ> − (V + K) r> = O6×1 , (4.11)

where r = (xt, xs, yt, . . . ) contains all the coordinates and again O is the zero matrix

and > denotes transposition. Introducing the matrix E = V + K and the ansatz

r = ρe−iΩt, a new quadratic eigenvalue problem results:

[
Ω2M− iΩB + E

]
ρ> = O6×1 . (4.12)

Since the radial and axial parts of the problem are decoupled in this approximation,

they can be studied separately. Dividing by msω
2
cs and msω

2
zs, respectively, two

quadratic eigenvalue problems are obtained:


(

Ω

ωcs

)2


µ 0 0 0

0 1 0 0

0 0 µ 0

0 0 0 1

− i
(

Ω

ωcs

)
0 0 κ 0

0 0 0 1

−κ 0 0 0

0 −1 0 0



+
1

2

(
ωzs
ωcs

)2


κ+ 2κ

κ+1
− 2κ
κ+1

0 0

− 2κ
κ+1

1 + 2κ
κ+1

0 0

0 0 κ+ 2κ
κ+1

− 2κ
κ+1

0 0 − 2κ
κ+1

1 + 2κ
κ+1


 ·

ρx,t

ρx,s

ρy,t

ρy,s

 =

= Qr

(
Ω

ωcs

)
·


ρx,t

ρx,s

ρy,t

ρy,s

 = O4×1 (4.13a)

[(
Ω

ωzs

)2
(
µ 0

0 1

)
+

(
−
(
κ+ 2κ

κ+1

)
2κ
κ+1

2κ
κ+1

−
(
1 + 2κ

κ+1

))] ·(ρzt
ρzs

)
=

= Qz

(
Ω

ωzs

)
·

(
ρz,t

ρz,s

)
=

(
0

0

)
(4.13b)

Note that the only trap-dependent quantity is the ratio r = ωzs/ωcs acompanying
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the last term in Qr (Ω/ωcs).

These eigenvalue problems will be solved and discussed in the following, using the

procedures introduced in Chapter 2 (see in particular Eqs. 2.12 and 2.13). The

modes will be characterized by their frequency and their amplitude ratio, that is,

the ratio of oscillation amplitudes of the individual ions when the mode in question

is the only mode in play. The amplitude ratio can be found simply by dividing the

coefficients of the eigenvector of the mode in question.

Before the general case is addressed, however, the case µ = κ = 1 (balanced crystal)

will be studied first. Although it is irrelevant from the mass spectrometry point

of view, it is much easier to solve, and it gives some insight into the general case.

In particular, it will shed some light into the stability condition that arises for the

stretch radial motions.

4.1.1 The balanced crystal

The axial eigenvalue problem (Eq. 4.13b) for a balanced crystal takes the form

[(
Ω

ωcs

)2
(

1 0

0 1

)
+

(
−2 1

1 −2

)]
·

(
ρzt

ρzs

)
= Qz

(
Ω

ωcs

)
·

(
ρz,t

ρz,s

)
= O2×1 . (4.14)

The resulting eigenvalues are

det

[
Qz

(
Ω

ωcs

)]
= 0 =⇒

(
Ω±z
ωzs

)2

= 2± 1 =⇒
∣∣Ω±z ∣∣ =

√
2± 1ωzs . (4.15)

Note that each frequency is a solution with positive or negative sign. The associated

eigenvectors are

Qr

(
Ω±

ωcs

)
·

(
ρ±z,t

ρ±z,s

)
= O2×1 =⇒

(
ρ±z,t

ρ±z,s

)
=

1√
2

(
1

∓1

)
. (4.16)

Therefore, there are two axial motions, and the axial coordinates of the individual

ions can be written in terms of those:
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Z+ = P+
z cos (Ω+

z t+ φ+
z )

Z− = P−z cos (Ω−z t+ φ−z )

}
=⇒

=⇒

(
zt

zs

)
=

1√
2

(
1 1

−1 1

)
·

(
Z+

Z−

)
=

1√
2

(
P+
z cos (Ω+

z t+ φ+
z ) + P−z cos (Ω−z t+ φ−z )

−P+
z cos (Ω+

z t+ φ+
z ) + P−z cos (Ω−z t+ φ−z )

)
.

(4.17)

If only the mode of frequency Ω−z = ωzs is excited, both ions oscillate in phase

with the same amplitude. In that case, the center of mass of the ions oscillates,

while the relative distance among them remains constant. Therefore, the mode

of frequency Ω−z is called axial center-of-mass mode. If instead only the mode of

frequency Ω+
z =

√
3ωzs, the relative distance between the ions oscillates and the

center of mass remains stationary. Therefore, the mode with frequency Ω+
z is called

axial breathing mode.

On the other hand, the radial eigenvalue problem (Eq. 4.13a) for the balanced crystal

is


(

Ω

ωcs

)2


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− i Ω

ωcs


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



+
1

2

(
ωzs
ωcs

)2


2 −1 0 0

−1 2 0 0

0 0 2 −1

0 0 −1 2


 ·

ρx,t

ρx,s

ρy,t

ρy,s

 =

= Qr

(
Ω

ωcs

)
·


ρx,t

ρx,s

ρy,t

ρy,s

 = O4×1 . (4.18)

The eigenvalues are found, as usual, by forcing the determinant of Qr (Ω/ωcs) to be

zero. This results in four second-degree algebraic equations,
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det

[
Qr

(
Ω

ωcs

)]
=

[(
Ω

ωcs

)2

−
(

Ω

ωcs

)
+

1

2

(
ωzs
ωcs

)2
][(

Ω

ωcs

)2

+

(
Ω

ωcs

)
+

1

2

(
ωzs
ωcs

)2
]

·

[(
Ω

ωcs

)2

−
(

Ω

ωcs

)
+

3

2

(
ωzs
ωcs

)2
][(

Ω

ωcs

)2

+

(
Ω

ωcs

)
+

3

2

(
ωzs
ωcs

)2
]

= 0 . (4.19)

The second term in square brackets (resp. fourth) is equivalent to the first (resp.

third) with Ω → −Ω. Therefore, as in the axial case, the eigenfrequencies are

duplicated, with positive and negative sign. Further, since the balanced crystal’s

axial frequencies are Ω±z =
√

2± 1ωzs, the equations associated to the first and

third terms in square brackets in Eq. 4.19 can be rewritten as

(
Ω±

ωcs

)2

−
(

Ω±

ωcs

)
+

1

2

(
Ω±z
ωcs

)2

= 0 . (4.20)

The superindex ± has been added to indicate the radial frequencies that are as-

sociated with the stretch and common axial frequencies. The solution to these is

equivalent to that of a single ion,

Ω±±
ωcs

=
1

2

(
1±

√
1− 2

(
Ω±z
ωcs

))
. (4.21)

The subindex identifies the sign of the square root (i.e. the frequency regime).

Note that Eq. 4.21 is identical to that of the radial frequencies of the single ion

(Eq. 2.13), using the frequencies of the two axial modes in place of the single ion’s

axial frequency. For that reason, the frequencies resulting from the + sign of the

square root inherit the name reduced-cyclotron frequencies4, and those that result

from the − sign, magnetron frequencies. Similarly, the frequencies associated to the

center-of-mass or axial breathing frequency also inherit these adjectives. Thus, Ω+
+

is the cyclotron breathing frequency, Ω−+ is the cyclotron center-of-mass frequency,

and so on. The frequency hierarchy will be Ω−+ > Ω+
+ > Ω+

− > Ω−−.

The eigenvectors associated to the eigenfrequencies are

4In the following the adjective reduced will be dropped from crystal modes and frequencies
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Qr

(
Ω±±
ωcs

)
·


ρ±x,t

ρ±x,s

ρ±y,t

ρ±y,s

 = 0 =⇒


ρ±x,t

ρ±x,s

ρ±y,t

ρ±y,s

 =
1

2


1

−i
∓1

±i

 , (4.22)

The sub-index (cyclotron or magnetron motion) has been removed from the eigen-

vectors because each of the eigenvectors is actually associated with two frequencies,

that is, the eigenvectors of both breathing motions are the same (and so are those

of the common modes). The same happened for the single ion, where the radial

eigenvectors were associated to both radial eigenfrequencies. Further, the solutions

with the opposite sign of Ω also result in the sign reversal of the imaginary units,

so that the relative phase between the y and x coordinates remains the same.

The trajectories can again be obtained from the eigenvectors:

xt =
1

2

[
P−+ cos

(
Ω−+t+ φ−+

)
+ P+

+ cos
(
Ω+

+t+ φ+
+

)
+P+

− cos
(
Ω+
−t+ φ+

−
)

+ P−− cos
(
Ω−−t+ φ−−

)]
(4.23a)

xs =
1

2

[
P−+ cos

(
Ω−+t+ φ−+

)
− P+

+ cos
(
Ω+

+t+ φ+
+

)
−P+

− cos
(
Ω+
−t+ φ+

−
)

+ P−− cos
(
Ω−−t+ φ−−

)]
(4.23b)

yt =
1

2

[
−P−+ sin

(
Ω−+t+ φ−+

)
− P+

+ sin
(
Ω+

+t+ φ+
+

)
−P+

− sin
(
Ω+
−t+ φ+

−
)
− P−− sin

(
Ω−−t+ φ−−

)]
(4.23c)

ys =
1

2

[
−P−+ sin

(
Ω−+t+ φ−+

)
+ P+

+ sin
(
Ω+

+t+ φ+
+

)
+P+

− sin
(
Ω+
−t+ φ+

−
)
− P−− sin

(
Ω−−t+ φ−−

)]
. (4.23d)

By analyzing the trajectories that result when only one of the amplitudes is non-zero,

it becomes apparent that the modes of frequency Ω−±, which were classified as center

of mass modes due to their association with the axial center-of-mass frequency Ω−z ,

are actually center-of-mass modes in their own right, i.e. they result in a motion
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where the relative position of the ions does not change. Similarly, the modes of

frequency Ω+
± are proper breathing modes, since they result in a stationary center

of mass.

As anticipated, a new stability condition results from the radial breathing frequencies

(Eq. 4.21):

Ω+
±

ωcs
∈ R =⇒ Ω+

z

ωcs
=
√

3
ωzs
ωcs

<
1√
2

=⇒ r =
ωzs
ωcs

<
1√
6
, (4.24)

This condition is stricter than the criterion for axial orientation of the crystal shown

in Ref. [98], ωzs < ω1 =⇒ ωzs/ωcs < 1/
√

3. Similarly to the case of a single

trapped ion, at the stability limit (r = 1/
√

6) the stretch radial eigenfrequencies

verify Ω+
+ = Ω+

− = ωcs/2.

4.1.2 The unbalanced crystal: axial motion

The eigenfrequencies of the axial motion of the unbalanced two-ion crystal (Eq. 4.13b)

are again found by zeroing out the determinant of the matrix Qz (Ω/ωzs):

det

[
Q

(
Ω

ωzs

)]
= 0 =⇒

=⇒
(

Ω±z
ωzs

)2

=

[(
κ
µ

+ 1
)

+
(

1
µ

+ 1
)

2κ
κ+1

]
±
√[(

κ
µ

+ 1
)

+
(

1
µ

+ 1
)

2κ
κ+1

]2

− 12κ
µ

2
.

(4.25)

The associated eigenvectors are

(
ρz,t

ρz,s

)
∝

1
2

{[(
κ
µ
− 1
)

+
(

1
µ
− 1
)

2κ
κ+1

]
±
√[(

κ
µ

+ 1
)

+
(

1
µ

+ 1
)

2κ
κ+1

]2

− 12κ
µ

}
− 2κ
κ+1


(4.26)

with a certain normalization factor. This factor disappears when the ratio between

the target and sensor ion’s amplitudes, ρz,s/ρz,t is considered. This ratio is of great

importance, since only the sensor ion can be detected optically – the greater this

ratio, the easier it is to optically detect energy stored in the mode in question.
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Figure 4.1: Axial modes of the unbalanced two-ion crystal. The left panel shows
the mode frequencies (normalized to the sensor ion’s axial frequency), and the right
panel the ratio between the target and sensor ion’s amplitudes associated to each
mode.

In the case of the mode of frequency Ω+
z the amplitude ratio is negative. This

was expected, since for the balanced crystal the mode of frequency Ω+
z was the

breathing mode, in which the ions move in antiphase with equal amplitude, resulting

in a stationary center of mass and an ion-ion distance that oscillates with the axial

breathing frequency. However, the center of mass of the crystal is not stationary in

the general case. For this reason, the mode with frequency Ω+
z is called axial stretch

mode as a generalization of the breathing mode. Similarly, the mode of frequency

Ω−z , results in a crystal with varying ion-ion distance, even though the ions still move

in phase; for that reason, the mode is called axial common mode.

Figure 4.1 presents the axial mode frequencies and amplitude ratios for charge ratios

of 1, 2 and 3. These are (in the particular case κ = 1) consistent with the results

reported in Ref. [42, 97] for the axial modes of a two-ion crystal.

4.1.3 The unbalanced crystal: radial motion

Analytical solutions to the radial motion of the unbalanced crystal (described by

Eq. 4.13a) exist – however, the resulting expressions are significantly more complex
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Figure 4.2: Cyclotron modes of motion of the unbalanced two-ion crystal. The
left panel shows the mode frequencies (normalized to the sensor ion’s free cyclotron
frequency) and the right panel shows the the ratio between the target and sensor ion’s
amplitudes associated to each mode. Note that the abscissa is not the mass ratio
µ, but µ/κ; this makes the curves for different values of κ nearly overlap. The inset
in the left panel shows the region µ/κ ∼ 1 in detail, where the reduced-cyclotron
frequencies of target and sensor ion are most similar. This is the only range where
coupling between the individual modified-cyclotron motions is significant; several
orders of magnitude separate the amplitudes of target and sensor ion everywhere
else.

than those of the balanced crystal or the axial mode. For that reason, numerical

solutions [103], which are only valid for a given ratio r = ωzs/ωcs, will be presented

instead. Figs. 4.2 and 4.3 present the eigenfrequencies and amplitude ratios of the

radial modes for r ' 0.04 (configuration used in the laser cooling experiments). The

behavior of the system for other values of r will be discussed in Sec. 4.1.4.

Four modes of motion appear when solving Eq. 4.13a, as expected – two with high

frequency and two of low frequency. For each pair there is a mode where the ions

move in phase coincidence and another one where the ions move in phase opposition.

Their frequencies and amplitude ratios at µ = κ = 1 match those of the balanced

crystal. They are therefore generalizations of these, and will be referred to as com-

mon(stretch) cyclotron(magnetron) modes, depending on the frequency regime and

relative phase of the individual ions. Common (−) and stretch (+) are again differ-

entiated with the superindex, whereas the subindex indicates the frequency regime



4.1. MODES OF MOTION OF AN UNBALANCED TWO-ION CRYSTAL 65

2.400

2.405

2.410

2.415

2.420

2.425

2.430

0 1 2 3 4 5 6 7 8
0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6 7 8

(3
∓

2)
10

3
Ω
± −
/ω

c

µ/κ

Stretch mode, κ = 1
Stretch mode, κ = 2
Stretch mode, κ = 3

Common mode, κ = 1
Common mode, κ = 2
Common mode, κ = 3

|ρ
s
/ρ

t|

µ/κ

Figure 4.3: Magnetron modes of motion of the unbalanced two-ion crystal. Note
that the common mode frequencies, Ω−−, are scaled by a factor of three so that they
fall roughly in the same range as the stretch mode frequencies, Ω+

−.

(− for the magnetron and + for the cyclotron).

It is worthwhile to notice that if the frequencies are grouped according to the relative

phase, the behavior of the single ion frequencies is maintained, i.e., the stretch

modes have the highest of the axial and magnetron frequencies, but the lowest of

the cyclotron ones.

The coupling strength between the individual ion’s modes of motion is evidenced

by the amplitude ratio depicted in Figs. 4.1, 4.2 and 4.3 – ratios closer to unity

means that both ions are involved in that particular mode of motion. This is the

case of the axial and magnetron modes. These are therefore best understood as a

collective crystal motion. In the case of the crystal cyclotron modes, however, the

coupling is weak whenever µ/κ 6' 1. These modes are best described, as in Ref. [99],

as slightly modified versions of the individual modified-cyclotron motions, instead

of as a collective crystal mode.

To test this hypothesis, the coupling terms (off-diagonal elements of the third 4× 4

matrix in Eq. 4.13a are neglected. The resulting eigenvalue problem can be separated

for each of the ions. After multiplying the equation of the target ion by µ/κ2, the

eigenvalue problems are
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Figure 4.4: Relative error committed using the no-coupling approximation to deter-
mine the reduced-cyclotron frequencies of the unbalanced crystal.
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for the target and sensor ion, respectively. These are equivalent to the eigenvalue

problem of the single ion (see Eq. 2.12) if the axial frequencies were instead ω′zt =

ωzt

√
1 + 2

κ+1
(in the case of the target ion) and ω′zs = ωzs

√
1 + 2κ

κ+1
(in the case of

the sensor ion). Inserting these altered axial frequencies into Eq. 2.13, the altered
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reduced-cyclotron frequencies
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ωct
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)(
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ωct

)2
 (4.28a)

ω′+,s =
ωcs
2

1 +

√
1− 2

(
1 +

2κ

κ+ 1

)(
ωzs
ωcs

)2
 (4.28b)

are obtained. Comparing these to the frequencies obtained by studying the full

crystal dynamics (i.e. comparing with the frequencies shown in Fig. 4.2) serves as a

test of this no-coupling approximation. The relative error commited in this approx-

imation is shown in Fig. 4.4. It is clear that far from µ/κ ' 1 the approximation

predicts frequencies that are quite close to the real ones. One can therefore conclude

that the cyclotron crystal modes can be thought of as individual ion modes.

4.1.4 Effects of the trap parameters

The modes of the ion crystal, as shown in the previous Section, are characterized by

their frequency and amplitude ratio (meaning the amplitude ratio of the individual

ions when only that crystal mode is oscillating). In this Section the effect of the

only trap-dependent quantity, r = ωzs/ωcs (see Eq. 4.13a) on the frequencies and

amplitude ratios will be analyzed. Given that the solution of the axial motion of

the unbalanced crystal is independent of r, only the radial motion will be addressed.

The presented results are restricted to κ = 1 – the behavior for other values of κ is

very similar.

To address the dependency of the cyclotron crystal frequencies with r, one may study

how well the no-coupling approximation holds. By trial and error it becomes clear

that two curves for a different r value are roughly scaled by a constant (this does not

hold as well around µ/κ ' 1, where the approximation breaks down). Therefore, a

good way to characterize this is to take a small r value as a reference, and study the

constant by which the error is increased for other trap configurations. The left panel

of Fig. 4.5 shows exactly this. Each of the datapoints is calculated by averaging the

ratio of a relative error curve (such as the ones shown in Fig. 4.4) with respect to

that of r = 0.005. Only κ = 1 was considered, and datapoints within µ ' 1 were

omitted, since the approximation is not valid in that case. The standard deviation

is used as an estimation of the uncertainty. By plotting the relative error ratio
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Figure 4.5: The left panel shows the scaling factor of the error committed using
the no-coupling approximation for r = ωzs/ωcs = 0.01, 0.02, 0.05 and 0.10, with
r = 0.005 as reference. The solid line is a power law fit. The right panel shows the
amplitude ratios. The region of strong coupling (i.e. where both ions have similar
amplitudes) extends further as r increases.

as a function of r in a double logarithmic scale, a power law dependency becomes

apparent. A fit yields an exponent of 4.077 (29) with a coefficient of determination

such that 1 − R2 ∼ 10−4. The conclusion to be drawn here is that as r increases

the coupling strength grows as well, and the cyclotron modes cannot be considered

as modes of the individual ions anymore. For such values of r a resolution of the

full eigenvalue problem (i.e. solving Eq. 4.13a instead of Eq. 4.27) is needed to

accurately predict the cyclotron crystal frequencies.

The behavior of the amplitude ratios of the cyclotron crystal modes near µ = 1

is presented in the right panel of Fig 4.5. The region of strong coupling, where

ρs/ρt ∼ 1, extends further as r = ωzs/ωcs is increased.

As per the magnetron modes, Fig. 4.6 shows the behavior for the same set of trap

configurations (r values). The datapoints in the left panel are calculated by aver-

aging (across µ ∈ [0, 8]) the ratio of the magnetron frequencies for a given r with

respect to those of r = 0.005. The standard deviations are used errorbars. A power

law fit (solid line) yields an exponent of 2.0044(17), in close agreement with the

behavior of the single ion (see Eq. 2.17). The coefficient of determination is such
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Figure 4.6: The left panel presents the ratio of the magnetron mode frequencies
(averaged over µ) for several trap configurations, r = ωzs/ωcs = 0.01, 0.02, 0.05
and 0.10. The frequencies of the configuration r = ωzs/ωcs = 0.005 are taken as a
reference. The solid line is a power law fit resulting in, as is the case in a single
trapped ion, in a linear dependence of the magnetron frequencies with respect to
the trapping voltage. The right panel shows the amplitude ratios for the four trap
configurations considered.
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Figure 4.7: Relevant frequencies to understand the stability of the single ion, bal-
anced crystal and unbalanced crystal. In all cases, r = 0.2 and κ = 1. The loss of
stability of the unbalanced crystal happens for an intermediate mass, greater than
the case of a balanced crystal, but smaller than that of the single ion.

that 1−R2 ∼ 10−6. The right panel, on the other hand, shows the amplitude ratio

(sensor over target ion) for the three configurations. As r grows, the degeneracy

of the magnetron frequencies of the individual ions lessens. For example, the mag-

netron frequency of the target and sensor ions differ by up to 5 % for r = 0.1 and

µ = 8, as opposed to under 1 % for r = 0.05 or even less than 100 ppm for r = 0.005.

As the frequencies grow appart, the coupling of the individual magnetron motions

weakens, as evidenced by the change in amplitude ratio.

Finally, it is worth to revisit the crystal orientation and stability. Equation 2.16

presented the maximum mass-to-charge ratio (of a single ion) that can be confined

in a given Penning trap. In this section, however, the parameter r is being used to

characterize the trap configuration – writing Eq. 2.16 in terms of r, µ and κ yields

ωzt
ωct

=

√
κ
µ
ωzs

κ
µ
ωcs

=

√
µ

κ
r <

1√
2

=⇒ µ

κ
<

1

2r2
. (4.29)

This is the stability condition for a single ion of mass µms and charge κqs stored in

a trap characterized by r. For an ion at the limit of stability the radial frequencies

would verify ω+,t = ω−,t.
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Figure 4.8: Frequencies of the stretch radial motions of the unbalanced two-ion
crystal. The motions becomes unstable when the stretch cyclotron and magnetron
frequencies coincide.

The presence of a second ion in the trap makes the confinement less stable. Equa-

tion 4.24 showed that for a balanced crystal with two ions of mass ms and charge qs,

stability was lost when r < 1√
6

(instead of r < 1√
2

for the single ion of the same mass

and charge). This is because of the stretch radial motions, as shown in Sec. 4.1.1. If

the trap configuration (value of r) is fixed and the ions are swapped with two ions

of mass µms and charge κqs, stability is lost when

ωzt
ωct

=

√
µ

κ
r <

1√
6

=⇒ µ

κ
<

1

6r2
. (4.30)

Again, the stretch cyclotron and stretch magnetron frequencies become equal at the

limit of stability.

In the case of the unbalanced ion, the situation is similar. Increasing µ/κ brings

the stretch cyclotron and stretch axial frequencies closer and closer, until they be-

come equal – beyond that point, increasing µ/κ gives the frequencies an imaginary

component, resulting in an exponential growth of the mode amplitude (i.e. insta-

bility). Figure 4.7 compares the relevant frequencies of the single ion of mass µms

and charge κms, of the balanced crystal with two such ions, and of the unbalanced

crystal. The loss of stability of the unbalanced crystal happens for an intermediate
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mass, greater than the case of a balanced crystal, but smaller than that of the single

ion.

Figure 4.8, on the other hand, shows the stretch radial frequencies of the unbalanced

crystal as a function of µ/κ for a few values of r and κ. In all cases, stability

of the stretch modes is lost before the predicted change of orientation (see the

discussion in Sec. 4.1) happens. Regardless, the values of r (that is, the trapping

potentials) that need to be used to cause instability of the stretch radial motions

for reasonable masses is too high. In short, one can be confident that for normal

operating conditions the unbalanced crystal will be stable and oriented axially.

4.1.5 Generalized invariance theorem

Back in Chapter 2, the invariance theorem, ω2
cs = ω2

+ + ω2
zs + ω2

zs (see Ref. [11]),

which holds under certain kinds of trap imperfections, was presented. Recently,

a more general version of the invariance theorem was derived in Ref. [100]. The

generalized invariance theorem is obtained for a two-dimensional array of N mi-

crofabricated Penning traps, where ions interact via Coulomb repulsion, but the

inter-ionic distance is determined almost exclusively by the position of the individ-

ual traps. Under these conditions, the 3N motional frequencies (whose deviation

from the un-perturbed frequencies depends mainly on the distance between individ-

ual traps) verify

3N∑
λ=1

ω2
λ =

N∑
j=1

ω2
c,j . (4.31)

Here, ωλ are each of the motional frequencies and ωc,j is the free cyclotron frequency

of the ion with index j. This result is valid under the same set of trap imperfections

as the original invariance theorem.

On the following it will be shown that the two-ion crystal considered in this work also

verifies the generalized invariance theorem – the expressions involved are, indeed,

identical to those shown in Ref. [100]. The first step would be to linearize Eqs. 4.6,

i.e. to introduce additional variables v = ṙ so that the equations of motion can be

written as a set of first order differential equations with twice the size:

ṙ = v

v̇ = f (r,v)
. (4.32)
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In matrix form,

(
I6 O6x6

O6x6 M

)
·

(
ṙ>

v̇>

)
=

(
O6x6 I6

E B

)
·

(
r>

v>

)
, (4.33)

where I is the identity matrix.

Introducing the ansatz r = ρe−iΩt, an algebraic system of equations results that can

be written as

(
O6x6 −iI6

E −iB

)
·

(
ρ>

Ωρ>

)
= Ω

(
−iI6 O6x6

O6x6 −M

)
·

(
ρ>

Ωρ>

)
. (4.34)

This is known as a linearization of the first companion form (see e.g. Ref. [52]), and

results in a generalized eigenvalue problem. Inverting the right-hand side matrix

(which is trivial, since it is diagonal) turns it into a standard eigenvalue problem,

(
O6x6 I6

−M−1E iM−1B

)
·

(
ρ>

Ωρ>

)
= Ω ·

(
ρ>

Ωρ>

)
. (4.35)

Once the problem has been expressed in this form, the treatment used in Ref. [100]

can be used. If Ω is an eigenvalue of the left hand matrix, Ω2 will be an eigenvalue of

the squared matrix with the same eigenvectors. Computing the trace of the squared

matrix one finds that the crystal’s eigenfrequencies verify

∑
Ω2 = ω2

ct + ω2
cs . (4.36)

During the trace computation it becomes clear that the contribution of a misaligned

magnetic field or electric fields whose Taylor expansion to second order is exact (e.g.

an elliptic deviation from the ideal trapping field) do not affect Eq. 4.36.

4.1.6 Quantized motion

As a previous step to the quantization of the motion, the classical Hamiltonian must

be derived. Using the notation introduced in Sec. 4.1.5, the canonical momenta

associated with the cartesian coordinates of the individual ions are

pi =
∂L
∂ṙi

= {µ, 1}mṙi + {κ, 1} qAi , (4.37)
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where either of the terms between curly brackets is used depending on the ion in

question. The Hamiltonian function is therefore given by

H =
6∑
i=1

piri − L =
(pt − κqA (rt))

2

2µm
+

(ps − qA (rs))
2

2m
+ Vcrystal , (4.38)

which, using the matrices defined in Sec. 4.1 and introducing T = BM−1B, can be

rewritten as

H =
6∑
i=1

(
p2
i

2Mii

+
1

4Mii

6∑
j=1

Bijpirj −
6∑
j=1

Bij
4Mii

ripj −
1

8

6∑
j=1

Tijrirj +
1

2

6∑
j=1

Eijrirj

)
.

(4.39)

This is identical to the expression obtained in Ref. [100], so the same quantization

can be used. In a general way, the ladder operators for each mode can be written as

â†λ =
6∑
i=1

(αλkp̂k + βλkr̂k) and âλ =
6∑
i=1

(α∗λkp̂k + β∗λkr̂k) (4.40)

(since p̂i and r̂i are self-adjoint). The Hamiltonian operator, in the adequate basis,

will be the sum of several harmonic oscillators,

Ĥ =
6∑

λ=1

~Ωλ

(
â†λâλ +

1

2

)
, (4.41)

Since pi and ri are canonical conjugates, the associated operators p̂i and r̂i verify

the usual commutation rules, i.e.

[r̂i, r̂j] = 0 [p̂i, p̂j] = 0 [r̂i, p̂j] = i~δij . (4.42)

If the ladder operators also verify the usual commutation rule,
[
aλ, a

†
λ′

]
= i~δλλ′ ,

it is easy to see that
[
Ĥ, â†λ

]
= ~Ωλâ

†
λ holds. Calculating all the terms in this

commutator (see Ref. [104]) the expressions

−iM−1βλ + i
2
M−1Bαλ = Ωλαλ

(Ω2
λM− iΩλB− E)α>λ = 0

(4.43)

are obtained. The second expression is none other than the original eigenvalue
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problem (Eq. 4.11), and therefore the resulting modes match the ones previously

obtained in frequency and amplitude ratio.

4.2 Manipulation of the two-ion crystal

In this Section the effects of an external electromagnetic field, in the form of a dipo-

lar driving, on the unbalanced two-ion crystal will be studied. This is very relevant

since the method to determine the crystal’s eigenfrequencies needs to drive each

of the modes with such a field. For identification for example, one could use the

axial motion and observe the oscillation amplitude when the crystal is simultane-

ously driven and laser cooled (see Refs. [105] and [102]). When direct observation

of a particular mode is not possible (see e.g. the cyclotron modes of the crystal in

Sec. 4.1.3, which are almost decoupled), the energy on that mode has to be trans-

ferred to another mode that involves large oscillations of the sensor ion. This is

done by means of a quadrupolar driving, much like the case of the single ion (see

Sec. 2.3.2).

The introduction of a dipolar driving in the axial direction can be accounted for

with an additional term in the equations of motion,

z̈t = − 1
µ

(
κ+ 2κ

κ+1

)
ω2
zszt + 1

µ
2κ
κ+1

ω2
zszs + κ

µ
αqVRF
delec

sin (ωRF t+ φRF )

z̈s = −
(
1 + 2κ

κ+1

)
ω2
zszt + 2κ

κ+1
ω2
zszs + αqVRF

delec
sin (ωRF t+ φRF )

. (4.44)

A change of base is required to write these in terms of the eigenmodes of the crystal.

It can be obtained from the eigenvectors (Eq. 4.26) or, equivalently, from the modes’

amplitude ratios presented in Fig. 4.1. The change of base matrix is

Z± =
1√

1 + (ρzs/ρzt)
2

(
1

ρzs/ρzt

)
=

(
a±z

b±z

)
=⇒

(
Z+

Z−

)
=

(
a+
z b+

z

a−z b−z

)(
zt

zs

)
.

(4.45)

The normalization is such that the components of the eigenvectors verify (a±z )
2

+

(b±z )
2

= 1. The equations of motion in this basis are
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Z̈
+ = − (Ω+

z )
2
Z+ + q

m

(
κ
µ
a+
z + b+

z

)
αVRF
delec

sin (ωRF t+ φRF )

Z̈− = − (Ω−z )
2
Z− + q

m

(
κ
µ
a−z + b−z

)
αVRF
delec

sin (ωRF t+ φRF )
. (4.46)

Comparing with Eq. 2.29, it is clear that the amplitude of the modes evolves ac-

cording to

P±z '
q

m

(
κ

µ
a±z + b±z

)
αVRFTRF
2Ω±z delec

sinc

(
∆ω

2
TRF

)
(4.47)

when driven near resonance. The quantity

q/m|±z =
q

m

(
κ

µ
a±z + b±z

)
(4.48)

is defined as the effective charge-to-mass ratio of the given mode, since it quantifies

how strongly the mode responds to the electric field.

The radial eigenmotions, on the other hand, have eigenvectors of the form (a,−ia, b,−ib).
a and b are obtained by solving Eq. 4.13a, resulting in


R−+

R+
+

R+
−

R−−

 =


a−+ ia−+ b−+ ib−+

a+
+ ia+

+ b+
+ ib+

+

a+
− ia+

− b+
− ib+

−

a−− ia−− b−− ib−−

 ·

xt

yt

xs

ys

 , (4.49)

where a±± and b±± are again calculated from the modes’ amplitude ratios (see Figs. 4.2 and 4.3)

and the modes have been sorted in order of decreasing frequency.

The radial equations of motion with the addition of the driving term in the x direc-

tion are



ẍt = 1
2

1
µ

(
κ+ 2κ

κ+1

)
ω2
zsxt + κ

µ
ωcsẏt − 1

2
1
µ

2κ
κ+1

ω2
zsxs + κ

µ
q
m
αVRF
delec

sin (ωRF t+ φRF )

ÿt = 1
2

1
µ

(
κ+ 2κ

κ+1

)
ω2
zsyt − κ

µ
ωcsẋt − 1

2
1
µ

2κ
κ+1

ω2
zsys

ẍs = 1
2

(
1 + 2κ

κ+1

)
ω2
zsxs + ωcsẏs − 1

2
2κ
κ+1

ω2
zsxt + q

m
αVRF
delec

sin (ωRF t+ φRF )

ÿs = 1
2

(
1 + 2κ

κ+1

)
ω2
zsys − ωcsẋs − 1

2
2κ
κ+1

ω2
zsyt

,

(4.50)

which in the eigenmode basis are
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Figure 4.9: Absolute value of the effective charge-to-mass ratio of the different crystal
modes (see Eqs. 4.48 and 4.53) under dipolar driving. The values are normalized to
the charge-to-mass ratio of the sensor ion, q/m. Note that all stretch modes have
an effective charge-to-mass of zero when µ = 1.



Ü−+ = −
(
Ω−+
)2
U−+ + q

m

(
κ
µ
a−+ + b−+

)
αVRF
delec

sin (ωRF t+ φRF )

Ü+
+ = −

(
Ω+

+

)2
U+

+ + q
m

(
κ
µ
a+

+ + b+
+

)
αVRF
delec

sin (ωRF t+ φRF )

Ü+
− = −

(
Ω+
−
)2
U+
− + q

m

(
κ
µ
a+
− + b+

−

)
αVRF
delec

sin (ωRF t+ φRF )

Ü−− = −
(
Ω−−
)2
U−− + q

m

(
κ
µ
a−− + b−−

)
αVRF
delec

sin (ωRF t+ φRF )

. (4.51)

The evolution of the mode amplitudes is therefore identical to that of the axial

modes,

P±± '
q

m

(
κ

µ
a±± + b±±

)
αVRFTRF
2Ω±±delec

sinc

(
∆ω

2
TRF

)
, (4.52)

and so is their effective charge-to-mass ratio,

q/m|±± =
q

m

(
κ

µ
a±± + b±±

)
. (4.53)

Figure 4.9 presents the effective charge-to-mass ratio of the different modes. Note

that the absolute value is given; some of the effective charge-to-mass ratios, as
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calculated in this Section, are negative. This is an artifact due to the choice of

sign on the components of the eigenvectors (the first component is always taken as

positive).

All stretch modes present zero effective charge-to-mass ratio at µ = 1 (equal masses).

This is due to the geometry of the stretch modes: since both ions move with equal

amplitudes in opposite directions, a force exerted on them with equal magnitude

and direction does not favor an increase in amplitude.

The cyclotron modes’ effective charge-to-mass ratio are very close to q/m and

κq/µm, i.e., to the charge-to-mass ratios of the sensor and target ion, respectively.

This is expected, since the cyclotron modes can be considered as modes of motion

of the individual ions (see Sec. 4.1.3).

4.3 Anharmonicities and systematic effects

By using a small-displacement approximation around the equilibrium configuration

of the crystal, the crystal’s motion has been shown to be the superposition of six har-

monic eigenmotions. However, the Coulomb interaction between the ions is highly

anharmonic, since its expansion reads |z − d|−1 = 1/d ·
∑∞

n=0 (z/d)n. Therefore, a

quantification of the frequency shifts is needed. Two approaches have been followed

in this regard. If a measurement procedure similar to the one outlined in Ref. [102] is

to be used, the amplitudes would be in the order of d – thus, a classical perturbative

treatment of the first few terms in the Taylor expansion of the Coulomb potential

would not suffice. Therefore, a numerical approach was chosen, where the complete,

1/r interaction is computed. An ad-hoc program that simulates the trajectories of

the two ions and then performs a Fast Fourier Transform (FFT) to obtain the mo-

tional frequencies was created. In view of the results obtained in this way, a study

of the frequency shifts in the quantum regime is required.

4.3.1 Shifts in the classical regime

The program created for this section can solve an arbitrary number of differential

equations, so it is possible to switch between the small-displacement (Eqs. 4.6) and

full-interaction (Eqs. 4.2) pictures.

The amplitude-dependent shift is the difference between the frequency observed in

the small amplitude regime (see Sec. 4.1) and the actual oscillation frequency at
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Figure 4.10: Amplitude-dependent shift of the common axial motion. The target ion
is 257Rf+, and the trap configuration is ωzs = 2π · 100 kHz and ωcs = 2π · 2.689 MHz.
The simulation is 140 ms long with a step of 2 ns. The vertical dashed line indicates
the oscillation frequency in the small amplitude regime. The shifts obtained from
the Lorentzian fits are -8.030122(69) Hz for 3 µm and -34.435650(74) Hz for 6.2 µm.

that amplitude. An example is shown in Fig. 4.10. The datapoints correspond to

a 257Rf+–40Ca+ crystal oscillating in the common axial mode with the target ion

oscillating the amplitudes of amplitudes 0.5 µm, 3 µm and 6.2 µm. The resulting

shifts are -8.030122(69) Hz for 3 µm and -34.435650(74) Hz for 6.2 µm. They

therefore scale roughly with the square of the oscillation amplitude. This fact could

be used to correct the shift from the optically determined amplitude, reducing (up

to a point) the weight of the shift.

In an actual experiments like those presented in Refs. [102, 101], one observes the

steady state attained when the energy the ion gains due to the driving and the energy

removed by the laser cooling. Therefore, the amplitude of oscillation is constant

during the detection process. If a different method, where the driving and detection

are separated in time, were used, the ion would sweep through a range of oscillation

amplitudes, each of them associated to different frequencies. Consider for example

Fig. 4.11, which shows the target ion’s oscillation amplitude when the 257Rf+–40Ca+

crystal is driven from rest with a certain driving amplitude. It becomes clear that

the amplitude reached is lower than it would be in absence of anharmonicites (e.g.
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Figure 4.11: Resulting amplitude of the target ion as a function of the driving
frequency when the 257Rf+–40Ca+ crystal’s common axial mode is driven at different
amplitudes. Each of the curves is normalized to the amplitude that would be reached
if the anharmonicities are neglected (indicated in the labels). The parameters used
in the simulation are as in Fig. 4.10, with the addition of a dipolar axial driving,
also 140 ms long.

the maximum amplitude for the yellow curve is 5.4 µm, whereas 8 µm would be

reached if no amplitude dependent shifts were present). It is also clear that the

maximum is between the unperturbed and amplitude-shifted frequencies.

The case of the common axial mode is not the least favorable when it comes to

frequency shifts. The approximation of the Coulomb interaction to a harmonic

potential is broken when the ion-ion distance changes. Therefore, the stretch mag-

netron and stretch axial modes (where the ions move in phase opposition) present

the largest shifts. For the same reason, the common magnetron mode (where the

ions move in phase with almost identical amplitudes, see Sec. 4.1.3) presents negli-

gible shifts. The cyclotron modes, being almost decoupled, result in small frequency

shifts, similar to one another. The next section provides numbers that back up this

qualitative analysis.

Due to the large shifts that are obtained for the stretch magnetron and axial modes,

any measurement in the classical regime that involves these frequencies is not fea-

sible. It is possible to determine the crystal’s mass ratio µ from the common axial
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frequency (see Sec. 4.4.1). However, the effects of the Doppler-cooled stretch mag-

netron mode will have to be quantified experimentally, since (as shown in the next

section) the any amplitude in the stretch magnetron mode significantly affects all

the modes’ frequencies.

4.3.2 Shifts in the quantum regime

If the crystal motion is in the quantum regime (resulting in amplitudes significantly

smaller than the inter-ion distance d) the importance of the successive terms in the

Coulomb potential’s expansion does indeed decrease as their order grows. Therefore,

a perturbative treatment is appropriate. Ref. [106] will be followed here. Since the

contribution of odd order terms of the expansion vanishes, the next contribution

comprises both the third term of the Coulomb’s expansion to second order pertur-

bation theory and the fourth order term of the expansion to first order perturbation

theory:

∆E = 〈nλ1 . . . nλ6|V
(4)
Coul |nλ1 . . . nλ6〉+

∑
{n′λ1 ...n′λ6} 6=
{nλ1 ...nλ6}

〈
n′λ1 . . . n

′
λ6

∣∣V (3)
Coul |nλ1 . . . nλ6〉∑

λ ~Ωλ (nλ − n′λ)
,

(4.54)

where the succesive nλi are the number of phonons in each of the modes5.

In order to calculate the corrections, the expansion of the Coulomb potential must

be written in terms of these modes of the crystal. The first step [106] is to change

to the mass-weighted coordinates, r′i =
√
miri. Since ∂/∂r′i =

(
1/
√
mi

)
∂/∂ri, the

third and fourth order terms of the expansion can be written as

V
(3)
Coul =

∑
i,j,k

1

3!

1
√
mimjmk

∂3VCoul
∂ri∂rj∂rk

r′ir
′
jr
′
k (4.55)

and

V
(4)
Coul =

∑
i,j,k,l

1

4!

1
√
mimjmkml

∂4VCoul
∂ri∂rj∂rk∂rl

r′ir
′
jr
′
kr
′
l , (4.56)

5Each of the λi labels correspond to one of the modes of oscillation of the crystal (nλ1
= n−+,

nλ2
= n++, nλ2

= n+z , . . . ). Using this notation allows for more compact expressions, since sums
over the crystal modes appear in many places.
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respectively. Introducing

A
′ (3)
ijk =

1

3!

1
√
mimjmk

∂3VCoul
∂ri∂rj∂rk

and A
′ (4)
ijkl =

1

4!

1
√
mimjmkml

∂4VCoul
∂ri∂rj∂rk∂rl

, (4.57)

these can be written as V
(3)
Coul =

∑
i,j,k A

′ (3)
ijk r

′
ir
′
jr
′
k and V

(4)
Coul =

∑
i,j,k,lA

′ (4)
ijklr

′
ir
′
jr
′
kr
′
l,

respectively.

Another change of base, this time between the mass-weighted coordinates and the

normal modes, needs to be derived to write the expansion in terms of the normal

modes. This can be done transposing Eqs. 4.45 and 4.49. In that case, defining

G
′ (3)
ijk = σ′λ1σ

′
λ2
σ′λ3

∑
i,j,k

e′ iλ1e
′ j
λ2
e′ kλ3A

′ (3)
ijk and G

′ (4)
ijkl = σ′λ1σ

′
λ2
σ′λ3σ

′
λ4

∑
i,j,k,l

e′ iλ1e
′ j
λ2
e′ kλ3e

′ l
λ4
A
′ (4)
ijkl

(4.58)

(where σ′λ =
√

~/ (2Ωλ)) and taking into account that the position operators asso-

ciated to each of the modes, R′λ, that accompany these can be written in terms of

the ladder operators as R′λ = σ′λ

(
â†λ + âλ

)
,

V
(3)
Coul =

∑
λ1,λ2,λ3

G
′ (3)
ijk

(
â†λ1 + âλ1

)(
â†λ2 + âλ2

)(
â†λ3 + âλ3

)
(4.59)

and

V
(4)
Coul =

∑
λ1,λ2,λ3,λ4

G
′ (4)
ijkl

(
â†λ1 + âλ1

)(
â†λ2 + âλ2

)(
â†λ3 + âλ3

)(
â†λ4 + âλ4

)
(4.60)

result. Once these are available, calculating the correction to the energy is a matter

of evaluating brackets of combinations of ladder operators (see Ref. [106]). The shift

of the transition nλ ↔ nλ + 1, obtained by subtracting the corrections to the nλ + 1

and nλ levels (with all other occupation numbers constant) is then
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~∆Ωλ ({nλ′} , nλ) = 12

[
(nλ + 1)G

′ (4)
λλλλ +

∑
λ′ 6=λ

G
′ (4)
λ′λ′λλ (2nλ′ + 1)

]

− 36

~
∑
λ′ 6=λ

(2nλ′ + 1)

2Ωλ′

(
G
′ (3)
λ′λ′λ

)2

4Ω2
λ′ − Ω2

λ

+
2Ωλ

(
G
′ (3)
λλλ′

)2

4Ω2
λ − Ω2

λ′
+
G
′ (3)
λλλG

′ (3)
λ′λ′λ

Ωλ

+
G
′ (3)
λ′λλG

′ (3)
λ′λ′λ′

Ωλ′


− 6

~
(nλ + 1)

10
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′ (3)
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The so-called cross-coupling matrix, which relates frequency shifts with occupation

numbers, is obtained by differentiating with respect to the occupation numbers. In

the case of the diagonal terms,
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whereas for the off-diagonal ones,
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The cross-coupling matrix for e.g. the 257Rf+–40Ca+ pair under the trap configura-

tion ωzs = 2π · 100 kHz and ωcs = 2π · 2.689 MHz is [97]
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(4.64)

It is relevant to see that a presence of even a few quanta in the stretch magnetron

motion introduces significant shifts in the frequencies of all modes. The next mode

in terms of size of the arising shifts is the axial stretch mode.

4.4 Mass measurements using the unbalanced two-

ion crystal

Once the motion of the unbalanced two-ion crystal has been characterized, a way to

measure the relevant frequencies and, from these, obtain the crystal’s mass ratio µ is

needed. Given the large amplitude-dependent shifts that appear due to the Coulomb
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interaction’s anharmonicity (see Sec. 4.3), especially in the stretch magnetron and

stretch axial modes, a procedure similar to that presented in Refs. [101, 102] to

measure all the crystal’s eigenfrequencies becomes unfeasible. Two possibilities re-

main. The common axial mode alone, whose frequency can be linked to the mass

ratio, can be used by itself to perform non-destructive identification of an ion. This

mode presents a moderate amplitude dependent frequency shift that must never-

theless be accounted for (see Sec. 6.4). This could potentially be corrected, given

that the sensor ion’s oscillation amplitude is the actual measured quantity. If bet-

ter performance is required, all modes need to be involved. This can only be done

in the quantum regime, where the shifts are smaller and, more importantly, non-

classical measurement procedures can be used [107]. This section will present both

possibilities.

4.4.1 Heavy ion identification using the common axial mode

From Eq. 4.13b, zeroing out the determinant of the matrix Qz (Ω/ωzs),
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[
Q

(
Ω

ωzs

)]
= 0 =⇒ µ =

1(
Ω±z
ωzs

)2

 (
2κ
κ+1

)2(
Ω±z
ωzs

)2

−
(
1 + 2κ

κ+1

) +

(
κ+

2κ

κ+ 1

) .

(4.65)

Differentiating with respect to the frequency ratio Ω±z /ωzs, and taking into account

that

∆
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(where ∆ωzs/ωzs is neglected because ωzs is the axial frequency of the sensor ion

and is therefore not subjected to the systematics introduced by the presence of a

second ion), the uncertainty in µ can be expressed as

∆µ =
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Figure 4.12: Relationship between relative uncertainties in mass and axial frequen-
cies.

The relationship between the relative uncertainty in the mass ratio µ and the axial

eigenfrequencies of the crystal Ω±z that arises from these expressions is shown in

Fig. 4.12. The dependency in the charge ratio κ is implicit in the derivative on the

right-hand side of Eq. 4.67. The stretch modes are shown for completeness only,

since the large systematic errors that would arise when measuring its frequency (see

Sec. 4.3). It becomes clear that for target ions significantly heavier than the sensor

ion one obtains

∆µ

µ
' 2

∆Ω−z
Ω−z

. (4.68)

This enables a determination of the mass ratio of the two ions by measuring only

two frequencies, only one of which is a crystal frequency. However, since these are

axial frequencies (determined by the electrostatic field) the voltage stability becomes

paramount. As shown in Sec. 4.1.2, the crystal’s eigenfrequencies are proportional

to the axial frequency of the sensor ion. Since the latter responds to trapping voltage

fluctuations as δωz,s/ωz,s = δU/2U , the fluctuations of the common axial frequency

would be δΩ−z /Ω
−
z = Ω−z /ωz,s · δU/2U . For our expected value of δU/2U ∼ 10−7,

this should be second to the amplitude dependent shifts in limiting the achievable

uncertainty. This procedure may therefore be best suited for non-destructive iden-
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tification of heavy ions, e.g. monitoring the mass of a trapped SHE by driving the

crystal near the resonance frequency until an α decay happens. At that point the

driving will no longer be on resonance, and the sensor ion will no longer oscillate

visibly.

4.4.2 Heavy ion mass determination using all modes of mo-

tion

As presented in Sec. 4.1.5, there is a relationship between the crystal’s eigenfre-

quencies and the target ion’s free cyclotron frequency (and therefore the target

mass). However, the frequency shifts that arise due to the Coulomb interaction’s

anharmonicity are not among the imperfections the generalized invariance theorem

is impervious to. Therefore, an excelent level of control of each of the modes of

motion is required.

Ref. [108] studies the limits of Doppler and sideband cooling of a single ion in a

Penning trap. Doppler cooling with axialization (coupling of the radial modes) is

shown to cool down to ∼100 quanta for both the magnetron and modified-cyclotron

motions in a wide range of trap configurations. The large shifts that arise with such

quantum numbers, especially for the stretch magnetron motion, hinder any attempts

to precisely measure all six of the crystal’s eigenfrequencies. Cooling to the ground

state of motion is therefore a must if such a measurement is to be done. For a

single ion in a Penning trap, occupation numbers 〈n+〉 < 1 and 〈n−〉 ∼ 1 have been

reported [108]. It remains to be seen how these will translate into an asymmetric

cristal. Cooling to near the ground state of unbalanced crystals has already been

achieved in Paul traps [109, 110].

Once cooling to the ground state of the unbalanced ion has been translated into the

Penning trap, there are several possibilities to determine the eigenfrequencies of the

unbalanced crystal. Procedures using non-classical methods have been employed to

measure motional frequencies [107] of a single ion in a Paul trap. A thorough study

of the possibilities is being developed for this particular case [111].

It is relevant to note that, depending on the desired precision, it may not be necessary

to measure all six of the crystal’s eigenfrequencies using the target ion. A more

readily available ion may be used in some cases, since some of the frequencies (stretch

cyclotron and both magnetron frequencies) are quite mass insensitive. For example,

the difference between the stretch cyclotron frequencies of the crystals 257Rf2+–40Ca+
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and 208Pb2+–40Ca+ is under 0.3 Hz – using this value would introduce a systematic

error in the order of 6 · 10−7. The variation in the magnetron frequencies is larger,

with 0.7 and 3 Hz for the common and stretch magnetron modes, respectively. The

systematic errors that would be introduced are ∼ 10−9 and ∼ 10−8. Depending on

the desired precision, these frequencies will have to be measured, or the estimation

will suffice. One could also correct the reference values, based on the existing mass

value for the target ion.



Chapter 5

Control system for unbalanced

two-ion crystal experiments

The previous Chapter presented the search for a non-destructive mass measurement

technique using a laser-cooled ion as a detector. The motion of the resulting two-ion

crystal was studied. Six modes of motion appear, described extensively in Sec. 4.1.

After studying the effects of the Coulomb interaction’s anharmonicity (see Sec. 4.3),

there are two possibilities: either a measurement based on the determination of

the common axial mode’s frequency (similar to those presented in Refs. [102, 101])

for identification at Doppler limit energies, or a measurement of all the crystal’s

eigenfrequencies in the quantum regime.

An advanced system for the control of the experiment and data acquisition is re-

quired in order to perform these measurements. There are many types of devices

involved, such as lasers (up to 13 beams for the simplest approach to Doppler and

ground state cooling, see Sec. 2.4), power supplies, fast switches and radiofrequency

sources for the control portion, and Electron-Multiplying Charge-Coupled Devices

(EMCCD) cameras or PhotoMultiplier Tubes (PMT) for acquisition. Precise timing

control is required e.g. to transport and manipulate ions or to synchronize control

and acquisition.

Before and during a significant portion of this work, the aforementioned tasks were

achieved with a mix of software solutions. To define the timing and to control RF

generators, GSI’s CS framework [112, 113, 114] in combination with MSU’s MM6

sequencer and GUI [115, 116, 117] were used. More details on the implementation

of these in the laboratory can be found in Ref. [59]. While this combination has

many advantages, it was never made to perform laser cooling or optical detection.

89
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Instead, a customized program was used to control the lasers [118] and the EMCCD

and PMT general purpose software, provided by the manufacturers, were used for

acquisition. Analysis of the images was then performed manually after the mea-

surements had been carried out. Therefore, there was no unified control and data

acquisition software in the laser experiments reported in Refs. [102, 105, 119], nor

feedback during the measurements due to the lack of simultaneous analysis.

A unified software solution, and especially automated analysis, was therefore needed.

A system based on ARTIQ (Advanced Real-Time Infrastructure for Quantum physics

– see Ref. [120]) was chosen. This Chapter will justify the choice and report on the

creation of an integrated control and data acquisition system for mass measurements

based on optical detection using unbalanced two-ion crystals. The control of the

experiment, except for the lasers1, as well as the acquisition, have been addressed.

5.1 The ARTIQ ecosystem

The ARTIQ ecosystem consists of software and hardware. The software is referred

to as ARTIQ as well, whereas the hardware is called Sinara. Both are open source.

The software uses a Python dialect as a programming language to describe the

experiments. An interpreted language is not the best solution when precise timing is

required – that is why the quasi-Python code is compiled and run on an FPGA card.

This results in nanosecond-level resolution and sub-microsecond-level latencies. It

can therefore maintain the exacting timing performance needed for experiments

involving ion manipulation and transport, while enabling the use of optical detection

hardware, namely EMCCD cameras and PMTs. Given its Python roots, many

existing packages can be used to automate analysis as well.

The Sinara hardware, on the other hand, revolves around a FPGA card and is mod-

ular. The FPGA carrier presents Eurocard Extension Module (EEM) connectors, to

which a number of devices can be connected2. The Sinara hardware cannot fulfill

1In the short term, control of the lasers will be integrated by using ARTIQ’s DAC in combination
with the double pass AOM setup described in Ref. [118]. However, that relies solely on calibration,
since there is no feedback of the resulting laser frequency. To solve this, the existing ARTIQ
software to control a HighFinesse wavemeter or custom drivers for the Menlo frequency comb [121]
can be used to have live frequency feedback. There are two alternative solutions. In an online
conference (ARTIQ day) within the COST Action CA17113, two possibilities were presented:
either the Master Control Program (MCP) package, created by K. Singer, or even new firmware
for the wavemeter created by ARTIQ’s parent company, could be used.

2Development of new modules is still ongoing. The best place to look for the existing and
in-development modules is Sinara’s GitHub page and, in particular, the Wiki [122].
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all of the experimental requirements. However, ARTIQ is prepared to work with

devices outside its ecosystem using the so-called Simple Python Communications

(SyPiCo) library, provided a driver is created for the purpose. Thanks to this possi-

bility, devices already present in the laboratory (such as DC voltage power supplies,

arbitrary function generators or the EMCCD camera) could be incorporated in the

new system.

The most relevant Sinara modules for this particular use case are the Digital Input-

Output modules, that provide TTL signals for timing control. Three modules, with

eight channels each, were chosen when configuring the crate. The features, which

are sufficient for the experiments envisioned in this work, include an output channel

impedance of 50 Ω, a minimum pulse width of 3 ns, and a maximum toggle rate of

150 MHz with 50 % duty cycle.

The other modules incorporated in the crate configuration are:

• Zotino: 32 channel Digital-to-Analog Converter (DAC) with a ±10 V range

and 16-bit resolution

• Urukul : 4 channel Direct Digital Synthesis (DDS)-based frequency synthesizer

with a 1-400 MHz range and 32-bit frequency resolution

• Sampler : 8 channel Analog-to-Digital Converter (ADC) with 16-bit resolution

and a sample rate up to 1.5 MHz

• Grabber : a frame grabber that reads the EMCCD output using the Cam-

eraLink interface, therefore bypassing the slow USB connection. However, it

does not allow the use of the full sensor – instead, the number of counts within

several Regions Of Interest (ROIs) is read out.

A detailed description of the full capabilities and usage of the base ARTIQ software

is beyond the scope of this work. Such a description can be found in the manual

[123]. A description of some concepts, however, is relevant to understand the work

done to incorporate new devices to the control system aiming at monitoring the

two-ion crystal and to analyze the data on-line.

In terms of timing performance, the devices that form the control system can be

classified into those that can provide good temporal resolution and low latency,

which are referred to as realtime hardware. These are the Sinara modules, connected

via EEM to the FPGA carrier. On the other hand, devices that communicate
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using slower channels, such as USB, and therefore cannot achieve the same timing

performance, are referred to as non-realtime hardware. In ARTIQ, the former are

controlled by code that is compiled and runs at the FPGA (the so-called kernels),

whereas the latter are controlled by regular Python code that is run in a PC.

A kernel can execute Python code in a PC using the Remote Procedure Call (RPC)

mechanism. This procedure is transparent to the user. The RPC mechanism is

used, among other things, to communicate with the non-realtime hardware. The

software that controls this hardware and enables communication is called Network

Device Support Package (NDSP). They are composed of two main parts:

• The driver : this is the Python code that actually communicates with the

device. For it to be part of a NDSP, the driver functions must be methods of

a single object, an a simulation mode and ping method must be implemented.

• The controller, which instantiates, initializes and terminates the driver. It is

usually started by one of ARTIQ’s components (the controller manager) and is

kept running continuously. It then receives commands from the client (either

over the network or from the PC in which it is running through the localhost

interface), performs the actions and returns the results. It can be configured

to run the driver in simulation mode (e.g. for debugging), and it calls the

ping method every 30 s to verify that the connection with the device is still

working.

Optionally the NDSP can also have a client (a generic one, provided with ARTIQ,

often suffices) and a mediator when core devices (such as a TTL channel) are to be

used within the driver.

In the following, the creation of a few NDSPs to incorporate additional hardware

into the control system is presented.

5.2 Extending ARTIQ

The devices (already available in the lab) used to address the experimental require-

ments that fall outside of the Sinara modules’ capabilities are:

• Two Agilent 33210A function generators for signals under 1 MHz, which will be

used to drive the motional modes (since only one of the modes is above 1 MHz

for ions heavier than ∼ 100 u for usual operating conditions, see Chapter 4)
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Figure 5.1: Sketch of the devices involved in the control and acquisition system.
The Sinara crate contains the FPGA card and the TTL outputs used to control the
timing. The voltages can be provided either by Sinara’s Zotino card or the CAEN
SY1527 crate. The USB connection is used instead of the crate’s frame grabber card
to obtain the full camera image.

• A CAEN SY1527 crate with several boards, including a CAEN A1510 12-

channel floating power supply with 100 V range and 20 mV resolution, that

will be used to set the voltages of any trap electrodes requiring more than 10 V

• An Andor iXon Ultra 888 EMCCD camera used to image the laser-cooled ions,

and

• A Hamamatsu PMT connected to the C8855-01 counting unit which is used

if the spatial distribution of the fluorescence is not relevant

The complete setup, including the Sinara crate and these devices, together with the

connections that join them, is shown in Fig. 5.1. NDSPs were created to incorporate

these devices into the control system – they will be presented in the following,

classified according to the method used to communicate with the device.
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5.2.1 Trapping potentials: CAEN power supply

To operate the open-ring Penning trap, voltages larger than 10 V are required. This

means that the Zotino DC power supply integrated in the Sinara module does not

suffice for this purpose. In the past, the CAEN SY1527 has been used to bias

the trap electrodes. This system can be used in custom software, since the vendor

provides the CAENHVWrapper library [124]. This library, given as a .lib file, is

statically linked. This means that the common method using to integrate C code

into Python (the ctypes library) will not work. That does not mean that such

libraries cannot be used – statically linked C libraries can be integrated in Python

if one builds a Python Extension Module (PEM) [125].

To create a PEM, Python’s Application Programming Interface (API), a C library

that contains Python-like structures, is used. The API is provided by the Python

installation – one needs to use an include preprocessing directive that tells the

compiler where this library can be found. One would then wrap the functions from

the original library using only the Python-like data structures for input and output.

This is considered a thin wrapper, since it does not perform actions on its own –

it just converts data structures and calls functions from the vendor library. For

example, to wrap the initialization procedure, whose signature is

CAENHVRESULT CAENHV_InitSystem( CAENHV_SYSTEM_TYPE_t system ,

int LinkType , void *Arg , const char *UserName ,

const char *Passwd , int *handle );

one would create something akin to the C function shown in Snippet 5.1. Two

conversions are made in that function: the first (from Python data structures to

C data structures) is carried out by the PyArg ParseTuple function. This func-

tion parses the args variable, which is a tuple that contains the arguments given

when called (in Python) and stores them into C variables, in this case, IP, status,

user and password. If there is a problem during the parsing process, the func-

tion returns false, and the call to the vendor’s library does not take place. The

second conversion takes place at the return statement: the C integer handle is con-

verted to a Python integer using the PyLong FromLong function. For other types

of returned variables there are similar functions, such as PyFloat FromDouble or

PyUnicode FromStringAndSize. Note that no attempt to manage errors has been

made, other than returning a negative handle value if there is a problem. This is

again because the PEM is a thin layer created to deal only with the conversion

between C and Python data structures – all the error handling is done in Python,
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#include "/path/to/Python.h"

static PyObject *method_initsystem(PyObject *self , PyObject *args)

{

char *IP, *user , *passwd;

int status=-1, handle =-1;

if(! PyArg_ParseTuple(args , "siss", &IP , &status , &user , &passwd ))

handle =-1;

else

{ // SY1527 , LINKTYPE_TCPIP are constants defined elsewhere

status=CAENHV_InitSystem(SY1527 ,LINKTYPE_TCPIP ,IP ,user ,

passwd , &handle );

if (status != CAENHV_OK) handle =-1;

}

return PyLong_FromLong(handle );

}

Snippet 5.1: Extract of the CAEN shim layer.

taking advantage of its features.

Once the necessary functions have been wrapped, a distutils package is created

to install the wrapper into the Python environment. With these thin wrappers

available in the Python environment, the NDSP can be created.

Due to timeout issues, the CAEN NDSP is slightly different from those of the Agilent

function generators and EMCCD camera (see Secs. 5.2.2 and 5.2.3). Instead of

initiating communication with the hardware when the controller is started, dummy

init and ping methods are implemented, and the kernels must open and close the

connection to perform any voltage changes. A use example is given in Snippet 5.2.

The interaction between the different layers of the NDSP is presented as a execution

specification UML diagram in Fig. 5.2.

5.2.2 Driving of the crystal’s eigenmotions: radiofrequency

generators

To drive any of the modes of motion of the crystal the use of function generators

other than Urukul are needed, since most of the eigenfrequencies are below 1 MHz.

Two Agilent 33210A are used for this purpose. In this case, the vendor does not

provide any drivers that can be used. However, the generators can be controled
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Figure 5.2: Execution specification UML diagram of the CAEN ARTIQ NDSP. The
Python Extension Module (PEM) is a very thin wrapper that deals only with the
conversion between the original (CAENHVWrapper library) data structures and
those of Python. Error handling and other processing is done at the driver level.
The controller deviates from a standard NDSP in that the init and ping methods
are dummies (see text for details).
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import pycaen # This is the PEM layer

class crate ():

def __init__ (self , simulation = True):

self.simulation = simulation

self.handle = self.status = -1

def open (self , IP , simulation = True , user , passwd ):

if not self.simulation:

self.handle=pycaen.initsystem(IP ,user ,passwd ,self.status)

if(self.handle < 0):

# Deal with error

else:

self.status =0

self.handle =0

def set_voltage(self ,slot ,channel ,value):

if not self.simulation:

self.status=pycaen.setvoltage(self.handle ,self.status ,

slot ,channel ,value)

if(self.status != 0):

# Deal with error

else:

pass

Snippet 5.2: Extract of the code required to control the CAEN SY1527 power supply
with ARTIQ.

using the Virtual Instrument Software Architecture (VISA) standard. There are

several Python modules to use VISA – in this case, pyVISA was chosen.

To control a device using pyVISA, an instance of the resource manager class is

created. Then, the method open resource of this object is called. This call returns

an object representing the instrument one wants to control. The methods write and

query are used to communicate with the instrument. The commands that must be

submitted to manipulate the device depends on the device itself, so the manual of

the particular instrument must be consulted.

In this experiment, only a few of the capabilities of the function generator are

actually needed. The frequency and amplitude of the signal, as well as the output

status (on or off) need to be manipulated. The gated burst mode (where the output

is only applied when the device is triggered externally) is also utilized. A sample

of the code, containing the initialization procedure and the method that sets the

output frequency, is shown in Snippet 5.3. The rest of the methods are largely
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class AgilentFunGen:

def __init__(self , IP , simulation = True):

self.simulation = simulation

if not self.simulation:

rm = pyvisa.ResourceManager ()

self.fg = rm.open_resource(

’tcpip0 ::{}:: inst0:: instr’.format(IP) )

else:

pass

def frequency(self , freq):

if not self.simulation:

self.fg.write(’frequency {}’.format(freq))

else:

pass

Snippet 5.3: Extract of the code required to control Agilent AFGs with ARTIQ.

from ctypes import cdll , c_int , byref

library = cdll.LoadLibrary(’/path/to/sharedlibrary.so’)

my_c_int = c_int ()

library.foo( byref( my_c_int ) )

my_py_int = my_c_int.value # "value" is a c_int attribute

Snippet 5.4: Example of ctypes usage. The ctypes module enables the use of C
shared libraries in a Python environment.

identical. Figure 5.3 shows the interaction between the NDSP layers.

5.2.3 Optical detection: camera and photomultiplier tube

The manufacturer of the EMCCD camera provides drivers in the form of a dy-

namically linked library (the so-called AndorSDK ). Shared libraries can be used in

Python code using the ctypes module [125]. ctypes provides C-equivalent data

structures and allows calling C functions contained in a shared library from Python.

In that sense, the integration process is somewhat reversed with respect to what

was done for the CAEN power supply in Sec. 5.2.1.

For example, to call a function named foo within a library called sharedlibrary.so

that receives a pointer to an integer and modifies it, one would proceed as shown in

Snippet 5.4.

Several things are important in this example. First is the use of ctypes’ byref

function, which passes a variable by reference. Second is the use of the c int class
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Figure 5.3: Execution specification UML diagram of the Agilent AFG ARTIQ NDSP.

– my c int is not a regular Python integer, but instead is a C-like integer provided

by ctypes. Other classes are provided to represent other C data types in Python,

e.g. c char, c float, etc. In this manner, a Python wrapper can be made so

that the manufacturer’s libraries can be used. In the case of the Andor cameras,

wrappers do exist that can be adapted for use in ARTIQ by adding a ping method

and a simulation mode, to comply with the NDSP requirements. The final driver for

the two-ion crystal experiment was created in this work, although several of these

wrappers [126, 127] were consulted, especially when it comes to retrieving the image

from the EMCCD.

The final structure of the driver contains a class, called ixon (middle layer in

Fig. 5.5). The class attributes represent the different parameters (e.g. sensor tem-

perature, exposure time, gain, . . . ). The class methods are used to modify and

consult those parameters (setters and getters) as well as start the acquisition and
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Figure 5.4: Image of a laser-cooled ion cloud obtained using ARTIQ and the Andor
EMCCD NDSP. The ellipse is a 3σ contour resulting from a gaussian fit. The
gaussian’s widths in terms of cloud size are 11.713(83) µm in the axial direction and
125.91(89) µm in the radial direction. Only the axial lasers were present in this case.

retrieve the resulting image (which is stored in another of the class attributes), all

using the AndorSDK functions (right layer in Fig. 5.5). The ping method calls the

AndorSDK function that retrieves the camera’s serial name – if the retrieved num-

ber is correct, the communication is deemed to be working adequately. The kernels

(left layer in Fig. 5.5 call methods of the ixon class to perform the desired tasks.

This NDSP has already been used to image ion clouds, which are trapped and laser

cooled in the Penning trap, as shown in Fig. 5.4.

The EMCCD camera connected via USB will not be the best solution once the

quantum regime is obtained. In that moment, the detection is made via a projective

measurement that detects whether the ion is in the lower or upper state of its

qubit transition. As usual, this is done through the Doppler cooling process –

fluorescence is only achieved if the ion is in its ground state. In this scenario the

spatial distribution of the fluorescence is no longer relevant, and a faster detection

is desirable. Sinara’s frame grabber card allows the definition of tens of ROIs, for

which the number of counts (but not the count distribution) is read. The frame

grabber bypasses the slow USB connection, achieving much lower latencies. Since

this is part of Sinara, no drivers have to be created.
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Figure 5.5: Execution specification UML diagram of the Andor iXon ARTIQ NDSP.
The controller, which contains an instance of the ixon class (the driver) that wraps
the vendor-provided library, called AndorSDK. The controller instantiates the driver
and pings every 30 s. When an experiment is run, calls are sent to the controller
using the Remote Procedure Call (RPC) mechanism.

Alternatively, the use of a PMT has been considered. Tests have been carried out [69]

that validate the suitability of the Hamamatsu PMT and counting unit present in

the laboratory. The manufacturer provides a dynamically linked library. Therefore,

its integration into ARTIQ will be carried out using ctypes as well.





Chapter 6

Experimental setup and formation

of the two-ion crystal

The Ion Traps and Lasers Laboratory in Granada started its path in 2012, with

the primary goal of implementing a novel single-ion-sensitive mass measurement

technique. With this aim a Penning-trap facility has been built. This Chapter will

present the relevant parts of the Penning-trap facility with emphasis on the devel-

opments carried out as part of this Thesis, as well as the characterization results.

Special focus will be put on the core of the experiment, the open-ring Penning trap,

a novel geometry that has shown great potential for laser-based experiments. Part

of the contents of this Chapter were published in Ref. [119].

6.1 The experimental setup

6.1.1 General overview

Figure 6.1 shows a sketch of the Penning traps beamline in the two configurations

used in this Thesis. The first configuration, which uses an external ion source and

a preparation Penning Trap, was used to perform a TOF-ICR measurements of

calcium to precisely determine the magnetic field. The second configuration uses an

internal ion source to perform laser cooling experiments. Both configurations could

be merged if the photoionization lasers were inserted together with the other axial

laser beams, or if the ion source is placed at a 90-degree angle with the rest of the

beamline. Indeed, a new source, produced at GSI [128], is being installed at the

quadrupole bender.

103
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Figure 6.1: Sketch of the two configurations of the Penning trap setup used in this
Thesis. See text for details. Top: configuration used to perform TOF-ICR with the
open-ring Penning trap with any ion species produced in the laser desorption ion
source. This, the transfer section and preparation Penning trap [59] are used in this
configuration. The ions are detected by means of an MCP. Bottom: configuration
used to perform laser cooling. The internal (photoionization) ion source developed in
this Thesis is used. Cooling lasers are inserted axially and radially, while repumping
lasers are inserted only in the axial direction. An adjustable mirror mount placed
inside the magnet can be used to adjust the position of the radial laser beams. The
scattered photons are also collected in the radial direction. Note that the radial
laser injection and fluorescence collection systems are in a CF100 vacuum tube in
the room-temperature magnet bore; they are depicted outside this tube for clarity.
The MCP detector (MCP3) is maintained for diagnosis purposes. Labels common
to both configurations are omitted to improve readability.
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In the following, a general overview will be presented – Sec. 6.1.2 will delve deeper

into the improvements implemented during the course of this work.

Ion production

Ions can be produced at one of two places: either at a metallic plate by laser

desorption [129, 130] (which was used to prove cooling resonances [59] and TOF-

ICR [119]) or directly at the trap center through photoionization of neutral calcium

atoms evaporated from a comercial oven (see Sec. 6.1.2).

The laser desorption ion source is a slightly modified version of the commercial

system Reflex III from Brucker Analytical Systems. A movable plate with several

samples, including calcium, gold, rhenium, osmium and a small sample of isotopi-

cally enriched 48Ca, provides several choices of ionic species. A Q-switched, fre-

quency doubled Nd:YAG laser (λ ' 532 nm) from the Litron Nano series is used for

the desorption process. The system originally incorporates a MicroChannel Plate

(MCP), which is now used for diagnostics. An Edwards scroll pump and two Pfeiffer

turbomolecular pumps provide vacuum at the ion source.

Laser desorption will be also carried out using a target coupled to a miniature

Radio Frequency Quadrupole (mini-RFQ) structure filled with helium gas built at

GSI [128]. Such a system is currently under commissioning, placed in a vacuum

CF160 cross where an electrostatic quadrupole bender (see Fig. 6.1) is placed. The

mini-RFQ is oriented perpendicular to rest of the beamline, so that it does not

interfere with the axial lasers.

Transfer section

Downstream from the ion source, the so-called transfer section starts. Its purpose

is to transport the ions produced in the laser desorption ion source by means of

electrostatic lenses to the Penning traps.

The first element in the transfer section is the aforementioned quadrupole bender.

At one side of the quadrupole bender there is another MCP, while at the other is the

mini-RFQ, currently under commissioning. Previously a surface ionization source

[131] was placed in this spot.

After that, an open-ring Paul trap initially tested for laser cooling in a separate

setup [102, 105, 132] has been installed to inject calcium ions in the Penning trap

[133]. The structure of the trap, made of cylinders, does not interfere with the beam
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transport.

A number of Einzel lenses (one of which has been used at times as a pulsed cavity)

and two electrostatic deflectors are utilized to ensure efficient injection into the

preparation Penning trap – more details on these can be found in Ref. [59]. DC

voltages for the transfer section, as well as the traps and other elements, are provided

by a CAEN SY1527 system, run through Stahl switches when needed. The RF for

the Paul trap is delivered by a resonant amplifier. The vacuum system on the

transfer line comprises one set of Edwards scroll and turbomolecular pumps, and a

Gamma Vacuum ion pump (see Fig. 6.1). If the desorption ion source is connected,

an additional scroll-turbo pair is used in the extra length. Pressure readings at the

ion pumps are around 10−10 mbar.

Penning traps

The source of magnetic field is a superconducting solenoid from Agilent [51] that is

used in other four Penning trap facilities [61, 134, 135, 136]. It has a field intensity

of 7 T and two homogeneous regions, separated by 200 mm and equidistant from

the solenoid center.

The first homogeneous region (100 ppm in 1 cm3) hosts the preparation trap, build

as a part of a previous Thesis [59, 137]. It follows the design created for the MATS

setup at FAIR [138]. Its main difference with respect to the usual cylindrical trap

geometry is the segmentation of the endcaps (each of them is formed from a stack

of ten smaller electrodes). This allows a nested configuration where electrons could

be trapped along the endcaps and the ions of interest in the trap center. This was

intended to perform sympathetic cooling of highly-charged ions (see e.g. Ref. [139]

for the nested trap configuration). In this work, the preparation trap has been used

to prepare the ions from the laser desorption source via cooling resonance [53] in

order to perform TOF-ICR.

The second homogeneous region (measured at 0.14(10) ppm in 1 cm3) hosts the open-

ring trap, thoroughly characterized in this Thesis. The geometry and associated

systems for ion creation and optical detection merit a more in-depth analysis, which

can be found in the following.

Downstream from the open-ring trap one encounters the time-of-flight section. Its

purpose is to guide the ions ejected from the open-ring trap towards MCP3 for de-

tection. The measurements carried using this method of detection will be presented
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in Sec. 6.2. On this side of the solenoid, another set of Edwards scroll and turbo-

molecular pumps (see Fig. 6.1), along with a larger Gamma Vacuum ion pump, are

installed.

Laser beam delivery

A big part of the laser delivery system for Doppler cooling, as well as the first

iteration of the optical detection system, were created before this work – see Refs. [59,

140, 118, 81].

Nine external-cavity diode lasers are used to perform Doppler cooling in the 7 T

magnetic field (see Sec. 2.4.4). All of them drive transitions with ∆mJ = ±1. This

configuration is chosen so that each laser can drive the corresponding transition

independently of its alignment relative to the magnetic field [81, 82].

Three of these lasers, of wavelength ∼397 nm, are used to drive the two cooling

transitions both in the axial and radial directions. One of them delivers more power,

and is split for the axial and radial directions. The remaining two are set to the

same frequency and used in one direction each. Four of the remaining lasers have

wavelengths of ∼866 nm and are used to pump the D3/2 metastable state. The other

two lasers (λ ∼ 854 nm) are used to pump the D5/2 metastable state. An Electro-

Optic Modulator (EOM) (see Sec. 6.1.2 and Refs. [81, 141]) is used to obtain six

wavelengths1 from the two lasers.

The delivery of the laser light is done using separate optical fibers for the UV

(cooling) and infrared (pumping) lasers. The light exits the fibers in front of the

vacuum chamber and is delivered to the trap as shown in Fig. 6.2.

Optical detection system

The first fluorescence measurements were carried out with a group of seven optical

lenses within the vacuum chamber, which collimate and transport the fluorescence

photons towards an Electron Multiplying Charge-Coupled Device (EMCCD). The

first lens, placed in the radial plane of the trap (see Fig. 6.2) was an aspheric

with a 25 mm focal distance placed 25 mm away from the trap center. Therefore,

1Only the mJ = ±1/2,±3/2 sublevels must be pumped for Doppler cooling (see Sec. 2.4.4).
However, pumping of one of the mJ = ±5/2 sublevels will be used in the future to accelerate
ground state cooling. The EOM driving scheme developed in this work has already accounted
for this (see Sec. 6.1.2). For sideband spectroscopy, however, it would be preferable to be able to
forego pumping of the upper level of the qubit transition.
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Figure 6.2: CAD drawing of the open-ring trap and associated elements. Some
structural parts (as well as the first extraction electrostatic lens) have been omitted
for clarity. The oven assembly (1) produces a collimated beam of calcium atoms
that travels in the radial direction. The photoionization laser beams (2) enter the
trap in the axial direction from the injection side, crossing the atom beam at the
trap center. The radial cooling beams (3) enter parallel to the magnetic field and are
directed towards the trap center by virtue of a mirror supported by an adjustable
mount (4). Axial cooling and repumping beams (5) enter from the extraction side.
An aspheric lens (6) collects fluorescence from the ions; the fluorescence is then
reflected in a mirror (7) and extracted axially through the remaining (plano-convex
spherical) lenses.
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the fluorescence photons are collimated. The lens’ surface results in a coverage

of 1.6 % of the 4π solid angle. After reflecting in a mirror placed at a 45-degree

angle, the fluorescence travels parallel to the magnetic field through a set of plano-

convex spherical lenses, providing a side view of the cloud without compromising

the magnetic field homogeneity with radial viewports.

The six remaining lenses were placed so that the separation among them is equal to

the sum of their focal distances. Such a configuration could suffer from vignetting,

but it is also optimal in terms of stability (small shifts of lenses along their axis

result in minimal perturbation of the image).

After that, outside the vacuum chamber, an additional lens and a variable magnifica-

tion objective are attached to the EMCCD. The overall length of the optical system

from trap center to EMCCD is about 2 m. The sensor has 1024 by 1024 pixels, with

13 µm pixel size. The overall magnification factor was determined to be 3.2(5) (see

Sec. 6.3) when the variable magnification objective was set to its minimum setting.

This configuration has been changed for one with greatly increased resolution as part

of a different work (Ref. [69]). This improved system has enabled the visualization

of the two-ion crystal.

6.1.2 New developments

In this section, the modifications to the setup carried out during the course of the

present work will be presented. Besides these, other improvements have been made,

such as improving the stability of the optical elements shown in Fig. 6.2, dispensing

with the in-vacuum optical fibers and changing the mounting system for the optical

lenses contained in the vacuum chamber to one more robust.

The open-ring Penning trap

The choice of trap geometry for a given experiment is not a trivial matter. The

particular needs of the experiment must be assessed and ranked, so that the more

stringent constraints of the experiment are satisfied. For the purposes of using laser-

cooled ions as an auxiliary system to measure motional frequencies, the requirements

were discussed in length in Ref. [44]. By order of priority they can be summed up

as:

• Easy access in the radial and axial direction for both cooling and visualization
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of the ion(s)

• As close to an ideal quadrupolar potential as possible, to minimize systematic

effects

• Tunability for a wide range of mass-to-charge ratios

• Ability to capture ions created outside the magnetic field. The most common

method is to have a trap with mirror symmetry around z = 0 (plane containing

the trap center), so that the trap halves can be switched individually.

• Revolution symmetry around the magnetic field axis

The hyperbolic Penning trap, as shown in Sec. 2.1, has a geometry that gives rise,

in principle, to a quadrupolar electrostatic field. In practice, the hyperbolic geom-

etry has several disadvantages. Limitations in trap size and machining accuracy

introduce field imperfections that must be taken into account. Often, an additional

pair of correction electrodes are placed in the gap between the truncated ring and

endcaps to mitigate this issue, although studying the field created by such electrodes

cannot be done analytically. Access to the trap is not possible unless holes or slits

in the electrodes are created. Even though their contribution to the electric field

has been characterized (see Ref. [50] and references therein), a trap geometry that

has inherent access paths and is easier to fabricate with high accuracy is desirable.

Historically, the first non-hyperbolic geometry was the closed-endcap cylindrical trap

[142]. This geometry is simpler to machine, and with careful design and possibly by

adding correction electrodes its harmonicity can surpass that of hyperbolic traps.

The access to the trapping volume, however, is just as difficult.

The open-endcap cylindrical trap [143] provides easy access in the axial direction.

The potential created by such a a geometry can be calculated analytically (unlike

that of a truncated hyperboloid). That, together with the ease of manufacturing

and the axial access, makes this geometry the most prevalent, being used in Penning

traps for many different purposes [7, 15, 28, 29, 39]. More elaborated versions exist,

with additional electrodes intended to correct the trap harmonicity to a higher degree

or even to create more than one potential well (see for example Refs. [137, 138]). If

radial or oblique access for laser delivery or image collection is required, holes in the

electrodes are still needed (see e.g. Refs. [144, 145]). The electrostatic imperfections

created by the holes have to be characterized using numerical methods and tuned

out using the trap potentials.
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Figure 6.3: CAD drawing showing a cross section of the open-ring trap and the
potential along the z axis during the different stages of a TOF-ICR measurement.
The trap has revolution symmetry around the z (magnetic field) axis and mirror
symmetry with respect to the plane z = 0, that contains the trap center. Two closed
configurations are used to have a greater trap depth during capture.

The open-ring trap geometry, unlike the previously mentioned designs, has no elec-

trode in the radial plane. Instead, it is formed of two sets of concentric rings, which

have mirror symmetry with respect to a plane (the trap center) perpendicular to

the revolution axis. Figure 6.3 shows a CAD drawing of the version installed in the

magnet bore. This geometry allows axial and radial access. It is a modified version

of a Paul trap built for β−ν correlation experiments at GANIL [146]. The Paul trap

with the original configuration was also used to perform laser cooling experiments

[132]. The modified version featured in this work was used as a Penning trap for

the first time in Refs. [81, 119]. Since space is a much bigger constraint in Penning

traps, due to the small diameter of the magnet bore, the open-ring Penning trap

differs from the original Paul trap in size, shape and assembly method. The trap
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used in this work is a factor of two smaller than the Paul trap from Refs. [132, 146],

and has an additional electrode (innermost ring). It also features four-fold segmen-

tation of one of the electrodes (RE in Fig. 6.3) to enable coupling among any of the

eigenmotions. The geometry, together with the potential along the z axis during

injection, capture, measurement and ejection, is also shown in Fig. 6.3.

The tuning of the trap potentials has been studied numerically and experimentally.

In principle, due to the linearity of the Laplace equation, if one finds the potential

ϕi (r) arising from applying a voltage to the pair of electrodes i with e.g. Vref, i, the

resulting potential when arbitrary voltages Vi are applied must be

ϕ (r) =
∑
i

Vi
Vref, i

ϕi (r) . (6.1)

Given that both sides of the trap are biased equally, the potential is always sym-

metric in z, and each of the ϕi can therefore be written as

ϕi (r = 0, z) =
∑
k

C2k, iz
2k = C0, i + C2, iz

2 + C4, iz
4 + . . . , (6.2)

and the overall potential would have

C2k =
∑
i

Vi
Vref, i

C2k, i . (6.3)

This means that if one computes ϕi (r) numerically for each of the electrodes and

fits the potential along the trap axis using a polynomial with only even terms,

tuning the trap becomes a matter of solving a system of algebraic equations for

Vi. Either SIMION or an ad-hoc program were used to calculate the potentials

created by each of the electrodes. The custom program solves the Laplace equation

in cylindrical coordinates. By imposing the revolution symmetry, the angular terms

of the Laplacian vanish, and the differential equation becomes

∇2ϕ =

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂z2

)
ϕ = 0 . (6.4)

This transforms a 3D problem into a 2D problem, and therefore it is greatly memory-

and computation-efficient. However, a singularity appears when ρ → 0. Since that

is precisely the most relevant part of the geometry, simply avoiding the calculations

along ρ = 0 does not suffice. From a symmetry argument it follows that ∂ϕ/∂ρ = 0
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at ρ = 0. Therefore, one can apply L’Hôpital’s rule to the problematic term [147]

lim
ρ→0

∂ϕ/∂ρ

ρ
=

∂
∂ρ
∂ϕ/∂ρ
∂
∂ρ
ρ

=
∂2ϕ

∂ρ2
. (6.5)

This results in an equivalent differential equation for ρ = 0 that can be used for the

points along the z axis,

∇2ϕ
∣∣
ρ→0

=

(
2
∂2

∂ρ2
+

∂2

∂z2

)
ϕ = 0 , (6.6)

that is actually equivalent to the equation at the z axis using cartesian coordinates.

However, the fitting routines limit the precision that can be reached with this

method. Therefore, the initial set of Vi resulting from this process is used as a

starting point for an iterative process, where one of the electrode voltages is varied

and one of the resulting C2k is observed. Once an optimal value has been found,

a different (Vi, C2k) pair is chosen and optimized, until satisfactory values for all

C2k parameters are obtained. The number of tunable C2k coefficients is, of course,

limited by the number of electrodes. Figure 6.4 shows an example of this process,

where the voltage applied to the correction electrode is scanned and C4 is observed.

This is repeated for several values of the endcap voltage, resulting in different axial

frequencies.

In-trap ion production

In the first laser experiments aiming at a the detection of fluorescence photons

and Doppler cooling, and eventually in the realization of Coulomb crystals, the

production of calcium ions was implemented directly in the trap. Calcium ovens

(stainless steel cylinders containing calcium and an indium seal, prepared in an inert

atmosphere by Alfa Vakuo) are Joule heated, evaporating calcium atoms. These are

then ionized, in this case, using one of two step photoionization proceses [148, 149].

Photoionization has several advantages with respect to laser desorption. The num-

ber of ions in the trap can be made larger by increasing the current through the

oven or the loading time. Since the first step (or both in the second case) of the

photoionization process is resonant, only the desired species is produced (although

formation of oxides in the trap has been observed under suboptimal vacuum con-

ditions). Additionally, the ions are produced close to the trap center with thermal

energies (under 100 meV due to the high temperature of the oven) without a cooling
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stage at the preparation trap. The use of the later in combination with the laser

cooling process in the open-ring trap requires a more restrictive pumping barrier

than the one currently installed – this would only make sense when performing an

experiment on rare isotopes. The preparation of ions produced outside the magnet

can be done with a radiofrequency quadrupole structure filled with gas [128] – this

approach is currently being pursued in the experiment.

Given the complexities associated with the installation and removal of the traps,

several ovens were installed so that the traps could be kept in the bore in the event

of oven failure. Due to space available in the bore, and since the trap vicinity is

already crowded with the optical elements needed to introduce the lasers and collect

the fluorescence photons (see Fig. 6.2), the design proved challenging. Custom

ovens from Alfa Vakuo (slightly shorter than the standard ones) could be made, and

a MACOR© ceramic structure, shown in context in Fig. 6.2 and in more detail in

Fig. 6.5, was designed and constructed.

Regarding the lasers used for the two-step photoionization, one has again to consider

the influence of the magnetic field on the electronic structure of the atom. The

process 40Ca→40 Ca∗ →40 Ca+ + e− needs to be carried out. The initial electronic

configuration of the atom is 1S0, and the resulting ion will have 2S1/2. The free

electron can be considered a plane wave [150]. The plane wave’s expansion into



6.1. THE EXPERIMENTAL SETUP 115

Figure 6.5: Exploded view of the calcium oven assembly. The ovens (in blue) are
sandwiched between two ceramic pieces (in white). The grooves ensure the ovens
are correctly aligned. Three smaller ceramic pieces (in red) are placed in front of
each oven, with a small hole so that only the atoms directed towards the trap center
make it through. The larger holes in the collimating pieces are threaded, so that a
screw is used to press together the oven and a cable – a similar arrangement is used
in the rear part. The front cable is common, whereas one rear cable is available for
each individual oven, so that they can be heated individually.

spherical harmonics is usually done by choosing the quantization direction to be

aligned with the electron’s direction of motion, so that only the m = 0 components

survive. In this case, however, the quantization axis is defined by the magnetic field,

and therefore there are components for all L,m.

Since only transitions with mJ = ±1 can be driven using axial lasers [81, 82], the

intermediate state must have mJ = ±1. Using a dedicated 422 nm tunable diode

laser available in the laboratory, the 1P1 state can be reached – the sublevel with

mJ = +1 is chosen to enable the use of axial beams. This level is affected by linear

Zeeman effect, resulting in a correction of +98 GHz with respect to the value for

B = 0. For the second step, two choices were tested: a dedicated 375 nm laser can

ionize the excited atom non-resonantly, or one of the 397 nm lasers used for cooling

can be repurposed to resonantly excite the atom up to the 3p64s17d 1D2 level, which

is 50 meV away from ionization [149] and can be ionized due to e.g. background
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Figure 6.6: Resonance frequency of the first ionization step for different calcium
isotopes. Interaction between the calcium atoms and the lasers is allowed for a fixed
amount of time. The resulting ions are then ejected towards MCP3 for detection.
From left to right, these are 40Ca, 44Ca and 48Ca. The 48Ca+ count rate is much
lower than the rest due to its lower abundance (0.19 %, as opposed to 2.1 % and
96.6 % for 44Ca and 40Ca, respectively). The detuning is given with respect to the
resonance frequency for the 40Ca isotope.

thermal radiation. Given that both methods resulted in similar efficiencies, the first

approach was chosen due to its simplicity.

Since the first step of the photoionization process is resonant, and the calcium ovens

are not isotopically enriched, it is possible to selectively ionize the different calcium

isotopes within their natural abundance percentages. An estimate of the isotope

shift is needed to narrow down the frequencies to a feasible range. According to

Ref. [151], the isotope shift in calcium is dominated by the increased nuclear mass,

and not by the change in charge distribution (i.e. the so called field shift can be

neglected for the purposes of this estimation). Further, the electron correlation

effects present in two-electron atoms can also be neglected. The isotope shifts are

then given simply by

νH − νL
νL

=
me (mH −mL)

mL (mH +me)
, (6.7)

where the subindices refer to the heavier (H) and lighter (L) isotopes, and me is the

electron’s mass. This simple estimation suffices to find the resonances, which are

shown in Fig. 6.6.

Even though the isotope shifts are much larger than the transition linewidth, the

larger abundance of 40Ca+ means that this isotope is present in the trap in significant
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Figure 6.7: TOF spectrum when using the 44Ca (top) and 48Ca (bottom) resonant
frequencies for the 1S0 → 1P1 transition. See text for further details.

amounts when the laser is tuned for the other isotopes (see Fig. 6.7). Therefore,

if one wants to have exclusively 44Ca+ or 48Ca+, the undesired species have to be

removed from the trap. In the case of 44Ca+, only 40Ca+ is present, so a dipolar

excitation at the reduced-cyclotron frequency suffices. In the case of 48Ca+, however,

both 40Ca+ and 44Ca+ are present. Therefore, a Stored Waveform Inverse Fourier

Transform (SWIFT) [152] excitation that sweeps a frequency range containing the

reduced-cyclotron frequencies of both species is used. The corresponding oxides are

produced due to a continuous interaction of the ions and molecules from the residual

gas in suboptimal vacuum conditions, and were not detected anymore when the

vacuum conditions improved.

These results provide an interesting possibility. As observed in Fig. 6.7, when the

laser is set to the resonance frequency of the 48Ca isotope, 40Ca+ and 48Ca+ are pro-

duced with almost equal rates. This anticipates a way of producing an unbalanced
40Ca+–48Ca+ crystal to put the results presented in Chapter 4 to the test.
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Electro-optic modulator

Electro-optic modulators (EOMs) consist on a material whose refractive index can

be modified by an externally applied electric field. A laser traversing this medium

acquires an additional phase that depends on the voltage applied to the EOM.

Therefore, the phase can be modulated by applying a driving voltage V cos (ωdt).

If the relationship between the refractive index and applied voltage is linear, the

resulting laser electric field can be written as

E = E0e
i(ωLt+α cos(ωdt)) = E0e

iωLt

+∞∑
n=−∞

Jn (α) einωdt =

=

[
J0 (α) +

+∞∑
n=1

inJn (α)
(
einωdt + (−1)n e−inωdt

)]
, (6.8)

where the Jacobi-Anger expansion and the property of the Bessel functions of the

first kind J−n (α) = (−1)n Jn (α) have been used, and α is proportional to the

driving amplitude2. Therefore, sidebands at ±nωd appear, with intensities given by

In = I0J
2
n (α).

The EOM sideband generation scheme shown in Ref. [81] intended to use carrier and

first sidebands at ∼13 GHz to depopulate the D5/2 metastable states. However, it

failed to take into account the non-linear nature of the Zeeman splitting at such high

magnetic fields (see Sec. 2.4.4). The frequencies reported in Ref. [81] were therefore

around 1 GHz away from resonance. Given that only three parameters (two laser

frequencies and the EOM driving frequency) are available, the best case scenario,

using a least-squares approach, would have detunings as high as 500 MHz for the

sidebands, thus requiring an alternative approach.

The approach chosen applies two driving fields to the EOM. This was studied in

Ref. [153], although for a different reason (in that case the Zeeman splitting is still

linear, but only one 854 nm laser was available). If two driving fields are applied,

allowing for a phase φ among them, the resulting electric field is

2It can simply be written as α = πV/Vπ, where Vπ, a parameter that is usually given by EOM
vendors, is the voltage required to introduce a π phase shift.
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Table 6.1: EOM configurations to pump the D5/2 metastable states. The laser fre-
quencies (ωL1 and ωL2) are given with the B = 0 transition frequency as a reference.
n and m are the order of the sidebands of the first and second driving, respectively.
See text for details.

Configuration Parameters Transition Sideband Detuning
(GHz) D5/2 → P3/2 (n,m) (MHz)

1

∆ωL1 = 110.568
∆ωL2 = −111.553

ω1 = 13.099
ω2 = 0.475

mJ = −5/2→ −3/2
mJ = −3/2→ −1/2
mJ = −1/2→ +1/2
mJ = +1/2→ −1/2
mJ = +3/2→ +1/2
mJ = +5/2→ +3/2

(−1,+1)
(0, 0)

(+1,−1)
(−1,−1)

(0, 0)
(+1,+1)

−11
+23
−11
−23
+47
−23

2

∆ωL1 = 110.545
∆ωL2 = −111.600

ω1 = 12.656
ω2 = 0.848

mJ = −5/2→ −3/2
mJ = −3/2→ −1/2
mJ = −1/2→ +1/2
mJ = +1/2→ −1/2
mJ = +3/2→ +1/2
mJ = +5/2→ +3/2

(−1, 0)
(0, 0)

(+1, 0)
(−1,−1)

(0, 0)
(+1,+1)

−67
0
0
0
0
−140

3

∆ωL1 = 110.579
∆ωL2 = −111.530

ω1 = 13.099
ω2 = 0.475

mJ = −5/2→ −3/2
mJ = −3/2→ −1/2
mJ = −1/2→ +1/2
mJ = +1/2→ −1/2
mJ = +3/2→ +1/2
mJ = +5/2→ +3/2

(−1,+1)
(0, 0)

(+1,−1)
(−1,−1)

(0, 0)
(+1,+1)

0
+33

0
0

+70
0

E = E0e
i(ωLt+α1 sin(ω1t)+α2 sin(ω2t+φ)) =

= E0e
iωLt

+∞∑
n=−∞

Jn (α1) einω1t

+∞∑
m=−∞

Jm (α2) eim(ω2t+φ) . (6.9)

Therefore, each of the terms in the sum over n (the sidebands that arise from the first

driving) has its own set of sidebands at ±mω2. Now there are four parameters that

can be manipulated to match the six transitions. There is no need to use sidebands

other than n,m ∈ 0,±1. This also means that, in this case, the phase φ between

the two drivings can be disregarded, since there will be only one (n,m) pair for

each of the relevant frequencies, and therefore no interference. The intensity of each

sideband is thus I = I0J
2
|n| (α1) J2

|m| (α2). With this in mind, several configurations

were thought out:
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• Minimizing all detunings simultaneously (least-squares). After some trial and

error the optimal configuration is found to be the one labeled as configuration 1

in Tab. 6.1.

• Neglecting the mJ = ±5/2 sublevels. While this is valid for Doppler cooling,

since there is no decay from P1/2 to these sublevels (see Sec. 2.4.4), driving

them is desirable to accelerate sideband cooling to the ground state. This

corresponds to configuration 2 from Tab. 6.1.

• Neglecting the mJ = ±3/2 sublevels results in ω1 = 12.098 GHz and ω2 =

475 MHz. This corresponds to configuration 3 from Tab. 6.1.

Configuration 3 was chosen in this case. Since the detuned transitions are driven

by carriers (i.e. n = m = 0), which will (depending on the driving amplitudes α1

and α2) carry greater intensity, the off-resonance driving is somewhat compensated

by the power broadening of the transition. Nevertheless, changing the frequencies

in a broad range in the actual experiment (up to hundreds of megahertz) results in

almost no variation in the fluorescence signal. This is attributed to intensities that

are well above saturation for all transitions (see Sec. 2.4.4).

6.2 Motional frequency measurements using de-

structive detection

In the first period of this Thesis the performance of the open-ring trap was inves-

tigated by measuring ν+, νz, ν−, and νc, as well as running SIMION simulations

of the time-of-flight spectrum of 40Ca+ ions from the open-ring trap to the MCP3

through the TOF section. The average time of flight of the ions from the center of

the trap to the MCP detector is given by Eq. 3.6. Therefore, an increase of any of

the amplitudes results in a decrease of the time of flight. The size of this reduction

is related to the motion’s frequency. Figure 6.8 shows the time of flight versus the

driving frequency when the modified-cyclotron (left) or axial (right) motions are

driven using a dipolar excitation.

Comparing these and other measurements with SIMION simulations lead to the

conclusion that about 2.1 eV of axial energy are imparted to the ions during ejection.

Taking that into account, the modified-cyclotron radius required to reduce the time

of flight as shown in the left part of the figure is ρ+ ≈ 250 µm. The axial amplitude
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Figure 6.8: Average change in time-of-flight of the ions after dipolar driving. Left:
modified-cyclotron motion. Right: axial motion. The dipolar driving field was
applied during 100 ms. The lines are gaussian fits to the datapoints.

needed to reduce the time of flight as shown in the right part of the figure is ρz =

4.6 mm, equivalent to an energy of 1.7 eV. The eigenfrequencies obtained using

this method are shown in Tab. 6.2. Several values of VCE are listed, which result

in different eigenfrequencies. Comparing these with results from simulations can

be used to estimate the leading anharmonic term, C4, whose effect on the axial

frequency is given by

∆νz =
3qC4Ez
8π2m2ν3

z

, (6.10)

with Ez the energy stored in the axial mode. However, the large errors resulting from

Table 6.2: Eigenfrequencies for 40Ca+ obtained by probing the axial and modified-
cyclotron motions with a dipolar driving (Fig. 6.8). The potentials not listed in the
table are VEC = 13 V, VRE = 5.8 V, and VGE = 0 V.

VCE ν+ νz
(V) (MHz) (kHz)
9.82 2.685203(11) 149.916(93)
10.14 2.685135(17) 150.277(231)
10.42 2.685090(27) 152.109(679)
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Figure 6.9: Time-Of-Flight Ion-Cyclotron-Resonance for 40Ca+ ions. νc is the cy-
clotron frequency resulting from fitting Eq. 3.6 to the datapoints (solid line). The
driving time was 100 ms, and the driving amplitude, 76 mVpp, resulting in five full
conversions.

the fitting routines mean that no precise values are possible. It can be concluded,

however, that the values of C4 predicted during the tuning process (see Fig. 6.4) are

of the same order as those obtained here. Further validation of the tuning procedure

will be shown in Sec. 6.3.

Time-of-flight resonances have been obtained with the open-ring trap. Figure 6.9

shows one of these for 40Ca+. The value νc=2.6893743(7) MHz was obtained, with a

resolving power m/∆m ' 7 ·105. A measurement with very low statistics for 187Re+

was only tested, yielding νc = 574.8861 (25) kHz with a driving time of 25 ms and a

resulting resolving power m/∆m ' 2 · 104. From the test with this excitation time,

the resulting value of νc was in agreement with the masses found in the literature.

6.3 Measurements using non-destructive detection

In this section, the experimental results obtained using non-destructive detection

methods will be presented. First, circuits for induced image current detection are

used to experimentally certify the effectiveness of the tuning method presented in

Sec. 6.1.2. These circuits, developed in Refs. [69, 59, 154], use a quartz crystal as a

resonator, instead of the usual coil or SQUID. After that, laser cooling of 40Ca+ ions
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Figure 6.10: Spectrum of the induced image current signal for different voltage
configurations. Besides the effect on the power of the signal, which is used to
determine the optimal trap configuration, a shift of the signal is observed – this
is because the change in voltage on one electrode is not compensated with the
remaining one to keep C2 constant. Frequencies are given with respect to the circuit’s
resonance frequency.

in the 7 T Penning trap is reported, starting from the first fluorescence detection

and evidences of cooling, up to the formation of Coulomb crystals, with ion numbers

ranging from several hundreds down to two [133]. The formation of a balanced two-

ion crystal is an importan prerequisite to perform the envisaged experiments with

unbalanced two-ion crystals as described in Chapter 4.

6.3.1 Induced image current detection: trap tuning

Restricting the analysis presented in Sec. 6.1.2 to the case where only two electrodes

are biased, one obtains

C2 = V1
C2,1

Vref,1
+ V2

C2,2

Vref,2
and C4 = V1

C4,1

Vref,1
+ V2

C4,2

Vref,2
. (6.11)

Therefore,

C4 = 0 =⇒ V1

V2

= −C4,2

C4,1

Vref,1
Vref,2

= % (6.12)

and, as long as the potentials are kept at this ratio, any C2 (and therefore any axial

frequency) can be obtained,
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Figure 6.11: Induced current signal strength as a function of the electrodes’ voltage
ratio. The solid line is a gaussian fit to the datapoints, from which an optimal value
(i.e. maximum signal) is obtained at % = 0.60625(89).

C2 = V2

(
%
C2,1

Vref,1
+

C2,2

Vref,2

)
, (6.13)

while keeping anharmonicities arising from C4 to a minimum.

The presence and magnitude of anharmonicities in the trap can be determined by

resonantly detecting the image current induced by the ion(s). During the detection,

the ion(s)’ energy is dissipated in the resonant circuit. Relatively large initial os-

cillation amplitudes (in the order of mm) are used. The ion(s) therefore oscillate

within a range of oscillation frequencies, depending on the initial amplitude. The

presence of non-zero C4 (or higher order terms) can therefore result in a lower, wider

peak in the frequency spectrum.

To test this, the circuits developed in Refs.[154, 35] based on the designed in Ref. [59]

were used (see Ref. [37] for the most recent results). These use a quartz crystal

oscillator, instead of the usual superconducting coil or SQUID. They have been

shown to perform exceptionally well at room temperature, whereas the previous

alternatives require operation at 4 K in order to achieve similar feature. Figure 6.10

shows the acquired signal’s spectrum for a range of electrode potentials. By studying

the signal strength as a function of the voltage ratio % as shown in Fig. 6.11 it is

possible to derive the optimal value, in this case, % = 0.60625(89). This is in good

agreement with the value that results from the process described in Sec. 6.1.2.
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Figure 6.12: First images of Doppler cooled 40Ca+ ion clouds and determination of
the magnification. In all cases the detunings were -20 MHz for the cooling lasers
and -30 MHz for the pumping ones. Accumulation times at the EMCCD were set
to 5 s, with 16×16 binning to increase the signal-to-noise ratio. Left panel: two
voltage configurations. The light curve is symmetric, whereas the dark curve has
the voltage applied to one of the endcaps lowered by 2 V. This is used to determine
the overall magnification of the optical system (see text for details). Center panel:
fluorescence for the symmetric endcap configuration. Right panel: fluorescence for
the asymmetric configuration. The dashed line serves to highlight the ion cloud
displacement.

6.3.2 First evidences of laser cooling ions in the open-ring

trap

After the changes presented in this Chapter were implemented, the first evidence of

Doppler cooling on a cloud of 40Ca+ ions was observed. Figure 6.12 shows some of

the first images obtained. Due to the way the fluorescence collection system is set

up, a side view of the ion cloud is achieved, with an angle indicated in the lower left

corner of the images. In this case, ions were produced directly at the trap center via

photoionization, and no radial laser beams were present. The maximum fluorescence

signal was recorded with a detuning of about -20 MHz for the cooling lasers and

-30 MHz for the pumping ones.

By causing a known displacement of the ion cloud (see Fig. 6.12) it is possible to

determine the overall magnification factor of the optical system. A displacement of

265 µm is introduced by lowering one of the endcaps’ voltage by 2 V. 2D Gaussian

fits to the images yield trap centers (in pixel units) (34.6,18.6) and (37.1,21.8). This

results in a magnification factor of 3.2(5) with the variable magnification objective

set to its lowest value.
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Figure 6.13: Fluorescence rate (normalized to the maximum value) as a function
of the cooling laser’s detuning, with fixed pumping frequencies. Each data point is
the average of three measurements. The solid line is the Voigt fit of the datapoints
without the shaded area, from which a temperature of 570(120) mK is obtained.
The datapoints in the shaded area are not considered in the fit, since no reduction
in cloud size was observed – including them would result in a temperature of about
1.28(16) K with a worse fit (1−R2 increased by an order of magnitude).

Evidence of cooling was also observed. The size of the ion clouds were reduced

several times after 1 s of accumulation time on the EMCCD. An upper bound of the

cloud temperature can be obtained, as described in Refs. [68, 132] by recording the

fluorescence rate as a function of the detuning of the cooling laser. This measurement

is shown in Fig. 6.13. The fluorescence curve has a Lorentzian component due to

the natural linewidth of the transition and a Gaussian component due to the ion’s

motion. Therefore, a Voigt function is used to fit the datapoints. The temperature

of the ion cloud is then related to the width of the Gaussian component as

T =
mc2

8kBln2

(
∆νG
νL

)2

, (6.14)

where νL is the cooling transition’s frequency and kB is Boltzmann’s constant. Dis-

regarding the datapoints in the shaded area, for which no evidence of cooling (i.e.

no reduction in cloud size) was observed, a temperature of 570(120) mK is obtained.

Although this is over an order of magnitude away from the Doppler limit, it is well

below the initial (thermal) energies.
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Figure 6.14: Fluorescence rate as a function of axial and radial laser frequencies.
Each data point is the average of tens of measurements with 200 ms exposure each.
The rates are normalized to their maximum value. Top: radial laser. The fit (solid
line) results in a temperature of 87(10) mK. Bottom: axial laser. The resulting
temperature in this case is 22(10) mK.

An important limiting factor at the date these (first) measurements were taken

was the vacuum level. By combining the fluorescence detection with time-of-flight

spectra taken in similar experimental conditions, the rate of fluorescence loss was

linked to the formation of 40CaO+ in the trap.

6.4 Formation of the two-ion crystal

As the vacuum conditions improved, and with the radial laser beams in an opti-

mized position [69], new upper bounds of the cloud temperature were obtained. For

these measurements no quadrupolar driving was present, so the degree to which the

magnetron motion was cooled was solely up to the positioning of the radial lasers, as

explained in Sec. 2.4.3. Figure 6.14 shows the fluorescence level when scanning the

axial or radial laser cooling frequencies, keeping all other laser frequencies constant.

This results in temperatures bound by 22(10) mK and 87(10) mK, as obtained from

scanning the axial and radial lasers’ frequency. These are much closer to the Doppler

limit (around 1 mK, depending on the saturation parameter, see Sec. 2.4.1) than
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Figure 6.15: Image of the first Coulomb crystal obtained in the open-ring Penning
trap. Radial lasers were present, but their position was not optimal. A quadrupolar
field at ωc was introduced to provide additional cooling of the magnetron motion.

the first results, but still one order of magnitude above it. Other techniques, such

as sideband spectroscopy of a single ion [155] or thermometry based on the so-called

dark resonances [156], could be used for a better temperature determination. Work

in the former is ongoing, with the commissioning of a 729 nm laser locked to a

high-finesse cavity (F ' 280000, as measured at the factory) [121].

Three further modifications to the setup were made between the previous results

and those that follow. The details will be presented in Ref. [69]. These are:

• Installation of a copper insert in the trap vicinity, cooled down to 40 K, to

reduce background gas in the trap volume

• Installation of a new optical system: the previous optical system was diffrac-

tion limited and insufficient to resolve individual ions. A new system with

much better resolution was designed and installed

• Fine alignment of the radial laser beams: a systematic study of the position

of the radial laser beams and its effect on the cooling of the ion clouds was

carried out

These modifications, together with those presented in Sec. 6.1.2, enabled the visual-
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Figure 6.16: Image of the first two-ion Coulomb crystal obtained in the open-ring
trap. Some comatic aberration (attributed to a slight misplacement of the first lens
in the optical system) is observed.

ization of the first crystallized ion clouds. Figure 6.15 shows one of the first crystals

obtained in this way. Thereafter it was possible to observe a two-ion crystal by

lowering the oven current. Such a crystal is shown in Fig. 6.16. From this image,

with the axial frequency known to be at Ω−z = ωz = 2π · 170 kHz from the tuning

procedure, a magnification factor of 15.1(1) is obtained. This is in agreement with

the optical system’s design, which will be presented elsewhere [69].

By analyzing the axial projection of the fluorescence of the two ion crystal shown in

Fig. 6.16, widths of 1.40(14) µm are obtained. Therefore, the oscillation of the sensor

ion will be resolved by the optical system if it oscillates with an amplitude greater

than 2 · 1.40(14) = 2.80(28) µm. If the sensor ion was part of an unbalanced crystal

together with a heavy ion, the target ion would be oscillating with roughly twice

this amplitude (see Sec. 4.1.2). This puts the best-case amplitude dependent shift at

around 35 Hz (see Fig. 4.10), although it can be corrected for (up to a point). The

simulations carried out in Sec. 4.3 show a quadratic dependence between amplitude

and shift – therefore, a shift δν can be corrected with ∆(δν)/δν = 2∆ρz,s/ρz,s. An

experimental characterization of the shifts will be needed.

At this stage, the balanced crystal can be used to test the determination of fre-

quencies of the common crystal modes, as described in Sec. 4.2. The use of the
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new control and data acquisition system presented in Chapter 5 will simplify this

task greatly, with the ability to take a succession of images for a range of driving

frequencies. Especially relevant will be the study of the common axial mode, which

can be used to identify the target ion through its mass using non-destructive de-

tection, as shown in Sec. 4.4.1. Unbalanced crystals formed with different calcium

isotopes will also be studied in the short-term future, using the production method

described in Sec. 6.1.2. The study of the 40Ca+–232Th+ crystal, which is part of an

ongoing project, will be carried out using the new mini-RFQ [128], currently under

commissioning.

It is worth noting that single ions have been observed as well – a study of the

sensitivity of the single ion in the Penning trap to external electric fields, as the ones

reported earlier in this group in Refs. [102, 105, 132], are also possible. Improvements

with respect to the Paul trap system are expected due to the purely DC nature of the

trapping fields in a Penning trap. Furthermore, since the single ion is not subject

to the same frequency shifts as the unbalanced crystal, it is the perfect platform

to study other systematic effects, such as those arising from stability of the lasers,

magnetic field and power supplies.



Chapter 7

Conclusions and future work

This Thesis was motivated on exploring a new way to perform mass measurements

of a single ion with a novel approach relying on optical (rather than electronic)

detection. The method consists in having two different ions stored in the same

Penning trap, forming a Coulomb Crystal, which we have termed unbalanced two-

ion crystal. One of the ions (the sensor ion) is directly laser cooled – the photons

it scatters allow a determination of the oscillation amplitude of the crystal. In the

following, the theoretical and experimental aspects addressed in this work, as well

as the outcomes, will be summarized. At the end, the next steps to be taken will

be outlined.

The first requirement is to study in detail the motion of the two ions from different

species when they are simultaneously confined in the same Penning trap. This is

done in Chapter 4. The ions form a crystal when laser cooling is applied to the sensor

ion, and the trap is configured so that the crystal is aligned with the magnetic field.

When the crystal is formed, the initial three eigenmotions per ion are transformed

into six modes of motion. For each eigenmotion of the single ion (modified-cyclotron,

axial and magnetron) two crystal modes appear, one where the ions oscillate in phase

coincidence, called common mode, and one where they oscillate in phase opposition,

called stretch mode. Each mode is characterized by the frequency and amplitude

ratio, that is, the ratio of the oscillation amplitudes of the sensor and target ion if

only that given mode is excited. The values of these are calculated for a wide range

of target-to-sensor ion mass ratios (denoted as µ = mt/ms) and for charge ratios

κ = qt/qs = 1, 2, 3. The axial and magnetron modes of motion involve both ions,

whereas the modified-cyclotron modes are pretty much decoupled – the presence of

the second (target) ion manifests itself mostly as a shift in frequency with respect
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to the one the ion would have if isolated in the trap. These frequencies scale mostly

as would do those of a single ion, as shown in Sec. 4.1.4.

More important than the particular values of the motional frequencies, however, is

to link them to the free cyclotron frequency (and therefore the mass) of the target

ion. Ref. [100] introduces the so-called generalized invariance theorem for an array

of Penning traps which, as shown in Sec. 4.1.5, also applies to the unbalanced two-

ion crystal. Therefore, the free cyclotron frequencies of the two ions are related to

the crystal’s motional frequencies as

ω2
ct + ω2

cs =
∑
λ

Ω2
λ ,

where Ωλ are the crystal frequencies and ωct and ωcs are the target and sensor ion’s

free cyclotron frequencies, respectively. There is no linear combination of frequencies

that yields the target ion’s free cyclotron frequency and thus to perform precise

mass measurements one needs to determine the six crystal’s eigenfrequencies. For

experiments on rare isotopes, and depending on the required precision, one could

measure only three of the eigenfrequencies directly (stretch cyclotron, stretch axial

and common axial modes) – the remaining frequencies, that are pretty much mass-

independent, could be measured using a more abundant species with relatively low

impact into the attainable precision. In any case, a very precise measurement of

the free cyclotron frequency of the target ion will not be possible in the classical

regime. In order to progress, all of the crystal modes of motion must be cooled

to the ground state, and the measurement procedure will require a non-classical

approach, different from the one initially foreseen following experiments with one

and two ions in a Paul trap [105, 102]. This is currently being addressed from a

theoretical standpoint [111] as well as experimentally in two on-going PhD theses

[69, 157].

The experimental part of this thesis has been focused in two issues, describing the

advances made towards the implementation of the technique using an unbalanced

two-ion crystal. On the one hand, a new control system has been initiated, in-

cluding the most significant devices to control the creation and observation of the

crystal, as well as data acquisition (Chapter 5). On the other hand, the Penning-

trap system was characterized, and modifications were carried out towards the final

implementation of a two-ion crystal (Chapter 6).

The above-mentioned control and data acquisition system is based on ARTIQ [120],
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since this has an excellent timing performance and is easily extensible. The hard-

ware provided by the company is not sufficient to perform all the proceses required

to form and study the crystal, and therefore some of the existing devices in the

laboratory were integrated. Three of these devices, integrated through different

mechanisms, have been discussed. The first (for trapping), controlled with stati-

cally linked libraries, has been integrated by building a Python Extension Module.

The second (for driving) uses the VISA standard and thus an additional Python

package, called pyVISA, was used. For the third one (observation and detection),

the software provided by the manufacturer was given as a shared library, and was

integrated into ARTIQ using the ctypes Python package. With these extensions

built, having on-line analysis is just a matter of reusing the existing Python analy-

sis routines (or creating new ones) taking advantage of ARTIQ’s Remote Procedure

Call mechanism. The basic building blocks and protocols to extend the detection

capabilities further (for example, to incorporate the PMT’s counting unit) are in

place as a result of this Thesis.

The experimental platform has been initially characterized using destructive detec-

tion techniques. The system required several important developments in order to

perform Doppler cooling of 40Ca+ and achieve the formation of the crystal:

• A tuning procedure for the open-ring Penning trap was developed, using a

customized Laplace-equation solver, to find the operating voltages that provide

a quadrupolar electrostatic field at the desired frequency.

• The laser frequencies to carry out Doppler cooling in 7 Tesla, the largest

magnetic field in these kinds of experiments, motivated detailed calculations

up to third-order perturbation theory and the implementation of additional

devices to obtain 13 laser frequencies out of 9 lasers.

• A new in-trap ion source was designed and installed, with the goal of increasing

the number of ions (produced by two-step photoionization) and decreasing

their initial energy. This enabled the very first observation of fluorescence.

Production of other ions from the naturally-abundant calcium isotopes (40Ca,
44Ca and 48Ca) was later reached

These led initially to the observation of Doppler cooling of an ion cloud. The signal-

to-noise ratio became larger in a step-by-step process, circumventing problems with

the vacuum, the cooling of the radial motion and increasing the resolution of the
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image-collection system Ref. [69]. This eventually led to the formation of the first

two-ion crystal, which opens the possibility to start performing motional frequency

measurements.

The next steps involve the use of a new laser system locked to a high-finesse cavity,

which is under commissioning, to drive the transition S1/2 → D5/2. This will be

used to perform sideband spectroscopy and sideband cooling, as well as the read-

out operation of the generated qubit. It will initially be utilized on a single ion or

a balanced crystal in a linear Paul trap, which is used as test bench [157]. On top

of this, the second-generation open-ring Penning trap is now in the first stage of

commissioning (cryogenic operation and electrical connections) in a separate system

[69].



Appendix A

Mathematical calculations

This Appendix will contain those mathematical deductions that are deemed too long

to be in the main body of the Thesis.

A.1 Transient response of the driven harmonic

oscillator

Each of the three modes of motion of the trapped ion is a harmonic oscillator (see

Sec. 2.2). Therefore, to study the effect of a dipolar driving on the ion’s motion,

it sufices to study the transient behavior of the driven harmonic oscillator. The

differential equation governing the harmonic oscillator with a driving in t ∈ [0, Td]

is

ẍ+ ω2x = H (t)H (Td − t) fd sin (ωdt) , (A.1)

where fd is the amplitude of the driving force per mass unit, ωd the driving frequency,

ω the oscillator’s natural frequency and H the Heaviside step function. The general

solution for t /∈ [0, Td] is the usual one, i.e., x = A sin (ωt+ φ); inside that range,

however, an additional term must be added. Let us assume the additional term is

an oscillation with the same frequency as the driving, allowing for a phase shift, that

is, xp (t) = A′ sin (ωdt+ φ). Inserting this ansatz in the original equation yields
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ẍ+ ω2x =

= −ω2
dA
′ sin (ωdt+ φ) + ω2A′ sin (ωdt+ φ) =

= A′
(
ω2 − ω2

d

)
sin (ωdt+ φ) =

= A′
(
ω2 − ω2

d

)
[cos (ωdt) sinφ+ sin (ωdt) cosφ] =

= fd sin (ωdt) ∀t =⇒

sinφ = 0 =⇒ φ = nπ

A′ (ω2 − ω2
d) = fd

(A.2)

The general solution for t ∈ [0, Td] is therefore

x (t) = A sin (ωt) +B cos (ωt) +
fd

ω2 − ω2
d

sin (ωdt) . (A.3)

If the initial conditions x, ẋ = 0 are imposed, values for A and B are readily found.

The solution for this set of initial conditions in t ∈ [0, Td] is

xr (t) =
fd

ω2 − ω2
d

[
sin (ωdt)−

ωd
ω

sin (ωt)
]
∀t ∈ (0, Td) , (A.4)

which is labeled xr to remark that it results from an oscillator initially at rest.

At t = Td, the driving is interrupted, and the trajectory must conform to that of

the harmonic oscillator. Since the disconinuity in acceleration is finite, position and

velocity must be preserved. This can be used to determine the amplitude and phase

after the driving:

xr
(
T−d
)

= xr
(
T+
d

)
ẋr
(
T−d
)

= ẋr
(
T+
d

) =⇒


fd

ω2−ω2
d

[
sin (ωdTd)− ωd

ω
sin (ωTd)

]
= Ar sin (ωTd + φr)

fdωd
ω2−ω2

d
[cos (ωdTd)− cos (ωTd)] = ωAr cos (ωTd + φr)

(A.5)

The amplitude is therefore



A.1. TRANSIENT RESPONSE OF THE DRIVEN HARMONIC OSCILLATOR137

|Ar| =
√

[Ar sin (ωTd + φr)]
2 + [Ar cos (ωTd + φr)]

2

=
fd

ω2 − ω2
d

[
sin2 (ωdTd) +

ω2
d

ω2
sin2 (ωTd)− 2

ωd
ω

sin (ωdTd) sin (ωTd)

+
ω2
d

ω2

(
cos2 (ωdTd) + cos2 (ωTd)− 2 cos (ωdTd) cos (ωTd)

) ]1/2

=
fd

|ω2 − ω2
d|

[
2 +

ω2
d − ω2

ω2
cos2 (ωdTd)

− 2
ωd
ω

(
sin (ωdTd) sin (ωTd) +

ωd
ω

cos (ωdTd) cos (ωTd)
)]1/2

,

(A.6)

and the phase is simply

φr = atan

(
sin (ωTd + φr)

cos (ωTd + φr)

)
− ωTd = atan

(
ω
ωd

sin (ωdTd)− sin (ωTd)

cos (ωdTd)− cos (ωTd)

)
− ωTd ,

(A.7)

taking into consideration that the information about the sign of Ar (which can be

accounted for with an additional phase π
2

(1− sgnAr), with sgn (x) = x/ |x| the sign

function) is lost in Eq. A.6.

These expressions can be simplified if the drive’s detuning, ∆ω = ωd − ω, verifies

∆ω � ω. In that case, ωd/ω ' 1 and ωd +ω ' 2ω, and the position and velocity at

t = T−d can be rewritten as

xr
(
T−d
)

=
fd

ω2 − ω2
d

[
sin (ωdTd)−

ωd
ω

sin (ωTd)
]

' −fd
2ω∆ω

[sin (ωdTd)− sin (ωTd)]

=
−fd
ω∆ω

sin

(
∆ω

2
Td

)
cos

([
ω +

∆ω

2

]
Td

)
=
fdTd
2ω

sinc

(
∆ω

2
Td

)[
sin (ωTd) sin

(
∆ω

2
Td

)
− cos (ωTd) cos

(
∆ω

2
Td

)]
(A.8)

and
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ẋr
(
T−d
)

=
fdωd

ω2 − ω2
d

[cos (ωdTd)− cos (ωTd)]

' fd
∆ω

sin

(
∆ω

2
Td

)
sin

([
ω +

∆ω

2

]
Td

)
=
fdTd

2
sinc

(
∆ω

2
Td

)[
cos (ωTd) sin

(
∆ω

2
Td

)
+ sin (ωTd) cos

(
∆ω

2
Td

)]
,

(A.9)

respectively. Here the function sinc (x) = sin (x) /x is introduced, and several

trigonometric identities have been used1. Comparing Eqs. A.8 and A.9 with the

position and velocity after the driving,

xr
(
T+
d

)
= Ar sin (ωTd + φr) = Ar [sin (ωTd) cosφr + cos (ωTd) sinφr]

ẋr
(
T+
d

)
= ωAr cos (ωTd + φr) = ωAr [cos (ωTd) cosφr − sin (ωTd) sinφr]

,

(A.10)

it is clear that both position and velocity are continuous if

Ar '
fdTd
2ω

sinc

(
∆ω

2
Td

)
(A.11)

and

sin
(

∆ω
2
Td
)
' cosφr

cos
(

∆ω
2
Td
)
' − sinφr

=⇒ φr '
∆ω

2
Td −

π

2
. (A.12)

Therefore, the oscillator’s full trajectory for the initial conditions x, ẋ = 0 is

xr (t) '


0 ∀t < 0

fd
ω2−ω2

d

[
sin (ωdt)− ωd

ω
sin (ωt)

]
∀t ∈ (0, Td)

−fdTd
2ω

sinc
(

∆ω
2
Td
)

cos
(
ωt+ ∆ω

2
Td
)
∀t > Td

. (A.13)

The information about amplitude and phase after driving is presented in Fig. A.1.

If the oscillator has non-vanishing initial amplitude, that is, x0 = A0 sin (ωt+ φ0)

for t < 0, it is clear that

1Namely, sin a−sin b = 2 sin
(
a−b
2

)
cos
(
a+b
2

)
, cos a−cos b = −2 sin

(
a−b
2

)
sin
(
a+b
2

)
, cos (a+ b) =

cos a cos b− sin a sin b and sin (a+ b) = sin a cos b+ cos a sin b.
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Figure A.1: Amplitude and phase of the harmonic oscillator after being driven for
a time Td at a frequency ωd = ω + ∆ω.

x (t) = x0 (t)+xr (t) =


A0 sin (ωt+ φ0) ∀t < 0

A0 sin (ωt+ φ0) + fd
ω2−ω2

d

[
sin (ωdt)− ωd

ω
sin (ωt)

]
∀t ∈ (0, Td)

A0 sin (ωt+ φ0) + Ar sin (ωt+ φr) ∀t > Td
(A.14)

fulfills Eq. A.1 at all points and conserves position and velocity at t = 0 and t = Td.

It must therefore be the solution. The solution for t > Td can be rewritten as

x (t > Td) = A0 sin (ωt+ φ0) + Ar sin (ωt+ φr)

= sin (ωt) (A0 cosφ0 + Ar cosφr) + cos (ωt) (A0 sinφ0 + Ar sinφr)

(A.15)

Since there is no driving for t > Td, this must be of the form

x = A sin (ωt+ φ) = A sin (ωt) cosφ+ A cos (ωt) sinφ . (A.16)

The only way for Eqs. A.15 and A.16 to be equal for all values of t is to have the

coefficients multiplying the terms in sin (ωt) and cos (ωt) match; therefore,
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Figure A.2: Amplitude (solid lines) and phase (dashed lines) of a harmonic oscillator
with initial amplitude A0 being driven on-resonance for a time Td for several initial
phases φ0. Figure inspired by Ref. [30].

A0 cosφ0 + Ar cosφr = A cosφ

A0 sinφ0 + Ar sinφr = A sinφ
. (A.17)

The final values of φ and A are, respectively,

φ = atan

(
sinφ

cosφ

)
= atan

(
A0 sinφ0 + Ar sinφr
A0 cosφ0 + Ar cosφr

)
(A.18)

and

A =

√
(A sinφ)2 + (A cosφ)2

=
√
A2

0 + A2
r + 2A0Ar (cosφ0 cosφr − sinφ0 sinφr)

=
√
A2

0 + A2
r + 2A0Ar cos (φ0 − φr) . (A.19)

The amplitude and phase an oscillator with an initial amplitude A0 and phase φ0

attains after being driven on resonance for a time Td with force mfd is shown, for

several initial phases φ0, in Fig. A.2. The fastest changes in amplitude happen for

φ0 = ±π/2, which is when the ion’s velocity is in phase (or in phase opposition)
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with the driving force, therefore maximizing the power transferred to the oscillator.

A.2 Quadrupolar driving of the trapped ion

When the coupling potential ϕRF = −xy 2αVRF
d2elec

cos (ωRF t+ φRF ) is superimposed to

the trapping potential of the Penning trap, the Hamiltonian in the eigenmode basis

is

H =
1

2
ω+

(
q2

+ + p2
+

)
− 1

2
ω−
(
q2
− + p2

−
)

+
1

2
ωz
(
q2

3 + p2
3

)
−H (t)H (Td − t) k0 cos (ωRF t+ φRF ) (q+ + q−) (p+ − p−) , (A.20)

where k0 = 2αqVRF
mω1d2elec

. The resulting equations of motion while the quadrupolar driving

is applied are



ṗ+ = − ∂H
∂q+

= −ω+q+ + k0 cos θRF (p+ − p−)

q̇+ = ∂H
∂p+

= ω+p+ − k0 cos θRF (q+ + q−)

ṗ− = − ∂H
∂q−

= ω−q− + k0 cos θRF (p+ − p−)

q̇− = ∂H
∂p−

= −ω−p− + k0 cos θRF (q+ + q−)

. (A.21)

A procedure similar to the one shown in Ref. [13] can be used to solve these equa-

tions. q± = A±e
±θ± and p± = iq± (where again θ± = ω±t + φ±) are solutions of

Eq. A.21 for k0 = 0. Based on this, the ansatz

q± = A± (t) e±θ± (A.22a)

p± = iq± (A.22b)

is introduced2. Therefore, the effects of the quadrupolar driving are contained in

A± (t). Introducing the ansatz in Eq. A.21, the following differential equations are

obtained:

2By preserving the relationship p± = iq±, the assumption of circular trajectories made in
Ref. [13] is implicit.
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Ȧ+e
iθ+ = k0 cos θRF

(
A+e

iθ+ − A−e−iθ−
)

Ȧ+e
iθ+ = k0 cos θRF

(
−A+e

iθ+ − A−e−iθ−
)

Ȧ−e
−iθ− = k0 cos θRF

(
A+e

iθ+ − A−e−iθ−
)

Ȧ−e
−iθ− = k0 cos θRF

(
A+e

iθ+ + A−e
−iθ−

)
(A.23)

There is a clear disagreement between the two pairs of equations arising from the cir-

cularity assumption. However, if the cosine is written as cos θRF =
(
eiθRF + e−iθRF

)
/2

and only the lowest frequency term of the product is kept (rotating wave approxi-

mation), the discordant terms are among those neglected. The final equations are

Ȧ± = ∓k0

2
e±i(θRF−θ+−θ−)A∓ = ∓k0

2
e±i∆ω·te±i∆φA∓ (A.24)

where ∆ω = ωRF − ωc and ∆φ = φRF − φ+ − φ−. Taking the time derivative of the

Ȧ+ equation and inserting the Ȧ− equation yields

Ä+ − i∆ωȦ+ +

(
k0

2

)2

A+ = 0 , (A.25)

whose solution is

A+ = a′1e
i∆ω/2·te+iωBt + a′2e

i∆ω/2·te−iωBt = ei∆ω/2·t [a1 cos (ωBt) + a2 sin (ωBt)] .

(A.26)

Here, ωB =
√

∆ω2 + k2
0/2 has been introduced. A− can be found using the Ȧ+

equation:

A− = − 2

k0

e−i∆ωte−i∆φȦ+

= − 2

k0

e−i∆ω/2·te−i∆φ
[(
i
∆ω

2
a1 + ωBa2

)
cos (ωBt) +(

i
∆ω

2
a2 − ωBa1

)
sin (ωBt)

]
(A.27)

The values of a1 and a2 are obtained from adequate boundary conditions. These are,

as shown in Appendix A.1, continuity in position and velocity. Given the coordinate

transformation (Eq. 2.22) and the ansatz used (Eq. A.22), this is equivalent to
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imposing continuity in the amplitudes (radii):

A+ (0−) =
√
mω1ρ+ = A+ (0+)

A− (0−) =
√
mω1ρ− = A− (0+)

=⇒

a1 =
√
mω1ρ+

a2 = −
√
mω1

2ωB

(
k0e

i∆φρ− + i∆ω · ρ+

)
(A.28)

The amplitudes during the driving are therefore

A± (t) =
√
mω1ρ± (t) =

√
mω1e

±i∆ω/2·t
[
ρ± cos (ωBt)∓

i∆ω · ρ± + k0e
±i∆φρ∓

2ωB
sin (ωBt)

]
(A.29)

If the initial radii are ρ+ (0) = 0 and ρ− (0) = ρ−, and the driving time is such that

the conversion is complete when the driving is on resonance (k0Td = π),

ρ+ (t > Td) = −ρ−
k0e

i(∆ω/2·Td+φRF−φ−)

2ωB
sin (ωBTd)

= ρ−e
i(∆ω/2·Td+φRF−φ−+π)π

2

1

TdωB
sin (ωBTd)

= ρ−e
i(∆ω/2·Td+φRF−φ−+π)π

2
sinc (ωBTd)

= ρ−e
i(∆ω/2·Td+φRF−φ−+π)π

2
sinc

π
2

√(
∆ω · Td

π

)2

+ 1

 (A.30)

Fig. A.3 shows the resulting cyclotron radius and phase.

On the other hand, if the initial radii are instead ρ− (0) = 0 and ρ+ (0) = ρ+, the

driving is on-resonance (∆ω = 0) and a full conversion takes place,

ρ− (t > Td) = e−i(φRF−φ+)ρ+ =⇒ q− (t > Td) =
√
mω1ρ+e

−i(ω−t−φ+)e−iφRF (A.31)

This expression explicitly shows that the resulting magnetron phase opposes the

original cyclotron phase (plus a constant factor) and that the final magnetron radius

is the same as the original cyclotron one.

On the other hand,

Eq. A.31 and A.30 will be useful when discussing several of the PTMS techniques.
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Figure A.3: Amplitude and phase of a trapped ion after a quadrupolar RF driving.
The driving settings are such that the conversion is complete when the driving is on
resonance.

A.3 Perturbation theory and Zeeman effect

In order to study the modified electronic structure of the 40Ca+ under magnetic

fields beyond the linear regime of the Zeeman effect, perturbation theory can be

used, as long as the splitting is much smaller than the separation due to the fine

structure. The Hamiltonian is

Ĥ = Ĥ0 + Ĥ′ (A.32)

where Ĥ0 is the unperturbed Hamiltonian (including fine structure) and

Ĥ′ = µBB
(
L̂z + gŜz

)
/~ (A.33)

is the perturbation. Since the eigenstates of the unperturbed Hamiltonian have

well defined L, S and J , whereas the perturbation is proportional to ML and MS,

the coefficients of the base change between the two bases (i.e. the Clebsch-Gordan

coefficients) will appear often in the calculations.

The first, second and third order corrections to the energy of the state
∣∣i(0)

〉
(eigen-

state of the unperturbed Hamiltonian Ĥ0) are given by [71]
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∆E(1) =
〈
i(0)
∣∣ Ĥ′ ∣∣i(0)

〉
, (A.34)

∆E(2) =
∑

j:E
(0)
i 6=E

(0)
j

∣∣∣〈j(0)
∣∣ Ĥ′ ∣∣i(0)

〉∣∣∣2
E

(0)
i − E

(0)
j

(A.35)

and [80]

∆E
(3)
i =

∑
j:E

(0)
j 6=E

(0)
i

∑
k:E

(0)
k 6=E

(0)
i

〈
i(0)
∣∣ Ĥ′ ∣∣j(0)

〉 〈
j(0)
∣∣ Ĥ′ ∣∣k(0)

〉 〈
k(0)
∣∣ Ĥ′ ∣∣i(0)

〉(
E

(0)
i − E

(0)
j

)(
E

(0)
i − E

(0)
k

)
−

∑
j:E

(0)
j 6=E

(0)
i

〈
i(0)
∣∣ Ĥ′ ∣∣j(0)

〉 〈
j(0)
∣∣ Ĥ′ ∣∣i(0)

〉 〈
i(0)
∣∣ Ĥ′ ∣∣i(0)

〉(
E

(0)
i − E

(0)
j

)2 , (A.36)

respectively.

Note that these expressions deviate from the usual ones at the sum indices. The sums

only iterate outside of the degenerate subspace that contains
∣∣i(0)

〉
, i.e. over states

whose energy differs from that of
∣∣i(0)

〉
. In a hydrogen-like atomic system with fine

structure that means that
∣∣i(0)

〉
and

∣∣j(0)
〉

must differ at least in one of the quantum

numbers L or J . This is a valid way to apply non-degenerate perturbation theory

to a degenerate Ĥ0 if the perturbation is diagonalized in each of the degenerate

subspaces [71]. Later on it will be shown that the perturbation Ĥ′ verifies this

condition from the onset.

In the previous expressions all the brackets that appear are matrix elements of the

perturbation Ĥ′ in the base of the eigenstates of the unperturbed Hamiltonian Ĥ0.

If these are known, the bracket
〈
i(0)
∣∣ Ĥ′ ∣∣j(0)

〉
can be substituted by matrix element

hij, greatly simplifying these expressions. The matrix elements will be calculated in

the present Appendix.

The diagonal terms are given by
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〈LS; JMJ |Ĥ′ |LS; JMJ〉

=

( ∑
ML,MS

〈LS; JMJ | LMLSMS〉 〈LMLSMS|

)

Ĥ′
 ∑
M ′L,M

′
S

〈LM ′
LSM

′
S| LS; JMJ〉 |LM ′

LSM
′
S〉


= µBB

( ∑
ML,MS

〈LS; JMJ | LMLSMS〉 〈LMLSMS|

)
 ∑
M ′L,M

′
S

(M ′
L + gM ′

S) 〈LMLSMS| LS; JMJ〉 |LM ′
LSM

′
S〉


= µBB

∑
ML,MS ,M

′
L,M

′
S

[(M ′
L + gM ′

S) 〈LS; JMJ | LMLSMS〉

〈LMLSMS| LS; JMJ〉 〈LMLSMS| LM ′
LSM

′
S〉]

= µBB
∑

ML,MS ,M
′
L,M

′
S

[(M ′
L + gM ′

S) 〈LS; JMJ | LMLSMS〉

〈LMLSMS| LS; JMJ〉 δMLM
′
L
δMSM

′
S

]
= µBB

∑
ML,MS

(M ′
L + gM ′

S) |〈LS; JMJ | LMLSMS〉|2

= µBB
∑
ML

(M ′
L + gM ′

S) |〈LS; JMJ | LMLSMS〉|2 . (A.37)

The brackets that appear in the last term are, as anticipated, Clebsch-Gordan co-

efficients. The last step takes into account that, for the Clebsch-Gordan coefficient

to be non-zero, MS = MJ −ML, and therefore no summing over MS is needed. If,

as is the case of 40Ca+, S = 1/2 is fixed, the state |LS;LMJ〉 in the perturbation

base is given by

∣∣∣∣L 1

2
; J MJ

〉
= a

∣∣∣∣L MJ +
1

2

1

2

−1

2

〉
+ b

∣∣∣∣L MJ −
1

2

1

2

+1

2

〉
, (A.38)

with a and b the corresponding Clebsch-Gordan coefficients. The matrix element is

then

〈LS; JMJ | Ĥ′ |LS; JMJ〉 = µBB

[
a

(
MJ +

1

2
− g

2

)
+ b

(
MJ −

1

2
+
g

2

)]
(A.39)
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The off-diagonal elements, on the other hand, are given by

〈L′S ′; J ′M ′
J | Ĥ′ |LS; JMJ〉 =

=

 ∑
L′′,M ′′L,S

′′,M ′′S

〈L′S ′; J ′M ′
J | L′′M ′′

LS
′′M ′′

S〉 〈L′′M ′′
LS
′′M ′′

S |


Ĥ′
 ∑
L′′′,M ′′′L ,S

′′′,M ′′′S

〈L′′′M ′′′
L S
′′′M ′′′

S | LS; JMJ〉 |L′′′M ′′′
L S
′′′M ′′′

S 〉


= µBB

 ∑
L′′,M ′′L,S

′′,M ′′S

〈L′S ′; J ′M ′
J | L′′M ′′

LS
′′M ′′

S〉 〈L′′M ′′
LS
′′M ′′

S |


 ∑
L′′′,M ′′′L ,S

′′′,M ′′′S

(M ′′′
L + gM ′′′

S ) 〈L′′′M ′′′
L S
′′′M ′′′

S | LS; JMJ〉 |L′′′M ′′′
L S
′′′M ′′′

S 〉


= µBB

( ∑
L′′,M ′′L,S

′′,M ′′S ,L
′′′,M ′′′L ,S

′′′,M ′′′S

(M ′′′
L + gM ′′′

S ) 〈L′S ′; J ′M ′
J | L′′M ′′

LS
′′M ′′

S〉

〈L′′′M ′′′
L S
′′′M ′′′

S | LS; JMJ〉 〈L′′M ′′
LS
′′M ′′

S | L′′′M ′′′
L S
′′′M ′′′

S 〉

)

= µBB

( ∑
L′′,M ′′L,S

′′,M ′′S ,L
′′′,M ′′′L ,S

′′′,M ′′′S

(M ′′′
L + gM ′′′

S ) 〈L′S ′; J ′M ′
J | L′′M ′′

LS
′′M ′′

S〉

〈L′′′M ′′′
L S
′′′M ′′′

S | LS; JMJ〉 δL′′L′′′δM ′′LM ′′′L δS′′S′′′δM ′′SM ′′′S

)
= µBB

∑
L′′,M ′′L,S

′′,M ′′S

(M ′′
L + gM ′′

S) 〈L′S ′; J ′M ′
J | L′′M ′′

LS
′′M ′′

S〉 〈L′′M ′′
LS
′′M ′′

S | LS; JMJ〉

= µBB
∑
M ′′L

(M ′′
L + gM ′′

S) 〈LS; J ′M ′
J | LM ′′

LSM
′′
S〉 〈LM ′′

LSM
′′
S | LS; JMJ〉 (A.40)

Again, the brackets in the final term are Clebsch-Gordan coefficients. The last step

takes into account that for both Clebsch-Gordan to be simultaneously non-zero,

L = L′ = L′′, S = S ′ = S ′′ and MJ = M ′
J are required, J being the only quantum

number that can differ3. This also restricts M ′′
S to M ′′

S = MJ−M ′′
L. Therefore, given

that L 6= L′ results in zeros, sorting the base by increasing values of L yields a block

diagonal matrix:

3In fact, J 6= J ′ is a requirement as well – otherwise, the element being calculated is not
off-diagonal to begin with, since all quantum numbers are equal!
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Ĥ′ =


Ĥ′S O6x6 O10x10

O4x4 Ĥ′P O10x10

O4x4 O6x6 Ĥ′D

 (A.41)

Also, since matrix elements involving MJ 6= M ′
J result in zeroes, the diagonal form

of Ĥ′ within each of the degenerate subspaces (equal J) is proven, and the use of

Eqs. A.34, A.35 and A.36 is justified.

If S = 1/2 (as in the case of 40Ca+), two values of J are possible for each L – or

even just one, if L = 0:

• If L = 0, there is no other state with different J but equal MJ ; therefore,

off-diagonal elements are zero if they involve an S state.

• If L 6= 0, the restriction MJ = M ′
J still applies. For the term to be non-zero

there must exist a state with J ′ 6= J but MJ = M ′
J . Therefore, states with

J = L + 1/2 and |MJ | = L + 1
2

won’t have non-zero off-diagonal elements,

since a state with J = L− 1/2 can’t have MJ = ±
∣∣L+ 1

2

∣∣. For the remaining

states (L 6= 0 and |MJ | < L+ 1
2
), only a single off-diagonal term is non-zero –

that of L = L′, J 6= J ′ and MJ = M ′
J .

The pairs of states with equal L and MJ but different J can be decomposed in the

basis of the perturbation as

∣∣∣∣L 1

2
;L+

1

2
MJ

〉
= a

∣∣∣∣L MJ +
1

2

1

2

−1

2

〉
+ b

∣∣∣∣L MJ −
1

2

1

2

+1

2

〉
(A.42)

and

∣∣∣∣L 1

2
;L− 1

2
MJ

〉
= b

∣∣∣∣L MJ +
1

2

1

2

−1

2

〉
− a

∣∣∣∣L MJ −
1

2

1

2

+1

2

〉
, (A.43)

where a and b are the Clebsh Gordan coefficients, verifying a, b > 0 and a2 + b2 = 1.

Applying the perturbation to e.g. the second,
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(Lz + gSz)

∣∣∣∣L 1

2
;L− 1

2
MJ

〉
=

= (Lz + gSz)

(
b

∣∣∣∣L MJ +
1

2

1

2

−1

2

〉
− a

∣∣∣∣L MJ −
1

2

1

2

+1

2

〉)
=

= b

(
MJ +

1

2
− g

2

) ∣∣∣∣L MJ +
1

2

1

2

−1

2

〉
− a

(
MJ −

1

2
+
g

2

) ∣∣∣∣L MJ −
1

2

1

2

+1

2

〉
(A.44)

and multiplying by the first,

〈
L

1

2
;L+

1

2
MJ

∣∣∣∣Lz + gSz

∣∣∣∣L 1

2
;L− 1

2
MJ

〉
=

=

(
a

〈
L MJ +

1

2

1

2

−1

2

∣∣∣∣+ b

〈
L MJ −

1

2

1

2

+1

2

∣∣∣∣)(
b

[
MJ +

1

2
− g

2

] ∣∣∣∣L MJ +
1

2

1

2

−1

2

〉
− a

[
MJ −

1

2
+
g

2

] ∣∣∣∣L MJ −
1

2

1

2

+1

2

〉)
=

= ab

([
MJ +

1

2
− g

2

]
−
[
MJ −

1

2
+
g

2

])
= ab (1− g) = −ab (g − 1) , (A.45)

the off-diagonal matrix elements are obtained.

Putting the focus on the particular case of 40Ca+, whose unperturbed electronic

structure was shown in Sec. 2.4.4 (see Fig. 2.5), the previous conclusions can be

applied to a concrete physical case. Only the P states with |MJ | ≤ 1
2

and the D

states with |MJ | ≤ 3
2

will have non-zero off-diagonal terms. If the states within

a given L value are sorted by increasing J and then by increasing MJ (i.e. the

ordering of e.g. the P states is J = 1/2, MJ = −1/2, then J = 1/2, MJ = +1/2,

then J = 3/2, MJ = −3/2, . . . ) the sub-matrices introduced in Eq. A.41 are

Ĥ′S = µBB

(
−g

2
0

0 g
2

)
(A.46)

within the L = 0 subspace,
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Ĥ′P = µBB



−
(

2
3
− g

6

)
0 0 −

√
2

3
(g − 1) 0 0

0 +
(

2
3
− g

6

)
0 0 −

√
2

3
(g − 1) 0

0 0 −
(
1 + g

2

)
0 0 0

−
√

2
3

(g − 1) 0 0 −
(

1
3

+ g
6

)
0 0

0 −
√

2
3

(g − 1) 0 0 +
(

1
3

+ g
6

)
0

0 0 0 0 0 +
(
1 + g

2

)


(A.47)

within the L = 1 subspace and finally, within the L = 2 subspace,
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Resumen extenso y conclusiones

La presente Tesis doctoral tiene como motivación el desarrollo de una nueva técnica de

medidas de masa en trampas Penning basada en la detección óptica. Para ello tiene

tres pilares principales: uno teórico (estudio del cristal asimétrico de dos iones), otro de

desarrollo de software (para crear un sistema de control que facilite la realización de los

experimentos) y otro experimental (en el que se ha mejorado el sistema hasta conseguir

la cristalización de iones en la trampa Penning).

Introducción

Las medidas de masa son muy relevantes en numerosos campos. Las medidas de masa

de alta precisión se han utilizado para poner a prueba teoŕıas fundamentales, estudiar

la nucleośıntesis estelar o incluso para contribuir al acotamiento de la masa del neutrino

(véase el Caṕıtulo 1). Todos los métodos de medidas de masa en trampas Penning se

basan en la medida de las frecuencias de movimiento del ion en la trampa, que se pueden

relacionar con la frecuencia que el ion tendŕıa si sólo actuase el campo magnético de

la trampa (frecuencia ciclotrón libre) y, a partir de ésta, con la masa del ion (véase el

Caṕıtulo 2).

El foco de esta tesis está en los los elementos superpesados o transact́ınidos, producidos en

unas pocas instalaciones en todo el mundo [23, 24, 25, 26]. Estos elementos se producen en

cantidades minúsculas, con eficiencias tanto menores cuanto más pesados son estos núcleos.

La determinación de su masa (y, por tanto, de su enerǵıa de ligadura) permite estudiar

la estructura nuclear en condiciones extremas. Además, mapear la enerǵıa de ligadura de

los diferentes elementos superpesados ayudará a localizar la isla de la estabilidad, donde

el cierre de capa en el núcleo confiere de una estabilidad superior a la de las especies

de similar composición. Con tasas de producción tan bajas como unos pocos iones a la

semana, la capacidad de medir la masa a partir de un solo ion es fundamental. Las técnicas

actuales de medidas de masa, aunque muy exitosas, no pueden alcanzar esta sensibilidad

(véase el Caṕıtulo 3).

Algunas especies iónicas tienen una estructura electrónica que permite manipularlas medi-

153
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ante el uso de láseres, con lo que se pueden enfriar a temperaturas de milikelvin o incluso

hasta el estado fundamental del pozo de potencial de la trampa (véase la Sección 2.4). El

uso de estas especies iónicas como sensores para el estudio de otras especies sin las mismas

propiedades ha sido muy exitoso [40, 41].

La técnica aqúı propuesta se basa en el uso de un ion 40Ca+ (el ion sensor) para estudiar

la masa de un ion arbitrario (ion de interés) encontrándose los dos atrapados en la misma

trampa Penning. Cuando el ion sensor es enfriado por láser, ambos forman un cristal de

Coulomb. Para determinar la masa del ion de interés es necesario caracterizar en detalle

la dinámica de dicho cristal.

Cristal asimétrico de dos iones

El primer paso llevado a cabo en el Caṕıtulo 4 es el estudio de la dinámica de un cristal

con dos iones idénticos, denominado cristal simétrico El tratamiento matemático en este

caso es más sencillo. Aunque este cristal no tiene relevancia desde el punto de vista

de la espectrometŕıa de masas, su estudio sirve para interpretar mejor los resultados de

un cristal genérico, que se ha denominado cristal asimétrico. En ambos casos, el cristal

tiene seis modos de movimiento. Los modos del cristal tienen además caracteŕısticas

similares a los modos de un solo ion, por lo que heredan los nombres de éstos. Los

modos radiales de alta frecuencia, cercana a la frecuencia que el ion tendŕıa en un campo

magnético de la misma intensidad, se denominan modos ciclotrón. Los modos radiales

de baja frecuencia, que aparecen debido al campo electrostático de la trampa, heredan el

nombre de modos magnetrón. También aparecen dos modos axiales, que no están influidos

por el campo magnético de la trampa. Estas tres parejas de modos se pueden clasificar en

dos categoŕıas, puesto que en cada pareja hay un modo en el que ambos iones se mueven

en coincidencia de fase (modos comunes) y otro en el que se mueven en oposición de fase

(modos vibracionales).

Además de caracterizar los modos, en esta tesis se muestra cómo el teorema de invariancia

generalizado, obtenido para trampas Penning microfabricadas, en las que cada trampa

contiene únicamente un ion [100], es aplicable también al caso del cristal asimétrico de dos

iones. Por tanto, las frecuencias de los seis modos del cristal, Ωλ, se pueden relacionar con

las frecuencias ciclotrón de los iones de interés y sensor, ωct y ωcs, según

∑
λ

Ω2
λ = ω2

ct + ω2
cs

Puesto que en el estudio del cristal habrá que someterlo a campos electromagnéticos

oscilantes (excitaciones) a distintas frecuencias para encontrar aquellas que resuenan con

sus modos de movimiento, es importante caracterizar la respuesta del cristal a dichos
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campos externos. Esto se ha llevado a cabo en la Sección 4.2. Se encuentra que la

respuesta es equivalente a la de un solo ion si se introduce una relación carga/masa efectiva,

caracteŕıstica de cada uno de los modos. Especialmente interesante es que los modos

vibracionales del cristal simétrico no responden a las excitaciones.

En el estudio de la dinámica del cristal se ha de realizar una aproximación de desplaza-

mientos pequeños alrededor de la posición de equilibrio. Dada la no-armonicidad de la

repulsión culombiana entre los iones, esto introduce corrimientos en la frecuencia de los

modos que dependen de la amplitud de oscilación. Es fundamental, por tanto, estudiar

estos corrimientos en frecuencia. Esto tiene lugar en la Sección 4.3. El estudio de los

corrimientos en el régimen clásico mediante simulaciones de las trayectorias de los iones

muestra que algunos modos (especialmente el modo magnetrón vibracional y, en menor

medida, el axial vibracional) tienen corrimientos en frecuencia muy significativos. El es-

tudio de los corrimientos en frecuencia en el régimen cuántico, llevado a cabo mediante

teoŕıa de perturbaciones, evidencia ademas que el modo magnetrón vibracional introduce

corrimientos significativos no solo en su propia frecuencia, sino en la del resto de modos.

Desarrollo del nuevo sistema de control y adquisición

En cuanto a la parte de desarrollo de software, en esta Tesis se ha sustituido el sistema

anteriormente utlizado (que realiza el control del experimento y la adquisición de datos de

forma separada) por un sistema unificado, como se muestra en el Caṕıtulo 5. Un sistema

unificado simplifica la realización de experimentos, por ejemplo, permitiendo realizar un

experimento para varios valores de un parámetro experimental y registrar los resultados

asociándolos al valor utilizado, o automatizar el análisis de forma que se puedan visualizar

los resultados en vivo, pudiendo actuar el operador en consecuencia.

Como punto de partida se ha elegido el sistema ARTIQ (Advanced Real-Time Infras-

tructure for Quantum Physics). No solo presenta una muy buena resolución temporal, lo

cual es imprescindible para realizar experimentos con iones atrapados, sino que además

es fácilmente extensible. El software, basado en Python, es compilado y ejecutado en

un procesador dedicado (Field-Programmable Gate Array, o FPGA) para aquellas tareas

que requieren el mayor rendimiento, pudiendo ejecutarse en un ordenador convencional

todas aquellas tareas que no tengan esas restricciones, usando llamadas a procedimientos

remotos (Remote Procedure Calls, o RPCs).

ARTIQ tiene asociada una familia de dispositivos (Sinara) capaces de suplir muchas de

las necesidades de un laboratorio. Sin embargo, no todos los requisitos del experimento

son alcanzables usando únicamente hardware Sinara. Es en este punto donde la base

Python del software es especialmente útil – dada la gran popularidad del lenguaje, aśı

como la posibilidad de ejecutar código en un ordenador convencional mediante RPCs, casi
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cualquier dispositivo puede integrarse en un sistema ARTIQ. En esta Tesis se han resuelto

de este modo varias necesidades del experimento:

• Potenciales de atrapamiento: la fuente de alimentación de Sinara está limitada a

±10 V, por lo que no alcanza los voltajes necesarios para confinar iones en la trampa

Penning en las condiciones deseadas. Por eso se integró la fuente de alimentación

CAEN SY1527 en el nuevo sistema de control. El fabricante proporciona una libreŕıa

estática codificada en C. Este tipo de libreŕıas se integran en Python creando un

módulo de extensión, un programa en C que utiliza la interfaz de programación

(Application Programming Interface, o API) de Python, de modo que el código

resultante sea compatible con el mismo.

• Excitación de los modos de movimiento del cristal: los sintetizadores de frecuen-

cia de Sinara no operan por debajo de 1 MHz. La mayoŕıa de frecuencias de

movimiento del cristal se encuentran por debajo de este valor. Por tanto, una pareja

de generadores de radiofrecuencia Agilent fueron integrados en el sistema de control.

Éstos se controlan mediante el estándar Virtual Instrument Software Architecture

(VISA). Existen varias libreŕıas Python que pueden controlar dispositivos mediante

este estándar. En este caso, pyVISA fue utilizada.

• Detección de fotones dispersados por el ion sensor: la cámara EMCCD que se uti-

lizaba en los experimentos con anterioridad fue integrada en el nuevo sistema. El

fabricante de la cámara proporciona una libreŕıa dinámica codificada en C para

utilizar la cámara en programas personalizados. El paquete ctypes permite uti-

lizar dichas libreŕıas en Python. Además, el tubo fotomultiplicador disponible en el

laboratorio, cuyo fabricante también proporciona una libreŕıa del mismo tipo, será

integrado siguiendo el mismo proceso en los próximos meses.

El nuevo sistema de control está actualmente en uso en el laboratorio.

Observación del cristal de dos iones

La parte experimental del trabajo tiene dos componentes: la caracterización de la trampa

de anillos abierta, por un lado, y las modificaciones llevadas a cabo hacia la consecución

del cristal de dos iones, por otro.

La trampa de anillos abierta, a diferencia de las geometŕıas de trampas Penning más

comunes, no tiene electrodos en el plano radial. Esto otorga una gran facilidad de acceso,

sea para láseres, recolección de fotones, o cualquier otro propósito. Un paso importante es

la sintonización de la trampa. Para ello se ha creado un protocolo, basado en un programa

de resolución de potenciales electrostáticos, que permite elegir una frecuencia minimizando
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los términos no armónicos. Se ha conseguido verificar experimentalmente la armonicidad

del potencial resultante. La trampa se ha utilizado para medir frecuencias de movimiento

de iones de calcio usando detección destructiva mediante un detector de microcanales, aśı

como para realizar resonancias por tiempo de vuelo. Éstas últimas sirvieron además para

obtener un valor preciso del campo magnético para los cálculos del efecto Zeeman.

De cara al enfriamiento por láser, diferentes modificaciones del setup fueron implemen-

tadas, entre las que destacan:

• Diseño y fabricación de una nueva fuente de iones. En lugar de usar la fuente

por desorción láser empleada anteriormente, se diseñó una estructura para colocar

hornos de calcio dentro del campo magnético. Éstos evaporan átomos de calcio, que

después son fotoionizados en el centro de la trampa en un proceso con dos pasos,

de los cuales el primero es resonante. Esto permite ionizar sólo calcio, permitiendo

incluso selectividad isotópica. Además, permite incrementar el número de iones de

forma sencilla, y la enerǵıa inicial de los mismos es bastante baja.

• Diseño del esquema de operación de un modulador electro-óptico: el estudio del

efecto del campo magnético en la estructura electrónica del ion sensor (efecto Zee-

man) llevado a cabo en la Sección 2.4.4 permitió diseñar un esquema de operación

del modulador electro-óptico que permite bombear los seis sub-niveles del estado

metaestable D5/2. Este estado, que en principio no debeŕıa estar involucrado en

el proceso de Doppler cooling, es puesto en juego debido al efecto de mezclado de

momentos angulares del campo magnético. Además, la alta intensidad del campo

magnético hace que el efecto Zeeman entre en un régimen no lineal, de modo que

una sola señal aplicada al EOM no es suficiente. Varias configuraciones con dos

señales fueron analizadas, y una de ellas implementada.

Estas modificaciones permitieron la observación de fluorescencia y las primeras evidencias

de enfriamiento láser de 40Ca+ en un campo magnético de tal intensidad. Mejoras incre-

mentales en el vaćıo en la trampa, aśı como un rediseño del sistema óptico como parte de

otra tesis doctoral [69] permitieron además la cristalización de nubes de iones de 40Ca+.

Una vez observada la cristalización se pudo conseguir un cristal de dos iones (en este caso

iguales) reduciendo la corriente que circula por el horno de calcio.

Conclusiones

Este trabajo ha estudiado la viabilidad del uso de un cristal asimétrico de dos iones como

plataforma sobre la que realizar medidas de masa utilizando detección óptica.

En primer lugar, se ha estudiado la dinámica de dicho cristal. Un estudio detallado del

movimiento de los iones, apoyado en la intuición que proporciona el estudio del cristal
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simétrico, aśı como la dinámica de un solo ion, permite caracterizar los seis modos de

movimiento resultantes. Especialmente importante, sin embargo, ha sido demostrar la

aplicabilidad del teorema de invariancia generalizado. Éste permite relacionar las frecuen-

cias del cristal con las frecuencias ciclotrón libres de los iones sensor y de interés, que son

las cantidades a partir de las que, en última instancia, se deriva el valor de la masa. Se ha

estudiado también la mayor limitación del método (los corrimientos en frecuencia debidos

a la no-armonicidad de la interacción de Coulomb). Los grandes corrimientos causados

por los modos vibracionales impiden realizar un proceso de medida basado en las seis fre-

cuencias del cristal que sea puramente clásico. Se proponen dos posibilidades. El primer

consiste en una medida en el régimen clásico de la frecuencia axial común, a partir de la

cual se puede obtener la masa, aunque con una precisión limitada. Esto se podŕıa emplear

a modo de método de identificación no destructivo. Un método en el régimen cuántico que

determine al menos tres de lase seis frecuencias del cristal (dependiendo de la precisión

deseada) usando métodos de medida no clásicos [107] está siendo estudiado para este caso

particular [111].

Además, esta Tesis ha conseguido por primera vez el enfriamiento de iones de 40Ca+

en un campo magnético de 7 Tesla. A diferencia de las implementaciones realizadas

en otros grupos, es necesario tener en cuenta el efecto Zeeman hasta tercer orden para

poder localizar las frecuencias de transición. Con una trampa de geometŕıa novedosa y

debidamente caracterizada, se ha conseguido observar la cristalización de una nube de

iones. Se ha conseguido también observar un cristal simétrico de dos iones. A partir

de la imagen del cristal se ha podido estimar la mı́nima amplitud con la que se podŕıan

realizar medidas de masa usando únicamente el modo axial común. Esto ha permitido, por

tanto, estimar el corrimiento en frecuencia – en el mejor de los casos, la resonancia se verá

desplazada unos 30 Hz. Sin embargo, dado que la amplitud de oscilación es directamente

observada, este corrimiento se puede corregir hasta cierto punto, por lo que este método

puede ser utilizado para realizar identificaciones no destructivas de iones desconocidos a

partir de su masa, o para monitorizar la desintegración de los mismos. Por otro lado se está

progresando en el terreno experimental hacia las medidas en el régimen cuántico. Un láser

de 729 nm asociado a una cavidad de alta fineza han sido instalados y caracterizados. Éste

láser permitirá llevar a cabo enfriamiento al estado cero, aśı como medidas con números

de fonones muy bajos y métodos de medida no clásicos.
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D. Rodŕıguez. A double paul trap system for the electronic coupling of ions. Eur.

Phys. J. Spec. Top., 227(3) 445–456, 2018.



164 BIBLIOGRAPHY

[46] R. Weinstock. On a fallacious proof of Earnshaw’s theorem. Am. J. Phys., 44(4)

392–393, 1976.

[47] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dynamics of single

trapped ions. Rev. Mod. Phys., 75 281–324, 2003.

[48] J.D. Jackson. Classical Electrodynamics. Wiley, New York, 3rd edition, 1975.

[49] B.J. McMahon, C. Volin, W.G. Rellergert, and B.C. Sawyer. Doppler-cooled ions in

a compact reconfigurable Penning trap. Phys. Rev. A, 101 013408, 2020.

[50] M. Vogel. Particle Confinement in Penning Traps. Springer International Publish-

ing, Switzerland, 2018.

[51] Agilent. Manual for the 7.0T/160mm actively screened magnet system for ion trap

application.

[52] F. Tisseur and K. Meerbergen. The Quadratic Eigenvalue Problem. SIAM Review,

43(2) 235–286, 2001.

[53] G. Savard, St. Becker, G. Bollen, H.-J. Kluge, R.B. Moore, Th. Otto, L. Schweikhard,

H. Stolzenberg, and U. Wiess. A new cooling technique for heavy ions in a Penning

trap. Phys. Lett. A, 158(5) 247–252, 1991.

[54] H. Goldstein, C.P. Poole, and J.L. Safko. Classical Mechanics (New International

Edition). Pearson, London, 2014.

[55] M. Kretzschmar. The Ramsey method in high-precision mass spectrometry with

Penning traps: Theoretical foundations. Int. J. Mass Spectrom., 264(2) 122–145,

2007.

[56] L. Schweikhard and A.G. Marshall. Excitation modes for Fourier transform-ion

cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom., 4(6) 433–452,

1993.

[57] E.A. Cornell, R.M. Weisskoff, K.R. Boyce, and D.E. Pritchard. Mode coupling in a

penning trap: π pulses and a classical avoided crossing. Phys. Rev. A, 41 312–315,

1990.

[58] F.G. Major, V.N. Gheorghe, and G. Werth. Charged Particle Traps. Springer-Verlag,

Berlin, 1st edition, 2005.

[59] J.M. Cornejo. The preparation Penning trap and recent developments on high-

performance ion detection for the project TRAPSENSOR. PhD thesis, Universidad

de Granada, Granada, 2016.



BIBLIOGRAPHY 165

[60] M. Mukherjee, D. Beck, K. Blaum, G. Bollen, J. Dilling, S. George, F. Herfurth,

A. Herlert, A. Kellerbauer, H.-J. Kluge, S. Schwarz, L. Schweikhard, and C. Yazid-

jian. ISOLTRAP: An on-line Penning trap for mass spectrometry on short-lived

nuclides. Eur. Phys. J. A, 35(1) 1–29, 2008.

[61] M. Block, D. Ackermann, K. Blaum, A. Chaudhuri, Z. Di, S. Eliseev, R. Fer-

rer, D. Habs, F. Herfurth, F.P. Heßberger, S. Hofmann, H.-J. Kluge, G. Maero,

A. Mart́ın, G. Marx, M. Mazzocco, M. Mukherjee, J.B. Neumayr, W.R. Plaß,
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M. Herbane, M. Labalme, E. Liénard, F. Mauger, Y. Merrer, O. Naviliat-Cuncic,

J.C. Thomas, and C. Vandamme. The LPCTrap facility: A novel transparent Paul

trap for high-precision experiments. Nucl. Instrum. Methods Phys. Res., A, 565(2)

876–889, 2006.

[147] J.A. Porti. private communication.
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