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Abstract

This Thesis presents a continuous finite element model for the computation
of two-phase flows with moving interfaces. The method is based on the
Non-Oscillatory Finite Element (NFEM) algorithm and integrates the sign-
preserving flux correction methodology, predicting with high accuracy flow
dynamics and interface motion. The procedure is composed of three main
stages: transport of a bounded phase function to couple fluids motion and the
contact discontinuity, reinitialisation step to recover resolution of phase field,
and solution of equations of motion, where both incompressible and weakly
compressible assumptions are considered. For nearly incompressible flows
the continuity equation is modified to preserve mass conservation by consid-
ering the parametric definition of density. Flux correction technique takes
action on the three aforementioned steps. In phase function advection, limit-
ing process that assures positivity of solution, incorporates a straightforward
refinement to remove global mass residuals present in the earliest version of
algorithm. Besides, new correction does not endanger efficacy of the original.
To reconstruct phase function after transport, a novel non-linear (and con-
servative) streamlined diffusion equation is proposed, with an anisotropic dif-
fusivity comprising artificial compression and diffusive fluxes oriented along
interface displacements direction. Iterative procedure employed to solve this
equation integrates flux correction techniques to keep phase function bounds.
Finally, hydrodynamics resolution incorporates an improved bound estima-
tion that includes interface information to substantially reduce nonphysical
overshoots appearing along the contact discontinuity. On the other hand,
stability of artificial stratified flows has been explored in problems involving
Kelvin-Helmholtz instabilities. This study indicates that, to avoid nonphys-
ical amplification of perturbations, thickness of numerical representation of
interface should be reduced to some extent. Then, strategies to decrease
transition thickness between both fluids are examined, and interface refine-
ment results the most suited. Consequently, a novel inexpensive nested-grid
refinement is proposed. The algorithm is also founded in flux-correction
principles, ensuring conservation and monotonicity of the variables during
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dynamical adaptation. Efficacy of numerical model is assessed with strin-
gent benchmark tests both for transport/reinitialisation and for two fluids
interface propagation.

Second target of this work is to scrutinise dynamics of emergence and
propagation of air cavities and resulting geysering events. Presented numer-
ical model along with supplementary theoretical approaches have been used
for this purpose. Analytical model, accomplished by a control volume anal-
ysis, is able to predict dynamics of single and consecutive elongated rising
bubbles and takes into account gas expansion effects and free surface po-
sition to determine impulsion of water above the bubble. This model also
reveals conditions that trigger a sudden bubble decompression, and therefore
a severe geysering event. In numerical experiments, weakly compressible
fluid assumption is essential for proper momentum transfer between phases
in the aforementioned dynamics, particularly for bubble rising process. A
first series of simulations reproduces air cavities propagating in straight and
inclined ducts. Results show a good agreement with existing laboratory out-
puts. A second set of simulations examines flow conditions for emergence of
air pockets in ducts, giving rise to simple solutions that provide the required
flow rate to avoid the intrusion of air. Finally, axisymmetric and complete
three dimensional versions of the numerical model are used to perform rising
Taylor bubbles in vertical ducts and geysering events. These outputs com-
plement analytical results by giving precise flow details, in particular above
the ground level.



Resumen

En esta Tesis se presenta un novedoso modelo continuo de elementos finitos
para el cálculo de flujos bifase con interfase móvil. Este modelo está basado
en el método no oscilatorio de elementos finitos (cuyo acrónimo es NFEM),
que incorpora a su vez una estrategia de corrección de flujos preservando
aśı el signo de la solución. De esta forma, es posible predecir con precisión
la dinámica de la interfase. El procedimiento completo consta de tres pa-
sos: transporte de la función de fase, reinicialización de la función de fase
para mantener la resolución de la interfase y solución de las ecuaciones del
movimiento del flujo, donde se ha tenido en cuenta tantos flujos incompre-
sibles como flujos débilmente compresibles. Para ésta segunda hipótesis, la
ecuación de continuidad ha tenido que ser modificada, según la expresión
paramétrica de la densidad, para mantener la propiedad de conservación de
masa. Las técnicas de corrección de flujos se han implementado en los tres
pasos descritos anteriormente. Para el paso de transporte, se han incorporado
nuevos limitadores que eliminan errores de masa de alto orden presentes en
la versión original del NFEM sin mermar la eficiencia del mismo. Por otro
lado, para el paso de reinicialización se ha creado una nueva ecuación de
difusión conservativa y no lineal. Dicha ecuación alberga una compresibili-
dad artificial y una difusión orientada en un mismo término de difusividad
anisotrópica. El proceso iterativo necesario para resolver la reinicialización
incorpora las técnicas de corrección de flujos para mantener los ĺımites previ-
amente establecidos de la función de fase. Finalmente, para la resolución de
la hidrodinámica del flujo, se han incorporado, en el proceso de corrección de
flujos, coeficientes de limitación mejorados que tienen en cuenta la posición
de la interfase. De esta forma, se ha conseguido eliminar prácticamente por
completo las transferencias espurias de cantidad de movimiento entre fases.
Por otro lado, la estabilidad de flujos artificialmente estratificados ha sido es-
tudiada en problemas que conllevan inestabilidades tipo Kelvin-Helmholtz.
Se ha concluido que, para que no haya una falsa amplificación de pertur-
baciones, es necesario reducir el espesor de la interfase en las simulaciones
numéricas. Por consiguiente, se han investigado diferentes estrategias para
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conseguir esto, resultando ser el más adecuado el refinamiento de la malla
en las zonas cercanas a la interfase. Aśı, se ha desarrollado un nuevo pro-
cedimiento de refinado/desrefinado de mallas anidadas. El nuevo algoritmo
también incluye técnicas de corrección de flujos para asegurar la conservación
y la monotonicidad de las variables. La eficacia de este modelo ha sido puesta
a prueba mediante distintos test numéricos bastante extendidos en la litera-
tura existente.

El segundo objetivo de esta Tesis es investigar la dinámica de las cavidades
de aire que se propagan en conducciones y de los géiseres que tienen lugar
a consecuencia de éstas. Para ello se ha utilizado el modelo numérico antes
explicado, además de una aproximación anaĺıtica. El modelo teórico ha sido
creado a partir de un análisis con volúmenes de control y es capaz de predecir
la dinámica de las burbujas tipo Taylor que ascienden en tubos verticales.
Además, se tiene en cuenta tanto la compresibilidad del aire dentro de la
burbuja como la posición de la superficie libre dentro del tubo, permitiendo
aśı conocer el impulso que sufre la columna de ĺıquido situada por encima de
dicha burbuja. Por otro lado, de las ecuaciones que constituyen el modelo
se puede obtener una condición que al producirse genera una descompresión
brusca de la burbuja y, por consiguiente, un géiser de magnitud considerable.
En relación a las simulaciones numéricas, se verifica que la hipótesis de flujo
débilmente compresible es crucial en los experimentos con burbujas tipo Tay-
lor. Esta premisa es necesaria para conseguir una adecuada transferencia de
cantidad de movimiento entre el gas de la burbuja y la columna de ĺıquido.
La primera tanda de experimentos numéricos trata de reproducir cavidades
de aire propagándose en tubos horizontales e inclinados para comparar los
resultados obtenidos con las observaciones de laboratorio (existentes en la
literatura). La segunda serie está destinada a averiguar las condiciones del
flujo circulante por el interior de la tubeŕıa que impediŕıa que el aire entrase
en la misma y se formase una cavidad. Gracias a los resultados obtenidos, se
han podido definir expresiones semi-anaĺıticas simples que proporcionan esta
información. Finalmente se han usado dos versiones del modelo numérico
(axisimétrica y tridimensional) para simular burbujas tipo Taylor y el con-
siguiente géiser. De esta forma, los datos obtenidos, que contienen detalles
muy precisos, pueden complementar a los resultados anaĺıticos, sobre todo
por encima del nivel de calle.
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Adesola Ademiloye y P. Nithiarasu, que me acogieron durante mis estancias
en la George Mason University y en la Swansea University. Ellos me han
aportado distintos enfoques del trabajo de investigación y valiosos conocimien-
tos que me ayudaron y ayudarán en el futuro.

Por último, y no menos importante, agradezco su apoyo al resto de mi
familia y amigos por los momentos de felicidad y distensión que también son
siempre necesarios.

Es un orgullo para mı́, presentar esta tesis y dedicársela a todas estas
personas que han formado parte de ella.

vii



viii



Contents

Nomenclature xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Two-Phase Flow Computation . . . . . . . . . . . . . . 1

1.1.2 Two Phase Flows in Ducts: Air Cavities . . . . . . . . 3

1.2 State of the Art Review . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Two-Phase Flows Computation . . . . . . . . . . . . . 8

1.2.2 Emergence of Air Cavities and Geysering . . . . . . . . 13

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Two-Phase Flow Numerical Model . . . . . . . . . . . 18

1.4.2 Air Cavities and Geysering: Numerical and Analytical
Experimentation . . . . . . . . . . . . . . . . . . . . . 21

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Semi-Analytical Approaches to Air Cavities and Taylor Bub-
bles Propagation 23

2.1 Air Cavities Propagation . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Control Volume 1: Cavity . . . . . . . . . . . . . . . . 24

2.1.2 Control Volume 2: Bore . . . . . . . . . . . . . . . . . 26

2.1.3 Control Volume 3: Discharge over Weir . . . . . . . . . 26

2.1.4 Special Case: Horizontal Duct . . . . . . . . . . . . . . 28

2.1.5 Simplified Numerical Solution for the Complete Problem 29

2.1.6 Assessment . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Semi-Analytical Approach for Bubbles and Geysering . . . . . 32

2.2.1 Bubble Geometry . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Compressibility Model . . . . . . . . . . . . . . . . . . 36

2.2.3 Single Bubble: Control Volume Analysis . . . . . . . . 37

2.2.4 Approach to Multiple Bubbles . . . . . . . . . . . . . . 45

ix



x CONTENTS

3 Numerical Solutions for Interface Dynamics 59
3.1 Continuous Solution for Two-Fluid Flows . . . . . . . . . . . . 60
3.2 Non-Oscillatory Finite Element Method (NFEM) . . . . . . . 63
3.3 Solution for Transport Phase Advection . . . . . . . . . . . . . 69
3.4 Reinitialisation . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Flow Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6 Artificial fluid stratification . . . . . . . . . . . . . . . . . . . 80
3.7 Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Numerical Experiments 93
4.1 Advection Assessment Simulations . . . . . . . . . . . . . . . 94

4.1.1 Advection of a Gaussian profile. An assessment of con-
vergence . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.2 Slotted cylinder in a rotating flow . . . . . . . . . . . . 97
4.1.3 Circle in a time dependent swirling deformation flow . 102
4.1.4 Gaussian Vortex Test . . . . . . . . . . . . . . . . . . . 103
4.1.5 Slotted sphere in a rotating flow . . . . . . . . . . . . . 108
4.1.6 Sphere in a transient swirling deformation flow . . . . . 108

4.2 Hydrodynamics Assessment Simulations . . . . . . . . . . . . 114
4.2.1 Rayleigh-Taylor Instability . . . . . . . . . . . . . . . . 114
4.2.2 DamBreak problem . . . . . . . . . . . . . . . . . . . . 118
4.2.3 Dam Break with Obstacle . . . . . . . . . . . . . . . . 124

4.3 Intrusion and Propagation of Air Cavities and Geysering . . . 128
4.3.1 Air cavities in horizontal ducts . . . . . . . . . . . . . 128
4.3.2 Air cavities in sloping ducts . . . . . . . . . . . . . . . 132
4.3.3 Air cavities intrusion conditions . . . . . . . . . . . . . 136
4.3.4 Bubble rising in a vertical duct . . . . . . . . . . . . . 137
4.3.5 Two bubbles rising in a vertical duct . . . . . . . . . . 140
4.3.6 Geysering Experiments . . . . . . . . . . . . . . . . . . 142

5 Conclusions 155

A Integral Form of Conservation Equations 161

B Characteristic-Galerkin Formulation 163

C Matrix Formulation 167
C.1 Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . 167
C.2 Hydrodynamics Solution - Velocity Predictor . . . . . . . . . . 170
C.3 Hydrodynamics Solution - Pressure Calculation . . . . . . . . 174
C.4 Hydrodynamics Solution - Velocity Calculation . . . . . . . . 177



CONTENTS xi

D First Order Upwind Scheme 179
D.1 Advection Equation . . . . . . . . . . . . . . . . . . . . . . . . 179
D.2 Source Terms Integration . . . . . . . . . . . . . . . . . . . . . 180

E Matrices for Refinement 183

F Axisymmetric Model 189

References i



xii CONTENTS



List of Figures

1.1 Two-phase flows regimes in conduits. . . . . . . . . . . . . . . 4
1.2 Flow patterns map for two-phase flows in vertical ducts. . . . 4
1.3 Separate stormwater management system of Mississauga . . . 5
1.4 Combined sewer system of Chicago . . . . . . . . . . . . . . . 6
1.5 Motion of an air cavity in an horizontal duct. . . . . . . . . . 7
1.6 Entrapment sequence. . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Geysering event due to an entrapped air cavity. . . . . . . . . 9
1.8 Examples of geysering events. . . . . . . . . . . . . . . . . . . 10
1.9 Sketch of an air cavity. . . . . . . . . . . . . . . . . . . . . . . 15
1.10 Cavity and bore Froude numbers as function of downstream

depth ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.11 Snapshots of two air cavities. . . . . . . . . . . . . . . . . . . 17

2.1 Sketch of an air cavity advancing in an inclined duct. . . . . . 24
2.2 Control volume 1: air cavity . . . . . . . . . . . . . . . . . . . 25
2.3 Control volume 2: bore . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Control volume 3: Discharge over weir . . . . . . . . . . . . . 27
2.5 Modified control volume 1: air cavity . . . . . . . . . . . . . . 29
2.6 Air cavity propagation: analytical results . . . . . . . . . . . . 32
2.7 Air cavity propagation: sketches from analytical results . . . . 33
2.8 Air cavity propagation: laboratory outputs . . . . . . . . . . . 33
2.9 Cavity sealing as function of weir height and slope. Compari-

son with analytical results . . . . . . . . . . . . . . . . . . . . 34
2.10 Sketch of a rising bubble . . . . . . . . . . . . . . . . . . . . . 35
2.11 Control Volume 1 . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.12 Control Volume 2 . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.13 Sketch for analytical model assessment . . . . . . . . . . . . . 44
2.14 Rising bubble, test 1 . . . . . . . . . . . . . . . . . . . . . . . 46
2.15 Rising bubble, test 2 . . . . . . . . . . . . . . . . . . . . . . . 47
2.16 Sketch of multiple bubbles . . . . . . . . . . . . . . . . . . . . 48
2.17 Control Volume 3 . . . . . . . . . . . . . . . . . . . . . . . . . 49

xiii



xiv LIST OF FIGURES

2.18 Comparison - One and Two bubbles . . . . . . . . . . . . . . . 55
2.19 Comparison between first and following bubbles in a labora-

tory experiment. Source: Fig. 7 of Ref. [44]. . . . . . . . . . . . 55
2.20 Geysering due to two bubbles . . . . . . . . . . . . . . . . . . 57

3.1 Definition of level . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Non-dimensional growth rate . . . . . . . . . . . . . . . . . . . 84
3.3 Non-dimensional growth rate, asymptotic case . . . . . . . . . 86
3.4 Refinement: Alternative 1 . . . . . . . . . . . . . . . . . . . . 90
3.5 Refinement: Alternative 2 . . . . . . . . . . . . . . . . . . . . 91

4.1 Gaussian cone test. CFL≈ 0.9 . . . . . . . . . . . . . . . . . . 95
4.2 Gaussian cone test. CFL≈ 0.5 . . . . . . . . . . . . . . . . . . 96
4.3 Slotted cylinder in a rotating flow. Initial condition . . . . . . 97
4.4 Slotted cylinder in a rotating flow. Phase field φ after 10

rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Circle in a time dependent swirling flow. Phase field results . . 104
4.6 Gaussian Vortex: Initial configuration. . . . . . . . . . . . . . 106
4.7 Gaussian Vortex Test. Phase field φ. NFEM results. . . . . . . 109
4.8 Gaussian Vortex Test. Phase field φ. NFEM+Reinitialisation

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.9 Slotted sphere in a rotating flow. Iso-surface φ=0.5. δ3D=

√
3/2.111

4.10 Sphere in a transient swirling deformation flow . . . . . . . . . 113
4.11 Rayleigh-Taylor Instability. Initial condition . . . . . . . . . . 115
4.12 Rayleigh-Taylor Instability. Phase field snapshots . . . . . . . 116
4.13 Rayleigh-Taylor Instability. Amplitude growth . . . . . . . . . 117
4.14 Rayleigh-Taylor Instability for Air-Helium . . . . . . . . . . . 118
4.15 Rayleigh-Taylor Instability for Xenon-Hydrogen . . . . . . . . 119
4.16 Dam Break: initial configuration . . . . . . . . . . . . . . . . . 119
4.17 Surge front position over time. T ∗=t

√
g/b, X∗=X/b . . . . . 120

4.18 Height (left wall) over time. T ∗=t
√
g/b, H∗=H/b . . . . . . . 121

4.19 Dam Break problem. Water phase . . . . . . . . . . . . . . . . 122
4.20 Dam Break problem. Velocity field . . . . . . . . . . . . . . . 123
4.21 Dam break with obstacle. Set up . . . . . . . . . . . . . . . . 125
4.22 Dam break with obstacle. Geometry of the obstacle . . . . . . 126
4.23 Dam break with obstacle . . . . . . . . . . . . . . . . . . . . . 127
4.24 Dambreak with obstacle. Pressure at P1 . . . . . . . . . . . . 128
4.25 Dambreak with obstacle. Pressure at P3 . . . . . . . . . . . . 129
4.26 Dambreak with obstacle. Pressure at P5 . . . . . . . . . . . . 129
4.27 Dambreak with obstacle. Pressure at P7 . . . . . . . . . . . . 130
4.28 Dambreak with obstacle. Water height at H2 . . . . . . . . . . 130



LIST OF FIGURES xv

4.29 Dambreak with obstacle. Water height at H4 . . . . . . . . . . 131
4.30 Air cavity simulation. Surface tension effect . . . . . . . . . . 132
4.31 Cavity and bore celerities as a function of downstream water

depth ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.32 Air cavity simulation. Refinement effect . . . . . . . . . . . . 134
4.33 Cavity sealing as function of weir height and slope. Compari-

son with numerical results . . . . . . . . . . . . . . . . . . . . 135
4.34 Air cavity simulation. Special cases . . . . . . . . . . . . . . . 135
4.35 Domain for air cavities simulations . . . . . . . . . . . . . . . 136
4.36 Inflow velocity limit . . . . . . . . . . . . . . . . . . . . . . . . 138
4.37 Geysering Test. Sketch and dimensions . . . . . . . . . . . . . 140
4.38 Taylor bubble emergence. Comparison between axisymmetric

model and experimental results. . . . . . . . . . . . . . . . . . 141
4.39 Two bubbles rising in a vertical duct. Analytical and Numer-

ical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.40 Two bubbles rising in a vertical duct. Snapshots . . . . . . . . 144
4.41 Domain for geysering simulation 1 . . . . . . . . . . . . . . . . 146
4.42 Domain for geysering simulation 2 . . . . . . . . . . . . . . . . 147
4.43 Geysering simulation 1 . . . . . . . . . . . . . . . . . . . . . . 149
4.43 Geysering simulation 1 (cont.) . . . . . . . . . . . . . . . . . . 150
4.44 Geysering experiment 2, phase function results. . . . . . . . . 151
4.44 Geysering experiment 2, phase function results (cont.). . . . . 152
4.44 Geysering experiment, phase function results (cont. 2). . . . . 153
4.45 Geysering experiment 2, HD plots. . . . . . . . . . . . . . . . 153
4.46 Frames from a footage of a geyser . . . . . . . . . . . . . . . . 154
4.47 Geysering experiment 2. Numerical and analytical results for

bubble position in vertical duct. . . . . . . . . . . . . . . . . . 154

B.1 Characteristic-Galerkin scheme . . . . . . . . . . . . . . . . . 164

D.1 Element Ω from a discretised domain. . . . . . . . . . . . . . . 180

E.1 Refinement: Alternative 1 . . . . . . . . . . . . . . . . . . . . 183
E.2 Refinement: Alternative 2 . . . . . . . . . . . . . . . . . . . . 184
E.3 Two triangles to one triangle . . . . . . . . . . . . . . . . . . . 184
E.4 Four triangles to one triangle . . . . . . . . . . . . . . . . . . 184
E.5 Four triangles to two triangle . . . . . . . . . . . . . . . . . . 185
E.6 Change edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
E.7 One triangle to two triangles . . . . . . . . . . . . . . . . . . . 186
E.8 One triangle to four triangles . . . . . . . . . . . . . . . . . . 186
E.9 Two triangles to four triangles . . . . . . . . . . . . . . . . . . 187



xvi LIST OF FIGURES



List of Tables

4.1 Slotted cylinder in a rotating flow. Methods comparison . . . 99
4.2 Slotted cylinder in a rotating flow. Comparison with other

studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Slotted cylinder in a rotating flow. Reinitialisation and im-

proved normals assessment . . . . . . . . . . . . . . . . . . . . 101
4.4 Circle in a time dependent swirling flow. Reinitialisation as-

sessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5 Circle in a time dependent swirling flow. Comparison with

other studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6 Gaussian Vortex. Errors at t = T . . . . . . . . . . . . . . . . . 107
4.7 Slotted sphere in a rotating flow . . . . . . . . . . . . . . . . . 108
4.8 Sphere in a transient swirling deformation flow. Errors at t=T . 112

xvii



xviii LIST OF TABLES



Nomenclature

1. Roman letters:

� A = Antidiffusive flux or element area

� a = acoustic wave velocity

� B = generic scalar field

� b = control volume boundary velocity

� CI= parameter taking into account deviation of maximum velocity
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√
gd = cavity Froude number

� Fb=cb/
√
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√
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� K = perturbation wave number
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Two-Phase Flow Computation

Flows involving interaction of two or more fluids are present in a wide range
of physical and engineering problems. Depending on the cohesion forces
measured by the surface tension, these fluids can produce a dissolution or
be immiscible. In last case, phases are delimited by a well defined contact
discontinuity called interface, which normally implies steps in density and in
pressure gradient. Multiple phase flows can be categorised in two groups,
dispersed and segregated (or a combination of both). In first group there is
a main and dominant continuous carrier phase which contains the dispersed
phase. This second phase is presented in form of small droplets (see e.g.
Figs. 1.1a and 1.1d) and their dynamics is mainly controlled by drag and
buoyancy forces among others. Some examples of dispersed flows are the
pressurised injection of fuel inside combustion engines (main phase is a gas),
or that produced in boiling chambers of power plants (main phase is a liquid).
Conversely, second group is characterised by having two isolated and well-
defined phases (see e.g. Fig. 1.1b) where dynamics of the whole is defined by
interaction forces between both fluids. Some examples are sloshing events in
ship storage tanks or a dam break flow. Reader can note that same happening
could be regarded as a dispersed or segregated problem depending on the
scale and objective of the investigation. For example, an hydraulic jump
could be a segregated flow whose phases are water and the air at atmospheric
pressure situated above the free surface, or it could be regarded as a dispersed
problem if the research aim is the intrusion of air inside the water.

To address the study of two-phase flows problems in any physical event,
there exist three different strategies. First one is the analytical research, that
aims to reproduce the reality by finding solutions to the equations governing

1
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the problem. Main drawback of this approach is that it is often impossible
to achieve these analytical responses. Second strategy is the laboratory ex-
perimentation, which consists in reproducing the problem under controlled
conditions, usually varying the length scale. Third approach is the numeri-
cal experimentation, that finds approximate solutions to equations governing
the problem by means of sophisticated mathematical tools. Although best
results are attained by combining every kind of experimentation, there are
situations where laboratory experiments are unfeasible, either due to a high
economical cost, to the impossibility of achieving dynamic and kinematic
scales, or to difficulties to take data without altering the physics. In these
cases, numerical experimentation is the only viable alternative.

Computational fluid dynamics (CFD) has demonstrated to be a powerful
and efficient tool to predict in detail flow features in problems involving one
or more fluids. By means of this methodology, Navier-Stokes1 (NS) equa-
tions are numerically solved in a computational domain that represents the
discretisation of an actual region. There are two main ways to describe the
motion of fluids, Eulerian and Lagrangian approaches. By one hand, Eu-
lerian methods consider all particles constituting the fluid as a continuum
and solve equations of motion on fractions of a fixed grid. In contrast, La-
grangian description captures the path of every single particle by solving the
equations governing its dynamics. Hence, nodes of computational domain are
moved according to the velocity field. The choose of Eulerian or Lagrangian
method is highly case-dependent. For multiphase flows, both descriptions
are employed. Normally, segregated flows are described with Eulerian meth-
ods because they admit large fluid deformations as computational domain
is independent on motion. However, they need the implementation of the
interface and ensuing additional forces and conditions. Main challenges that
make the simulation of segregated flows an active field of investigation are
the following:

� Higher complexity in the resolution of equations of motion due to the
inclusion of space and time dependent density and viscosity functions,
in addition to new interfacial forces as surface tension.

� Representation of contact discontinuities by continuous grids and mod-
els.

� The coupling of interface conditions with equations of motion.

1These equations describe the movement of a fluid and are derived by imposing mass
and momentum (Newton’s Second Law) conservation equations to an infinitesimal fluid
volume.
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� The capture of moving interfaces with time.

� The modelling of phases interaction without polluting flow dynamics.

On the other hand, although dispersed flows can be also reproduced with
Eulerian descriptions, requirements of mesh resolution usually makes this
task impossible, becoming necessary the use of Eulerian-Lagrangian mod-
els. These approaches use an Eulerian description for main phase and a
Lagrangian method to simulate the dispersed phase. Thus, last phase is
regarded as distributed particles, whose dynamics is simpler to calculate.

This Thesis aims to develop an efficient numerical model for the accurate
simulation of segregated two-phase flows with moving interfaces, able to over-
come aforementioned difficulties. This new approach will be later applied to
the study of an specific phenomenon occurring in sewer system conduits.

1.1.2 Two Phase Flows in Ducts: Air Cavities

Two-phase flows inside ducts can be present in different forms. Resulting
pattern depends on the ratio between gas and liquid mass fluxes, giving as a
result four main different regimes for vertical conduits (see Figs. 1.1 and 1.2).
Bubbly flow (Fig. 1.1a) takes place when gas forms little bubbles and its flow
rate is very small compared with liquid flow rate. Conversely, for high flow
rates of gas, liquid is attached to duct walls and gas occupies the centre of
the pipe, giving as a result an annular pattern (Fig. 1.1c). Besides, if gas
velocity increases even more, liquid detaches from walls in form of dispersed
droplets or spray (Fig. 1.1d). Note that last pattern is not shown in map 1.2.
Most interesting case in this work is slug flow (Fig. 1.1b), characterised by
gas travelling upwards in form of elongated bubbles occupying most part of
duct section, while liquid forms a thin layer attached to duct walls that flows
downward. Patterns in horizontal ducts are similar to previous ones but,
due to gravity effect, a new stratified flow arises. This pattern is developed
for low liquid and gas flow rates and it is defined by having the fluid with
higher density (normally the liquid) situated below the other one. Eventually,
if gas velocity is high enough, waves can appear along the interface. Two
phase flows in conduits are noticeable in several industrial processes and civil
infrastructures. A current subject of research is that concerning transient air-
water flows emerged in sewer systems as a consequence of severe rainfalls.

Due to the climate change, extreme weather events are increasingly com-
mon. These occurrences, along with undersized drainage infrastructures
make urban floods a recurrent hazard with a very high economic and so-
cial impact on the population. Moreover, if sewer management system is
combined (e.g. same network drives both low quality and surface waters),
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reservoir at Kilauea volcano, Hawaii (Rubin and Pollard, 1987), to 106 m3 s−1, such as may
be appropriate to very high volumetric flow flood basalt eruptions (Swanson et al., 1975;
Wilson and Head, 1981). An average magma flux of 103 m3 s−1 would correspond to an
average magma ascent rate of 1 m s−1 through a 1 m-wide, 1 km-long dike.

Magma ascent through dikes is mainly driven by magma buoyancy, initially determined
by magma composition and ultimately controlled by volatile exsolution, which becomes
the dominant control at shallower depths. A key fluid dynamical parameter for magma flow
is the Reynolds number, Re = ρuL/µ, which represents the ratio of viscous to inertial
forces (u is the flow velocity and L is a typical length scale such as dike thickness). Magma
flow is laminar if Re << 10, and the flow is considered to become turbulent when the
Reynolds number exceeds a critical value of ∼ 1000 (Lister and Kerr, 1991). In most cases,
magma flow is laminar with a Reynolds number of ∼ 1 for basaltic magma with viscosity
of 1000 Pa s and density of 2750 kg m−3 flowing at a rise velocity of 1 m s−1 in a 1 m-
wide dike. However, flows that involve magmas of much lower viscosity or higher magma
ascent rates, such as during flood basalt eruptions, may become turbulent (Huppert and
Sparks, 1985).

An important question is whether exsolved volatile bubbles are uniformly distributed
throughout the magma, forming a uniform bubbly mixture, or whether phase separation
occurs, which would strongly modify the flow behavior. Two-phase flow regimes range,
in order of increasing bubble content and flow explosivity, from: bubbly flows; to slug
flows, where bubbles coalesce into larger gas pockets; to annular flows, where gas flows
in the center of a dike or conduit while the fluid phase flows on its periphery; to dispersed
flows, where fragmented magma is carried by gas flow (Wallis, 1969; Jaupart, 2000; Slezin,
2003; Figure 17.1).Although magma flow will evolve through these different regimes as the
bubble content increases, how magma flows change from one regime to another is still not
fully understood. The different two-phase flow regimes depend on various parameters that
include, but are not restricted to, bubble contents, flow rates, and flow geometries (Wallis,
1969). A reasonable assumption is to consider that deeper in a basaltic system, bubbles are
well mixed due to low volumetric concentration, the relatively small size of the bubbles,
the relatively low viscosity of basaltic melts, and the effects of magma convection (Phillips

Bubbly flow Slug flow Annular flow Dispersed flow

Fig. 17.1 The different flow regimes experienced by two-phase flows, going from bubbly flow to
dispersed flow as both gas content and flow explosivity increase.

(a) Bubbly
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reservoir at Kilauea volcano, Hawaii (Rubin and Pollard, 1987), to 106 m3 s−1, such as may
be appropriate to very high volumetric flow flood basalt eruptions (Swanson et al., 1975;
Wilson and Head, 1981). An average magma flux of 103 m3 s−1 would correspond to an
average magma ascent rate of 1 m s−1 through a 1 m-wide, 1 km-long dike.

Magma ascent through dikes is mainly driven by magma buoyancy, initially determined
by magma composition and ultimately controlled by volatile exsolution, which becomes
the dominant control at shallower depths. A key fluid dynamical parameter for magma flow
is the Reynolds number, Re = ρuL/µ, which represents the ratio of viscous to inertial
forces (u is the flow velocity and L is a typical length scale such as dike thickness). Magma
flow is laminar if Re << 10, and the flow is considered to become turbulent when the
Reynolds number exceeds a critical value of ∼ 1000 (Lister and Kerr, 1991). In most cases,
magma flow is laminar with a Reynolds number of ∼ 1 for basaltic magma with viscosity
of 1000 Pa s and density of 2750 kg m−3 flowing at a rise velocity of 1 m s−1 in a 1 m-
wide dike. However, flows that involve magmas of much lower viscosity or higher magma
ascent rates, such as during flood basalt eruptions, may become turbulent (Huppert and
Sparks, 1985).

An important question is whether exsolved volatile bubbles are uniformly distributed
throughout the magma, forming a uniform bubbly mixture, or whether phase separation
occurs, which would strongly modify the flow behavior. Two-phase flow regimes range,
in order of increasing bubble content and flow explosivity, from: bubbly flows; to slug
flows, where bubbles coalesce into larger gas pockets; to annular flows, where gas flows
in the center of a dike or conduit while the fluid phase flows on its periphery; to dispersed
flows, where fragmented magma is carried by gas flow (Wallis, 1969; Jaupart, 2000; Slezin,
2003; Figure 17.1).Although magma flow will evolve through these different regimes as the
bubble content increases, how magma flows change from one regime to another is still not
fully understood. The different two-phase flow regimes depend on various parameters that
include, but are not restricted to, bubble contents, flow rates, and flow geometries (Wallis,
1969). A reasonable assumption is to consider that deeper in a basaltic system, bubbles are
well mixed due to low volumetric concentration, the relatively small size of the bubbles,
the relatively low viscosity of basaltic melts, and the effects of magma convection (Phillips

Bubbly flow Slug flow Annular flow Dispersed flow

Fig. 17.1 The different flow regimes experienced by two-phase flows, going from bubbly flow to
dispersed flow as both gas content and flow explosivity increase.
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reservoir at Kilauea volcano, Hawaii (Rubin and Pollard, 1987), to 106 m3 s−1, such as may
be appropriate to very high volumetric flow flood basalt eruptions (Swanson et al., 1975;
Wilson and Head, 1981). An average magma flux of 103 m3 s−1 would correspond to an
average magma ascent rate of 1 m s−1 through a 1 m-wide, 1 km-long dike.

Magma ascent through dikes is mainly driven by magma buoyancy, initially determined
by magma composition and ultimately controlled by volatile exsolution, which becomes
the dominant control at shallower depths. A key fluid dynamical parameter for magma flow
is the Reynolds number, Re = ρuL/µ, which represents the ratio of viscous to inertial
forces (u is the flow velocity and L is a typical length scale such as dike thickness). Magma
flow is laminar if Re << 10, and the flow is considered to become turbulent when the
Reynolds number exceeds a critical value of ∼ 1000 (Lister and Kerr, 1991). In most cases,
magma flow is laminar with a Reynolds number of ∼ 1 for basaltic magma with viscosity
of 1000 Pa s and density of 2750 kg m−3 flowing at a rise velocity of 1 m s−1 in a 1 m-
wide dike. However, flows that involve magmas of much lower viscosity or higher magma
ascent rates, such as during flood basalt eruptions, may become turbulent (Huppert and
Sparks, 1985).

An important question is whether exsolved volatile bubbles are uniformly distributed
throughout the magma, forming a uniform bubbly mixture, or whether phase separation
occurs, which would strongly modify the flow behavior. Two-phase flow regimes range,
in order of increasing bubble content and flow explosivity, from: bubbly flows; to slug
flows, where bubbles coalesce into larger gas pockets; to annular flows, where gas flows
in the center of a dike or conduit while the fluid phase flows on its periphery; to dispersed
flows, where fragmented magma is carried by gas flow (Wallis, 1969; Jaupart, 2000; Slezin,
2003; Figure 17.1).Although magma flow will evolve through these different regimes as the
bubble content increases, how magma flows change from one regime to another is still not
fully understood. The different two-phase flow regimes depend on various parameters that
include, but are not restricted to, bubble contents, flow rates, and flow geometries (Wallis,
1969). A reasonable assumption is to consider that deeper in a basaltic system, bubbles are
well mixed due to low volumetric concentration, the relatively small size of the bubbles,
the relatively low viscosity of basaltic melts, and the effects of magma convection (Phillips

Bubbly flow Slug flow Annular flow Dispersed flow

Fig. 17.1 The different flow regimes experienced by two-phase flows, going from bubbly flow to
dispersed flow as both gas content and flow explosivity increase.
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reservoir at Kilauea volcano, Hawaii (Rubin and Pollard, 1987), to 106 m3 s−1, such as may
be appropriate to very high volumetric flow flood basalt eruptions (Swanson et al., 1975;
Wilson and Head, 1981). An average magma flux of 103 m3 s−1 would correspond to an
average magma ascent rate of 1 m s−1 through a 1 m-wide, 1 km-long dike.

Magma ascent through dikes is mainly driven by magma buoyancy, initially determined
by magma composition and ultimately controlled by volatile exsolution, which becomes
the dominant control at shallower depths. A key fluid dynamical parameter for magma flow
is the Reynolds number, Re = ρuL/µ, which represents the ratio of viscous to inertial
forces (u is the flow velocity and L is a typical length scale such as dike thickness). Magma
flow is laminar if Re << 10, and the flow is considered to become turbulent when the
Reynolds number exceeds a critical value of ∼ 1000 (Lister and Kerr, 1991). In most cases,
magma flow is laminar with a Reynolds number of ∼ 1 for basaltic magma with viscosity
of 1000 Pa s and density of 2750 kg m−3 flowing at a rise velocity of 1 m s−1 in a 1 m-
wide dike. However, flows that involve magmas of much lower viscosity or higher magma
ascent rates, such as during flood basalt eruptions, may become turbulent (Huppert and
Sparks, 1985).

An important question is whether exsolved volatile bubbles are uniformly distributed
throughout the magma, forming a uniform bubbly mixture, or whether phase separation
occurs, which would strongly modify the flow behavior. Two-phase flow regimes range,
in order of increasing bubble content and flow explosivity, from: bubbly flows; to slug
flows, where bubbles coalesce into larger gas pockets; to annular flows, where gas flows
in the center of a dike or conduit while the fluid phase flows on its periphery; to dispersed
flows, where fragmented magma is carried by gas flow (Wallis, 1969; Jaupart, 2000; Slezin,
2003; Figure 17.1).Although magma flow will evolve through these different regimes as the
bubble content increases, how magma flows change from one regime to another is still not
fully understood. The different two-phase flow regimes depend on various parameters that
include, but are not restricted to, bubble contents, flow rates, and flow geometries (Wallis,
1969). A reasonable assumption is to consider that deeper in a basaltic system, bubbles are
well mixed due to low volumetric concentration, the relatively small size of the bubbles,
the relatively low viscosity of basaltic melts, and the effects of magma convection (Phillips

Bubbly flow Slug flow Annular flow Dispersed flow

Fig. 17.1 The different flow regimes experienced by two-phase flows, going from bubbly flow to
dispersed flow as both gas content and flow explosivity increase.

(d) Spray

Figure 1.1: Two-phase flows regimes in conduits.
Source: https://www.researchgate.net/publication/272161795
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Figure 7 Generalised flow regime map for vertical two-phase flow (based on 

Taitel and Dukler, 1976) 

A more recent paper by Taitel and Duckler (1987) analyses the hydrodynamics near the 
discharge of a pipe carrying gas and liquid in horizontal stratified flow.  It is shown that 
for high-viscosity liquids, pipe length may have a considerable effect on the transition 
from the stratified to non-stratified (annular or intermittent) flow pattern.  This leads to 
a flow-pattern map which contains the pipe length as a parameter for this transition 
boundary.  It was concluded that for low-viscosity fluids the pipe length is unimportant 
for the stratified-non-stratified transition but for high viscosity liquids the transition can 
be profoundly influenced. 

Figure 1.2: Flow patterns map for two-phase flows in vertical ducts. Source:
[43]
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Figure 1.3: Separate stormwater management system of Mississauga.
Source: https://www.mississauga.ca/

overflows can also cause public health issues. Stormwater storage tunnels
avoid this problem by separating low quality water from surface water (see
Fig. 1.3), or by managing flow that exceeds the normal system capacity (see
Fig. 1.4a). In last case, extra runoff is driven to artificial reservoirs and is
treated after the storm event. Big cities as Chicago (see Fig. 1.4b and this
video2) have this management system due to its suitability to handle extreme
rainfall events in huge urban areas.

Emergence of big air pockets in all aforementioned infrastructures is an
usual phenomenon that takes place after a heavy rain episode. Some of the
identified mechanisms leading to the intrusion or entrapment of air cavities
are [43]: entrainment at duct inflow or outflow locations, negative pressures
at the duct inlet, entrainment due to vortexes, turbulence in shafts and en-
trapment due to rapid filling or emptying of lines. This work focuses on air
intrusion at duct outflow location. Process starts by the drainage of a sat-
urated duct by its lower end after a heavy rain event. There, air in contact
with atmosphere intrudes in form of open cavities, replacing the evacuated
water (see Fig. 1.5). In some cases, due to duct inclination, partially opened
gates, section changes or obstacles, cavities can be entrapped (see Fig. 1.6),
and resulting air pockets travels upward because of buoyancy forces. Pres-
ence of these pressurised air bags in sewer systems and stormwater storage

2https://www.youtube.com/watch?v=HnOlXJxjDxk



6 CHAPTER 1. INTRODUCTION

(a) Combined sewer and stormwater management systems.
Source: https://mwrd.org/understanding-your-sewer-0

(b) Opening of Chicago stormwater tunnel at Thornton Reservoir.
Source: http://interactive.wbez.org/photos/deeptunnel/

Figure 1.4: Combined sewer system of Chicago
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Figure 1.5: Motion of an air cavity in an horizontal duct. Source: [81].

Figure 1.6: Entrapment sequence. Source: [1].
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systems concern to engineers because of their harmful effects. For example,
they reduce the effective pipe cross section and introduce vertical momen-
tum into the flow due to their buoyancy. Moreover, magnitude of the induced
transient pressure in the pipe may be significantly higher than if there were
no air pockets [83], leading to damage in conduits. However, most dangerous
consequence can appear if this pocket finds a saturated vertical shaft or pipe.
In that case, part of air mass forms a rising Taylor bubble, which ascends
driving the still water and violently expels a mix of water-air to the street
level3. This event aggravate urban floodings and it is known as geysering
because of its similarities with thermal geysers (see Figs. 1.7 and examples
of Fig. 1.8a and 1.8b). In some cases, jet reaches tens of meters above the
street level, throwing upward the manhole lid with the subsequent danger
for pedestrians.

Emergence and propagation of air cavities and geysering events are con-
stituted by almost every two-phase flow patterns presented above. By one
hand, open air cavities propagating into horizontal or moderately inclined
ducts resembles slug flows along with a stratified flow (see Fig. 1.1b and first
plot of Fig. 1.5). Moreover, stratified pattern can be wavy as can be seen in
third plot of Fig. 1.5. On the other hand, rising Taylor bubbles are mainly
defined by a slug pattern; however, bubbly pattern can also be found at bub-
ble downstream wake because small secondary bubbles are detached from the
principal one. Finally, when water is spelled and it forms a geyser, part of
the flow has spray pattern (see Fig. 1.8b).

Facts described above makes the complete understanding about dynamics
of intrusion and entrapment of air cavities and geysering events non-trivial.
In this work, the developed numerical and analytical models are employed
to further investigate these phenomena and to propose some actions to ame-
liorate them.

1.2 State of the Art Review

1.2.1 Two-Phase Flows Computation

Computation of two-fluid flow problems involving moving interfaces has been
a challenge for decades because it is necessary the representation of very sharp
interfaces between both phases, and to handle large jumps in physical prop-
erties. Methods documented in the literature can be categorised into two
widely recognised groups, those based on surface tracking and those based

3Reader can note that this phenomenon can be a consequence of almost every air
intrusion mechanisms introduce above.
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Figure 1.7: Geysering event due to an entrapped air cavity.



10 CHAPTER 1. INTRODUCTION

(a) Geysering event in St. Louis (Missouri).
Source: https://www.riverfronttimes.com/

(b) Geysering event in Montreal.
Source: https://www.huffpost.com/

Figure 1.8: Examples of geysering events.
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on surface capturing. In the first methods, interface fits with a mesh bound-
ary or is defined by faces of mesh elements. Although this kind of approaches
gives better accuracy, mesh has to be updated as flow evolves, so grid adap-
tation or remeshing is ineludible (see e.g. Ref. [68]) with the consequential
high computational cost. The second course of action establishes interface
implicitly by means of a phase function that has to be advected along with
the resolution of flow equations. In contrast with former case, these ap-
proximations solve dynamics of both fluids in the same fixed spatial domain,
avoiding recurrent mesh adaptations and additional jump conditions at in-
terface. Apart from these two groups, there also exist hybrid methods that
use both Eulerian and Lagrangian descriptions to solve multiphase flows. As
an example, model introduced in Ref. [18] works on fixed grids and employs
lagrangian markers that identify interface and move according to flow veloc-
ity. Thus, each fixed mesh node has different physical properties depending
on the side where it was situated with respect to the markers.

Within interface capturing models, two of the most favoured procedures
in this category are the Volume Of Fluid method (VOF) [34, 77], and the
Level Set method (LS) [65, 75, 27, 17]. Algorithms founded on VOF prin-
ciples define a bounded phase function indicating the cell portion occupied
by the heaviest fluid. This function is advected every time-step following
the solution of a transport equation. Hence, VOF method preserves mass by
construction but it is prone to give excessive diffusive answers. To amend this
overdiffusion, some alternatives were proposed as the use of a compressive
differencing scheme [77] or the introduction of an extra artificial compres-
sion term in the advection equation [71]. On the other hand, LS methods
includes the advection of a signed phase function representing distance to
the interface. Then, this function has negative values at phase one, posi-
tive values at second phase and zero value at interface. Once this signed
distance function is advected, resolution of an extra differential equation,
know as reinitialisation step, is necessary to recover the distancing property.
Therefore, original level set technique gives a continuous and sharp represen-
tation of the interface, nevertheless it presents mass conservation deficien-
cies. To improve conservation properties, several alternative methods based
on hybrid VOF/LS algorithms have been proposed (see e.g. Refs. [73, 78]).
Among them, Conservative Level Set method (CLS) [59, 60] is one of the most
renowned. This method enhances substantially mass conservation property
by using a smeared out Heaviside function as phase indicator (resembling
the intrinsic VOF idea), and also preserves a sharp interface definition by in-
corporating a reinitialisation step as LS procedure. In Refs. [86, 16] authors
went one step further by recovering the distance level set function to com-
pute interface normals and thus improve reinitialisation process. Although
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these procedures reduce interface errors, their computational cost is higher
as they involve the solution of two advection and redistancing/reinitialisation
equations, or the implementation of a fast marching algorithm to reconstruct
the level set field. A different strategy was presented in Refs. [29, 69], where
authors proposed a way to retain reinitialisation benefits without solving ad-
ditional non-linear advection-diffusion equation. There, LS was embedded
into a VOF formulation in a monolithic form that includes artificial com-
pression effect and diffusion. Nonetheless, the resulting non-linear solution
requires an implicit treatment to avert spurious solutions on interface, with
the subsequent higher computational effort.

As mentioned above, transport of phase function can worsen the resolu-
tion of the contact discontinuity by introducing a certain amount of diffusion
to achieve the monotonicity (or at least positivity) property. This make
necessary any additional action to maintain interface quality. Artificial com-
pression [31] is used in both VOF and CLS models. The essence of the
artificial compressibility method is to solve a modified equation instead of
original advection equation such as analytical solution is identical in both
cases, but numerical solution of modified equation has a better discontinuity
resolution. In case of VOF, artificial compression is added to the advection
equation to counteract diffusion induced by numerical method. On the other
hand, reinitialisation of CLS consists in the iterative solution of an additional
non-linear advective diffusion equation that combines artificial compression
balanced with a supplementary amount of diffusion to avoid discontinuities
at the interface. This continuous model has a significant attribute: both
artificial compression fluxes and diffusive fluxes are oriented along interface
displacement direction. For this reason, neither crosswind diffusion nor cross-
wind compression fluxes are allowed to grow during reinitialisation.

For the resolution of advection or reinitialisation equations in VOF and
CLS approaches, it is desirable a monotonic numerical method to avoid spu-
rious oscillations at interface neighbourhood and nonphysical phase func-
tion values (below zero and above one). However, it is well-known that a
monotonic method is at most first order accurate [33]. Then, to achieve a
higher order convergence, numerical model usually has to fulfil less restric-
tive requisites. There are several available methods that can comply this
requirement. One course of action consists on adding high-order non-linear
artificial viscosity terms to the numerical discretisation of the equation (see
e.g. Ref. [28]). Others approaches use slope limiters to construct an hybrid
solution whose accuracy is of high order far from discontinuities and of low
order near discontinuities; some examples are the so-called ENO [32] and
WENO [46] schemes. A different strategy is the Flux Corrected Transport
Method (FCT) [10, 48, 85], which assures high order accuracy, positivity
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and non-oscillatory behaviour of the final solution by correcting a low order
solution with conveniently modified anti-diffusive fluxes. To this end, two so-
lutions are needed, a high order solution and a low order solution. Depending
on the selection of schemes for these answers, it can be found different ver-
sions in the literature. For example, R. Löhner [48] approach constructs the
low order solution by adding a diffusion to the high order solution. This dif-
fusion has to be tuned to assure positivity. A different course of actions was
proposed by P. Ortiz [61, 62], where an independent first order upwind FEM
is used to construct the low order solution following the idea of selecting a
scheme with the (nearly) minimum diffusion to assure positivity.

The solution of equations of fluid motion involves the calculation of veloc-
ity and pressure fields. However, numerical computation of these equations
is not trivial due to the non-linearity of convective acceleration terms or the
incompressibility assumption, among other reasons. Several procedures have
been developed during last decades to overcome these issues. Some examples
are: the use of Taylor Galerkin method [23] for convective terms stabili-
sation in the field of finite element method or the employment of different
interpolation functions for velocity and pressure variables to circumvent the
Babuška-Brezzi stability condition (see e.g. Ref. [12]), and the employment
of splitting algorithms. In this last category, one of the most famous methods
is the Characteristic-Based Split (CBS) model [87, 88, 64], which is able to
suppress spurious oscillations in convection-dominated flows and also fulfil
stability condition with equal interpolation of variables. This method calcu-
lates solution of NS equations in three steps: first one involves the solution
of an advection-diffusion equation to obtain a velocity predictor field; then,
pressure field is calculated by solving a Poisson-type equation constructed
from the continuity equation; finally, definitive velocity values are computed
from velocity predictor and updated pressure fields. Although aforemen-
tioned algorithms give very accurate answers for single phase flows, they can
present spurious momentum transfers between phases when solving multi-
phase flows. Several strategies have been developed to address this problem.
For instance, by a special discretisation of convective terms [77], through the
improvement of the pressure gradient discontinuity capturing technique [26],
or by deactivating the lighter phase and extrapolating velocity and pressure
fields across the interface [49].

1.2.2 Emergence of Air Cavities and Geysering

The study of air cavities in ducts is a recent field of research. Several authors
have investigated lines related with intrusion, displacement and effects of air
pockets. In 1968, T.B. Benjamin [8] was one of the first who studied the
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problem of flow past a cavity in straight ducts. He set out the problem as an
inverted gravity current, and applied mass, momentum and energy conser-
vation equations assuming no energy loss. Considering Figure 1.9, he found
that the receding stream occupies half of the duct (H1=h1/d=1/2) and that
the non-dimensional cavity velocity was one half ( c√

gd
=1

2
, where c is the cav-

ity celerity, d is the duct height and g is the gravity acceleration). Then, he
performed the same analysis considering energy loss and came to the conclu-
sion that it was nearly impossible to produce a hydraulic jump downstream
the cavity without causing an additional energy dissipation in the fluid (i.e.
breaking of the free surface or generation of turbulence). Finally, he stud-
ied the energy-conserving flow in ducts of circular cross-section. Resulting
non-dimensional cavity celerity was c√

gd
=0.542, while water deep at receding

stream was h1/d=0.626; here, d is the duct diameter. These results were cor-
roborated by laboratory experiments accomplished in Ref. [89]. Later, D.L.
Wilkinson [81] extended the work of Benjamin. He studied effects on the
flow due to surface tension and to a weir located across the open end of the
duct. In account of the viscous and surface tension effects, author made an
analysis supported by experiments and showed that cavity celerity decreases
due to surface tension, then values calculated by Benjamin were overesti-
mated as can be seen in Figure 1.10. Besides, he proved that cavity shape
and stagnation point location were also affected. Conversely, with regard to
the weir, he evidenced that it provokes a subcritical flow upstream the open
end of the duct. As flow downstream the cavity is supercritical, a transient
hydraulic jump or bore is formed, whose velocity is lower or equal to the
cavity celerity. Then, resulting flow can be steady if bore and cavity have
the same celerity, or unsteady if they are different. As can be noted from
Figures 1.9 and 1.10, for downstream depth ratio values (H2=h2/d) between
0.5 and 0.78, flow is unsteady and it is defined by a front part behaving as a
potential flow (see Fig. 1.11a), followed by a bore whose celerity is determined
by the gate situated at conduit open end (see sketch of Fig. 1.9). This flow is
associated to low weir heights. On the contrary, for H2 values greater than
0.78, the flow is steady because bore tends to travel faster than air cavity and
ends up affecting it (see Fig. 1.11b). This situation is provoked by high weir
heights. W.D. Baines [1] evaluated the effect of duct slope on air cavities.
His results showed that cavity celerity slightly rises as slope increases. He
also studied the cavity sealing, taking place when the water surface touches
the top of the duct. This event is more likely for low gate openings and
steep slopes, being limit conditions those that lead to a static bore and an
upstream flow having the normal depth. If bore moves toward the weir,
sealing is unlikely. On the contrary, if bore moves away from the weir and
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Figure 1.9: Sketch of an air cavity.

slope of downstream free surface is positive, sealing is almost assured in a
long enough conduit. Air cavities have been also reproduced with simplified
numerical methods. For example, authors of Refs. [4, 3] use a finite volume
model including one-dimensional continuity and momentum equations and
the Boussinesq approximation with the intention of reproducing the surface
profile of open and closed cavities. On the other hand, dynamics of pres-
surised air cavities in closed ducts was investigated by several authors with
the intention to define flow conditions to remove them (see e.g. Ref. [66]
and references therein). Nevertheless, as far as the author knowledge, defi-
nition of similar conditions to avoid intrusion of air cavities at conduit lower
end remains unexplored. In contrast, many efforts have been made to learn
more about geysering events and their relation with closed air pockets. It is
notable the work performed in References [79, 82, 55], where authors scru-
tinised geysering events with field measurements, laboratory experiments,
simplified analytical approaches and open-source numerical models. They
concluded that there are at least two mechanisms that explain the return of
storm water to the ground level. First one is based on inertial oscillations of
the water mass inside sewer systems. In this case, if hydraulic grade line is
eventually situated above the street level, geysering may occur (see Ref. [30]).
Second mechanism, and target of this Thesis, is that related with the release
of air through vertical shafts in the form of elongated Taylor bubbles. Dy-
namics of this mechanism is mainly governed by three elements. First, the
imbalance between rising bubble pressure and water column situated above.
Second, the water film attached to duct walls which determines the flow rate
passing from upstream to downstream the bubble. Third, air compression
and decompression processes, governed in turn by the column water located
above the bubble. Nevertheless, despite the knowledge of these three ele-
ments and the progress achieved in the study of geysering events during last
years, complete comprehension of the phenomenon still remains unresolved.
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bore celerity) as function of downstream depth ratio (H2=h2/d, being h2 the
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obtained by Wilkinson. Circles and crosses are experimental measures of
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(a) Air cavity front (H2 < 0.78)

(b) Air cavity affected by the bore (H2 > 0.78)

Figure 1.11: Snapshots of two air cavities. Source: [81].

1.3 Objectives

The purpose of this Thesis is to develop an efficient and accurate numerical
model for the simulation of two-phase flows with moving interfaces by ex-
tending the Non-Oscillatory Finite Element Method [61, 62]. Then it will
be used, along with supplementary simple analytical solutions, to broaden
the knowledge about intrusion and propagation of air cavities in ducts and
geysering events. Findings will be harnessed to propose preventive measures
to avoid their negative effects. Hence, objectives of this work are classified
in two groups: those necessary to achieve a competitive multiphase flow nu-
merical model and those required for the comprehensive knowledge of the
physical problem at hands:

1. Development of Numerical Method:

� Implementation of NFEM algorithm for the advection of a phase
function to get a conservative, positive definite and free of wiggles
solution.

� To develop a new reinitialisation step, compatible with flux cor-
rection techniques, to counteract diffusion introduced at advection
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step and thus keeping interface definition along the complete sim-
ulation.

� Efficient improvement of interface normal calculation to avoid os-
cillations at phase function during reinitialisation.

� Coupling the phase function advection solution with Navier-Stokes
equations for incompressible fluids. Employment of NFEM algo-
rithm to solve the two-phase flows hydrodynamics, and to alleviate
the well-known problem of spurious momentum transfers between
phases.

� Extension of previous methodology to weakly compressible flows.

� To study possible negative effects of representing a physical discon-
tinuity (interface) by means of a continuous model and to suggest
actions to mitigate them.

� Evaluation of every part of the algorithm (advection, reinitialisa-
tion and hydrodynamics solution) by means of existing benchmark
problems.

2. Air Cavities and Geysering Experimentation:

� Development of an analytical model following studies of Refs. [8,
81, 1] to predict dynamics of air cavities advancing in inclined
ducts.

� To construct a simplified analytical model to predict rising Taylor
bubbles dynamics.

� To assess the performance of numerical method in the simulation
of air cavities.

� To explore flow conditions in ducts for air cavities intrusion and
define strategies to ensure air removal.

� Simulation of rising bubbles in saturated vertical conduits and
consequent geysering events, to compare results with real cases.

1.4 Methodology

1.4.1 Two-Phase Flow Numerical Model

First task was to develop a numerical model for the solution of two-phase
flows with moving interfaces. Algorithm was made according to the sequence
outlined below. It has been written in C++ language and parallelized with
OpenMP to speed up its performance.
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Phase Function Advection

Present numerical method is a fixed mesh continuous finite element model
constructed along the lines of VOF and CLS methods, implementing a bounded
phase function whose value is zero at first phase, one at the other phase and
one half at interface. For advection stage, standard high order algorithms as
Characteristic Galerkin produce oscillations at interface neighbourhood and
do not respect physical phase function bounds. Then, it has been employed
the Non-Oscillatory Finite Element Method introduced by P. Ortiz, which
also calculates an additional positive definite and low order solution. This
second response is corrected with antidiffusive fluxes to attain a final con-
servative and positive definite second order solution. However, this answer
gave high order mass errors, which were corrected by a straightforward mass
readjustment integrated in the flux correction procedure.

Reinitialisation

Original CLS reinitialisation step involves a non-linear advection-diffusion
equation that is solved by an iterative method. As first approximation, it
was implemented FCT in the solution of this equation to preserve phase func-
tion bounds. However, this approach was not efficient because calculation of
two solutions every iteration was computationally expensive. Second approx-
imation consisted in computing a high order solution and then calculate the
low order approach by adding an extra diffusion such that physical bounds
were respected (resembling R. Löhner approach [48]). Drawbacks of this
methodology are: first, iterative procedure could converge slower because of
extra diffusion added later; and second, added diffusion is not oriented along
the interface normal. For these reasons, second approximation was also dis-
carded. Last and chosen approach was to couple artificial compression and
oriented diffusion into a non-linear streamlined diffusive term. Although flux
correction remains necessary due to the non-linearity of this term, compu-
tation of corrective fluxes is straightforward, making efficient the iterative
process. Regarding others existing approaches that couple advection and
reinitialisation into a non-linear monolithic equation that needs an implicit
treatment (see e.g. Ref. [69]), this strategy seemed to be competitive be-
cause it involves the explicit computation of an advection equation, and the
iterative solution of a straightforward diffusion equation.

On the other hand, to efficiently improve interface normals orientation
without resorting to expensive procedures as fast marching methods, the
following strategy was proposed: first, normal computation is limited to
elements belonging to the interface neighbourhood; second, for calculation
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of normals it is taken as a reference the nearest finite element where phase
function has a value of one half. This is because phase function gradient is
higher at this element and normal orientation is more reliable.

Hydrodynamics Solution

Firstly, density and viscosity were parametrically defined as a function of the
phase field to couple it with hydrodynamics. Then, Navier-Stokes equations
were solved by employing the Characteristics Based Split method. Although
solutions were accurate for fluids whose density ratio was near to one, ve-
locity overshoots appeared at interface neighbourhood when higher values of
density ratio were tested, spoiling completely the results. NFEM was again
implemented to amend this issue, but standard course of action implied the
resolution of two Poisson equations with the subsequent extra computational
cost. Hence, as source of spurious momentum transfers are the convective ac-
celeration terms, flux correction was only applied to velocity predictor field.
Experiments showed that results of both alternatives were very similar but
computational cost was greatly reduced. Nevertheless, problem persisted for
very high density ratios as air-water flows. An effective solution was found
by defining new bounds, considering interface location, integrated in the flux
correction procedure. Nearly incompressible assumption was implemented to
simulate rising Taylor bubbles and geysering events. Then, to preserve mass
conservation property, continuity equation was modified and density para-
metrical definition was adjusted by accommodating new terms that took into
account small density changes due to pressure variations.

Effects of the Continuous Representation of the Interface

This study arose from a series of simulations involving air cavities where in-
terface oscillated without any apparent physical reason. Then, due to the
configuration of the problem where air advances in the opposite direction
to the water, it appears that some Kelvin-Helmholtz instabilities were arti-
ficially amplified. Thus, linearised equations governing the perturbed field
were solved by considering current continuous representation of the interface.
Results indicated that flows with high density gradients were more unstable
that non-stratified flows. Different options were considered to solve this issue.
First one was to change parametrical definition of density, however this al-
ternative was discarded because it affected to mass conservation. Second one
was a local refinement to achieve an interface resolution such as perturbations
were not activated. This process had to retain mass conservation property
and be monotonic for new phase function, velocity and pressure fields. Hence,
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a new refinement procedure for nested grids was developed, integrating flux
correction principles to achieve previous aforementioned properties. Simu-
lations did not show more nonphysical amplifications of perturbations once
local refinement was activated.

1.4.2 Air Cavities and Geysering: Numerical and Analytical Experi-
mentation

Second task involved analytical and numerical experimentation of air cavities
and geysering events to achieve a deeper understanding of these phenomena.
For this purpose, after constructing semi-theoretical solutions, several ana-
lytical and numerical simulations were performed.

Analytical Solutions

Control volume analysis was used to construct analytical solutions for air
cavities propagation and rising Taylor bubbles. For air cavities propagation
solution, additional hypothesis were necessary to make resolvable the ob-
tained equations system since dynamics is affected by the liquid weight. In
this work air cavity velocity values were assumed as known (by using ex-
perimental data of Ref. [1]) and bore topology was calculated with empirical
N. Rajaratman equation for hydraulic jumps on slope [70]. On the other
hand, for construction of the new theoretical model for rising Taylor bub-
bles, a realistic bubble shape was considered. Free surface position and gas
expansion effects (by means of an adiabatic compressibility model) were also
included to predict dynamics of both the bubble and liquid column situated
above. Besides, equations revealed conditions for a sudden gas decompres-
sion, that provokes a huge acceleration of liquid column and a foreseeable
strong geyser. Cases with multiple rising Taylor bubbles were also analysed
to evaluate effects of trailing bubble on the leading one and vice versa.

Numerical Simulations

Numerical experiments can be divided in three series. First series intended
to validate numerical model by reproducing laboratory experiments of D.L.
Wilkinson [81] and W.D. Baines [1], involving air cavities propagation in
horizontal and inclined ducts. Thus, simulations were performed by varying
duct inclination and gate height, and it was noted cavity and bore celerities
in addition to configurations that led to a cavity sealing. Second series aimed
to scrutinise flow conditions that prevent air intrusion at conduits lower end.
In this way, several simulations were accomplished with different combina-
tions of duct inclination, gate height and inner fluid velocity. Then, it was
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calculated, through interpolations, the minimum required inner fluid veloc-
ity necessary to clear air cavities for every tested combination. Last series
examined rising Taylor bubbles. Assessment was carried out by reproducing
laboratory experiments of Ref. [79], and then geysering events were recreated
and qualitatively compared with real cases.

1.5 Thesis Structure

This Thesis is composed of five chapters that detail works published by the
candidate in Refs. [52, 53, 54]. Chapter 2 describes a simplified analytical
approach for air cavities propagation and a new analytical model to predict
dynamics of rising Taylor bubbles. Numerical model is reported in Chap-
ter 3, including the description of analytical equations for two-fluid flows,
features about employed methods and the exploration of issues arising from
representing the interface with a continuous model. Chapter 4 focusses on
numerical experiments. First part covers assessment tests for advection and
complete problems, while second part presents performed simulations involv-
ing air cavities, rising Taylor bubbles and geysering events. Conclusions in
Chapter 5 close the Thesis.



Chapter 2

Semi-Analytical Approaches to Air Cavi-
ties and Taylor Bubbles Propagation

This chapter reports analytical models for the prediction of dynamics of air
cavities and rising Taylor bubbles. In first section, the propagation of air
pockets in horizontal and inclined ducts is studied with control volumes.
Equations for straight conduits match with those achieved in Ref. [8]. How-
ever, when cavities propagates in inclined ducts, fluid weight must be in-
cluded, making the equations system unsolvable unless additional hypothesis
were applied. Hence, new assumptions are proposed to solve numerically this
set of equations. In second section, a semi-analytical model examines Tay-
lor bubbles dynamics. Unlike existing approaches that assume a potential
flow around the bubble and a semi-infinite length tube (see e.g. Ref. [25, 7]),
current model is based on an integral analysis and takes into account free
surface position and gas expansion effects for the calculation of bubble rising
velocity. Besides, solution is formulated without resorting to simplified bub-
ble shapes (as for example Ref. [79]). Resulting approach predicts accurately
the bubble rising dynamics, and permits to infer conditions for a sudden
gas expansion, which produces a huge bubble acceleration and, therefore, a
severe ejection of water to the street level (geyser). Model is assessed by
comparing its results with existing laboratory results. Finally, formulation
for multiple rising bubbles is introduced to scrutinise the impact of trailing
bubbles on the leading one, and vice versa.

2.1 Air Cavities Propagation

Figure 2.1 shows an air pocket propagating inside an inclined duct. It can be
identified three regions: the air cavity head where flow is almost potential,
the transient hydraulic jump or bore, and the flow regime before the discharge
over a weir. The formulation is made with pseudo-stationary control volumes,

23
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Figure 2.1: Sketch of an air cavity advancing in an inclined duct.

i.e., control volumes move with cavity or bore celerity. They are treated as
fixed volumes, where relative velocities at inlet and outlet boundaries are
considered. Nomenclature is c() and c∗() for absolute and relative celerities,
respectively; and subscripts correspond to the sections shown in Figure 2.1.
Integral form of mass and momentum conservation equations for moving
control volumes is shown in Ref. [40] among others and they are reproduced
in Appendix A.

2.1.1 Control Volume 1: Cavity

Control volume 1 starts at distance L0 upstream the cavity stagnation point
and ends before the bore (see Figure 2.2). In this control volume it is con-
sidered that flow is ideal, inlet and outlet velocity profiles are uniform and
gas is at atmospheric pressure. In Fig. 2.2, P0 is the pressure, d is the duct
height and γ∗=ρg is the liquid specific weight. As control volume 1 moves
with velocity c (positive sign indicates upstream direction) and fluid is at rest
upstream the cavity, relative fluid velocities are c∗0=c and c∗1=c + c1, where
c is the cavity celerity. Therefore, conservation equations for this control
volume are,

� Mass conservation
c d = c∗1 h1 . (2.1)

� Momentum conservation along the x-axis (see Fig. 2.2):

P0 d+
d2

2
γ∗ cos θd −

h2
1

2
γ∗ cos θd + V

′

c γ
∗ sin θd = c∗1

2ρh1 − c2ρd , (2.2)

where V
′
c is the liquid volume between section 0 and 1.
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Figure 2.2: Control volume 1: air cavity

� Bernoulli equation along the streamline defined by points A and B:

P0 = −c
2

2
ρ− L0γ

∗ sin θd . (2.3)

� Bernoulli equation along the streamline defined by points B and C:

Lc sin θd + (d− h1) cos θd =
c∗1

2

2g
. (2.4)

Now, considering that V
′
c = L0d+Vc, (Vc is the liquid volume between section

passing through B and Section 1 in Fig. 2.2), P0 is cancelled out in Eqs. (2.3)
and (2.2), and final set of equations is,

c d = c∗1 h1 , (2.5)

d2 − h2
1

2
γ∗ cos θd + Vcγ

∗ sin θd = ρ

(
c∗1

2h1 −
c2

2
d

)
, (2.6)

Lc sin θd + (d− h1) cos θd =
c∗1

2

2g
. (2.7)

Reader can note that equations set has immediate solution for horizontal
ducts (θd = 0) because variables related to the cavity shape are no longer
needed. In that case, it is obtained that h1=d/2 and c=c1=1

2

√
gd. These

results match with T.B. Benjamin [8] and D.L. Wilkinson [81] without taking
into account effects of surface tension and location of stagnation point.
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Figure 2.3: Control volume 2: bore

2.1.2 Control Volume 2: Bore

Figure 2.3 shows control volume 2, which embraces the bore. This part of the
flow is highly rotational (ideal flow hypothesis is not valid) and it is assumed
that energy loss due to ground friction is negligible and inlet and outlet
velocity profiles are uniform. Bore and control volume 2 moves with velocity
cb, so relative fluid velocities at boundaries are c∗∗1 =c1 + cb and c∗2=c2 + cb.
Because of energy loss in the bore is difficult to quantify, only mass and
momentum conservation equations are considered,

c∗∗1 h1 = c∗2 h2 , (2.8)

h2
1 − h2

2

2
γ∗ cos θd + Vbγ

∗ sin θd = c∗2
2ρh2 − c∗∗1

2ρh1 , (2.9)

where Vb is the volume of the bore.

2.1.3 Control Volume 3: Discharge over Weir

Control volume 3 starts downstream the bore and ends upstream the weir,
depicted in Figure 2.4. Here, velocity profile in section 2b is considered as
uniform. In this case, the control volume is static, so velocities are absolute.
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Figure 2.4: Control volume 3: Discharge over weir

Because of velocity and pressure profiles in section 3 are hard to quantify,
only Bernoulli equation (between points D and E) is applied,

Ld sin θd + h2 cos θd +
c2

2

2g
= (w + h3) cos θd +

c2
3

2g
+ ∆E3 . (2.10)

Here, ∆E3 is the energy loss due to friction between section 2b and 3. As
velocities c2 and c3 are similar and small, equation (2.10) can be simplified
as follows,

Ld sin θd + h2 cos θd = (w + h3) cos θd + ∆E3 . (2.11)

Moreover, an equation related to the discharge over the weir can be raised,

q =
2

3
Cq
√

2gh
3/2
3 , (2.12)

where q is the unit discharge of water and Cq = 0.611 + 0.075h3
w

is the
discharge coefficient. Regarding mass conservation, this discharge of water
is equal to the volume of air that enters in the duct per unit of time. Thus,
next equation is obtained,

q = (c− cb) (d− h1) + cb (d− h2) (2.13)

System of equations (2.5), (2.6), (2.7), (2.8), (2.9), (2.11) and (2.12) can be
solved only if variables Vc, Vb, Lc, Ld and ∆E3 are a priori known.
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2.1.4 Special Case: Horizontal Duct

When duct is horizontal, weight of the fluid has no influence over its dynamics
and problem becomes resolvable (see Refs. [8, 81]). Thus, equations (2.5),
(2.6), (2.7), (2.8), (2.9), (2.11) and (2.12) turn into,

c d = c∗1 h1 , (2.14)

d2 − h2
1

2
g = c∗1

2h1 −
c2

2
d , (2.15)

d− h1 =
c∗1

2

2g
, (2.16)

c∗∗1 h1 = c∗2 h2 , (2.17)

h2
1 − h2

2

2
g = c∗2

2h2 − c∗∗1
2h1 , (2.18)

h2 = w + h3 + ∆E3 , (2.19)

q = (c− cb) (d− h1) + cb (d− h2) =
2

3
Cd
√

2gh
3/2
3 , (2.20)

where displacement of the stagnation point and surface tension effects [81]
are not taken into account. For a simple study, only equations (2.14), (2.15),
(2.16), (2.17) and (2.18) are considered in their non-dimensional form:

F = F ∗1 H1 , (2.21)

1−H2
1

2
= F ∗1

2H1 −
F 2

2
, (2.22)

1−H1 =
F ∗1

2

2
, (2.23)

F ∗∗1 H1 = F ∗2 H2 , (2.24)

H2
1 −H2

2

2
= F ∗2

2H2 − F ∗∗1
2H1 , (2.25)

where H()=h()/d and F()=c()/
√
gd. Non-dimensional variables F and Fb =

F ∗∗1 − (F ∗1 − F ) are obtained by giving values to H2 from zero to one. How-
ever, this premise is only valid when Fb < F and flow is unsteady. At this
stage, there are three regions that match with those studied in this section.
On the other hand, when Fb = F , flow becomes steady and its behaviour is
only governed by equations (2.21) and (2.22) (considering H1 = H2). This
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Figure 2.5: Modified control volume 1: air cavity

is because there is only one region, where energy loss is non-zero and un-
known; in addition, cavity depth does not reach the value h1=d

2
. This stage

occurs when H2 ' 0.781 (see Ref. [81]). Thus, if these equations are solved
for different values of H2, similar results to those shown by the dashed lines
in Figure 1.10 can be obtained (there, surface tension and displacement of
the stagnation point have been considered).

Finally, it is important to determine if air cavity closing (or gulping) is
a feasible event in horizontal ducts. Firstly, because of energy conservation,
it is not possible that cavity sealing occurs without adding energy to the
system. Energy of a liquid particle at rest upstream the cavity is (dg); if
gulping occurs, fluid at that point must have at least the same energy, but
this hypothesis is not possible because energy losses are unavoidable between
both points.

2.1.5 Simplified Numerical Solution for the Complete Problem

To construct a numerical solution for the set of equations, experimental re-
sults of W.D. Baines [1] are integrated in the algorithm. Thus, control volume
1 is divided in two parts (see Fig. 2.5), first one (designated as CV1A) starts
at cavity stagnation point (point B) and ends where liquid flow is critical (i.e.
Fr=1, point B1); second part (designated as CV1B) ends at bore beginning
(point C). According to experimental observations [1], length of first part is
l
′
c ≈ d. Now, cavity celerity is considered as known, whose value can be taken
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from Ref. [1],

c ≈ (0.46 +
0.05

0.14
S0)
√
gd , (2.26)

where S0=tan (θd) is the duct slope. In this way, unknown Vc is not longer
considered. Second issue to be discussed is the bore volume Vb, which can be
circumvented by using the N. Rajaratnam equation for hydraulic jumps on
slope [70],

h2

h1

=
1

2

(√
1 + 8G2 − 1

)
,

G = K1F
′
1 ,

K1 = 100.027θd ,

θd in degrees (duct slope) ,

where F ′1= c1+cb√
gh1

is the Froude number upstream the bore. Then, proposed
algorithm consists of following steps:

1. At initial time and for a given S0 and w, c and initial value of h
′
1 (at

the end of CV1A) are computed such that flow at point B1 is nearly
critical, c1√

g h
′
1

' 1 (a value of 1.1 could be suitable). As previously

stated, distance between point B1 and the stagnation point can be
assumed as l

′
c=d.

2. Variables lc and ld are initialised, defined respectively as the CV1B
length and the distance between the bore end and the weir. These
variables are zero at first time step.

3. Obtain h2, cb and h3 by solving the following system of equations,

h2

h1

=
1

2

(√
1 + 8G2 − 1

)
,

ld sin θd + h2 = w + h3 ,

(c− cb) (d− h1) + cb (d− h2) =
2

3
Cd
√

2gh
3/2
3 .

Here, ∆E3 is considered negligible because of the low flow velocity
downstream the bore. Note that, if w + h3 ≥ d, cavity is sealed and
computation must be stopped.
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4. Calculate ∆lc, ∆ld and ∆h1,

∆lc = ∆t (c− cb) ,

∆ld = ∆t cb ,

∆h1 = ∆lc

S0 −
(
nm c1

h
2/3
1

)2

1−
(

c1√
gh1

)2 ,

where nm is the Manning coefficient.

5. Update ld and h1, and c1 by using Eq. (2.5), then return to step 3. If
ld < 0, bore is situated close to the weir and sealing is unlikely. In this
case computation must be stopped.

This algorithm is only valid for low openings of the weir because, when
gate height is large, bore moves faster than cavity and tends to fill it (thus air
cavity and bore are coupled [1]). In this situation, flow cannot be described
by previous one-dimensional equations.

2.1.6 Assessment

To assess semi-analytical model for air cavities propagation, a laboratory
experiment performed in Ref. [1] is reproduced. This test consists of a square
duct of height d=0.1 m filled with water, inclined at an angle of 1o (S0=0.017),
and with a gate located at the lower end. At initial time, gate is opened up to
a height of w=0.05 m, water starts to drain and an air pocket intrudes into the
conduit. Manning coefficient is set as nm=0.009 to simulate a plastic material
similar to that employed in the laboratory. Obtained analytical results are
showed in Fig. 2.6, where it is depicted values of relative bore celerity cb/c,
and non-dimensional water depth upstream the bore (h1/d), downstream
the bore (h2/d) and at the gate ((h3 + w)/d). Moreover, Figs. 2.7a-2.7c
represent some sketches made from analytical outcomes. Besides, Fig. 2.8
shows laboratory outputs, where relative bore celerity was measured at three
time steps: cb/c (t = 2.53s) = 0.812, cb/c (t = 5.02s) = 0.621 and cb/c (t =
7.71s) = 0.295. As it can be seen, in both analytical and laboratory results,
bore moves away from the weir with variable celerity and air cavity is finally
sealed (see water depth at the weir in Figs. 2.6 and 2.8). However, significant
deviations are appreciated in times where sealing is produced, as well as in the
prediction of water depth upstream the bore. Reason of these discrepancies
are mainly two: first, measured air cavity celerity is slightly lower than value
given by Eq. (2.26); and second, it is assumed that air cavity is already formed
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Figure 2.6: Air cavity propagation: analytical results

at t=0 in the analytical approach (see Fig. 2.7a). Nevertheless, bore celerity
is fairly well captured, essential to predict the sealing of air pockets (values
of cb/d provided by analytical model are between 0.79 and 0.36 while real
values are between 0.81 and 0.30 approximately).

Analytical approach is now employed to study combinations of duct slope
and gate height that lead to a cavity shut. Theoretical results along with
laboratory outputs of Ref. [1] are depicted in Fig. 2.9. In this figure, black
colour indicates laboratory outputs, circles mark when sealing does not oc-
cur, while squares and crosses mean that cavity seals at irregular or regular
intervals, respectively. Red denotes analytical results, crosses denote cavity
sealing and circles denote open cavity. As in last experiment, conditions
for sealing are well predicted, especially for slopes greater than 1o. Hence,
present analytical model can be useful to efficiently predict dynamics of air
cavities and their eventual sealing in simple configurations.

2.2 Semi-Analytical Approach for Rising Elongated Bub-
bles and Geysering Phenomena

Effect of rising Taylor bubbles on the liquid free surface is studied in this
section. Firstly it is examined the case with a single bubble; secondly, study
is extended to N consecutive bubbles. In the analytical model presented in
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(a) t=0.0 s

(b) t=1.80 s

(c) t=3.58 s

Figure 2.7: Air cavity propagation: sketches from analytical results

Figure 2.8: Air cavity propagation: laboratory outputs. • = position of air
cavity front; � = location of bore toe; + = water depth at weir; × = water
depth at bore toe. Source: [1].
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Figure 2.9: Cavity sealing as function of w/d and slope θd (in degrees).
Comparison between experimental output [1] (black marks) and analytical
results (red marks).

Ref. [79], bubble shape was simplified and drift velocity was imposed as initial
bubble velocity. Here, a more realistic bubble shape is considered and drag
and buoyancy forces along with gas expansion effects are taken into account
to calculate bubble dynamics.

2.2.1 Bubble Geometry

Bubble geometry is defined according to Ref. [58]. Then, shape of a Taylor
bubble rising in a vertical tube with diameter d is specified by the following
three regions,

r(z) =



1
2

√
z(3d− 4z) if z < z1

d
2

√
1− U∞√

2gz
if z1 ≤ z ≤ z2

d
2
− δν if z > z2

, (2.27)

where coordinates r and z are depicted in Fig. 2.10 and g is the gravity accel-
eration. First region has spherical shape with radius equal to 3d/8. In second
region, bubble shape is obtained under the premise of constant air pressure
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Figure 2.10: Sketch of a rising bubble

by applying mass conservation and Bernoulli equation to a stream line pass-
ing by the bubble nose. Besides, U∞ is the bubble velocity in stagnant liquid
defined as,

U∞ = k
√
gd . (2.28)

Here, k is a non-dimensional constant that was experimentally obtained in
Refs. [24, 57] among others; k=0.345 is a commonly used value. Finally,
third region is dominated by viscous forces, where δν is the liquid film thick-
ness between bubble and duct wall. Following Ref. [5], thickness δν can be
calculated from the equation,

U∞π
d2

4
=

(
U∞ +

gδ2
ν

3νl

)
· (πδν(d− δν)) , (2.29)

where νl is the kinematic viscosity of the liquid. Equation (2.29) establishes
conservation of mass for a parabolic velocity profile across the liquid layer
between bubble interface and solid wall with thickness δν � d/2. On the
other hand, z1 can be attained by equating first and second shape forms of
Eq. (2.10),

1

2

√
z1(3d− 4z1) =

d

2

√
1− U∞√

2gz1

→ z1 = l1(k)d , (2.30)



36 CHAPTER 2. SEMI-ANALYTICAL APPROACHES

where l1=0.128484 if k=0.345. Finally, similar course of action is used to get
z2, resulting in

z2 =
1

2g

(
U∞ +

1

3νl
gδ2

ν

)2

. (2.31)

Once bubble shape is defined, gas volume is calculated,

V1 =

∫ l1d

0

π

4
z(3d− 4z)dz =

π

4
d3l21

(
3

2
− 4

3
l1

)
, (2.32)

V2 =

∫ z2

l1d

π
d2

4

(
1− k

√
gd√

2gz

)
dz =

πd2

4

[
(z2 − l1d)− k

√
2d
(√

z2 −
√
l1d
)]

,

(2.33)

V3 =

∫ Lb

z2

π

(
d

2
− δν

)2

dz = π

(
d

2
− δν

)2

(Lb − z2) , (2.34)

where Lb is the bubble length, and V1, V2 and V3 are gas volumes of regions
1, 2 and 3, respectively, assuming that Lb ≥ z2. If z1 < Lb < z2, V3=0 and

V2 =
πd2

4

[
(Lb − l1d)− k

√
2d
(√

Lb −
√
l1d
)]

.

Moreover, surrounding liquid volume Vl (if Lb ≥ z2) is,

Vl =
πd2

4
Lb − V1 − V2 − V3 =

πd2

4

[
l1d− l21d

(
3

2
− 4

3
l1

)
+ k
√

2d
(√

z2 −
√
l1d
)]

+(Lb − z2) πδν (d− δν) .

(2.35)

Finally, the derivative of the gas volume Vg confined in the bubble respect to
the vertical coordinate z is

dVg
dz

=

{
π d

2

4

(
1− k

√
d√

2z

)
if z1 < Lb < z2

π
(
d
2
− δν

)2
if Lb ≥ z2

, (2.36)

2.2.2 Compressibility Model

Liquid with density ρl surrounding the bubble is assumed incompressible, and
gas compressions and expansions processes are considered adiabatic. Thus,
gas density is defined as,

ρg =

(
P + Patm

C

)1/γ

; C =
Patm
ργg0

, (2.37)
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Figure 2.11: Control Volume 1

where P is the relative gas pressure of the bubble, Patm is the atmospheric
pressure, γ is the gas adiabatic index and ρg0 is the gas density at atmospheric
pressure.

2.2.3 Single Bubble: Control Volume Analysis

The case of a single Taylor bubble rising in a vertical conduit is now ad-
dressed. Formulation is accomplished by applying integral form of conser-
vation equations to the bubble and to the liquid situated above the gas.
Problem is considered as one-dimensional, by only taking into account the
motion along vertical axis. Moreover, it is assumed that liquid column below
the bubble is much greater than liquid column above the bubble; hence, gas
expansions or compressions processes only have an effect on the upper region
of the bubble. As final assumption, liquid flow rate between bubble and duct
wall is constant and equal to U∞π

d2

4
. As a consequence, free surface height

variations ascribed to bubble rising celerity are considered much smaller than
those ascribed to bubble velocity caused by gas expansion/compression (in
agreement with conclusions of Ref. [72]).

Control Volume 1

First control volume includes the liquid column above the bubble nose (see
Figs. 2.10 and 2.11). Control volume upper boundary velocity is ufsk, whereas
lower boundary velocity is

(
ub + dLb

dt

)
k. Here, k is the vertical unit vector

and ub is the velocity of the bubble bottom. Liquid velocity inside this con-
trol volume is constant with value u(x, t)=ufsk. Mass conservation equation
gives,

d

dt

(
ρlLlc

πd2

4

)
+ ρl

πd2

4

[
(ufs − ufs)−

(
ufs − ub −

dLb
dt

)]
= 0 ;

dLlc
dt

= ufs − ub −
dLb
dt

, (2.38)
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where Llc is the liquid column length. Regarding momentum conservation,
gravity, pressure and wall friction are included as external forces,

d

dt

(
ρlLlc

πd2

4
ufs

)
+ ρl

πd2

4

[
ufs (ufs − ufs)− ufs

(
ufs − ub −

dLb
dt

)]
=

− ρlLlc
πd2

4
|g|+ P0

πd2

4
− f

8
Llcπdρlufs |ufs| .

Insertion of Eq. (2.38) into last equation results in

P0

ρl
= Llc

[
dufs
dt

+ |g|+ f

2

ufs |ufs|
d

]
, (2.39)

where P0 is the relative pressure at bubble nose position and f is the friction
factor. In what follows, bubble pressure will be assumed constant over the
entire gas volume and equal to the bubble nose pressure.

Control Volume 2

Second control volume includes the bubble and surrounding liquid (see Fig. 2.12).
Upper boundary velocity is

(
ub + dLb

dt

)
k and lower boundary velocity is ubk.

Liquid velocity in this control volume is not constant; on the upper bound-
ary u(x, t)|z=0=ufsk, whereas on the lower boundary liquid velocity can be
calculated from the flow rate between bubble and duct wall,

U∞π
d2

4
=
(
− u|z=Lb + U∞

)
[πδ∗ν (d− δ∗ν)] , (2.40)

where δ∗ν=d/2− r (Lb). Note that liquid flow at the lower boundary is down-
ward, so u|z=Lb < 0. Mass conservation law for this control volume is,

d

dt
(ρgVg + ρlVl) + ρlπ

d2

4

(
ufs − ub −

dLb
dt

)
−

ρl [πδ
∗
ν (d− δ∗ν)]

(
u|z=Lb − ub

)
= 0 . (2.41)

Inserting Eq. (2.40) into Eq. (2.41), and taking into account that gas mass is
constant,

dVl
dt

= −πd
2

4

(
ufs − ub −

dLb
dt

)
−ubπδ∗ν (d− δ∗ν)−U∞

[
π
d2

4
− πδ∗ν (d− δ∗ν)

]
.

(2.42)
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Figure 2.12: Control Volume 2

Besides, volumes derivatives are,

dVl
dt

=
d

dt

(
π
d2

4
Lb − Vg

)
=

dVg
dt

(ψ − 1) , (2.43)

ψ = π
d2

4

dLb
dVg

=


(

1− k
√
gd√

2gLb

)−1

if z1 < Lb < z2

d2

4( d2−δν)
2 if Lb ≥ z2

, (2.44)

where definition of ψ comes from Eq. (2.36). Definition of dVg
dt

can be obtained
by considering the gas mass conservation (Mg=Vgρg),

∂Mg

∂t
= 0→ dVg

dt
= −Vg

ρg

dρg
dt

;

dVg
dt

= −Vg
ρg

1

γC

(
P0 + Patm

C

)1/γ−1
dP0

dt
. (2.45)

As previously stated, bubble gas pressure is equal to P0(t), neglecting lo-
cal variations inside the bubble. Finally, Eqs. (2.43), (2.44) and (2.45) are
introduced into Eq. (2.42) to get an explicit equation for ufs,

ufs = (ub − U∞)

(
1− δ∗ν (d− δ∗ν)

d2/4

)
− 4

πd2

Vg
ρg

1

γC

(
P0 + Patm

C

)1/γ−1
dP0

dt
.

(2.46)

Control Volume 3

For the third control volume, which only includes the bubble gas, momentum
conservation equation is applied. To simplify the derivation, an average
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bubble velocity of value ub is considered. Therefore, it is assumed that those
zones in the vicinity of bubble nose, where there are local velocity deviations
due to gas expansion or compression processes, are small. Bubble momentum
conservation equation is

d

dt
[ub (Vgρg +KMVgρl)] = |g| ρlVg − ρlCdπ

d2

4

ub |ub|
2

(2.47)

where KM and Cd are the added mass and drag coefficients, respectively.
Here, KM=απd2Lb

4Vg
with α=0.32731 (see Ref. [37]) and Cd=ε

Vg

π(d/2)3
(see Ref. [6]).

Value of ε≈8.4 corresponds to a nondimensional bubble velocity in stagnant
liquid with k=0.345 (see Eq. (2.28)). Considering again Eqs. (2.43), (2.44)
and (2.45), attained in the second volume, an equation for dub

dt
can be reached,

β
dub
dt

= ubαρlψ
Vg
ρg

1

γC

(
P0 + Patm

C

)1/γ−1
dP0

dt
+ |g| ρlVg − ρlεVg

ub |ub|
d

,

(2.48)

β = Vgρg + απ
d2

4
Lbρl .

Unknowns P0, ub, and ufs can be computed by solving Eqs. (2.39), (2.46)
and (2.48).

Discussion

In vertical momentum law (2.39) it can be assumed that |g|�dufs
dt

and |g| �
f
2

ufs|ufs|
d

. Then, bubble pressure is,

P0 = ρlLlc |g| , (2.49)

whose derivative, taking into account Eq. (2.38), is,

dP0

dt
= ρl |g|

(
ufs − ub −

dLb
dt

)
. (2.50)

Moreover, first term on the right hand side of Eq. (2.48) can be considered as
negligible respect to the others (this observation is substantiated by extensive
analytical experiments (see section 4.3.3)); hence, for steady state conditions,
dub
dt
→0, ub→U∞. Considering last hypothesis, Eq. (2.46) reduces to,

ufs = − 4

πd2

Vg
ρg

1

γC

(
P0 + Patm

C

)1/γ−1
dP0

dt
. (2.51)
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Lastly, Eq. (2.51) is introduced into (2.50) to get the final equation for dP0

dt
,

dP0

dt
=

−ub
1

ρl|g|
− 4(ψ−1)

πd2
Vg
ρg

1
γC

(
P0+Patm

C

)1/γ−1
. (2.52)

This result reveals a condition for a sudden bubble expansion and, conse-
quently, for a significant free surface vertical acceleration. This condition
can be written as

ρl |g|
4 (ψ − 1)

πd2

Vg
ρg

1

γC

(
P0 + Patm

C

)1/γ−1

→ 1 . (2.53)

Next it is studied the stage when free surface has reached the upper end
of the duct; in this situation liquid column height only depends on bubble
dynamics and Eq. (2.38) reduces to,

dLlc
dt

= −ub −
dLb
dt

. (2.54)

Following the same procedure as above, new equation for time derivative of
bubble pressure becomes,

dP0

dt
=

−ub
1

ρl|g|
− 4ψ

πd2
Vg
ρg

1
γC

(
P0+Patm

C

)1/γ−1
, (2.55)

and the corresponding condition for a sudden expansion is,

ρl |g|
4ψ

πd2

Vg
ρg

1

γC

(
P0 + Patm

C

)1/γ−1

→ 1 . (2.56)

Note that the determining variable in Eqs. (2.53) and (2.56) is the relation
between gas volume Vg and the square of duct diameter D2. The remaining
parameters are constants or suffer slight changes. From Eq. (2.44), ψ>1, and
in case of elongated bubbles, ψ=O(1). Hence when free surface reaches the
upper conduit end, a considerably smaller gas volume is needed to provoke
a sudden bubble expansion (compare Eqs. (2.53) and (2.56)). Furthermore,
once bubble nose arrives at upper end, Vg raises its maximum value, because
compression originated from liquid column above the bubble has virtually
vanished. In situ observations as well as numerical experiments (see section
4.3.6) provide evidences supporting that in this state a violent geyser may
occur.
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Semi-Analytical Solution Algorithm

Solution of equations (2.39), (2.46) and (2.48) gives P0, ub and ufs at time
level tn+1. A straightforward temporal discretisation of these equations is,

P n+1
0

ρl
= Llc

[(
dufs
dt

)n+1

+ |g|+ f

2

un+1
fs

∣∣un+1
fs

∣∣
d

]
, (2.57)

un+1
fs =

(
un+1
b − U∞

)(
1− δ∗ν (d− δ∗ν)

d2/4

)
−

4

πd2

Vg
ρg

1

γC

(
P n+1

0 + Patm

C

)1/γ−1(
dP0

dt

)n+1

, (2.58)

β

(
dub
dt

)n+1

= un+1
b αρlψ

Vg
ρg

1

γC

(
P n+1

0 + Patm

C

)1/γ−1(
dP0

dt

)n+1

+

|g| ρlVg − ρlεVg
un+1
b

∣∣un+1
b

∣∣
d

. (2.59)

Superscript n+1 indicates time level tn+1 and those variables without super-
script are considered at time level tn to facilitate the resolution. Derivative
(dB/dt)n+1 for a function B(t) signifies,(

dB

dt

)n+1

=

{
3Bn+1−4Bn+Bn−1

2∆t
if n > 0

Bn+1−Bn
∆t

if n = 0
, (2.60)

where ∆t = tn+1−tn and n=0 indicates initial time. Thus, solution algorithm
consists of the following steps:

1. For a given duct geometry, gas mass and bubble position, initial bubble
parameters and liquid column length are calculated (ρ0

g, V
0
b , δ∗ν

0, ψ0,
L0
b and L0

lc). At first time step, it is assumed that P 0
0 =L0

lc |g| ρl, u0
fs=0

and u0
b=0 or u0

b=U∞.

2. Computation of P n+1
0 , un+1

b and un+1
fs with Eqs. (2.57), (2.58), (2.59)

and (2.60) for n ≥ 0.

3. Free surface position updating,

hn+1
fs = hnfs + un+1

fs ·∆t .

Note that hn+1
fs ≤ H, where H is the duct upper end position (see e.g.

Fig. 2.13, where H=0.610 m).
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4. Updating of ρg and Vg,

ρn+1
g =

(
P n+1

0 + Patm

C

)1/γ

,

V n+1
g =

Mg

ρn+1
g

.

5. Recalculate the bubble shape and get Ln+1
b , δ∗ν

n+1.

6. Updating of Llc,

Ln+1
lc = Lnlc + ∆t

(
un+1
fs − u

n+1
b −

4ψn+1

πd2

(
−Vg
ρg

)n+1
1

γC

(
P n+1

0 + Patm

C

)1/γ−1(
dP0

dt

)n+1
)

;

if free surface has reached the upper end of the duct, Llc is computed
as,

Ln+1
lc = Lnlc + ∆t

(
−un+1

b −

4ψn+1

πd2

(
−Vg
ρg

)n+1
1

γC

(
P n+1

0 + Patm

C

)1/γ−1(
dP0

dt

)n+1
)
.

7. Calculation of bubble nose position hb,

hn+1
b = hn+1

fs − L
n+1
lc .

8. Return to step 3 if hn+1
b < hn+1

fs .

Assessment

To validate the semi-analytical model, two experiments reported in Ref. [79]
are reproduced. There, authors investigated the release of air and water
through ventilation towers. Experiments consist of a vertical tube of length
Ld=0.610 m having the top open to the atmosphere and connected below
to a horizontal duct of diameter 0.094 m. Vertical duct is filled with water
up to 0.254 m height and it has a diameter d=5.700·10−2 m (experiment 1)
and d=1.269·10−2 m (experiment 2). A mass of air of Mg=4.642·10−3 kg in-
troduced into the horizontal duct propagates towards the vertical tube base
(see sketch in Fig. 2.13) and climbs up the vertical duct. Eventually, air mass
causes geysering at the top of vertical tube. To adapt this experiment to the
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0.094 m.

d

0.610 m.

Air

0.254 m.

Figure 2.13: Sketch for analytical model assessment

analytical model, it is assumed that vertical tube has semi-infinite length with
its upper end located at H=0.610 m (see red conduit in Fig. 2.13). Initial con-
dition is considered when bubble reaches vertical pipe base; hence, h0

b=0.0 m,
h0
fs=0.254 m and initial bubble pressure is P 0

0 =0.254 meters of water column.
Besides, ρl=1000 kg/m3, ρg0=1.2 kg/m3 and g=9.81 m/s2. Non-dimensional
results of three laboratory test repetitions and of analytical model are shown
in Figs. 2.14 and 2.15 for experiments 1 and 2 respectively. Figures depict
history of bubble head position hb (Figs. 2.14a and 2.15a), free surface po-
sition hfs (Figs. 2.14b and 2.15b) and bubble pressure hp (Figs. 2.14c and
2.15c); where {h∗b , h∗fs, h∗p}={hb, hfs, hp}/Ld, hp=P0/(g ·ρl) and t∗=t

√
gd/Ld.

The model reproduces the quasi-constant bubble head celerity in test 1
(see Fig. 2.14a). However, gas expands faster under test 2 conditions, and
bubble head has an apparent vertical acceleration (Fig. 2.15a). Left hand
side value in sudden expansion condition (2.53) for case 1 is of 0.008; in-
stead, for test 2 rises to 0.35. This fact gives an explanation of why flow is so
different in both cases. Analytical model results have a good agreement with
laboratory measurements in both tests. Free surface position is well captured
in test 2 (Fig. 2.15b) and slightly underpredicted in test 1 (Fig. 2.14b), while
oscillatory free surface behaviour shown in laboratory is adequately repro-
duced. It can be detected a (nearly) vanishing of oscillations in test 2, both
in lab and model. This fact evinces a stage much closer to the formation of
a high velocity vertical jet. Finally, analytical bubble pressure shows a good
agreement with the three laboratory series in both tests (see Figs. 2.14c and
2.15c); in particular, amplitude and period of pressure oscillations in test 1
are very similar to laboratory observations (runs 1 and 2). The model in-
troduced in Ref. [79] also reproduces bubble and free surface positions fairly
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well; nonetheless, bubble pressure is more precisely replicated by the present
model. Analytical results also show that bottom bubble velocity in both
experiments remains quasi-constant along time with value ub≈U∞, proving
that simplification of Eq. (2.48) performed in previous discussion section was
valid.

2.2.4 Approach to Multiple Bubbles

In this section, N bubbles rising in a vertical duct are considered (see Fig. 2.16),
where Lbj is the length of bubble j and Llcj is the length of the liquid column
above bubble j. Bubbles numbering starts from the lowest one, so that the
nearest to free surface is the bubble N . Liquid columns between bubbles are
considered long enough such that trailing bubble is not affected by the lead-
ing one. Thus, Llcj > 10d (see Ref. [76]) for 1 ≤ j < N . Each bubble pushes
the above liquid column, including leading bubbles, with mean velocity ufsj.
Thus, bubble j velocity is,

ubj = u∗bj + CI ·
j−1∑
i=1

ufsi (2.61)

where u∗bj is the bubble relative velocity respect to the surrounding liquid.
Parameter CI takes into account deviation of maximum velocity from mean
velocity in the profile ahead bubble j − 1. This parameter is approximately
1.2 for turbulent flows and 2.0 for laminar flows [57]. Velocity ufsj can be
calculated in a similar way as Eq. (2.46),

ufsj =

(
u∗bj + (CI − 1)

j−1∑
i=1

ufsi − U∞

)(
1−

δν
∗
j

(
d− δν∗j

)
d2/4

)
−

4

πd2

Vgj
ρgj

1

γC

(
P0j + Patm

C

)1/γ−1
dP0j

dt
, for 1 < j ≤ N , (2.62)

ufs1 = (u∗b1 − U∞)

(
1− δν

∗
1 (d− δν∗1)

d2/4

)
−

4

πd2

Vg1
ρg1

1

γC

(
P01 + Patm

C

)1/γ−1
dP01

dt
. (2.63)
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Figure 2.14: Rising bubble, test 1: d=5.700 · 10−2 m. Comparison between
semi-analytical model and experimental results [79].
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Figure 2.15: Rising bubble, test 2: d=1.269 · 10−2 m. Comparison between
semi-analytical model and experimental results [79].
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Figure 2.16: Sketch of multiple bubbles
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Llcj
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u∗b(j+1) + CI
∑j

i=1 ufsi +
dLb(j+1)

dt

u∗bj + CI
∑j−1

i=1 ufsi +
dLbj

dt

Figure 2.17: Control Volume 3

Likewise, equation for u∗bj resembles calculation of ub in Eq. (2.48),

βj
du∗bj
dt

= u∗bjαρlψj
Vgj
ρgj

1

γC

(
P0j + Patm

C

)1/γ−1
dP0j

dt
+

|g| ρlVgj − ρlεVgj
u∗bj
∣∣u∗bj∣∣
d

. (2.64)

βj = Vgjρgj + απ
d2

4
Lbjρl .

To close the system, it is necessary additional equations for P0j,
dLlcj

dt
and

dLbj
dt

. Control volume of Fig. 2.17 is studied for that purpose, including bubble
j+1 and liquid column j. Here, lower and upper boundaries move according
to the nose of bubble j and j + 1, respectively. Besides, liquid average
velocities at lower and upper boundaries are

∑j
i=1 ufsik and

∑j+1
i=1 ufsik.

Mass conservation in the control volume results in

d

dt

[
ρl
(
Lb(j+1) + Llcj

)
π
d2

4
− Vg(j+1)

(
ρl − ρg(j+1)

)]
+

ρlπ
d2

4

(
j+1∑
i=1

ufsi − u∗b(j+1) − CI
j∑
i=1

ufsi −
dLb(j+1)

dt

)
−

ρlπ
d2

4

(
j∑
i=1

ufsi − u∗bj − CI
j−1∑
i=1

ufsi −
dLbj
dt

)
= 0 ,
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dLb(j+1)

dt
+

dLlcj
dt
− 4

πd2

dVg(j+1)

dt
= −ufs(j+1) + u∗b(j+1)+

CIufsj +
dLb(j+1)

dt
− u∗bj −

dLbj
dt

,

dLlcj
dt

= −ufs(j+1) + u∗b(j+1) + CIufsj − u∗bj−

dLbj
dt

+
4

πd2

dVg(j+1)

dt
, for 1 ≤ j < N , (2.65)

dLlcN
dt

= ufsN − u∗bN −
dLbN

dt
− (CI − 1)

N−1∑
i=1

ufsi , (2.66)

and, if water has reached the top end of the duct,

dLlcN
dt

= −u∗bN −
dLbN

dt
− CI

N−1∑
i=1

ufsi . (2.67)

Furthermore, to apply momentum conservation it is assumed that liquid
moves with velocity

∑j
i=1 ufsik, neglecting local bubble effects as well as gas

momentum, given that normally ρg
ρl
� 1. Thus, momentum conservation

equation in vertical axis yields to,

d

dt

(
j∑
i=1

ufsi

)[
Lb(j+1) + Llcj −

4Vg(j+1)

πd2

]
+(

j∑
i=1

ufsi

)[
dLb(j+1)

dt
+

dLlcj
dt
− 4

πd2

dVg(j+1)

dt

]
+(

j+1∑
i=1

ufsi

)(
ufs(j+1) − u∗b(j+1) − (CI − 1)

j∑
i=1

ufsi −
dLb(j+1)

dt

)
−(

j∑
i=1

ufsi

)(
ufsj − u∗bj − (CI − 1)

j−1∑
i=1

ufsi −
dLbj
dt

)
=

− |g|
(
Lb(j+1) + Llcj −

4Vg(j+1)

πd2

)
+
P0(j) − P0(j+1)

ρl
−

f

2d

(
j∑
i=1

ufsi

∣∣∣∣∣
j∑
i=1

ufsi

∣∣∣∣∣
) (

Lb(j+1) + Llcj
)
,
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d

dt

(
j∑
i=1

ufsi

)[
Lb(j+1) + Llcj −

4Vg(j+1)

πd2

]
+(

j∑
i=1

ufsi

)[
dLb(j+1)

dt
− ufs(j+1) + u∗b(j+1) + CIufsj − u∗bj −

dLbj
dt

]
+(

j∑
i=1

ufsi

)(
ufs(j+1) − u∗b(j+1) − (CI − 1)

j∑
i=1

ufsi −
dLb(j+1)

dt

)
−(

j∑
i=1

ufsi

)(
ufsj − u∗bj − (CI − 1)

j−1∑
i=1

ufsi −
dLbj
dt

)
+

ufs(j+1)

(
ufs(j+1) − u∗b(j+1) − (CI − 1)

j∑
i=1

ufsi −
dLb(j+1)

dt

)
=

− |g|
(
Lb(j+1) + Llcj −

4Vg(j+1)

πd2

)
+
P0(j) − P0(j+1)

ρl
−

f

2d

(
j∑
i=1

ufsi

∣∣∣∣∣
j∑
i=1

ufsi

∣∣∣∣∣
) (

Lb(j+1) + Llcj
)
,

d

dt

(
j∑
i=1

ufsi

)[
Lb(j+1) + Llcj −

4Vg(j+1)

πd2

]
+

ufs(j+1)

(
ufs(j+1) − u∗b(j+1) − (CI − 1)

j∑
i=1

ufsi −
dLb(j+1)

dt

)
=

− |g|
(
Lb(j+1) + Llcj −

4Vg(j+1)

πd2

)
+
P0(j) − P0(j+1)

ρl
−

f

2d

(
j∑
i=1

ufsi

∣∣∣∣∣
j∑
i=1

ufsi

∣∣∣∣∣
) (

Lb(j+1) + Llcj
)
,

P0j

ρl
=
P0(j+1)

ρl
+

[
Lb(j+1) + Llcj −

4Vg(j+1)

πd2

](
d

dt

(
j∑
i=1

ufsi

)
+ |g|

)
+

ufs(j+1)

(
ufs(j+1) − u∗b(j+1) − (CI − 1)

j∑
i=1

ufsi −
dLb(j+1)

dt

)
+

f

2d

(
j∑
i=1

ufsi

∣∣∣∣∣
j∑
i=1

ufsi

∣∣∣∣∣
) (

Lb(j+1) + Llcj
)
, for 1 ≤ j < N , (2.68)
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P0N

ρl
= LlcN

[
d

dt

(
N∑
i=1

ufsi

)
+ |g|+ f

2d

(
N∑
i=1

ufsi

∣∣∣∣∣
N∑
i=1

ufsi

∣∣∣∣∣
)]

. (2.69)

Finally, time variation of bubble length and volume are,

dLbj
dt

=
4ψj
πd2

dVgj
dt

,

dVgj
dt

= −Vgj
ρgj

1

γC

(
P0j + Patm

C

)1/γ−1
dP0j

dt
.

Resolution algorithm is similar to that employed for one single bubble but, in
this case, there are 3N unknowns and equations (Eqs. (2.62), (2.63), (2.64),
(2.68) and (2.69)). Equations (2.65) and (2.66) (or Eq. (2.67) if free surface
reaches the top end of the duct) update liquid columns length.

Discussion and Assessment

By following analogous assumptions to those discussed for one bubble dy-
namics, if u∗bj=U∞ and CI=1, equations (2.62), (2.66) and (2.69) for bubble
N reduce to,

ufsN = − 4

πd2

VgN
ρgN

1

γC

(
P0N + Patm

C

)1/γ−1
dP0N

dt
, (2.70)

dLlcN
dt

= ufsN − U∞ −
dLbN

dt
, (2.71)

P0N

ρl
= LlcN |g| . (2.72)

Thus, when multiple bubbles are present, conditions for sudden expansion of
top bubble are similar to those for one single bubble (see Eqs. (2.49)-(2.51)).
Moreover, remaining bubbles are also affected by the sudden expansion of
the top one (see Eq. (2.68)).

Test 2 of previous section is replicated, but considering propagation of two
consecutive bubbles with Mg1=Mg2=4.642·10−3 kg and Llc1=Llc2=0.254 m
(lengths of the liquid column above bubble 1 and 2, respectively). Duct has
d=1.269 ·10−2 m. To elucidate the influence of lower bubble over the top one,
non abridged equations with CI=1.2 have been solved. Computations are
performed for three setups: one single bubble with Mg= 4.642·10−3 kg (same
as Fig. 2.15), two identical bubbles and one single bubble withMg=9.284·10−3

kg. Analytical results are depicted in Fig. 2.18, where free surface position,
top bubble position and pressure are shown. As can be seen in Figs. 2.18a
and 2.18b, upper bubble and free surface velocities are sightly increased by
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the presence of a second bubble. Otherwise, results also reveal that this
increment is more relevant in case that both bubbles were joined (see results
marked in green). In real cases, detachments among the three tests can be
less significant. This is because solution overpredicts moderately velocities
as it is assumed that all gas contained in each bubble has the same pressure,
which may amplify expansion action for very large bubbles.

Finally, geysering caused by the rising of multiple bubbles is evaluated
with analytical model. From experimental and real life observations, when a
train of air pockets rises in a vertical pipe, first bubble seems to produce the
weakest geyser in term of height and average velocity of the jet (see discussion
in Ref. [44]). A reason for this can be the loss of expelled liquid during first
geyser, which involves a sudden decrease of remaining bubbles pressure. A
test, emulating laboratory experiment of Ref. [44], is performed trying to
reproduce this phenomenon. Here it is considered a duct with d=0.152 m,
two bubbles whose total volume is 1.7 m3 at atmospheric pressure, L0

lc2=6 m
and L0

lc1=4 m. In lab experiments, it seems that first bubble is smaller than
the others (see Fig. 2.19), thus gas masses Mg2=0.36 kg and Mg1=1.68 kg are
set. At initial time, free surface is located at the top end of the duct. Once
nose of bubble 2 reaches the free surface, problem is solved by the system of
equations for one single bubble with Llc determined by

Llc = L
(n−1)
lc1 +Ω

(
L

(n−1)
b2 −

4V
(n−1)
g2

πd2

)
, (2.73)

where variables with super-index (n−1) represent values just before bubble 2
gets to the free surface and parameter Ω determines the percentage of liquid,
previously located between bubble 2 and duct wall, remaining in the duct.
In this test, it is assumed Ω=0.5.

Analytical model is able to reproduce laboratory observations despite the
fact that the model does not consider the resulting diffuse air/water tran-
sition in the vertical duct when first bubble reaches the free surface. Fig-
ure 2.20 shows non-dimensional analytical results for free surface and bub-
bles position (Fig. 2.20a) and velocities (Fig. 2.20b), where {h∗fs, h∗b2, h∗b1} =

{hfs, hb2, hb1}/L0
lc2, {u′fs, u′b1, u′b2} = {ufs, ub1, ub2}/

√
gd and t∗=t

√
gd/L0

lc2.
Variables ufs and ubj are the absolute velocity of free surface and bubble j
nose respectively. When leading bubble reaches the free surface at t∗≈0.85,
velocity of trailing bubble increases as can be seen in Fig. 2.20b (green line).
This increment depends to some extent on the bubble pressure change, which
is mainly determined by the amount of water expelled during first geyser.
Hence, smaller values of Ω gives larger increases of trailing bubble velocity
in analytical outputs. After first discharge, remaining water above trailing
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Figure 2.18: Comparison between one single bubble with different gas masses
and two consecutive bubbles.

(a) First bubble

(b) Following bubble

Figure 2.19: Comparison between first and following bubbles in a laboratory
experiment. Source: Fig. 7 of Ref. [44].
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bubble is driven to the top end of the duct causing a second geyser. Violence
of last eruption is greater than previous one as can be checked by comparing
free surface velocity values at t∗≈0.85 and t∗≈1.4 in Fig. 2.20b. This state
where second eruption is stronger than first one (also reported in Ref. [44])
is due to two reasons. First, relation between gas volume of trailing bubble
and duct diameter is large enough; second, free surface arrives at the duct
top end before bubble nose reaches the free surface. In this way, sudden
expansion of gas is more likely to happen as in test 2 of previous section (see
Fig. 2.15). Conversely, if water column ahead the trailing bubble is too large
or bubble gas mass is small, momentum transferred from air to water may
not be sufficient to propel violently the column of liquid. In that case, free
surface position would oscillate as in test 1 of previous section (see Fig. 2.14).

Analytical solutions for air cavities propagation and rising Taylor bubbles
have been reported in this chapter. Furthermore, both models have been as-
sessed by comparing their answers with laboratory outputs. Results indicate
that theoretical approaches, despite their limitations, reproduce fairly well
the dynamics of open air cavities and rising pressurized bubbles propagating
in ducts. Next chapter introduces numerical model for two-fluid flows, used
to perform simulations involving these physical events.
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Figure 2.20: Geysering event due to two consecutive bubbles.
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Chapter 3

Numerical Solutions for Interface Dynam-
ics

Problems involving the formation and propagation of air cavities and rising
elongated bubbles include several of the attributes that makes fluid inter-
face numerical modelling a demanding subject. For example, cavities and
Taylor bubbles develop an interface with regions where transition air/water
is well defined (the front part) along with zones where transition is diffuse.
Moreover, water and air determine a very low density ratio. In this situa-
tion, oscillations and overshoots in computed velocity field can appear in the
neighbourhood of interfaces, creating nonphysical accelerations of the fluid
with lower density [49]. Although incompressible assumption gives satisfac-
tory results for cavity formation and propagation, this premise fails to repro-
duce adequately momentum transfer between phases for the bubble vertical
motion, making necessary to implement a weakly compressible model.

Present numerical method computes solution of two fluids flow problems
with given initial and boundary conditions. It consists of three stages. First
step is the advection of a bounded phase function, whose value is zero in the
lighter phase, one in the heavier phase and one half at interface. Second stage
is the reinitialisation, which assures interface sharpness along the complete
simulation. Last step is the update of velocity and pressure fields by the
resolution of equations of motion, where density and viscosity are paramet-
rically defined according to the phase function. These steps are repeated, in
that order, every time step.

This chapter reports aforementioned numerical model for the calculation
of two-phase flows solution. Section 3.1 introduces analytical set of equa-
tions for two incompressible and weakly compressible fluid flows. After that,
section 3.2 details NFEM algorithm and limiting correction principles, which
are employed in every stage of numerical model. NFEM requires both high
and low order answers to build a final conservative solution with relevant

59
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features as positivity (or monotonicity under certain conditions) and high
order accuracy. Then, section 3.3 describes numerical solution for the advec-
tion equation, where NFEM is used to obtain a conservative squeme without
unphysical phase function values. Here, high order solution is computed with
the Characteristic-Galerkin method and low order answer is obtained with
a first order upwind scheme. Reinitialisation is reported in section 3.4. Al-
gorithm consists in the iterative solution of a parabolic equation, including
a streamlined diffusivity balanced with an artificial compression. Flux cor-
rections are integrated in this solution to preserve phase function bounds.
Finally, hydrodynamics resolution is detailed in section 3.5, where NFEM
and a customised flux correction procedure are integrated in the solution to
reduce oscillations and velocity overshoots along the interface. In this stage,
high order solution is calculated with the CBS method, while first order
upwind FEM is again used for the low order solution.

The continuous discretisation of the variables, as well as the continuous
interpolation of density across interface, give rise to a virtual stratification
between phases. Under certain flow conditions, this artificial representation
of the reality can lead to the amplification of high frequency perturbations
related with Kelvin-Helmholtz instabilities. These perturbations could be
stable for non-stratified flows but highly unstable for flows with high gra-
dient transitions. Then, in section 3.6, it is examined stability of stratified
flows, defined by density and velocity laws resembling numerical artificial dis-
tributions, as well as the effect of surface tension. To achieve a stable sharp
interface resolution it is desirable a sufficient decrease of transition thickness
between fluids. Some strategies are evaluated, being the interface refinement
the most suitable. Hence, to seek band thickness decrease, a new dynamical
mesh adaptation method is proposed in section 3.7. The procedure, based
on nested grids, assures conservation and monotonicity of the variables in
the refinement/unrefinement process and its computational cost is relatively
low.

3.1 Continuous Solution for Two-Fluid Flows

Multiphase flows can be defined as motion involving two or more fluids with
different physical properties in a way that the interaction between them sig-
nificantly affects the dynamics of the resulting flow. In this section, mathe-
matical model that describes motion of two phases flow and dynamics of the
interface delimiting phases is reported.
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Continuity and Navier-Stokes equations for one single phase are,

∂ρ

∂t
+∇ · (ρu) = 0 , (3.1)

∂ρu

∂t
+∇ · (ρuu) = −∇p+ µ∇2u + ρg , (3.2)

where u represents the velocity vector, g is the gravity acceleration vector, p is
the pressure and ρ, µ are the fluid density and dynamic viscosity respectively.
Equation (3.1) states that any change of mass in a domain is due to fluxes
crossing the domain boundaries. On the other hand, Eq. (3.2) states that
momentum changes (per unit volume) are caused by pressure, viscous and
body forces, represented by first, second and third terms at right hand side
respectively.

System of equations (3.1), (3.2) can also be applied to flows in domains
where density is not constant (i.e. ρ=ρ(x, t)). This fact allows the resolution
of compressible or stratified fluids and, after some modifications, two-phase
flows. Now, to distinguish between both fluids, an indicator function, also
called phase function, is defined as φ = φ(x, t) ∈ [0, 1], whose value is zero
or one in the domain occupied by the lightest and heaviest fluid respectively;
moreover, at interface, value φ=1/2 is assumed. Thus, fluids’ physical prop-
erties can be written as,

ρ = ρ1 + φ (ρ2 − ρ1) for ρ1 < ρ2 ,

µ = µ1 + φ (µ2 − µ1) , (3.3)

where subindexes 1 and 2 are referred to the lightest and heaviest phase re-
spectively. Although previous density definition considers both fluids as in-
compressible, formulation for weakly compressible phases will be introduced
at the end of this section. Then, density definition is inserted into Eq. (3.1)
resulting in

(ρ2 − ρ1)

(
∂φ

∂t
+∇ · (uφ)

)
+∇ · (ρ1u) = 0 ,

which can be satisfied by imposing, ∂φ
∂t

+∇ · (uφ) = 0 and ∇ · u = 0. These
equations are the transport equation of the phase function and the continuity
equation for an incompressible fluid.

Besides, it is necessary to include an additional term to the right hand
side of Eq. (3.2) taking into account the surface tension. This tension can
be defined as the necessary energy, due to intermolecular forces, to increase
the surface of the fluid. Surface tension term is denoted as T. Now, an
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equivalent equation to Eq. (3.2) can be obtained by uncoupling terms at left
hand side,

ρ
∂u

∂t
+ ρu · ∇u + u

(
∂ρ

∂t
+∇ · (ρu)

)
= −∇p+ µ∇2u + ρg + ρT ,

where term between parenthesis is zero because of mass conservation. As a
result, set of equations of motion for two fluids flow is the following,

∂φ

∂t
+∇ · (uφ) = 0 , (3.4)

∇ · u = 0 , (3.5)

∂u

∂t
+∇ · (uu) = −1

ρ
∇p+

µ

ρ
∇2u + g + T , (3.6)

ρ = ρ1 + φ (ρ2 − ρ1) , µ = µ1 + φ (µ2 − µ1) ,

in the domain Ω and time t ∈ [t0, T ], where t0 and T are initial and final
times respectively.

Nearly incompressible hypothesis is formulated as follows. Flows are as-
sumed isothermal and with a small density variation as a consequence of
elastic deformation related to pressure change. Hence density is defined as

ρ = ρ1 + (ρ2 − ρ1)φ+
p− p0

a2
1 + (a2

2 − a2
1)φ

, (3.7)

where a=
√
K/ρ is the acoustic wave velocity, and K is the elastic bulk mod-

ulus. Celerity values a1, a2, are those corresponding to the reference densities
ρ1 and ρ2 respectively, defined for a reference pressure p0. Variation of vis-
cosity due to pressure modification is assumed negligible. Thus, proceeding
in the same way as for incompressible assumption, the set of equations for
weakly compressible fluids is,

∂φ

∂t
+∇ · (uφ) = 0 , (3.8)

∂

∂t

(
p− p0

a2
1 + (a2

2 − a2
1)φ

)
+∇ ·

(
ρ
′
u
)

= 0 , (3.9)

∂u

∂t
+∇ · (uu) = −1

ρ
∇p+

µ

ρ
∇2u + g + T + Q , (3.10)

ρ = ρ1 + (ρ2 − ρ1)φ+
p− p0

a2
1 + (a2

2 − a2
1)φ

, µ = µ1 + φ (µ2 − µ1) ,

in Ω, t ∈ [t0, T ]. Here, ρ
′
=ρ1 +

p− p0

a2
1 + (a2

2 − a2
1)φ

and Q=u(∇ · u). Viscous

terms depending on velocity divergence are neglected.
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3.2 Non-Oscillatory Finite Element Method (NFEM)

In this work, a non-oscillatory finite element method is used in every solution
step. The method was presented by P. Ortiz (see e.g. Refs.[61, 62]) and, as
a main basis it integrates flux correction techniques (FCT). In this section,
after reporting briefly FCT principles, the NFEM components and ad-hoc
modifications to preserve mass conservation are introduced.

Flux correction method was originally developed by Boris and Book [10]
and generalised by Zalesak [84, 85]. Extension for finite elements was intro-
duced by Löhner et al. [48] and developed by Kuzmin [41], among others.
The objective of FCT method is to find an accurate, high order and mono-
tonic (or at least positive definite) solution for the advective-source transport
equation and coupled equations such as equations of motion. In the following
steps, advective-source transport scalar equation is used to report the princi-
ples. Algorithm is based on two schemes, a high order scheme (accurate but
non-monotonic) and a low order predictor, generally diffusive, which satisfies
the monotonicity condition. Final solution is obtained by the calculation of
anti-diffusive fluxes, which are conveniently modified and added to the low
order solution to obtain a final response satisfying previous requisites. First,
advective-source transport equation is defined,

∂B

∂t
+∇ · (uB) + S = 0 in Ω , t ∈ [t0, T ] , (3.11)

with boundary conditions

B = B(x, t) on Γ−B (a) ,

Bu · nb = qB(x, t) · nb on Γ−q (b) ,

Γ− = Γ−B ∪ Γ−q , Γ− = {x ∈ Γ : (u · nb) ≤ 0} ,

and initial condition
B(x, t0) = B0(x) in Ω ,

where B is the scalar transported by the advective velocity field u, S =
S (B,x, t) is a source, (x=(xl), l=1, D) and D is the number of space dimen-
sions. Domain Ω in RD is bounded by Γ = Γ− + Γ+, and B, B0 and qB
are known (the latter a vector) functions (from now on overline designates
known values). Inflow boundary is denoted by Γ− while Γ−q includes slip
condition if suitable, Γ+ = {x ∈ Γ : (u · nb) > 0} is the outflow boundary, nb
is the outward unit normal to the boundary and [t0, T ] is the time interval.

Flux correction formulation starts by writing a finite element high order
solution (HOS) of equation (3.11). Then, in matrix form the HOS is

1

∆t
M′

C ∆B = RH , (3.12)
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where M′
C is the left hand side matrix for the model problem. Next, a

predictor-type monotonic (or positive definite) solution is introduced. In
matrix form,

1

∆t
M′

L∆b = RL , (3.13)

where M′
L is a conservative diagonal matrix ensuring sign preservation of

the scheme. The simplest predictor solution is a low order monotonic (or at
least sign preserving) solution. This is referred as low order solution (LOS).
Right hand sides RH , RL correspond to the high order algorithm and to the
predictor algorithm respectively, while B and b are the unknowns for high
order method and for predictor method respectively. Hence, ∆B = Bn+1−Bn

and ∆b = bn+1 −Bn. If Eq. (3.12) is written as

1

∆t
M′

L∆B = RH +
1

∆t
(M′

L −M′
C) ∆B , (3.14)

by subtracting Eq. (3.13) from Eq. (3.14), it is got that

1

∆t
M′

L

(
Bn+1 − bn+1

)
= RH −RL +

1

∆t
(M′

L −M′
C)
(
Bn+1 −Bn

)
. (3.15)

The high order FEM solution can be written as a convenient identity by
replacing original high and low order schemes (Eqs. (3.12) and (3.13) respec-
tively) on the right hand side,

Bn+1 = bn+1 +
E∑
j=1

(M′
L)−1{(M′

L)j(B
n+1 − bn+1)j} , (3.16)

where the assembling of the product (M′
L)j(B

n+1−bn+1)j for each j element
is explicitly written, and is extended over the total number of elements E.
Element contribution (see Ref. [48]) is defined as,

Aj = (M′
L)−1{(M′

L)j(B
n+1 − bn+1)j} ,

then the identity (3.16) for a node i is

Bn+1
i = bn+1

i +
e∑
j=1

Aj = bn+1
i +

e∑
j=1

(AH
j −AL

j ) , (3.17)

where the sum of Aj extends over e, the total number of elements j surround-
ing i. High order solution Bi at time (n + 1)∆t results from updating the
LO solution at time (n+ 1)∆t by the sum of anti-diffusive contributions Aj,
that counterbalance the first order truncation error of the low order method.
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Element contribution Aj is the difference between that obtained by the HOS,
AH
j , and that obtained by the LOS, AL

j .
Equation (3.17) evinces a correction by limiting element contributions,

resembling the original concept of flux correction [10]. Then it is constructed
an improved solution B̃i as

B̃n+1
i = bn+1

i +
e∑
j=1

Ãj = bn+1
i +

e∑
j=1

cjAj , (3.18)

where the cj’s are elementwise correcting functions depending on nodal HOS,
nodal LOS and element contributions to the node of the k variables; cj’s range
is: 0 ≤ cjk ≤ 1, cjk ∈ cj. Reader should notice that summation convention
over repeated indexes is not used. For the scalar transport equation k=1,
while for the two dimensional coupled transport equations, 1 ≤ k ≤ 3.

These correcting functions must assure that solutions are bounded by
nodal limits Bmax

i and Bmin
i . For the simplest case (k = 1), the condition is

Bmin
i ≤ bn+1

i +
e∑
j=1

cjAj ≤ Bmax
i .

Now, if it is corrected positive and negative fluxes differently,

Bmin
i ≤ bn+1

i +
1

2

e∑
j=1

[
c+
j (Aj + |Aj|) + c−j (Aj − |Aj|)

]
≤ Bmax

i .

To fulfil the previous condition, it is sufficient that

Bmax
i − bn+1

i ≥ c+
i

2

e∑
j=1

Aj + |Aj| ,

bn+1
i −Bmin

i ≥ c−i
2

e∑
j=1

|Aj| − Aj ,

where c+
i and c−i are nodal valued functions. These conditions can be ex-

pressed as follows

c+
i = min

[
1,

Bmax
i − bn+1

i
1
2

∑e
j=1 (Aj + |Aj|) + ζ

]
, (3.19)

c−i = min

[
1,

bn+1
i −Bmin

i
1
2

∑e
j=1 (|Aj| − Aj) + ζ

]
, (3.20)
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where ζ is a small number to avoid the vanishing of the denominator. Nodal
and element correcting functions are related as

c+
j = min(c+

i ), c−j = min(c−i ), ∀ nodes i ∈ j . (3.21)

For computation of Bmax
i and Bmin

i , the Zalesak idea (see Ref. [84]) is fol-
lowed:

Bmax
i = max

j=1,e

(
Bn
i , B

n
p , b

n+1
i , bn+1

p

)
, ∀ (nodes p 6= i) ∈ j , (3.22)

Bmin
i = min

j=1,e

(
Bn
i , B

n
p , b

n+1
i , bn+1

p

)
, ∀ (nodes p 6= i) ∈ j . (3.23)

For coupled equations, there are several techniques to synchronise variables
(see e.g. Refs. [48],[42],[62]). All strategies have a high degree of empiricism
and, normally, their suitability depends on the case. In this work, it is defined
nodal values of the correcting function as

c+
i = min(c+

ik), c−i = min(c−ik), (1 ≤ k ≤ 3) . (3.24)

Thus, final corrected solution is the following:

B̃n+1
i = bn+1

i +
e∑
j=1

1

2

[
c+
j (Aj + |Aj|) + c−j (Aj − |Aj|)

]
. (3.25)

In the methodology proposed by R. Löhner [48], the LOS was the same
as the high order solution with an added diffusion of the type C(MC −
ML), where C is a diffusion coefficient that should be tuned to achieve sign-
preservation. In that case, element contributions Aj were locally conservative
and, to ensure mass conservation, element correcting functions must be equal
for positive and negative fluxes, i.e. c+

j =c−j =cj=min
(
c+
j , c

−
j

)
. However, in

the Non-Oscillatory Finite Element Method (NFEM) proposed by P. Ortiz
[61, 62], the HOS is obtained from the characteristic based method and LOS
is constructed with an upwind monotone scheme, independent of the high
order procedure, following the idea of selecting a scheme with the (nearly)
minimum diffusion to assure positivity. Regarding high order solution, the
characteristic based method after time discretisation for an scalar B (see
Appendix B) is written as,

Bn+1 = Bn −∆t

{[
un+1/2 − ∆t

2

(
un+1/2 · ∇

)
un
]
· ∇
}
Bn+

∆t2

2

(
un+1/2 · ∇

)(2)
Bn −∆t

{
Qn+1/2 − ∆t

2

(
un+1/2 · ∇

)
Qn

}
, (3.26)
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where Q = S+B (∇ · u) and superscript n+1/2 for some variable is defined
as (·)n+1/2 = ((·)n+1 + (·)n) /2 (n and n + 1 correspond to time levels n∆t
and (n+ 1)∆t respectively). Operator (f · ∇)(2) is

(f · ∇)(2) =
d∑

l1=1

d∑
l2=1

fl1fl2
∂2

∂xl1∂xl2

for a given vector field f . Concerning low order approach, the scheme written
as an equivalent differential equation after time discretisation is

bn+1 = Bn −∆t (u · ∇b)n+1/2 −∆tQn+1/2 + ∆t [∇ · (K∇b)]n+1/2 , (3.27)

where K is an artificial diffusivity tensor such that

Kl1l2 = k̃
ul1ul2
| u |2

, (l1, l2 = 1, d) ,

and k̃ is a scalar depending on an element characteristic length in the stream-
line direction [13]. A standard split approach is assumed to compute values
of bn+1/2 for the LO scheme (see [62] and references therein), giving the fol-
lowing final computation of the unknown,

bn+1 = Bn −∆t

(
un+1/2 · ∇

(
Bn − ∆t

2
Qn

))
−∆tQn+1/2+

∆t

[
∇ ·
(
K∇

(
Bn − ∆t

2
Qn

))]
. (3.28)

For transport equation, element contributions Aj are not locally conser-
vative because high order terms are not present at low order solution. This
fact, independently of the choice of element correcting functions, lead a high
order mass error. To clarify this issue, consider the combination of high or-
der and low order solution in matrix form given by Eq. (3.15) to expand the
correction given by Eq. (3.18) as

B̃n+1 = bn+1+

(M′
L)−1

E∑
j=1

{
c{∆t(RH −RL) + (M′

L −M′
C)
(
Bn+1 −Bn

)
}
}
j
, (3.29)

where low order solution bn+1 and high order solution Bn+1 are global conser-
vative solutions. If matrices involved in the calculation fulfil the conservation
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property for each element j, a conservative corrected solution B̃n+1 is reached
straightforwardly. For a symmetrical matrix J the conservation condition is

∑
k,k 6=i

Jik = −Jii . (3.30)

Last term in the right hand side of Eq. (3.29) is a conservative anti-diffusion
contribution, given that matrix M′

L −M′
C verifies the conservation condi-

tion. After Galerkin spatial discretisation, terms on the right hand side of
Eq. (3.26) that do not fulfil condition (3.30) agree with those on the right
hand side of Eq. (3.28) that do not fulfil condition (3.30). These terms are

−∆t un+1/2 · ∇Bn (a) ,

−∆tQn+1/2 (b) ,

∆t2

2

(
un+1/2 · ∇

)
Qn (c) .

(3.31)

Despite the fact that all terms on the list (3.31) cancel each other once cal-
culation of correction (3.29) is performed, high order global non-conservative
residuals still can be created in calculation of (RH − RL). The reason is
twofold. Firstly, although definition of value of variables at n + 1/2 coin-
cides for the methods given by Eqs. (3.26) and (3.27), interpolations do not
have to match each other exactly (see details in Ref. [62]). Secondly, in the
computation of the low order solution, results are essentially the same by
median dual finite volume method or Galerkin linear finite elements with
lumped mass approximation. Nevertheless, for an efficient computation, me-
dian dual cell based procedure is recommended, gathering the contribution
to nodes in an elementwise manner to maintain the finite element structure,
necessary for the calculation of the anti-diffusive fluxes. This practical pro-
cedure can produce high order residuals, given that its results are subtracted
from results of typical Galerkin discretisation, kept from the terms on the
list (3.31) corresponding to the high order algorithm.

Global mass error is substantially reduced by a modified antidiffusion
term in [62] (see some stringent numerical experiments independent of bound-
ary conditions). In this work a simple approach is proposed, by modifying
the original formulation of the NFEM [61] in an intermediate step of the
correction procedure. Once correcting functions have been evaluated, cal-
culation of total positive and negative element contributions, M+ and M−
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respectively, is performed as

M+ =
N∑
i=1

[
e∑
j=1

c+
j

2
(Aj + |Aj|)

]
i

,

M− =
N∑
i=1

[
e∑
j=1

c−j
2

(|Aj| − Aj)

]
i

,

where N is the total number of nodes. Next, the global correction coefficients

c+
c = min

(
1,
M−

M+

)
, (3.32)

c−c = min

(
1,
M+

M−

)
(3.33)

are used to modify the corrected solution (3.25) as

B̃n+1
i = bn+1

i +
e∑
j=1

1

2

[
c+
c c

+
j (Aj + |Aj|) + c−c c

−
j (Aj − |Aj|)

]
, (3.34)

removing residuals from the correction procedure. Bounds (3.32) and (3.33)
preserve nodal bounds Bmax

i and Bmin
i . As a result, conservation errors due

to the limiting procedure are of the order of round-off values and errors in
usual norms (see Chapter 4) does not show noticeable increase due to the
proposed correction technique.

This method has proved to be effective for the resolution of problems
involving interfaces. By one hand, it enhances interface capturing by pro-
viding a conservative, positive and non oscillatory phase field at advection
and reinitialisation steps. On the other hand, it controls spurious velocity
overshoots when it is used for the hydrodynamics solution step.

3.3 Solution for Transport Phase Advection

First stage of proposed two-phase flow method is the advection of a phase
function, attained by solving next equation,

∂φ

∂t
+∇ · (uφ) = 0 in Ω , t ∈ [t0, T ] (3.35)

with boundary conditions

φ = φ(x, t) on Γ−φ (a) ,

φu · nb = qφ(x, t) · nb on Γ−q (b) ,

Γ− = Γ−φ ∪ Γ−q , Γ− = {x ∈ Γ : (u · nb) ≤ 0} ,
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and initial condition
φ(x, t0) = φ0(x) in Ω .

For this step, the flux correction technique is employed, along with mass
correction explained in previous section. High order solution is obtained with
Eq. (B.21) by replacing R′=0 and B=φ. Thus, Galerkin spatial discretisation
of Eq. (B.21) is stated in terms of the finite element spacesWh and Φh defined
as Wh ⊂ W = {w ∈ H1(Ω) | w = 0 on Γ−φ }, Φh ⊂ Φ={φ ∈ H1(Ω) | φ =

φ on Γ−φ }, and solution of phase function advection is formulated as: Find

φh ∈ Φh for all t ∈ [to, T ], such that(
wh,

∆φh

∆t

)
Ω

=
(
un+1/2 · ∇wh, (φh)n

)
Ω
−

∆t

2

{〈
∇ ·
(
wh
(
uhuh

)n+1/2
)
,∇(φh)n

〉
ΩI
−〈

wh
(
(uh)n+1/2 · ∇(uh)n

)
,∇(φh)n

〉
ΩI

+(
∇ · wh(uh)n+1/2,

(
φh∇ · uh

)n)
ΩI

}
−[

wh, φhu
]n

Γ+ −
[
wh,qφ

]n
Γ−q

, ∀ wh ∈ Wh , (3.36)

where

(v, w)Ω =

∫
Ω

v w dΩ , 〈v,w〉Ω =

∫
Ω

(v ·w) dΩ and [v, c]Γ =

∫
Γ

v c ·nb dΓ .

Here, ΩI is the domain without elements with sides belonging to the bound-
ary and ∆φh = (φh)n+1 − (φh)n. Computation of un+1/2 will be detailed in
section 3.5. Matrix form of Eq. (3.36) can be inspected in Appendix C. Low
order solution is a finite element upwind method computed in an edge-based
manner for efficiency [2, 61]. From now on, notation LO( ) indicates the low
order operator comprising computation of upwind fluxes. Full derivation of
the low order operator can be found in section 3.3 of Ref. [61] or, in a sum-
marised form, in Appendix D. Then, low order method is defined as: Find
φhLO such that (

whL,
∆φhLO

∆t

)
Ω

= LO
(
(φh)n, (uh)n

)
, (3.37)

where whL corresponds to lumped mass matrix.
Final phase function solution φ̃n+1 is constructed by using flux correction

through Eq. (3.34), then assuring its positivity (or its monotonicity under cer-
tain flow conditions), and avoiding high frequency oscillations in the vicinity
of the interface as a consequence of dispersion error of the high order solution.
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3.4 Reinitialisation

Reinitialisation of the phase function is necessary to preserve interface thick-
ness or, in other words, to maintain the resolution of the contact discontinu-
ity1. Reinitialisation of the phase function by the CLS algorithm is imple-
mented once advection of phase function (Eq. (3.35)) is solved, and combines
artificial compression and diffusion in a non-linear advection-diffusion equa-
tion (Eq. (7) of Ref. [60]) reproduced below,

∂φ̂

∂τ
+∇ ·

(
φ̂
(

1− φ̂
)

n
)

= ∇ ·
[
ε
(
∇φ̂ · n

)
n
]
, (3.38)

with initial condition

φ̂(x, τ = 0) = φ(x, tn+1) . (3.39)

Here, τ is a dummy time, φ̂ is the reconstructed phase function, and n is the

interface normal, n =
∇φ
|∇φ| .

Artificial compression was born with the aim of fixing the spreading in-
duced by numerical methods on discontinuities when they are advected in
multidimensional problems. The essence of artificial compressibility method
introduced by A. Harten [31] is to solve a modified advection equation. In
one dimension, equation is

∂B

∂t
+

∂

∂x
[f(B) + g(B)] = 0 ,

where additional function g(B) must satisfy following properties,

g(B) = 0 for B /∈ (BL, BR) ,

g(B) · sgn [BR −BL] > 0 for B ∈ (BL, BR) ,

being BL and BR extreme values of the discontinuity. It can be proved
that modified and original transport equations have the same analytical so-
lution. However, numerically, both solutions are different: while numerical
responses for original equation can spread out the interface, numerical solu-
tion of modified equation gives a well defined discontinuity. In current study,
BL=0 and BR=1 and function φ (1− φ) n satisfies both conditions. Further,
the aim of diffusion term in Equation (3.38) is to achieve a solution with

1Contact discontinuities are surfaces delimiting regions with different density. In con-
trast, shocks are characterised by also presenting mass flows across the surface accompa-
nied by abrupt pressure changes.
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a controlled sharp interface without discontinuities allowing for high order
accurate results. Thus, ε is a diffusivity coefficient defined to control the
interface thickness [60]. Both artificial compression and diffusive fluxes are
oriented along the interface normal. For this reason, neither tangential dif-
fusion fluxes nor tangential compression fluxes to the contact discontinuity
are allowed to grow during reinitialisation.

In this work, the continuous model proposed for reinitialisation step is an
equation of the form

∂φ̂

∂τ
=

∂

∂n

[
D(φ̂)

∂φ̂

∂n

]
, (3.40)

merging both effects into the anisotropic diffusivity D(φ̂) such that

D(φ̂) = ε−
φ̂
(

1− φ̂
)

∂φ̂
∂n

+ ς

, (3.41)

where initial condition is that given by Eq. (3.39). Note that the diffu-
sivity is not positive definite D(φ̂) Q 0, therefore model (3.40) is a non-
linear anisotropic diffusion-anti-diffusion equation. Natural boundary con-
dition and n · nb = 0 condition are assumed on boundaries. As Eq. (3.40)
is nearly self-adjoint, standard Galerkin spatial discretisation is (in a sense)
optimal [88]. To solve Eq. (3.40), a simple and efficient iterative method is
constructed, based on the use of lumped mass matrix for dummy time dis-
cretisation and on explicit treatment of nonlinear diffusion terms. The choice
of initial condition (3.39) gives a very fast convergence to reach steady state
solution. Nevertheless, D(φ̂) Q 0 leads to an enhanced solution φ̂ that does
not preserve sign. To bound the reconstructed solution by the limits Φmin

i

and Φmax
i of transport step, an ad-hoc correction of element contributions is

introduced .
To achieve sign-preservation, the procedure defines Dj as the diffusive

(or anti-diffusive) flux (element contribution) of j element to node i. Then,
updated solution for node i at pseudo-time (m+ 1)∆τ is

φ̂m+1
i = φ̂mi +

e∑
j=1

Dm
j .

Hence flux correction is embedded in the iterative method as

φ̂m+1
i = φ̂mi +

e∑
j=1

cjD
m
j ,
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where elementwise correction coefficients cj are chosen by

cj = min
(
c+
k , c

−
k

)
∀ nodes k ∈ j ,

and for node i

c+
i = min

(
1,

Φ̂max
i − φ̂mi∑e

j=1
1
2

(Dj + |Dj|) + ς

)
,

c−i = min

(
1,

φ̂mi − Φ̂min
i∑e

j=1
1
2

(|Dj| −Dj) + ς

)
.

Unlike advection step, in this case a single correction coefficient is used be-
cause fluxes Dj calculated from Eq. (3.40) are locally conservative. Hence,
if positive and negative fluxes are corrected with different coefficients, mass
conservation would not be preserved.

To allow reinitialisation to operate when interface is totally sharp (one
or zero nodal values), an additional condition must be added to determine
correcting functions such that

if Φ̂max
i − φ̂mi = 0 and

e∑
j=1

1

2
(Dj + |Dj|) = 0 , then c+

i = 1 ,

and

if φ̂mi − Φ̂min
i = 0 and

e∑
j=1

1

2
(|Dj| −Dj) = 0 , then c−i = 1 .

Finally, bounds are defined by

Φ̂max
i = max

j=1,e

(
φ̂mi , φ̂

m
k

)
, ∀ (nodes k 6= i) ∈ j , (3.42)

Φ̂min
i = min

j=1,e

(
φ̂mi , φ̂

m
k

)
, ∀ (nodes k 6= i) ∈ j . (3.43)

Improved solution after reconstruction is now bounded by Φmin
i ≤ φ̂ ≤ Φmax

i .
Finite element discretisation of Eq. (3.40) is formulated as: find φ̂h ∈ Φh

such that(
whL,

∆φ̂h

∆τ

)
Ω

= −

(
∂wh

∂n
,D(φ̂)

∂φ̂h

∂n

)m

Ω

+

[
wh,D(φ̂)

∂φ̂h

∂n
n

]m
Γ

, (3.44)

where whL corresponds to the lumped mass matrix and D(φ̂) Q 0. If n ·
nb=0 condition is assumed on boundaries, second term at right hand side
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of Eq. (3.44) vanishes. In Eq. (3.44) diffusion is streamlined in the normal
direction of the interface as in Eq. (3.38), and dummy time integration is
carried out explicitly (superscript m indicates dummy time level τm).

A straightforward elementwise computation of interface normal n= ∇φ
|∇φ|

can produce indeterminacy far from interface, where phase function has
nearly constant values. As a result, oscillations of phase function appear
during reinitialisation [22]. Since normals at distant elements from the inter-
face are not necessary, we propose to calculate normals only at few elements
surrounding φ = 1

2
contour. Consider Fig. 3.1; the term level defines a layer

of elements, such that elements belonging to level 1 of a specified element
are all elements neighbouring it, level 2 embraces all elements adjacent to
elements of level 1, and so on. For this study, three levels are sufficient to

Level 1

Level 2

Figure 3.1: Definition of level

properly capture the entire interface2. To sort levels, a linked list algorithm
[47] is implemented. Due to the static data involved, sorting has to be done
only once, and data structure is called only once before dummy time iter-
ation. In particular, additional static data stored is the distance between
centroid of each element to all nodes covered by its level 3. These nodes are
called activated nodes associated with the element.

Now, the method consists of the following steps,

1. Search for interface elements: elements containing φ = 1
2
.

2. Calculation of interface elements normals: n =
∇φ
|∇φ| .

3. For each interface element: recover activated nodes associated with it.

2In numerical experiments (Chapter 4), maximum value of ε used is ε≈0.83δ, interface
thickness η ≈ 6ε (see [60], pp 796), then η ≈ 5δ, where δ is an average element size.
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4. The normal corresponding to activated nodes is updated with value of
normal for the nearest interface element.

5. Element normals are updated by the average of normal values for nodes
belonging to the element.

Though this method has been developed for linear triangles, its implemen-
tation for tetrahedrons and other types of elements is straightforward. Im-
provement in reinitialisation stage achieved by enhanced normals calculation
will be assessed in Chapter 4.

3.5 Flow Solver

High order solution for the set of equations (3.1) and (3.2) is attained by ex-
tending the continuous characteristic based split FEM to incorporate preser-
vation of second order accuracy for transient advective field condition (see
Appendix A in Ref. [61]). After time discretisation, the following form of
split solution can be written,

un+1 = un + ∆u∗ + ∆u∗∗ , (3.45)

where velocity at time level (n+ 1)∆t is computed as the sum of a predictor
velocity u∗=un + ∆u∗, and a pressure correction velocity increment ∆u∗∗.
First step is the calculation of predictor velocity, obtained by the Charac-
teristic Galerkin method (see Appendix B, Eq. (B.22)), where Bn+1=u∗, and
R=−µρ∇

2u− g−T− u∇ · u. Viscous force is specified as a source term to

simplify notation. Viscous force, gravity force and surface force values are
taken at t=n∆t. Hence, Rn+1/2≈Rn in Eq. (B.22). Then, finite element dis-
cretisation for velocity predictor is stated in terms of the finite element spaces
Uhi and Vhi (i = 1, D) defined as Vhi ⊂ Vi = {vi ∈ H1(Ω) | vi = 0 on Γq},
Uhi ⊂ Ui = {ui ∈ H1(Ω) | ui = qi on Γq}, being Γq is the portion of bound-
ary with prescribed velocity, denoted as q. Solution is formulated as: Find
∆u∗hi ∈ Uhi such that(

vhi ,
∆u∗hi
∆t

)
Ω

= −
(
vhi ,∇ ·

(
(uh)n+1/2(uhi )

n
))

Ω
+
(
vhi , f

h
i

)n
Ω

+
(
vhi , gi

)n
Ω
− ∆t

2

{〈
∇ ·
(
vhi
(
uhuh

)n+1/2
)
,∇(uhi )

n
〉

ΩI

−
〈
vhi
(
(uh)n+1/2 · ∇(uh)n

)
,∇(uhi )

n
〉

ΩI

+
(
∇ · vhi (uh)n+1/2,

(
uhi∇ · uh

)n)
ΩI

+
(
vhi , (u

h)n+1/2 · (∇(fhi + gi))
n
)

ΩI

}
, (3.46)
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where f=
µ
ρ∇

2u+T+u∇ · u. Under the assumption of nearly incompressible

flows, those viscous terms depending on velocity divergence are neglected.
Supplemental integration by parts of viscous term (second term in the right
hand side of Eq.(3.46)) is omitted for brevity. Hydrodynamic solution is per-
formed after updating phase function and density and viscosity values given
by parametrical definitions (3.3) or (3.7). Then, intermediate values ρn+1/2

and µn+1/2 are incorporated. Next step is the pressure computation from the
modified continuity equation (3.9) after following time discretisation,

∂

∂t

(
p− p0

a2
1 + (a2

2 − a2
1)φ

)
+∇ ·

(
ρ
′
un+θ1

)
= 0 . (3.47)

Taking into account that un+θ1=un + θ1 (∆u∗ + u∗∗) and that ∆u∗∗ includes
pressure terms,

∆u∗∗ = −∆t

ρ
∇pn+θ2 +

∆t2

2ρ
u
n+1/2
i

∂

∂xi
∇pn+θ2 , (3.48)

where pn+θ2=(1− θ2)pn + θ2p
n+1, equation (3.47) remains as,

1

(a2)n+1/2

∆p

∆t
− θ1

(ρ′)n+1/2

ρn+1/2
∆t∇2

(
pn+θ2

)
= −∇·

(
(ρ′)nun + θ1(ρ′)n+1/2∆u∗

)
.

(3.49)
Second order terms in previous equation vanish if linear finite elements are
employed. Thus, Galerkin spatial discretisation of Eq. (3.49) is stated in
terms of finite element spaces Wh and Ph, defined as Wh ⊂ W = {w ∈
H1(Ω) | w = 0 on Γp}, Ph ⊂ P = {p ∈ H1(Ω) | p = p on Γp}, where Γp
specifies the portion of the boundary with prescribed pressure denoted as p.
Pressure solution is formulated as: Find (ph)n+1 ∈ Ph for all t ∈ [to, T ], such
that(

1

(a2)n+1/2
wh,

∆ph

∆t

)
Ω

+ θ1θ2∆t

〈
∇wh, (ρ′)n+1/2

ρn+1/2
∇(∆ph)

〉
Ω

=

−
(
wh,∇ ·

(
ρ′uh

))n
Ω

+ θ1

〈
∇wh, (ρ′)n+1/2∆u∗h

〉
Ω

− θ1∆t

〈
∇wh, ρ

′

ρ
∇ph

〉n
Ω

− θ1

[
wh, (ρ′)n+1/2∆uh

]
Γ
, (3.50)

where ∆uh=(uh)n+1 − (uh)n. In numerical experiments, integration param-
eters θ1=θ2=1 are employed unless otherwise stated. Reader can note that,
if flow is assumed incompressible, first term of Eq. (3.50) vanishes and ρ′ can
be changed by 1. Equation (3.50) is solved by using a preconditioned con-
jugate gradient method. Once pressure increment is obtained, last step is
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to update the velocity field through the calculation of ∆u∗∗. Finite element
discretisation of Eq. (3.48) gives next equation,(

vhi ,
∆u∗∗hi

∆t

)
Ω

= −
(

1

ρn+1/2
vhi , (∇ph)

n+θ2
i

)
Ω

− ∆t

2

(
1

ρn+1/2
∇ ·
(
vhi (uh)n+1/2

)
, (∇ph)n+θ2

i

)
ΩI

. (3.51)

Finally, new velocity and pressure values are un+1=un+∆u∗+∆u∗∗, pn+1=pn+
∆p. Matrix forms of Eqs. (3.46), (3.50) and (3.51) are detailed in Appendix C.
To compute velocities at n+ 1/2, required by Eqs. (3.36), (3.46) and (3.51),
one level second order predictor-corrector procedure is proposed. Prior to
outline the methodology, Eq. (3.46) is condensed by introducing the operator
G such that (

vhi ,
∆u∗hi
∆t

)
Ω

= G
(
un+1/2,un, fn,gn

)
. (3.52)

Now, Eqs (3.45) and (3.52) are used to explicitly compute a predictor value
û=un + ∆û as(

vhi ,
∆̂uhi
∆t

)
Ω

= G (un,un, fn,gn)−
(
vhi ,

1

ρ
(∇ph)i

)n
Ω

− ∆t

2

(
1

ρ
∇ ·
(
vhi (uh)

)
, (∇ph)i

)n
ΩI

, (3.53)

where values at n + 1/2 were assumed as those corresponding at n. Then,
values of un+1/2 in Eq. (3.52) are calculated as un+1/2=1

2
(un + û). Compu-

tation of un+1/2 is performed before the phase function advection step, hence
intermediate velocity field is ready to be used in Eq. (3.36) and to be reused
in the hydrodynamics solution by Eqs. (3.46) and (3.51). Density ρn+1/2 is
computed after solving Eq. (3.36) by using Eq. (3.7) but employing the value
φn+1/2=1

2
(φn + φn+1); accordingly, celerity (a2)n+1/2=a2

1 + (a2
2− a2

1)φn+1/2 in
Eq. (3.50). To compute ρ′, pressure is approximated as p ≈ pn.

Low order solution is the next constituent of the NFEM method. Sim-
ilarly to phase function advection, low order method is defined as: Find
(uhi )

n+1
LO ∈ Uhi , (i = 1, D) and (ph)n+1

LO ∈ Ph for all t ∈ [to, T ], such that(
vhiL,

∆uhiLO
∆t

)
Ω

=

(
vhiL,

∆u∗hiLO
∆t

)
Ω

−
(
vhiL,

1

ρ
(∇ph)iLO

)n+1/2

Ω

, (i = 1, D),

(3.54)
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where vhiL corresponds to the lumped mass matrix and LO subindex signifies
low order solution. Low order intermediate velocity increment is calculated
as (

vhiL,
∆u∗hiLO

∆t

)
Ω

=
(
vhi , f

h
i

)n
Ω

+
(
vhi , gi

)n
Ω

+ LO
(
(uhi )

n, (uh)n
)
. (3.55)

Pressure solution is nearly identical to high order formulation (Eq. (3.50))
and is not reproduced for brevity. Computation of low order solutions of
equations involving source terms is detailed in Appendix D.

Last fundamental ingredient in the NFEM is the flux correction strategy.
Direct extension of the scalar computation developed in section 3.2 for each
of the velocity components and pressure separately could result in inappro-
priate constrains for some of the variables, as observed in Ref. [85] for con-
servative variables in compressible flows. In this work, suitable synchronised
antidiffusion is relevant to shrink oscillations and overshoots in velocity field
in the vicinity of the contact discontinuity, and its benefits become evident
for decreasing values of ρ1/ρ2. The construction of limiters to synchronise
variables is significantly case dependent [48]. Among several coordination
techniques tested (see e.g. [62]), the most effective is to act only on velocity
components [48]. In this synchronisation, the correcting functions for a node
i is defined by

c+
i = min(c+

ik) , c−i = min(c−ik) , (3.56)

where k=1, D indicates velocity component; correcting function for element
j is

cj = min(c+
l , c

−
l ), ∀ nodes l ∈ j . (3.57)

In other words, nodal correcting functions are calculated for each velocity
component separately and it is selected the most restrictive candidate to
correct antidiffusive fluxes for all velocity components. Application of the
coordinated correction technique is performed by the conservative method
proposed in Ref. [62]. The monolithic NFEM method stated above dimin-
ishes substantially wiggles near interface. However the semi-implicit algo-
rithm requires the solution of two Poisson equations every timestep to build
in the upcoming correction. To avoid this computational cost, a reduced
NFEM is proposed. It consists in performing correction only for the pre-
dictor velocity field. All series of numerical tests have shown insignificant
differences with monolithic NFEM (see section 4.2.2), retaining the capabil-
ity to maintain interface resolution. Predictor velocity field is arbitrary, thus
conservative correction formulated in section 3.2 is redundant. It is sufficient
to get an improved solution by using original methodology (3.25), embedded
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into the coordination procedure (3.56). Ensuing steps of CBS algorithm en-
sure mass conservation. Otherwise, conservation errors in momentum are
negligible when compared with spurious momentum transmission between
phases. Limiting techniques integrated into NFEM, either in the entire pro-
cedure or in the reduced version, do not get rid completely of spurious velocity
jumps across interface. These nonphysical jumps can pollute severely results
in interface neighbourhood, and in particular, can create nonphysical accel-
erations of the fluid with lower density, intensified for small ρ1/ρ2 values.
Correction procedure does not fully filter artificial accelerations across the
interface because the method defines bounds without identifying the presence
of the interface. An enhanced bound estimation is introduced, picking out
relevant information of the interface. To simplify, definitions are specified for
the reduced procedure3.

Bounds for k velocity component are given by the following approach.
First, for each node i, nodes q surrounding i are identified such that,∣∣φn+1

i − φn+1
q

∣∣ < Υ .

Second, by calling p the total number of q nodes, bounds for node i are
computed according to,

If p > 0,

umaxik = max
q=1,p

(
unik, (u

∗
LO)ik, u

n
qk, (u

∗
LO)qk

)
,

uminik = min
q=1,p

(
unik, (u

∗
LO)ik, u

n
qk, (u

∗
LO)qk

)
.

(3.58)

Else if p=0,
umaxik = max (unik, (u

∗
LO)ik) ,

uminik = min (unik, (u
∗
LO)ik) .

(3.59)

Adequate value of parameter Υ=Υ(δ, ε)4 prevents creation of undesired new
limits across the interface.

Surface Tension

Surface tension force is calculated following the continuous model with finite
thickness formulated in Ref. [11]. Equivalent volume force is

T =
2σ

ρ1 + ρ2

κ
∇ρ

(ρ2 − ρ1)
, (3.60)

3Extension of bounds calculation to the unabridged version of NFEM is straightforward,
by taking into account Eqs. (42) and (43) in [62].

4A practical definition of Υ is Υ=δ/(100·6ε).
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where σ is the surface tension coefficient and κ=−∇ · ∇φ|∇φ| is the interface
curvature. To calculate the curvature, gradient of phase function is recovered
at nodes employing improved interface normals attained by the procedure
described in section 3.4. Particulars about this methodology can be found
in Appendix C. Upper limit value for surface tension force is determined by
the interface curvature, the interface thickness and the density profile across
interface [11] (constructed in turn from the phase function). This limit is
independent on densities’ jump, hence Eq. (3.60) is well conditioned, even
for flows with two fluids with close values of density.

3.6 Artificial fluid stratification

Several interface problems, such as air cavity intrusion in ducts, often in-
volve two non-stratified fluids flow, identified by a lower fluid advancing in
a specified direction, and an upper lighter fluid moving in the opposite way.
Instabilities of this kind of problems are widely known as Kelvin-Helmholtz
instabilities for non-stratified flows. If surface tension is taken into account,
stability condition for horizontal interfaces (see e.g. Ref. [15]) is

g
(
ρ2

2 − ρ2
1

)
+K2σ(ρ2 + ρ1) > Kρ1ρ2 (u2 − u1)2 , (3.61)

where K=2π/λ is the perturbation wave number, λ is the perturbation wave-
length, and u1, u2 are the tangential velocity for upper fluid and lower fluid,
respectively. Surface tension has an stabilising effect on non-stratified flows.
However, last equation is not entirely appropriate to analyse instabilities in
simulations because phases in numerical model are virtually stratified due
to the parametrical definition of density (Eq. (3.3) or (3.7)) and to the con-
tinuous finite element discretisation of the variables. To examine stability
of two phases flow with a diffused interface, an incompressible inviscid flow
with density and velocity distributions is considered, given by

ρ(y) =


ρ1 + ρ2−ρ1

2
e−y/Lρ if y > 0

ρ2 + ρ1−ρ2
2

ey/Lρ if y < 0
, (3.62)

u(y) =


u1 + u2−u1

2
e−y/Lu if y > 0

u2 + u1−u2
2

ey/Lu if y < 0
, (3.63)

where interface is located at y=0 and Lρ, Lu are parameters that control
density and velocity gradients. In this section, y axis is the vertical one.
Exponential density profile, also proposed in Ref. [51] for Rayleigh-Taylor
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instabilities, is a reasonable assumption since density is defined in terms of
the phase function and, because of reinitialisation step, phase function is the
numerical solution of the parabolic equation (3.44). As can be seen, same
transition profile is assumed for velocity, along the lines of Ref. [80]. More-
over, same transition thickness is considered in both density and velocity pro-
files, which, in the light of numerical test results, is a reasonable assumption.
Hence, one parameter is used, LI=Lρ=Lu. Now, coordinate value yb is intro-
duced to indicate the position of a density iso-surface; thus, ρ(y=yb(x, t)) is
constant. Then, by designating as ρ̃, ũ, ṽ, p̃, and ỹb the perturbed density, x
and y velocity components, pressure, and density iso-surface position, respec-
tively, the two-dimensional linearised equations governing the perturbation
field can be written, following Ref. [15] as

∂ρ̃

∂t
+ u

∂ρ̃

∂x
= −ṽ ∂ρ

∂y
, (3.64)

∂ũ

∂x
+
∂ṽ

∂y
= 0 , (3.65)

ρ
∂ũ

∂t
+ ρu

∂ũ

∂x
+ ρṽ

∂u

∂y
= −∂p̃

∂x
, (3.66)

ρ
∂ṽ

∂t
+ ρu

∂ṽ

∂x
= −∂p̃

∂y
− gρ̃+ σ

∂2ỹb
∂x2

[(
∂ρ

∂y

1

ρ1 − ρ2

)
2ρ

ρ1 + ρ2

]
y=yb

, (3.67)

∂ỹb
∂t

+ ub
∂ỹb
∂x

= ṽb . (3.68)

Equation (3.64) is the mass conservation of the perturbed field, Eq. (3.65) is
the solenoidal condition for the perturbed velocity field, Eqs. (3.66) and (3.67)
are the x and y components of momentum equation for inviscid fluids, and
Eq. (3.68) is the kinematic condition applied on a density iso-surface y=yb.
Variables with subscript b are evaluated at y=yb and σ is the surface tension
coefficient value. Equation (3.67) includes the equivalent surface tension
force of the continuous model defined in Eq. (3.60). Now, solutions of the
form eiKx+st are sought for perturbed variables in Eqs. (3.64)-(3.68), where
Re(s) is the growth rate. In this way, previous set of equations becomes,
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after replacement, as follows,

(s+ iKu)ρ̃ = −ṽ ∂ρ
∂y

, (3.69)

iKũ = −∂ṽ
∂y

, (3.70)

ρ(s+ iKu)ũ+ ρṽ
∂u

∂y
= −iKp̃ , (3.71)

ρ(s+ iKu)ṽ = −∂p̃
∂y
− gρ̃−K2σỹb

[(
∂ρ

∂y

1

ρ1 − ρ2

)
2ρ

ρ1 + ρ2

]
y=yb

, (3.72)

(s+ iKu)ỹb = ṽb . (3.73)

Next, ũ is eliminated in Eq. (3.71) by means of Eq. (3.70), and ρ̃ and ỹb are
eliminated in Eq. (3.72) by means of Eqs. (3.69) and (3.73). The resulting
equations are

− ρ(s+ iKu)
∂ṽ

∂y
+ iKρṽ

∂u

∂y
= K2p̃ , (3.74)

ρ(s+ iKu)ṽ = −∂p̃
∂y

+ gṽ
∂ρ

∂y

1

s+ iKu
−

K2σ
ṽ

s+ iKu

(
∂ρ

∂y

1

ρ1 − ρ2

)
2ρ

ρ1 + ρ2

. (3.75)

Finally, by inserting Eq. (3.74) into Eq. (3.75), an equation dependent on
vertical perturbed velocity is attained,

∂

∂y

[
−ρ(s+ iKu)

∂ṽ

∂y
+ iKṽρ

∂u

∂y

]
+K2ρ(s+ iKu)ṽ−

gK2ṽ
∂ρ

∂y

1

(s+ iKu)
+K4σ

ṽ

s+ iKu

(
∂ρ

∂y

1

ρ1 − ρ2

)
2ρ

ρ1 + ρ2

= 0 . (3.76)

Integration along vertical direction of Eq. (3.76) in the domain (−∞,∞) can
be written as (note that integration of first term in Eq. (3.76) is zero),

∫ ∞
−∞

(
(s+ iKu)(K2ρṽ)− K2g

s+ iKu

∂ρ

∂y
ṽ+

K4σ
ṽ

s+ iKu

(
∂ρ

∂y

1

ρ1 − ρ2

)
2ρ

ρ1 + ρ2

)
dy = 0 . (3.77)
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Introducing density and velocity definition (Eqs. (3.62) and (3.63)) in previ-
ous equation, integration results in

− s2K(ρ1 + ρ2)− iK2s

(1 +KLI)(2 +KLI)
((4 +KLI(3 +KLI)) ρ1u1+

KLI(3 +KLI)ρ1u2 + ρ2 (4u2 +KLI(3 +KLI)(u1 + u2))) +

K

4(1 +KLI)(2 +KLI)
(4gK(2 +KLI)(ρ1 − ρ2)+

K2
(
8ρ1u

2
1 + 8ρ2u

2
2 +K2LI

(
−4σ + LI(ρ1 + ρ2)(u1 + u2)2

)
+

K
(
−8σ + 3LI(ρ1 + ρ2)(u1 + u2)2

)))
= 0 . (3.78)

In case of LI=0 in Eq. (3.78), and Re(s)=0, stability condition for non-
stratified two-fluid problem (3.61) is recovered.

To illustrate and to discuss results established by Eq. (3.78), it is useful
to consider a particular case. It comprises a duct of height d, where water
takes up the lower half, and air the upper half. Although proposed solution
(3.78) is designed for an unbounded flow, it is adequate for this example as
long as parameter LI is small enough compared with d. At this point, tran-
sition thickness is defined as δI=|y1 − y2|, where ρ(y1)=0.99ρ1+0.01ρ2 and
ρ(y2)=0.01ρ1+0.99ρ2; thus δI=7.824LI . An upper limit δI ≤ 0.2d is consid-
ered in this study to preserve the adequacy of the unbounded solution. Fluids
velocities are u1=−1/2

√
gd, u2=1/2

√
gd, and density ratio is ρ1/ρ2=0.001.

Figure 3.2 depicts the non-dimensional growth rate Re(s)
√
d/g as a function

of non-dimensional transition thickness δI/d, for perturbation wavelengths
values of λ/d = 0.25, 0.1, 0.05, 0.025. Growth rate is plotted for inviscid
cases as solid lines when σ=0, and as dashed lines when non-dimensional
surface tension coefficient 2σ/((ρ1 + ρ2)gd2)=1.426·10−3. First conclusion
is that, unlike Rayleigh-Taylor instabilities, stratification does not stabilise
Kelvin-Helmholtz instabilities. Regarding cases without the action of surface
tension, it can be derived from Eq. (3.61) that non-stratified flows are stable
for perturbations with wavelengths λ/d> 0.0063. On the other hand, for
stratified flows, it can be concluded that flows with high gradient transitions
(i.e. small values of δI) are very unstable, particularly for short wavelength
perturbations. Growth rate diminishes for lower gradient transitions because
of the stabilising effect of velocity gradient, in opposition to the destabilising
effect of the density gradient (see e.g. [80]). For sufficiently large values of δI ,
growth rate tends to zero.

Now, the action of the continuous surface tension is included (Eq. (3.60)).
Its stabilising impact is present for all transitions thickness, and it is greater
for short wavelength perturbations. For example, case corresponding to
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Figure 3.2: Non-dimensional growth rate Re(s)
√
d/g as a function of non-

dimensional transition thickness δI/d. Solid and dashed lines are results
without and with surface tension, respectively.
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λ/d=0.025 is not distinguishable in Fig. 3.2 because flow is stable for all
values of transition thickness, and the same occurs for shorter wavelengths.
Amplification is discernible if δI/d '0.03 and λ/d ≥ 0.025.

Finally, it is considered a transition band thin enough such that, although
interface is diffuse, surface tension can be assumed to take action just at
y=yb=0. In this case surface tension term tends to its standard representation
and Eq. (3.77) turns into∫ ∞

−∞

(
(s+ iKu)(K2ρṽ)− K2g

s+ iKu

∂ρ

∂y
ṽ +K4σ

ṽ

s+ iKu
δd(y)

)
dy = 0

(3.79)

since limLI→0

(
∂ρ
∂y

1
ρ1 − ρ2

)
=δd(y), and 2ρ(y=0)/(ρ1 +ρ2)=1, where δd is the

Dirac-delta function. Integration of Eq. (3.79) yields to

− s2K(ρ1 + ρ2)− iK2s

(1 +KLI)(2 +KLI)
((4 +KLI(3 +KLI)) ρ1u1+

KLI(3 +KLI)ρ1u2 + ρ2 (4u2 +KLI(3 +KLI)(u1 + u2))) +

K

4(1 +KLI)(2 +KLI)
(4gK(2 +KLI)(ρ1 − ρ2)+

K2
(
−4K3L2

Iσ + 8ρ1u
2
1 + 8ρ2u

2
2+

K2LI
(
−12σ + LI(ρ1 + ρ2)(u1 + u2)2

)
+

K
(
−8σ + 3LI(ρ1 + ρ2)(u1 + u2)2

)))
= 0 . (3.80)

Figure 3.3 shows results for this asymptotic state. In compare with previ-
ous responses, a reduction of growth rate is observed for all wavelengths.
Also, Fig. 3.3 indicates an increase of the threshold value of δI/d whereupon
growth rate starts to have non-zero values. Moreover, wavelength pertur-
bation λ/d=0.050 is now completely stabilised when surface tension takes
action. Notwithstanding, the overall response is similar to the continuous
representation of surface tension.

Due to the continuous representation of the interface in numerical simula-
tions, it is shown that some perturbations can be artificially activated. Nev-
ertheless, there are some strategies to avoid these spurious Kelvin-Helmholtz
instabilities. First, the most evident is to activate the surface tension and de-
crease the transition length to the extend that all perturbation wavelengths
were stabilised (see Figs. 3.2 and 3.3). Some available strategies to decrease
interface thickness can be appraised. Most direct technique is to reduce the
diffusivity coefficient ε employed in reinitialisation (Eqs. (3.44) and (3.41)).
Although a decrease of diffusion coefficient ε on interface improves resolution
of the contact discontinuity, too small values of ε originate wiggles in phase
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d/g as a function of non-

dimensional transition thickness δI/d for the asymptotic case: limLI→0.
Solid and dashed lines are results without and with surface tension, respec-
tively.
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function [60]. Second strategy is to increase the transition thickness, however
very large values of δI are necessary to be effective, enough to deteriorate
significantly interface resolution and, therefore, the simulation accuracy.

A different course of action is to adjust original relation between density
and phase function (Eq. (3.3)). In this case, modifications can have conse-
quences in mass conservation. To scrutinise this option, it is considered here
the incompressible limit and one alternative function to reduce band thick-
ness. In the present model, density becomes a linear interpolation of phase
function, ρ(φ)=ρ1(1−φ)+ρ2φ. Then mass error is of round-off order if phase
function is advected using a conservative method. As alternative function, it
is examined the following interpolation proposed in Ref. [29],

ρ(φ) =


ρ1 if φ < 1/2− ϑ

ρ1 + (φ− 1/2 + ϑ)ρ2−ρ1
2ϑ

if 1/2− ϑ ≤ φ ≤ 1/2 + ϑ

ρ2 if φ > 1/2 + ϑ ,

(3.81)

where ϑ ≤1/2 controls the transition gradient. If ϑ=1/2, present original
interpolation is recovered, while for ϑ=0 interpolation transforms into the
Heaviside function. To estimate a mass error bound of this density in-
terpolation, procedure introduced in Ref. [60] is followed. To this goal, it
is defined the domain Ω=Ω1 ∪ Ω2 ∪ Ω3, where {φ = 0} ∪ {φ = 1} in Ω1,
φ ∈ (0, 1/2−ϑ)∪(1/2+ϑ, 1) in Ω2, and φ ∈ [1/2−ϑ, 1/2+ϑ] in Ω3. Mass error
at time tn is calculated by subtracting from the density function the original
linear density interpolation with zero mass error, ρ(φ)=ρ1(1−φ)+ρ2φ. Thus,

e(M) =

∫
Ω1+Ω2+Ω3

[ρ− ρ1 (1− φ)− ρ2φ] dΩ . (3.82)

Integrals for each subdomain are

I1 =

∫
Ω1

[ρ− ρ1 (1− φ)− ρ2φ] dΩ1 = 0 , (3.83)

I2 =

∫
Ω2

[ρ− ρ1 (1− φ)− ρ2φ] dΩ2 =

(ρ1 − ρ2)

∫
Ω2a

φ dΩ2a + (ρ2 − ρ1)

∫
Ω2b

(1− φ) dΩ2b , (3.84)
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I3 =

∫
Ω3

[
ρ1 + (φ− 1/2 + ϑ)

ρ2 − ρ1

2ϑ
− ρ1 (1− φ)− ρ2φ

]
dΩ3 =

ρ2 − ρ1

4ϑ

∫
Ω3

(2− 4ϑ)(φ− 1/2) dΩ3 , (3.85)

where Ω2a and Ω2b are sub-spaces of Ω2 such that φ ∈ (0, 1/2−ϑ) in Ω2a and
φ ∈ (1/2 + ϑ, 1) in Ω2b. Now it is assumed a straight interface with length

LΓ, and an exponential phase function [60], φ(n)= 1
1 + e−n/ε

, where n is the

signed distance measured along the interface normal. Then,

I2 = −LΓ(ρ2 − ρ1)

∫ ε log( 1/2−ϑ
1/2+ϑ)

−∞
φ(n) dn+

LΓ(ρ2 − ρ1)

∫ ∞
ε log( 1/2+ϑ

1/2−ϑ)
[1− φ(n)] dn , (3.86)

I3 = LΓ
ρ2 − ρ1

4ϑ

∫ ε log( 1/2+ϑ
1/2−ϑ)

ε log( 1/2−ϑ
1/2+ϑ)

(2− 4ϑ)(φ(n)− 1/2) dn . (3.87)

Although I1+I2+I3=0 because analytical phase function is symmetrical re-
spect to φ=1/2, numerical results are not symmetrical. A mass error bound
is established by computing integrals only for interval n ∈ (0,∞). Now,

I1 + I2 + I3 = LΓ
ρ2 − ρ1

4ϑ

∫ ε log( 1/2+ϑ
1/2−ϑ)

0

(2− 4ϑ)(φ(n)− 1/2) dn+

LΓ(ρ2 − ρ1)

∫ ∞
ε log( 1/2+ϑ

1/2−ϑ)
[1− φ(n)] dn , (3.88)

resulting in the error bound

|e(M)| <
∣∣∣∣LΓ(ρ2 − ρ1)ε

(
log

(
2

1 + 2ϑ

)
+

2ϑ− 1

4ϑ
log ((1 + 2ϑ)(1− 2ϑ))

)∣∣∣∣ .
(3.89)

Error bound is proportional to interface length LΓ and reinitialisation param-
eter ε. Maximum value is |e(M)|ϑ=0 < |LΓ(ρ2 − ρ1)ε log (2)| for the Heaviside
function, in agreement with Ref. [60] without considering O (ε2) terms. For
present numerical model e(M)ϑ=1/2=0.

In this work, an adaptive mesh refinement is proposed to diminish inter-
face thickness. The method must preserve mass and keep bounds of primitive
phase, velocity and pressure fields. To adapt the mesh to the demands of
a moving interface problem, it is necessary a dynamic refinement to reduce
band thickness and an unrefinement to recover previous mesh topology.
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3.7 Mesh Refinement

This section reports the algorithm to the dynamical mesh refinement/unre-
finement, without losing properties previously achieved. In general, conser-
vation of a scalar field B in refinement and unrefinement processes [56] is
carried out by finding a modified field Bh

∗ ∈ V h such that(
vh, Bh

∗
)

Ω
=
(
vh, Bh

)
Ω
, (3.90)

where V h ⊂ V = {v ∈ H1 (Ω)} is the finite element space of the mesh after
refinement (unrefinement) process and Bh ∈ W h is the initial scalar field
defined in the finite element space of original meshW h ⊂ W = {w ∈ H1 (Ω)}.
However, solution B∗ of Eq. (3.90) does not keep the bounds of original field
B. Monotonicity is achieved by applying flux correction techniques. For that
purpose, in addition to the high order solution B∗, it is necessary a low order
approach that respects the bounds. In contrast with previous sections, where
an upwind scheme was used to obtain the LOS, now it is employed a similar
procedure to that proposed by J.R. Cebral and R. Löhner in Ref. [14]. In that
work, they developed a conservative and monotone method, applied to fluid-
solid interaction problems, to project the pressure field from fluid domain
to structure domain. Unlike that work, here the required matrices can be
easily calculated and incorporated a-priori in the code because primary and
refined meshes are nested. Low order solution is obtained by multiplying the
right hand side of Eq. (3.90) by the inverse of the lumped mass matrix of new
mesh. Solution keeps the bounds without applying any additional amount
of diffusion. To demonstrate this, LOS in matrix form is represented as

ML∗b∗ = MCB , (3.91)

where ML∗=
(
vh, 1

)
Ω

, MC=
(
vh, wh

)
Ω

and B, b∗ are vectors with nodal values
of original and refined (unrefined) meshes, respectively. By nothing that∑N

j=1 MC,ij=ML∗,ii,

N∑
j=1

MC,ij =
N∑
j=1

∫
Ω

viwj dΩ =

∫
Ω

vi

N∑
j=1

wj dΩ =

∫
Ω

vi dΩ = ML∗,ii , (3.92)

where N is the total number of nodes of the original mesh. Then, it is also
true that MC,ij ≤ML∗,ii ∀ 0 ≤ j ≤ N since MC,ij ≥ 0. On the other hand,
b∗i is calculated as

b∗i =
N∑
j=1

MC,ij

ML∗,ii
Bj , (3.93)
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where terms
MC,ij

ML∗,ii
≤ 1,

MC,ij

ML∗,ii
≥ 0 and

∑N
j=1

MC,ij

ML∗,ii
= 1. Consequently b∗

respects bounds of B.
After getting LOS solution, anti-diffusive fluxes are calculated as

Aj = M−1
L∗ {(ML∗ −MC∗)B∗}j ,

where MC∗, ML∗ are the consistent and lumped mass matrices of the refined
(unrefined) mesh. Finally, improved field is constructed as,

B̃∗i = b∗i +
e∑
j=1

cjAj , (3.94)

where b∗i is the nodal LOS, e is the total number of surrounding elements to
node i and cj are element limiters, whose equation is detailed in [61]. Nodal
bounds are calculated considering primitive field B. Last procedure is applied
to the phase, velocity and pressure fields, and candidates for refinement are
all elements contained in Level 3 of interface elements (those which contain
φ=1/2).

Two refinement strategies based on nested grids are inspected. First
option is the division sketched in Fig. 3.4. In this situation, the modified
field after refinement is calculated straightforwardly, and procedure described
above is only necessary for unrefinement stage. Second option is the division
sketched in Fig. 3.5, by adding middle edge nodes. Here, both refinement
and unrefinement need the conservative projection. Although first option is
cheaper to a limited extent, second option sometimes yields to more regular
meshes in the vicinity of the current interface. Numerical experiments reveals
that both strategies give similar results. Matrix forms of system (3.90) for
both methodologies are detailed in Appendix E.

Present chapter has described the numerical finite element model for the
solution of two-phase flows with moving interfaces. After a brief report about
principles of the NFEM and flux correction techniques, the three stages of
the numerical method were detailed. These are: phase function advection,
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reinitialisation step and hydrodynamics resolution. Moreover, problems aris-
ing from the continuous interface discretisation in simulations with Kelvin-
Helmholtz instabilities were studied, and a new mesh refinement strategy
based on nested-grids has been proposed to ameliorate its negative effects.
Next chapter collects simulations performed with numerical model, includ-
ing benchmark tests and experiments of air cavities propagation and rising
Taylor bubbles.
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Chapter 4

Numerical Experiments

This chapter reports numerical experiments and consists of three sections.
Section 4.1 focuses on the advection algorithm assessment. After checking
the convergence order of the NFEM, some stringent transport tests are re-
produced. Firstly, accuracy of the model is evaluated by simulating rotating
disks in stationary and time-dependent flows. Then, to discuss coalescence
among nearby interfaces, it is performed an experiment composed by four
disks advected by a Gaussian vortex distribution. Last two experiments
of this section appraise the efficiency of the three dimensional extension of
presented model. Section 4.2 presents the evaluation of the complete nu-
merical model (including the phase function transport and hydrodynamics
solution). First series of experiments involves Rayleigh-Taylor instabilities,
where several physical parameters are tested to scrutinise spurious momen-
tum transfers. Then, two versions of the dam break experiment are carried
out: one version in a 2D domain without obstacle and the other one in a
3D domain with obstacle. Finally, experiments related with air pockets and
geysering phenomena are detailed in section 4.3. First and second subsec-
tions scrutinise propagation of air cavities by combining partial closure of
the gate with horizontal and inclined ducts to validate current numerical
model. Third subsection concerns the study of conditions under which air
cavities intrude in ducts with a weir located across its open end. In fourth
subsection a laboratory experiment, previously employed to assess the ana-
lytical approach (see section 2.2.3), is now reproduced by numerical model
to evaluate its performance with rising Taylor bubbles simulations. Limits of
semi-analytical approach to multiple bubbles dynamics are estimated in fifth
subsection, by comparing theoretical predictions with numerical outputs. In
last subsection it is simulated the momentum transfer between an horizontal
duct with an air cavity and a vertical duct with still water, the rising Taylor
bubble formed in the vertical duct and the final geysering event. By this
sequence of tests, numerical study covers the comparison with laboratory

93



94 CHAPTER 4. NUMERICAL EXPERIMENTS

experiments concerning propagation of air cavity [8, 81], emergence of closed
cavities [1], vertical propagation of bubbles in vertical tubes [79] and the
geyser on top of the conduit.

Simulations and assessment tests have been executed in a server with a
CPU Intel Core i7-6800K and 32GB of RAM.

4.1 Advection Assessment Simulations

4.1.1 Advection of a Gaussian profile. An assessment of convergence

This test (also published in Ref. [61]) investigates the recovery of second order
accuracy when corrections are active by comparing rates of convergence.
Each experiment is performed with nearly constant Courant-Friedrichs-Lewy
(CFL) number and with uniform advection velocity. A Gaussian cone of
height 4 is placed at initial time with its centre at (-2,-2) of a domain [-
50,50]×[-50,50], then initial condition is prescribed as

φ0(x) = 4 exp

(
−1

2

{(
(x+ 2)

2

)2

+

(
(y + 2)

2

)2
})

,

where scalar function is denoted as the phase function, and u=(2.4,2.4).
Four unstructured meshes were generated with average element side length1

δ values of 0.221, 0.44, 0.89, 1.81; comprising 367616, 91636, 22764, 5606
linear triangular elements, and 184613, 46223, 11587, 2908 nodes, respec-
tively. CFL=0.9 and 0.5 are specified for all meshes, while final time of the
experiment corresponds to 16, 8, 4 and 2∆t for the four grids, respectively.

The solution was calculated by the high order FEM method (Eq. (3.36))
and by the NFEM. The e(L1) and e(L2) errors were computed for the HO-
FEM and for the NFEM for each mesh and for each CFL, to observe recovery
of accuracy once the correction operates. Figures 4.1 and 4.2 depict errors in
terms of average element size for CFL=0.9 and 0.5 respectively. Second order
accuracy of the HO-FEM is approximately preserved by NFEM for both CFL
numbers. HO-FEM and NFEM methods are always over second order rate,
except for values measured in the two coarsest meshes for CFL=0.9. For this
condition, the NFEM has %≈1.95 while the HO-FEM has %≈2.06 (errors in
L2 norm). Similar rates of convergence were obtained by doubling the final
time of the experiments.

1Average element side length for 2D unstructured meshes is defined as δ =
1
E

∑E
j=1

√(
∆x
)2
j

+
(
∆y
)2
j
.
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Figure 4.1: Gaussian cone test. Convergence for 4 unstructured meshes and
CFL≈ 0.9. e(L1): L1 error, e(L2): L2 error. NFEM: new method. HO-FEM:
Characteristic based FEM.



96 CHAPTER 4. NUMERICAL EXPERIMENTS

log δ

−2.0 −1.5 −1.0 −0.5 0.0 0.5

lo
g

(e
(L

2
))

,l
og

(e
(L

1
))

−13

−12

−11

−10

−9

−8

−7

−6

2:1

e(L2) NFEM

e(L2) HO-FEM
e(L1) NFEM

e(L1) HO-FEM

Figure 4.2: Gaussian cone test. Convergence for 4 unstructured meshes and
CFL≈ 0.5. e(L1): L1 error, e(L2): L2 error. NFEM: new method. HO-FEM:
Characteristic based FEM.
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Figure 4.3: Slotted cylinder in a rotating flow. Initial condition

4.1.2 Slotted cylinder in a rotating flow

In this section the accuracy of the transport model to capture interfaces is
evaluated (see section 3.3), by reproducing the stringent test proposed by
Zalesak in Ref. [84]. The simulation is defined by a discontinuous initial pro-
file sketched in Fig. 4.3. The slotted disk of Fig. 4.3 has radius 15 and height
1, and the slot has width 5 and length 25. The disk at initial time is centred
at (0,25) in a [−50, 50]× [−50, 50] region. As a result of an advective veloc-
ity field u=(ωy,−ωx), u=0 on Γ, ω=0.1, the cylinder moves clockwise until
completion of one rotation. Two and ten rotations are also reviewed. Three
structured grids of linear triangular elements are employed, element side

length δ2 and total number of time steps are
{√

2, 1030
}

,
{√

2
2
, 2060

}
, and{√

2
4
, 4120

}
, respectively. Reinitialisation step parameters are, ε=0.83∆l,

and ∆τ=α∆l2

8ε
(dummy timestep), where ∆l is the maximum triangle height,

and α=0.1.

In addition to standard errors e(L1), e(L2), and total mass error, test
utilises the interface error measure [74] and the enclosed volume error mea-

2Element side length in 2D structures meshes is δ =
√

∆x2 + ∆y2.
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sure, defined as

e(LI1) =
1

L

N∑
i=1

{∣∣∣∣H (φ̂i − 1

2

)
−H

(
φi −

1

2

)∣∣∣∣ (M′
L)i

}
, (4.1)

Ae0.5(tn) =
A0.5(tn)− A0.5(t0)

A0.5(t0)
. (4.2)

In previous equations, H(·) is the Heaviside function, L is the interface
length, N is the total number of nodes, (M′

L)i is the lumped mass matrix ele-

ment corresponding to node i, φ̂ indicates the numerical solution (after reini-
tialisation, unless stated otherwise), φ is the analytical (ideal) phase function
solution and A0.5 is the enclosed volume. Interface length is given by initial
conditions in this experiment, and its value is L=143.80. The enclosed vol-
ume is computed as the area contained by the closed φ=0.5 contour, tracked
by reconstructing the interface through elementwise linear interpolation.

Results of the series of experiments after one and two rotations are sum-
marised in Tables 4.1 and 4.2. First column of Table 4.1 indicates the method,
either original NFEM scheme, as proposed in Ref. [61] (Eq. (3.25)), or mod-
ified NFEM with mass correction proposed in section 3.2 (see Eq. (3.34)).
Columns 2 to 7 indicate average element side length, errors e(LI1), e(L1),
e(L2), Ae0.5 [%], and mass error, respectively. The five columns of Table 4.2
display:

1. Methods: present method, finite element method and finite volume
method in Ref. [29].

2. Dimensionless element side length written as ∆x/l=δ/(l
√

2) to be con-
sistent with data in Ref. [29].

3. Number of rotations.

4. Dimensionless interface error e(LI1)/l.

5. Enclosed volume error, where l is the characteristic length of the do-
main (here, l=100).

Table 4.1 shows results without computing reinitialisation step, to focus
on transport. Further, prescribed advective velocity field for these experi-
ments avoids mass errors originated on boundaries. Errors are essentially the
same in the original method and when mass correction is activated. There-
fore redistribution of antidiffusion arising from the global correction functions
is inconsequential in terms of errors in standard norms, as well as errors in
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Table 4.1: Slotted cylinder in a rotating flow. Interface error e(LI1), errors
e(L1), e(L2), enclosed volume error Ae0.5 [%] and mass error after one rotation,
for original NFEM (Eq. (3.25)), and for NFEM with embedded global mass
correction (Eq. (3.34))

δ e(LI1) e(L1) e(L2) Ae0.5 [%] Mass error

Original
Eq. (3.25)

√
2 3.8942E-01 2.1206E-02 8.3295E-02 1.281 2.022E-02√
2

2
1.5299E-01 1.1418E-02 5.8962E-02 -0.567 5.3E-04√

2
4

7.6493E-02 6.4900E-03 4.4255E-02 -0.274 1.62E-03

Mass
Correction
Eq. (3.34)

√
2 3.7551E-01 2.1950E-02 8.4983E-02 -0.757 -7.0E-15√
2

2
1.5472E-01 1.1534E-02 5.9233E-02 -0.512 -6.71E-14√

2
4

7.3450E-02 6.5382E-03 4.4400E-02 -0.118 -2.09E-13

Table 4.2: Slotted cylinder in a rotating flow. Dimensionless interface error
e(LI1)/l, and enclosed volume error Ae0.5 [%] after one rotation and after two
rotations; l: characteristic length of the domain. Comparisons with finite
element method and finite volume method in Ref. [29]

Method ∆x/l Rotations e(LI1)/l |Ae0.5| [%]

Present

1.00E-2
1 5.146E-03 0.645
2 1.001E-02 0.598

5.00E-3
1 5.911E-04 0.363
2 5.911E-04 0.354

2.50E-3
1 2.521E-04 0.093
2 2.868E-04 0.093

Q1 Finite
Element

[29]

1.25E-2
1 4.259E-03 2.021
2 4.446E-03 0.741

6.25E-3
1 1.750E-03 0.153
2 2.010E-03 0.441

Finite
Volume

[29]

1.000E-2
1 - 0.086
2 - 0.191

4.95E-3
1 - 0.027
2 - 0.044

2.49E-3
1 - 0.019
2 - 0.026
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interface quality. However mass adjustment stated in Eq. (3.34) removes
completely high order mass errors ascribable to correction procedure (see
seventh column, rows 5 to 7 in Table 4.1, where mass errors are of the order
of round-off).

To scrutinise the reinitialisation algorithm (section 3.4), its results are
condensed in Table 4.2 and they are compared with those attained in Ref. [29],
where a modified conservative level set method by antidiffusion techniques
has some comparable spatial and temporal discretisation features with the
present model. Reduction of interface error e(LI1) usually involves an in-
crease in enclosed volume error Ae0.5, and vice versa; that is, reducing Ae0.5
through a significant decrease of diffusion in reinitialisation step normally
provokes oscillations in the phase field and, consequently, a rise in e(LI1)
[60]. Interface error decreases for finer grids, and increases according to the
number of cycles, as expected. Present model has a performance competi-
tive with Q1 finite element model in Ref. [29] for intermediate mesh size. It
is interesting to observe the considerable decrease in error reached when a
moderate refinement of mesh is produced, from the finer Q1 finite elements
mesh in Ref. [29] (∆x/l=6.25E-3) to the intermediate mesh in the present
model (∆x/l=5.0E-3). For ∆x/l=2.5E-3 error diminishes considerably. The
behaviour of enclosed volume error is not as evident, showing some high fre-
quency wiggles in time. This is apparent for some meshes with higher Ae0.5
values after one rotation than values after two rotations. Nevertheless, Ae0.5
decreases by refining grid size. Enclosed volume error results for NFEM are
again competitive with Q1 finite element model in Ref. [29], showing better
results for coarser meshes. It is remarkable the good enclosed volume conser-
vation property achieved by the finite volume method in Ref. [29], improving
Ae0.5 in compare with responses for finer meshes with other methods. However
this trend is not distinguished for the transient velocity field case (section
4.1.3).

Finally, the long term answer of current scheme is studied, exploring in
particular the reinitialisation. Experiments were carried out for ten complete
rotations. Results are condensed in Table 4.3 and in Fig. 4.4. Columns in
Table 4.3 indicate e(LI1), e(L1), e(L2), and Ae0.5 [%] errors, respectively, for
the unaltered NFEM, the NFEM with reinitialisation, and the NFEM with
reinitialisation and local calculation of normals (see section 3.4), and for three
meshes with δ values of

√
2,
√

2/2, and
√

2/4. Figure 4.4 depicts final shape
of cylinder area after 10 rotations for the three procedures mentioned above,
and for meshes with delta values of

√
2/2 (Figs. 4.4a, 4.4b, 4.4c), and

√
2/4

(Figs. 4.4d, 4.4e, 4.4f).
Error e(LI1) measures the quality of interface position. Reinitialisation

process often produces adjustments of interface placing, and consequently,
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Table 4.3: Slotted cylinder in a rotating flow. Ten rotations. Interface error
e(LI1), e(L1), e(L2), and enclosed volume error Ae0.5 [%] for NFEM, NFEM
+ Reinitialisation step without local calculation of normals, and with local
calculation of normals.

Method δ e(LI1) e(L1) e(L2) Ae0.5 [%]

NFEM

√
2 1.0779E-00 3.5493E-02 1.1446E-01 10.758√
2

2
2.3295E-01 1.9254E-02 7.7951E-02 -1.517√

2
4

1.4038E-01 1.1000E-02 5.8235E-02 -0.345

NFEM +
Reinitialisation

√
2 1.4395E-00 2.5985E-02 1.2854E-01 -0.633√
2

2
3.3552E-01 1.0503E-02 6.1525E-02 0.005√

2
4

2.7772E-01 8.2987E-03 5.5314E-02 -0.265

Local Calculation
of Normals

√
2 1.2865E-00 2.3750E-02 1.1953E-01 -0.462√
2

2
3.1292E-01 9.7879E-03 6.0358E-02 -0.196√

2
4

1.7472E-01 5.2347E-03 4.6201E-02 -0.069

difficulties arise to reduce interface error during this process. Further, in-
terface error values can deteriorate, as discussed in paragraphs above: for
instance, compare e(LI1) for NFEM (transport) with NFEM+Reinitialisation
in Table 4.3. The subsequent new computation of normals mitigates the de-
terioration during reinitialisation, and removes efficiently interface wiggles
created by the reconstruction. This enhancement is manifest in Fig. 4.4 by
comparing Fig. 4.4b with Fig. 4.4c, and Fig. 4.4e with Fig. 4.4f, respectively.
Table 4.3 also shows a considerable reduction of e(LI1) once local calculation
is performed, particularly for the finer mesh. Enclosed area error diminishes
consistently by the successive application of reinitialisation and local normals
regularisation. An increase of Ae0.5 from the intermediate grid to the fine grid
is detected if local calculation of normals is not performed, and is ascribable
to the evolving nature of high frequency wiggles present in Ae0.5, as reported
previously. Errors e(L1) and e(L2) do not deteriorate after reconstruction
procedures, and even decrease for intermediate and fine grids, specially in
the L1 norm. On the other hand, some error indicators for the coarser mesh
(δ=
√

2) suggest that this characteristic element length is not sufficient to
reach minimum size for a competent usage of reinitialisation tools in long
term calculations. Responses of very high order schemes for this test [16] re-

veal that the intermediate grid size (δ=
√

2
2

) is sufficient to achieve same order

of errors as high order scheme in Ref. [16] with the coarse mesh (δ=
√

2).

Reinitialisation step demands a burden of around 20% CPU time. Nonethe-
less, local calculation of normals does not add extra cost. The reason is
twofold; first, the use of static data about neighbourhood of activated nodes
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Slotted cylinder in a rotating flow. Phase field φ after 10 rota-
tions. δ =

√
2

2
: (a) NFEM, (b) NFEM + Reinitialisation, (c) local calculation

of normals; δ =
√

2
4

: (d) NFEM, (e) NFEM + Reinitialisation, (f) local cal-
culation of normals.

associated with the interface elements; second, the remarkable acceleration
of convergence for the reinitialisation step once regularised normals are in-
tegrated in the calculation. Sign of phase function is strictly preserved and,
in addition, monotonicity is achieved. This is due to the fact that advective
velocity field is independent of transported phase function, determining the
monotonicity of the low order scheme.

4.1.3 Circle in a time dependent swirling deformation flow

This experiment imposes severe conditions to the model, taking into account
that filaments smaller that element side length could appear as a consequence
of the very large deformation suffered by the initial phase field function. The
advective velocity field u is a time dependent swirling flow with the following
Cartesian components,

u(x, t) = 100 sin2

(
π (x+ 50)

100

)
sin

(
2π (y + 50)

100

)
cos

(
πt

T

)
,

v(x, t) = −100 sin2

(
π (y + 50)

100

)
sin

(
2π (x+ 50)

100

)
cos

(
πt

T

)
,
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where T=8. Initial phase function shape is a circle of diameter 30 with its
centre at (0,25) in a [−50, 50] × [−50, 50] domain (Fig. 4.5a). Element side
length and value of timestep for the three structured meshes of linear trian-
gular elements implemented are {

√
2, 0.004}, {

√
2

2
, 0.002}, and {

√
2

4
, 0.001},

respectively. To achieve a better resolution of thin filaments, ε=0.70∆l is
set, whereas ∆τ=α∆l2

8ε
is the same as previous test.

Tables 4.4 and 4.5 have the same format and definitions as Tables 4.3 and
4.2, respectively. Results represented in Tables 4.4 and 4.5 correspond to the
final time of simulation T=8. Legends ‘NFEM+Reinitialisation’ in Table
4.4, and ‘Present’ in Table 4.5 signify NFEM plus complete reinitialisation
process, including regularisation of normals. Now, in Table 4.5 it is added
the P1 Finite element model of Ref. [29] to the methods included in Table
4.2. Figures 4.5b-4.5g illustrate the shape of phase function for the three
meshes at t=T/2=4, when the circle has the largest deformation, and at the
end of the cycle t=T=8, when circle recovers the initial position.

Tables 4.4 and 4.5 show similar error measure features to previous test.
This experiment confirms that the coarsest mesh has not enough resolution to
catch properly the behaviour of the deforming circle. Even so, this fact is not
evident from inspection of errors in Table 4.4, but it is evident by inspecting
Fig. 4.5b and 4.5c. The coarse mesh is not capable to preserve the smallest
filaments because reinitialisation tends to produce small isolated droplets (see
Fig. 4.5b). At the end of the cycle these dissociations lead to a completely
corrupted interface (Fig. 4.5c). Instead, intermediate mesh (Figs. 4.5d and
4.5e), and fine mesh (Figs. 4.5f and 4.5g) are able to retain fibres and thus,
final interface is sufficiently accurate. Comparison of results with those of
Ref. [29] reveals same order of magnitude for error e(LI1), although bigger to
some extent for the same discretisation. In the case of Ae0.5 error measure,
current model results have lower error values than finite volume and P1 finite
element in [29] for the intermediate and fine grids, but of the same order and
larger than Q1 finite elements. As outlined in section 4.1.2, finite volume
method has remarkable enclosed volume conservation property, but in this
transient advective experiment this characteristic is not longer present (Table
4.5).

4.1.4 Gaussian Vortex Test

Now interaction and coalescence among adjacent interfaces is discussed by
means of a demanding distribution of a scalar function transported by a time
dependent Gaussian vortex flow. The test is defined by four disks of radius
15 and height 1, centred at (-25,0), (25,0), (0,-25) and (0,25), respectively, in
a [−50, 50]× [−50, 50] region (see sketch in Fig. 4.6). The advective velocity
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(a) t=0

(b) δ=
√

2. t=4 (c) δ=
√

2. t=8

(d) δ=
√

2
2 . t=4 (e) δ=

√
2

2 . t=8

(f) δ=
√

2
4 . t=4 (g) δ=

√
2

4 . t=8

Figure 4.5: Circle in a time dependent swirling flow. Phase field φ at t=0,
t=4, and t=8, for δ=

√
2, δ=

√
2/2, and

√
2/4
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Table 4.4: Circle in a time dependent swirling flow. Interface error e(LI1),
e(L1), e(L2), and enclosed volume error Ae0.5 [%] at t=T=8, for NFEM and
NFEM + Reinitialisation

Method δ e(LI1) e(L1) e(L2) Ae0.5 [%]

NFEM

√
2 3.7984E-00 7.2051E-02 1.6624E-01 -50.489√
2

2
6.3660E-01 4.2338E-02 1.1784E-01 -5.219√

2
4

1.3727E-01 2.1159E-02 7.9945E-02 -0.354

NFEM+
Reinitialisation

√
2 2.546E-00 3.5987E-02 1.3029E-01 0.730√
2

2
1.1167E-00 1.4358E-02 8.6543E-02 -1.680√

2
4

4.6618E-01 5.9939E-03 5.6459E-02 -0.287

Table 4.5: Circle in a time dependent swirling flow. Dimensionless interface
error e(LI1)/l, and enclosed volume error Ae0.5 [%] at t=8; ∆x/l=δ/(l

√
2), l:

characteristic length of the domain (l=100). Comparisons with finite volume
method, P1 finite element method, and Q1 finite element method by [29]

Method ∆x/l e(LI1)/l |Ae0.5| [%]

Present
1.000E-2 2.55E-2 0.73
5.000E-3 1.12E-2 1.68
2.500E-3 4.66E-3 0.29

Finite
Volume

[29]

1.000E-2 8.70E-3 16.00
4.950E-3 4.08E-3 4.82
2.488E-3 2.04E-3 1.38

P1 Finite
Element

[29]

1.000E-2 8.61E-3 11.48
6.250E-3 3.32E-3 4.18
3.125E-3 1.29E-3 0.84

Q1 Finite
Element

[29]

1.000E-2 1.15E-2 9.80
5.000E-3 3.85E-3 0.81
2.500E-3 2.01E-3 0.16
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15

100

100

Figure 4.6: Gaussian Vortex: Initial configuration.

field has the following Cartesian components:

u(x, t) = −1747
y

r2
·
(

1− e−
r2

β2

)
· cos

(
πt

T

)
v(x, t) = 1747

x

r2
·
(

1− e−
r2

β2

)
· cos

(
πt

T

)
where r=

√
x2 + y2, β=22.303 and T=10, producing maximum velocity |u|max

value of 50 at r=25. Four structured meshes of linear triangular elements
are employed with element size lengths and time step values of

{√
2, 0.005

}
,{√

2
2
, 0.0025

}
,
{√

2
4
, 0.00125

}
and

{√
2

8
, 0.000625

}
, respectively. Reinitialisa-

tion step parameters are ε=0.83∆l and ∆τ=α∆l2

8ε
(dummy time step), where

α=0.1. Simulation stops at the end of a cycle (t=T ).
Results of the experiments for the four grids are summarised in Table 4.6,

where first column indicates the method, either NFEM, or NFEM including
reinitialisation, or NFEM including reinitialisation and local calculation of
normals. Columns two to seven indicate average element side length δ, errors
e(LI1)/l, e(L1), e(L2), |Ae0.5| %, and total mass error, respectively. Interface
length is computed at initial time and its value is 120π.

As can be expected, errors e(L1) and e(L2) diminish when finer meshes are
used (Table 4.6) for NFEM solution of transport equation (Figs. 4.7a-4.7h).
Convergence order is lower than two mainly due to the presence of several
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Table 4.6: Gaussian Vortex. Errors at t = T .

Method Mesh (δ) e(LI1)/l e(L1) e(L2) |Ae0.5| [%] Mass Error

NFEM

√
2 1.682E-02 1.414E-01 2.329E-01 16.124 4.009E-15
√

2
2

8.647E-03 8.280E-02 1.700E-01 7.037 -1.644E-14
√

2
4

1.532E-03 4.642E-02 1.208E-01 0.383 -1.481E-13
√

2
8

6.068E-04 2.410E-02 8.461E-02 0.145 -8.923E-13

NFEM +

Reinitialisation

√
2 2.684E-02 1.207E-01 2.681E-01 6.197 -5.291E-15
√

2
2

1.121E-02 4.894E-02 1.723E-01 1.579 -1.999E-14
√

2
4

3.084E-03 1.742E-02 9.116E-02 0.021 -1.653E-13
√

2
8

2.926E-04 5.979E-03 4.211E-02 0.000 -7.203E-13

Local Calculation

of Normals

√
2 2.761E-02 1.133E-01 2.792E-01 0.935 3.367E-15
√

2
2

1.199E-02 5.199E-02 1.794E-01 1.328 -1.628E-14
√

2
4

3.307E-03 1.898E-02 9.430E-02 0.072 -1.669E-13
√

2
8

3.046E-04 6.400E-03 4.219E-02 0.017 -1.197E-12

quasi-discontinuities, as in previous experiments. Interface error decreases
once mesh is refined but convergence order shows an irregular behaviour as
it can be noted if it is compared results of δ=

√
2

2
and δ=

√
2

4
with the others.

Nevertheless, interface error lessens monotonically when element side length
is reduced. A reason of this erratic behaviour arises from the use of the
Heaviside function in the error definition. Enclosed volume error oscillates,
although it is bounded and decreases with finer meshes. This response is in
accordance with discussion in Ref. [60] where enclosed volume error is related
with value of ε. Hence enclosed volume error depends on the value of the
maximum element size on the interface.

Errors behave in a similar manner when reinitialisation is active (see
Fig. 4.8a-4.8h and second row of Table 4.6). Decrease in e(L1) and e(L2)
is noticeable in fine grids, up to four times. However, reinitialisation pro-
cess is not efficient for low mesh resolution: reader can observe in Table 4.6
that e(L2) for the coarsest mesh is higher when reinitialisation is used. Al-
though now interface error is marginally higher for coarse meshes, for the
finest mesh this error diminishes substantially. Besides, enclosed volume er-
rors with reinitialisation exhibit values nearly an order of magnitude lower
for all the resolutions. This enhancement is due to the artificial compression
effect in the reconstruction, reducing extra diffusion originated in the trans-
port step. Local computation of normals does not introduce relevant further
amelioration because interfaces are too close, and there are not regions in
the vicinity of interfaces with (approximately) constant values of the phase
function. Overall results reveal that coarsest mesh (δ=

√
2) has not suffi-

cient resolution for a competent usage of reinitialisation tools in long term
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Table 4.7: Slotted sphere in a rotating flow. Dimensionless interface error
e(LI1)/l, e(L1), e(L2), and enclosed volume error Ae0.5 [%] after one rotation;
∆x/l=δ3D/(l

√
3), l: characteristic length of the domain (l=100). Compari-

son with finite volume method in [29]

Method ∆x/l e(LI1)/l e(L1) e(L2) |Ae0.5| [%]

Present
1.000E-2 2.971E-03 4.473E-03 3.781E-02 5.959
5.000E-3 5.923E-04 2.048E-03 2.409E-02 1.332

Finite
Volume [29]

1.000E-2 3.22E-03 - - 4.60
5.000E-3 1.17E-03 - - 1.32

calculation for this severe test (see Figs. 4.7b and 4.8b). Without reinitiali-
sation, finest resolution is needed (δ=

√
2/8) to avoid spurious coalescence of

disks (see Fig. 4.7h). Instead, for NFEM plus reinitialisation, δ=
√

2/4 (see
Fig. 4.8f) is enough to prevent merging of disks.

4.1.5 Slotted sphere in a rotating flow

This test is the three-dimensional extension of the slotted cylinder experi-
ment. Here, initial profile is a sphere of radius 15 whose centre is placed at
(0, 25, 0) in a [−50, 50] × [−50, 50] × [−50, 50] domain. The slot has width
5 and length 25 (see Fig. 4.9). Velocity field u=(−ωy, ωx, 0) and reinitiali-
sation parameters are ε=0.67∆l, τ=α∆l2

8ε
, where ω=0.1, ∆l is the maximum

tetrahedral height and α=0.1. It is employed two structured meshes of linear
tetrahedral finite elements with element size lengths δ3D

3 and total number

of time steps
{√

3, 1030
}

and
{√

3
2
, 2060

}
, respectively. Interface area is

L≈3.9 · 103. Results are shown in Fig. 4.9, while error measures after one
rotation are detailed in Table 4.7, whose arrangement is the same as Table
4.2. Results reveal same trends as observed in the two dimensional case. Use
of the finest mesh implies errors reduction, significant for interface and en-
closed volume errors, and are of the same order of those reported in Ref. [29].
Accuracy of NFEM to preserve slot shape and dimensions shown by NFEM
for slotted cylinder is kept for the three dimensional extension (Fig. 4.9).

4.1.6 Sphere in a transient swirling deformation flow

This experiment was proposed by Leveque [45]. A sphere of diameter 30
is placed at initial time with its centre at (−15,−15,−15) in a [−50, 50] ×

3Element size length in structured three dimensional meshes is
δ3D=

√
∆x2 + ∆y2 + ∆z2, where ∆x, ∆y and ∆z are size lengths of a cube com-

posed by five tetrahedral cells.
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(a) t=T/2 , δ=
√

2 (b) t=T , δ=
√

2

(c) t=T/2 , δ=
√

2
2 (d) t=T , δ=

√
2

2

(e) t=T/2 , δ=
√

2
4 (f) t=T , δ=

√
2

4

(g) t=T/2 , δ=
√

2
8 (h) t = T , δ =

√
2

8

Figure 4.7: Gaussian Vortex Test. Phase field φ. NFEM results.
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(a) t=T/2 , δ=
√

2 (b) t=T , δ=
√

2

(c) t=T/2 , δ=
√

2
2 (d) t=T , δ=

√
2

2

(e) t=T/2 , δ=
√

2
4 (f) t=T , δ=

√
2

4

(g) t=T/2 , δ=
√

2
8 (h) t=T , δ=

√
2

8

Figure 4.8: Gaussian Vortex Test. Phase field φ. NFEM+Reinitialisation
results.
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(a) Initial condition

(b) After one rotation

Figure 4.9: Slotted sphere in a rotating flow. Iso-surface φ=0.5. δ3D=
√

3/2.
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Table 4.8: Sphere in a transient swirling deformation flow. Errors at t=T .

Method δ3D e(LI1)/l e(L1) e(L2) |Ae0.5| [%]

NFEM

√
3 9.332E-03 9.694E-03 5.632E-02 13.950

2
√

3
3

5.397E-03 6.826E-03 4.597E-02 5.191
√

3
2

3.786E-03 5.338E-03 4.015E-02 2.954

NFEM +

Reinitialisation

√
3 8.995E-03 6.029E-03 4.416E-02 12.238

2
√

3
3

5.663E-03 4.377E-03 3.603E-02 7.062
√

3
2

4.069E-03 3.497E-03 3.093E-02 4.509

Local Calculation

of Normals

√
3 6.729E-03 4.214E-03 3.874E-02 3.849

2
√

3
3

3.945E-03 2.838E-03 3.059E-02 2.407
√

3
2
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√
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[−50, 50] × [−50, 50] domain. The periodic advective velocity field has the
following Cartesian components
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where T=3. The largest deformation of the sphere takes place at t=T/2
(Fig. 4.10b), while at t=T the sphere recovers the initial state. It is used
three structured meshes of four nodes tetrahedral elements with element
size length and time step

{√
3, 0.002

}
,
{

2
√

3
3
, 0.001333

}
, and

{√
3

2
, 0.001

}
,

respectively. To achieve sufficient resolution of thin filaments, ε=0.50∆l,
and ∆τ=α∆l2

8ε
, where α=0.1. Interface area is L=900π.

Table 4.8 shows errors at t=T , (l=100), with the same arrangement as
Table 4.6. Results from Ref. [29] are added, where a modified conservative
level set method by antidiffusion techniques has some comparable spatial and
temporal discretisation features with the present model. For results given in
Ref. [29], the resulting equivalent element size lengths are indicated in second
column for a proper comparison, given that discretisations do not match
exactly. Reinitialisation diminishes e(L1) and e(L2) as in previous tests.
Regularisation of normals improves the performance. For instance, with the
intermediate mesh (δ3D=2

√
3/3) and local calculation of normals (see Table

4.8, ninth row) results are better than with the fine mesh (δ3D=
√

3/2) with
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(a) t=0 , δ=
√

3/2.

(b) t=T/2 , δ=
√

3
2 , with reinitialisa-

tion.
(c) t=T , δ=

√
3

2 , with reinitialisation.

(d) t=T , δ=
√

3
2 , without reinitialisa-

tion.
(e) t=T , δ=

√
3

2 , improved normals.

Figure 4.10: Sphere in a transient swirling deformation flow. Surface φ=1/2.
(b) and (c): with reinitialisation. (d) without reinitialisation. (e) local cal-
culation of normals
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standard normal usage (see Table 4.8, seventh row). Interface error and
enclosed volume error decrease once local calculation of normals is active
(see Table 4.8, third, sixth and ninth rows). Besides, this tool reduces e(L1)
and e(L2) attained by reinitialisation. Sharp interfaces are not as close as in
Gaussian Vortex experiment, hence action of normal local calculation avoids
the indeterminacy far from the interface in a more efficient way, and reduces
wiggles of phase function in the vicinity of interfaces. Interface error is smaller
in compare with Ref. [29] for the coarse and intermediate mesh, and results
are marginally better for the coarse mesh in terms of enclose volume error.
Enclosed volume error diminishes substantially for intermediate mesh and
fine mesh, although somewhat higher than finite volume results from Ref. [29];
nevertheless in this test the model reported in [29] does not preserve sign.

To capture the thinnest pattern of the deformed state (Fig. 4.10b) it is
necessary the finest mesh. Slight oscillations on the interface (Fig. 4.10c)
are significantly reduced by the beneficial effect of local calculation of nor-
mals (Fig. 4.10e). Notwithstanding, at the end of the cycle some kind of
crest attached to the sphere appears, ascribable to a secondary effect of the
reinitialisation, which moves the interface artificially. This anomaly can also
be observed in other models (see e.g. Ref. [38]), but was not detected in
other experiments of this work. In fact these deviations, as well as wiggles,
do not appear for transport equation solution without reconstruction (see
Fig. 4.10d).

4.2 Hydrodynamics Assessment Simulations

4.2.1 Rayleigh-Taylor Instability

Present test consists on two fluid layers with the heavier one situated above.
Due to gravity action, the heavier fluid penetrates into the lighter one and
process continues until lighter fluid is entirely situated above. This exper-
iment has been used in several works (e.g. Ref. [67]) and set-up consists
of a domain [−0.5, 0.5] × [−2.0, 2.0] m2; |g|=9.81 m/s2, ρ1=0.1694 kg/m3,
ρ2=1.225 kg/m3, and µ1=µ2=3.13·10−3 kg/(ms) (see Fig. 4.11). Fluids are
considered incompressible with a density ratio ρ1/ρ2=0.138 and the average
Reynolds number is R=d

√
dg/ν=698, where d in this case is the channel

width, and ν=(µ1 +µ2)/(ρ1 + ρ2). Position of the interface at t=0 is defined
by

y = −0.05 cos (2πx) , (4.3)

to introduce a small perturbation in the onset (see Fig. 4.11). Because of the
high value of density ratio and the relatively low value of R, CBS technique
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ρ2, µ2

ρ1, µ1

Figure 4.11: Rayleigh-Taylor Instability. Initial condition

can be used without correction to reach a sufficiently accurate solution for
hydrodynamics. Parameters for reinitialisation are ε = 0.83∆l and ∆τ =
α∆l2

8ε
, with α=0.1 as in previous tests. Linear triangular structured mesh has

δ=
√

2
128

m, and ∆t=10−4s. Interface has a thickness of 2∆x at t=0 to attain a
better definition of initial perturbation (4.3). To be consistent with preceding
reports (e.g. Ref. [9]), slip boundary condition is prescribed on vertical walls
and no-slip condition on horizontal walls.

Figure 4.12 illustrates the evolution of the instability. Phase field is repre-
sented at t=0.3 s, t=0.6 s, t=0.9 s, and t=1.2 s. At early stages, amplification
of initial perturbation is observed (Fig 4.12a). In subsequent states, interface
takes a typical mushroom shape (Fig. 4.12b), and then starts to elongate and
to form thin filaments which finally detaches, creating isolated filaments and
bubbles (Figs. 4.12c and 4.12d). A manifest symmetry is detected in Figures
4.12a, 4.12b and 4.12c, violated at ensuing times by aforementioned thin
filaments (see Figure 4.12d, t=1.2 s). Figure 4.13 displays lowest position
of the jet, s(t), by the current numerical method, by a numerical solution
in Ref. [9], and by the theoretical solution for inviscid flows without surface
tension [15],

s = s0 cosh (Ψt) ,

Ψ =

√
g

2π

W

ρ2 − ρ1

ρ2 + ρ1

,

where initial position of the front is denoted as s0, and its value is 0.05 m.
Numerical solution has a close agreement with theoretical solution for inviscid
flows at early stages of motion, when non-linearity is weak and perturbation
amplitude is much smaller than its wavenumber. In addition, an acceptable
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(a) t = 0.3s (b) t = 0.6s (c) t = 0.9s (d) t = 1.2s

Figure 4.12: Rayleigh-Taylor Instability. Phase field at different times.
Darker shades indicate higher φ values

agreement is extended up to t≈0.3 s, consistent with the symmetry, still
clearly identified. On the other hand, present results match with outcomes
of Ref. [9], both in qualitative description (Fig. 4.12), and in quantitative
form (Fig. 4.13).

Rayleigh-Taylor instability. Air-helium and xenon-hydrogen interface

In order to show the benefits of the complete method for hydrodynamics as
reported in section 3.5, two new combinations of gases are selected such that
average Reynolds number increases considerably and density ratio decreases.
In addition to new fluid densities, real viscosities are employed, substan-
tially different than values used previously. Although results of this test can
only be qualitatively evaluated, it is shown that solutions reported by the
method used in previous Rayleigh-Taylor test produces significant momen-
tum transfers between phases, while complete NFEM method for interfaces
avoids momentum jumps. It is important to note that in these tests, velocity
jumps between phases could be physically meaningful. Purpose of the exper-
iments is to illustrate the efficacy of the method assuming the hypothesis of
preceding experiment.

Air-helium and xenon-hydrogen combinations are simulated. Domain is
the same as in preceding test for both cases; for air-helium: ρ1=0.178 kg/m3,
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Figure 4.13: Rayleigh-Taylor Instability. Amplitude growth, comparison
with theoretical results [15], and with numerical model in [9]

µ1=1.88·10−5 kg/(ms), ρ2=1.293 kg/m3, µ2=1.73·10−5 kg/(ms), and ρ1/ρ2 ≈
0.178,R=127626. For xenon-hydrogen: ρ1=0.09 kg/m3, µ1=8.4·10−6 kg/(ms),
ρ2=5.86 kg/m3, µ2=2.12 · 10−5 kg/(ms), and ρ1/ρ2≈0.015, R=629593. In
both cases, parameters corresponds to absolute temperature value of 273.15 K,
and initial interface is given by y=−0.10 cos (2πx). Space and time discreti-
sation of first experiment was used.

Secondary vortexes emerge along interface, and symmetry is lost at much
earlier stages than foregoing test. Figures 4.14a-4.14f feature the transfor-
mation of the instability for air-helium. Subfigures 4.14a and 4.14b depict
results by CBS. At t=0.35 s overshoots in velocity field causes severe distor-
tions in the interface (see Fig. 4.14b). At upcoming states, interface spreads
completely. Subfigures 4.14c-4.14f show evolution of the interface for t=0.25
s, t=0.50 s, t=0.75 s, and t=1.00 s, respectively, applying the complete al-
gorithm. Velocity jumps are effectively controlled, and experiment remains
stable even at very advanced stages, when interface is largely twisted. In the
case of xenon-hydrogen, interface descends much faster and its shape tends
to change from a mushroom kind to a jet kind4. Figures 4.15a-4.15d depict

4This regime is frequently characterised by high values of Atwood number. At-
wood number is defined as At=(ρ2 − ρ1)/(ρ2 + ρ1); At(air-helium)=0.76; At(xenon-
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(a) (b) (c) (d) (e) (f)

Figure 4.14: Rayleigh-Taylor Instability for Air-Helium. Comparison be-
tween CBS and NFEM. Darker shades indicate higher φ values. (a) CBS.
t=0.25s; (b) CBS. t=0.35s; (c) NFEM. t=0.25s; (d) t=0.50s; (e) t=0.75s; (f)
t=1.00s

evolution of Rayleigh-Taylor instability for xenon-hydrogen by the complete
scheme, plotting series of times: t=0.25 s, t=0.50 s, t=0.75 s, and t=1.00 s.
In this experiment results from CBS become completely distorted in earlier
stages than in preceding combination of gases.

4.2.2 DamBreak problem

The dambreak flow in a horizontal channel is simulated. At initial time, a
steady volume of water (ρ2=998 kg/m3, µ2=1.003·10−3 kg/(ms)) of height
b=0.05715 m and length b (see sketch in Fig. 4.16) is released over a dry
channel of length 5b and height 1.25b. Ambient fluid is air (ρ1=1.205 kg/m3,
µ1=1.808·10−5 kg/(ms)), so density ratio is ρ1/ρ2=1.2·10−3. Both fluids are
assumed incompressible and surface tension is neglected. Linear triangular
structured mesh has δ=1.25

√
2b

80
, and ∆t=10−4 s. Slip boundary condition is

imposed on walls.
Main goal of this simulation is to explore further the answer of the model

when density ratio is very low. For this purpose, two options of the model
are compared: first option is the complete algorithm, without including the
enhanced bound estimation; second option is the complete algorithm includ-

hydrogen)=0.97.
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(a) (b) (c) (d)

Figure 4.15: Rayleigh-Taylor Instability for Xenon-Hydrogen by NFEM.
Darker shades indicate higher φ values. (a) t=0.25s; (b) t=0.50s; (c) t=0.75s;
(d) t=1.00s
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Figure 4.16: Dam Break: initial configuration
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Figure 4.17: Surge front position over time. T ∗=t
√
g/b, X∗=X/b

ing enhanced bound estimation (Eqs. (3.58) and (3.59)). To illustrate some
details of the responses, upwind FEM is also included.

Figures 4.17 and 4.18 depict wave front location measured on bottom
wall (X), and height of water on left wall (H), respectively, in terms of time,
for the three aforementioned alternatives. In Figs. 4.17 and 4.18 coordinates
are dimensionless: time T ∗=t

√
g/b, height H∗=H/b, and distance X∗=X/b,

respectively. Moreover, numerical solutions shown in Refs. [26, 36] and ex-
perimental results of Ref. [50] are superimposed to present numerics for the
three alternatives.

Well-known overdiffusive answer of upwind FEM solution can be verified
in Fig. 4.17, by comparing the given wave celerity from T ∗≈2 with experimen-
tal data. The NFEM, integrating transport and reinitialisation techniques,
has a satisfactory capture of interface, but still have some inadequacies, per-
ceptible in an overestimated celerity value in compare with experimental
and other results in the literature (see Fig. 4.17). Deviation is attributed
to spurious velocity discontinuities across interface originated during wave
propagation. The NFEM is not able to remove completely these accelera-
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Figure 4.18: Height (left wall) over time. T ∗=t
√
g/b, H∗=H/b
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(a) NFEM. T ∗=2.75

(b) Upwind. T ∗=2.75

(c) NFEM new bounds. T ∗=2.75

(d) NFEM new bounds. T ∗=4.26

Figure 4.19: Dam Break problem. Water phase at T ∗=2.75 for NFEM,
Upwind FEM, and NFEM with new bounds calculation. Water phase at
T ∗=4.26 for NFEM. Darker shades indicate higher φ values
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(a) NFEM. T ∗=2.62

(b) Upwind. T ∗=2.62

(c) NFEM new bounds. T ∗=2.62

(d) NFEM new bounds. T ∗=4.26

0 0.32 0.64 0.96 ≥1.28

Velocity Magnitude [m/s]

Figure 4.20: Dam Break problem. Velocity field at T ∗=2.75 for NFEM,
Upwind FEM, and NFEM with new bounds calculation. Velocity field at
T ∗=4.26 for NFEM with new bounds.
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tions for two-phase flows with very low density ratios as in this experiment
(see phase function at T ∗=2.75 in Fig. 4.19a, and absolute velocity values at
T ∗=2.62 for NFEM in Fig. 4.20a as illustrations). In particular, Fig. 4.19a
shows a shift to the right in front position (compare with other subfigures).
Otherwise, results for height evolution of expansion wave on left wall nearly
agree with experimental (Fig. 4.18). Once new restrictions are imposed to
limiters in NFEM, results in the interface neighbourhood have a significant
improvement, resulting in more precise front location (see Fig. 4.17), and in
more effective interface capture. Improvements can also be recognised by
comparing results in Figs. 4.19c and 4.20c (using NFEM with bounds de-
pending on interface position), with results plotted in Figs. 4.19a and 4.20a,
respectively. Figure 4.20a displays a notable pattern of vortexes in air do-
main initiated by accelerations across interface during propagation, while in
Fig. 4.20b, this pattern is completely removed due to diffusion introduced by
Upwind FEM. Figure 4.20c shows an enhancement of the good behaviour
of upwind FEM in terms of celerity (Figs. 4.19b-4.19c and 4.20b-4.20c) and
reveals the close match with experimental data for front position, detected
in Fig. 4.17. Slight discrepancies in celerity between laboratory and numer-
ics appear at initial stages (Fig. 4.17), also present in Refs. [26, 19, 20]. In
Ref. [19], authors found that this lag diminishes to zero by assigning a high
viscosity to the water. Discrepancies are probably ascribed to imprecise front
definition during transient states ensued from gate release.

Simulation has been extended to more advanced computational times to
prove the ability of the proposed method to model strong interface deforma-
tions. Experiment has been extended up to final time T ∗=4.26, when water
wave reflects on the right wall (see Figs. 4.19d and 4.20d).

To verify the performance of reduced NFEM for Navier-Stokes equations
solution discussed in section 3.5, error estimators were computed in the L2

norm for phase function, pressure, and velocity, and in the L1 norm for front
position. Values are per timestep, and assuming reduced solution as an ap-
proximation of complete NFEM solution. Error values are, e(φ)=1.004E-5,
e(p)=7.38E-4, e(|u|)=1.27E-5, and e(X)=1.346E-5, respectively. Moreover,
ratio of CPU time between massive computation and reduced is 2.1. These
results prove that reduced algorithm gives almost same output that mono-
lithic alternative with half of the computational cost.

4.2.3 Dam Break with Obstacle

This experiment is the three dimensional extension of previous test and
was firstly explored by K.M.T. Kleefsman et al. [39]. It is performed in
a tank of 3.22m × 1m × 1m, where a closed gate retains a steady vol-
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Figure 4.21: Dam break with obstacle. Set up

ume of water of 1.228m × 1m × 0.55m (0.6754 m3). A fixed brick of size
0.161m×0.403m×0.161m is placed with its centroid at 1.248 m downstream
of the gate axis. Test starts by releasing the water almost instantaneously.
Figures 4.21, 4.22 and 4.23a sketch the geometry and initial condition. Fig-
ure 4.21 also indicates as H1, H2, H3, and H4 the positions of height mea-
surements, while Fig. 4.22 depicts the brick and the positions of pressure
gauges, indicated as P1 to P8. In the numerical test a structured grid of
linear tetrahedrons with 202 × 64 × 63 nodes is employed. Slip boundary
condition was prescribed on the boundaries. Time increment is ∆t=0.001
s, Υ=∆l/(11ε) and ε=0.67∆l. Hence, two levels are used for the compu-
tation of regularised normals. Fluids are incompressible with density ratio
ρ1/ρ2=0.001 and surface tension coefficient σ=0.07 N/m; viscosity ratio value
is assumed as µ1/µ2=0.01, to be consistent with results of other models (see
e.g. Ref. [35]).

Figures 4.23a–4.23e show some interesting snapshots of the simulation at
times t=0 (initial), 0.4 s, 0.6 s, 1.1 s and 2.0 s, respectively. In Fig. 4.23b it is
seen the propagation of the initial wave over the dry bed before the impact
against the brick, while in Fig. 4.23c it is recognised when the discharge
overflows the block, and is advancing towards the left wall, reaching it at time
of around 0.8 s. After the impact on the left wall the reflected wave travels
back and, at the same time, relevant momentum transfer from horizontal to
vertical occurs in the obstacle (see Fig. 4.23d). Figure 4.23e depicts backing
wave submerging the obstacle at t=2.0 s.

Figures 4.24, 4.25, 4.26, 4.27, 4.28 and 4.29 plot the history p(t) (pres-
sure) at the points P1, P3, P5, and P7, and the history h(t) (height of water)
at the points H2 and H4, respectively, for experimental measurements and
computed values. First pressure peak at point P1 is accurately captured in
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Figure 4.22: Dam break with obstacle. Geometry of the obstacle

phase and amplitude (Fig. 4.24). Pressure computation at point P3 is also
very precise in phase, but amplitude is somewhat underpredicted, mainly due
to limitation of the grid resolution to simulate a proper momentum transfer
from horizontal to vertical in the vicinity of the brick wall. It is interesting
to note that this reduction of pressure is also observed in other works (e.g.
Refs. [39, 35]). Computation matches with experimental for P1 and P3 up
to t=4.5s, covering a complete travel of primary and secondary waves, and a
relevant part of the second travel after reflection on the right wall. A small
delay appears in the second impact (t≈5 s) (as in models referenced above);
despite this fact, amplitude is again well captured. Pressure computations
over the brick (points P5 and P7, see Figs. 4.26, 4.27) are adequate, although
the first peak is slightly overpredicted. However, at the top of the obsta-
cle an intense mixing of water/air occurs, yielding a foreseeable detachment
of numerical calculations from local pressure measurements. Some oscilla-
tions in the pressure, existing in the physics (see Figs. 4.26 and 4.27), and
in water heights (Fig. 4.28) are amplified to a limited degree by the numer-
ical solution. These deviations from real oscillations are attributed to an
insufficient interface resolution in the vicinity of the obstacle, where also an
intense and diffuse water/air mixing occurs when water collides the brick (see
e.g. Fig. 4.23e). In the case of measurement points P5 and P7, the vortex
shedding created on the brick edge also contributes to spread water in the
vicinity of the brick.

Water height results show good agreement with measurements in terms
of celerity of the wave travelling on a dry bed (first peak is again precisely
caught (see Fig. 4.28)), and in terms of elevations in the expansion wave
region (see Fig. 4.29). Peaks are very accurately detected in the first travel.
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(a) Initial state (b) t=0.4 s

(c) t=0.6 s (d) t=1.1 s

(e) t=2.0 s

Figure 4.23: Dam break with obstacle



128 CHAPTER 4. NUMERICAL EXPERIMENTS

0 1 2 3 4 5 6

0.0

0.5

1.0

·104

Time [s]

P
re

ss
u
re

[P
a]

Kleefsman et al. [39]
Numerical Results

Figure 4.24: Dambreak with obstacle. Pressure at P1

Of course, a small delay in the second peak appears, consistent with pressure
outputs. Reader can observe the good capture of the returning wave front
at H4 (at around t=2.7 s) in Fig. 4.29. Water heights computed by a NFEM
depth integrated model [63] are remarkable close (see output in [62], pp 66-
67). Nevertheless, although some phase and amplitude errors at peaks are
lower, pressure computation is not sufficiently accurate in the neighbourhood
of the block for the depth integrated model, as might be expected.

4.3 Intrusion and Propagation of Air Cavities and Geyser-
ing

4.3.1 Air cavities in horizontal ducts

Aim of present and next section is to report the simulation of air cavities
intrusion and propagation, comparing numerical results with existing labo-
ratory observations and scrutinising effects of surface tension and interface
refinement on outputs. First, special cases with horizontal ducts are exam-
ined. Numerical domain is the same as in section 4.3.3 (see Fig. 4.35) but
inlet velocity at left boundary is set to zero and chamber is slightly shifted
downward. As in previous test, duct is filled with water and gate is locked
as initial conditions. At t=0, gate is suddenly unlocked up to a partial
opening by moving it down. Then water starts to drain and air fills the evac-
uated water volume. Both fluids are assumed incompressible, ρ1/ρ2=0.001,
µ1/µ2=0.01, |g|=9.81 m/s2, and σ=0.07 N/m. Tests were conducted for gate
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Figure 4.25: Dambreak with obstacle. Pressure at P3
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Figure 4.26: Dambreak with obstacle. Pressure at P5
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Figure 4.27: Dambreak with obstacle. Pressure at P7
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Figure 4.28: Dambreak with obstacle. Water height at H2
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Figure 4.29: Dambreak with obstacle. Water height at H4

heights w/d=0, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. Average element length for the
grid in the series is δ=0.002

√
2 m and ∆t=1.0 · 10−4 s. Simulations stop at

3 s. Reinitialisation parameters are ε=0.83∆l and ∆τ=0.1∆l2/(8ε).

When the gate is partially closed, a bore is developed downwind the
front of the cavity (see e.g. Fig. 4.30). Cases considered in numerical tests,
in section 2.1, and in the laboratory [81], have a bore formation with low
(supercritical) Froude number, with jumps going from prejump type, to un-
dular type and to transition regime. For these Froude number ranges, free
surface in the subcritical region is highly oscillating. These oscillations can
be artificially amplified as it was explained in section 3.6. However, grids
do not include interface refinement because surface tension is sufficient to
obtain a stable free surface (see illustration in Fig. 4.30). Surface tension can
reduce cavity celerity and can affect slightly the shape of the front (see e.g.
Ref. [81] and references therein), but its overall impact is not significant. The
resolution parameter is chosen with the value Υ=∆l/(30ε). Very low values
of Υ originate an overestimation of bore celerity. Nevertheless, cavity celerity
appears to be independent of resolution parameter. This is probably due to
the behaviour of the cavity in the supercritical region, close to a potential
flow.

Figure 4.31 depicts normalised cavity celerity F=c/
√
gd, where c is the

cavity celerity, and normalised bore celerity Fb=cb/
√
gd, where cb is the bore

celerity, in terms of downstream water depth ratio H2=h2/d; the depth h2

is measured downstream the bore. Black marks indicate experimental mea-
surements in Ref. [81], and red marks indicate numerical output; cross sign
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(a) Without Surface Tension

(b) With Surface Tension

Figure 4.30: Air cavity simulation for an horizontal duct with w=0.5d. Phase
function at t=3 s.

corresponds to bore celerity, while circle sign corresponds to cavity celerity.
Finally, solid line represents the historical theoretical results by Benjamin [8],
and dashed lines represent theoretical results in Ref. [81], taking into account
surface tension and stagnation point position effects. Cavity front location
and bore location were tracked each 0.5 s in the interval [0, 3] s. Discrepan-
cies between experimental results and numerics are small for values of bore
celerity. Numerical results are slightly higher than measurements, but these
differences are always less than 5% when compared with laboratory results.
Besides, for unsteady regime (i.e. when bore and cavity have different celer-
ities), bore celerity model results are in good agreement with measurements.

4.3.2 Air cavities in sloping ducts

Two series of experiments for ducts with slope and partial opening of the
final gate are conducted. First series is defined by w/d=0.2, 0.3, 0.4, and
slopes 2%, 5% and 7%; second series is defined by w/d=0.5, 0.6, 0.7, and
slopes 1%, 2% and 3%. For the second series, interface is close to the top of
the pipe and high air velocity yields very unstable interfaces. For both situ-
ations, Υ=∆l/(300ε) and local mesh refinement is implemented. Figure 4.32
illustrates the effect of reducing interface thickness by refinement. Without
refinement, a fictitious sealing of the cavity takes place due to nonphysical
amplification of perturbations along the free surface; sealing does not occur
in laboratory experiments for this set-up (see Ref. [1]). In this experiment,
mesh is updated every two time steps on average, and the extra cost value is
of around 30% with respect to the experiments with same grid and without
adaptivity.
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Figure 4.31: Cavity and bore normalised celerities as function of downstream
water depth ratio. Red marks: numerical results; black marks: experimen-
tal [81]. Solid line: theoretical [8]; dashed line: theoretical [81]. F=c/

√
gd,

Fb=cb/
√
gd, H2=h2/d, cb is the bore celerity and h2 is the flow depth down-

stream the bore.
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(a) Without interface refinement

(b) With interface refinement

Figure 4.32: Air cavity simulation results for a duct with 5% slope and
w=0.2d. Phase function at t=2.5 s.

Numerical and experimental results are shown in Fig. 4.33. Black colour
indicates laboratory output, circles mark when sealing does not occur, while
squares and crosses mean that cavity seals at irregular or regular intervals,
respectively. Red denotes numerics, crosses denote cavity sealing, and cir-
cles denote open cavity. A special experiment is pointed out by diamond
sign. In this case, a splash of water touches the top of the duct, occurring
just after state depicted in Fig. 4.34a. Though resulting air bag is isolated
from atmosphere, it cannot be considered as a meta-stable state. Trian-
gles show those cases in which the bore advances away the outflow end of
the conduit. Here, downstream flow depths continue to rise (see Fig. 4.34b).
Although duct length is not long enough to capture the sealing for configura-
tions denoted by the triangles, sealing occurrence is assured for longer ducts.
Finally, dotted black line in Fig. 4.33 is an interpolation of both experimen-
tal and numerical outputs. Line displays limiting conditions for sealing in
terms of gate opening and slope. Expression of previous interpolation is
(w/d)L = 0.435 · θ−0.405

d , where (w/d)L indicates the limit weir height that
produces a cavity sealing and θd ∈ [0.15o, 4.0o] (in degrees). It is noted that
numerical results for sealing development are fairly close to those observed
in the laboratory.
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Figure 4.33: Cavity sealing as function of w/d and slope θd (in degrees).
Comparison between experimental output [1] (black marks) and numerical
results (red marks).

(a) Air cavity simulation results for a duct with 7% slope and w=0.2d. Phase
function at t=2.45 s.

(b) Air cavity simulation results for a duct with 1% slope and w=0.6d. Phase
function at t=3.45 s.

Figure 4.34: Air cavity simulation results for a duct with 7% slope and 1%
slope
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0.10 m.

1.50 m.
0.20 m.

0.20 m.

Figure 4.35: Domain for air cavities simulations. Black colour boundary:
slip condition; green colour boundary: inlet condition; red colour boundary:
inlet/outlet condition.

4.3.3 Air cavities intrusion conditions

Intrusion of air cavities in ducts is a phenomenon deeply studied during last
years (see e.g. Ref. [8, 81, 1]); however, fluid inside the duct is normally
considered at rest when air propagates. Although these configurations are
beneficial to compare analytical and numerical results with laboratory obser-
vations, they do not consider cases imitating real floods. Here it is taken into
consideration these real states by regarding a downward fluid flow while air
cavity intrudes, and flow conditions under which air is not allowed to enter
inside the conduit are explored.

For this purpose, a series of tests is conducted with the numerical model
reported in Chapter 3. The domain consists of a rectangular duct of length
1.50 m and height d=0.10 m, a gate of variable height situated at the
lower end, and a chamber of 0.20×0.20 m placed after the weir to drain
the water (see Fig. 4.35). Water and air are assumed nearly-incompressible,
air has ρ1=1.205 kg/m3, µ1=1.808 · 10−5 kg/ms and a2

1=1.0 · 105 m2/s2,
whereas physical parameters of water are ρ2=998 kg/m3, µ2=1.0·10−3 kg/ms
and a2

2=2.2 · 106 m2/s2. Besides, gravity |g|=9.81 m/s2 and surface ten-
sion parameter σ=0.07 N/m. The structured linear triangular finite ele-
ment grid has an average element length δ=1.67

√
2 · 10−3 m; and time step

∆t ∈ [1·10−4, 1·10−5] s, depending on each case. Reinitialisation parameters
are ε=0.83∆l and ∆τ=0.1∆l2/(8ε), and Υ=∆l/(600ε). Regarding boundary
conditions, slip condition is applied on solid walls (black in Fig. 4.35). On in-
let/outlet boundary (red in Fig. 4.35) velocity is free, p=0, ∂p

∂nb
=0, and φ=0;

hence, water can drain and, if u · nb < 0, air flows into the domain. Phase
function φ=1, ∂p

∂nb
=0 and velocity is prescribed on inlet boundary (green in

Fig. 4.35) to reproduce water inflow. As initial condition, duct is filled up
with still water in all cases. Simulations are specified by varying weir height
w and the duct slope θd. For each pair w,θd several inlet velocities are tested
during a computational time of 3 seconds. To calculate the threshold inflow
velocity uL from which air does not enter in the duct, the strategy is as fol-
lows: first, selection of those simulations such that air is present inside the
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duct at last time step; second, calculation of mean gas inflow rate over the
whole computational time; third, computation of inlet velocity limit value
for which gas inflow rate is zero by linear regressions (a sound method, based
on test comparisons). Experiments were performed for w/d = 0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7; and slopes θd = 2%, 5%, 7%, 10%, 14%.

Results are shown in Fig. 4.36, where non-dimensional inflow velocity limit
value is represented as function of weir height w/d for the slopes selected.
As can be seen, duct slope has a very limited influence over uL for moder-
ate slopes (θd ≤ 14%). Analytical solutions of cavity and bore propagation
celerities in stagnant fluid are reported section 2.1; these solutions can be re-
calculated in a simple manner in case of an existing uniform liquid flow in the
conduit with average velocity uw. Results indicate that, if flow velocity equals
analytical cavity celerity in stagnant fluids, uw=c, where c=0.464

√
gd (see

Ref. [81]), then air pocket does not propagate inside the duct. This straight-
forward theory is only valid for low weir heights (see red line in Fig. 4.36
representing simplified theory, and compare it with numerical (points)). For
weirs in higher positions (w/d >0.1), limit inflow velocity is determined by
the flow rate for which the duct is able to drain, assuming that water level
is touching the upper wall. This value is calculated as,

q =
2

3
Cq
√

2g (d− w)3/2 , (4.4)

where q is the flow rate per unit width and Cq is the discharge constant.
Hence, if uw · d ≥ q, air flow rate is zero, so non-dimensional limit velocity is
determined as

uL/
√
gd =

2

3
Cq
√

2(1− w/d)3/2 . (4.5)

Equation (4.5) is plot in Fig. 4.36 as the orange curve, with Cq=0.611. It
is apparent that numerical model accommodates accurately to solutions for
the whole range of weir openings.

4.3.4 Bubble rising in a vertical duct

The dynamics of free surface ascension of large air bubbles along a verti-
cal duct requires a three-dimensional simulations. In Refs. [21, 25] authors
substantiate this requisite by computing the non-dimensional rising velocity
of purely inertial Taylor bubbles for plane and axisymmetric cases. Results
reveal a significant difference between both premises: values of velocities are
wb/
√
gd=0.240 for plane bubbles, and 0.345 for axisymmetric ones, much

closer to experimental observations; wb is the rising velocity and d is the
vertical duct diameter (axisymmetric case) or the distance between parallel
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Figure 4.36: Inflow velocity limit value as a function of weir height w and
slope θd. Red line is the velocity of a cavity unaffected by the bore (see
Ref. [81]). Orange line is uL/

√
gd = 0.611 · 2

3
·
√

2 · (1− w/d)3/2.

planes (planar case). This test focuses on the coupling of the bubble head
and the free surface progression, without the need of details in geometri-
cal features of the bubble provided by the full three-dimensional procedure.
Hence, problem is assumed as axisymmetric and numerical model outlined
in Appendix F is applied. Nevertheless, for completeness, a full 3D case of
the problem has been performed and discussed at the end of this chapter.

As it was stated in section 1.2, bubble dynamics is mainly governed by
three elements, the imbalance between air pressure and water column height,
the water film attached to the duct wall, and the air compression/expan-
sion due to the surrounding water [79]. To simulate adequately internal air
pressure, compressible model is activated. If the model operates on the as-
sumption that fluids are incompressible, initial air pressure is automatically
overwritten by hydrostatic pressure of the liquid phase, and the bubble ac-
quires a low rising velocity because air expansion is not taken into account.
Thus free surface keeps nearly static as a consequence of the resulting weak
momentum transfer, contradicting laboratory and in-situ observations.

Now, the experiment of Ref.[79] (also used in section 2.2.3) is reproduced
by the numerical model. Experiment consists of a vertical tube of diameter
d=0.057 m and length Ld=0.610 m connected below to an horizontal duct of
0.094 m diameter. The initial time is considered when air reaches entrance of
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the vertical pipe (zero height). At this initial stage, vertical duct is filled of
water up to a height of 0.254 m, while horizontal duct is filled with air with
a relative pressure of 2452.5 Pa (0.25 meters of water column). The test is
repeated three times in the laboratory. Numerical domain for this simulation
is depicted in Fig. 4.37. It has two chambers, the upper one allows air to
enter and leave the vertical duct, and the lower one contains necessary gas
to originate the air bubble. Lower chamber has a height of 0.1 m. Although
this value is close to the diameter of the horizontal tube in the laboratory
experiment, it is not relevant to the test to replicate exactly laboratory size
of the horizontal tube, as long as air mass is approximately the same as
laboratory set-up. Initial conditions for the simulation are established as
follows. Water reaches level z=0.254 m, and lower water/air interface is an
arch of circle with radius of 0.07 m and its centre situated at z=-0.055 m. This
shape is imposed to help bubble genesis, avoiding indeterminacy at initial
steps. Reference densities are ρ1=1.225 kg/m3, ρ2=1000 kg/m3, viscosities
are µ1=1.8 · 10−5 kg/(ms), µ2=1 · 10−3 kg/(ms), surface tension coefficient is
σ=0.07 N/m, and |g|=9.81 m/s2. Celerity values are a2

1=1.0 · 105 m2/s2 and
a2

2=2.2 ·106 m2/s2. It is employed a structured mesh with δ=1.14 ·10−3
√

2 m
and a time step ∆t=1.25 · 10−5 s. Reinitialisation parameters are ε=0.83∆l
and ∆τ=0.1∆l2/(8ε), and Υ=∆l/(1200ε). This value of Υ proves to be
adequate to alleviate spurious momentum transfers between air and the thin
water layer attached to the vertical duct wall. Boundary marked with red
in Fig. 4.37 has inlet/outlet boundary condition, as described in previous
sections; remaining boundaries have slip condition. No additional conditions
are necessary for boundaries coinciding with axisymmetry axis.

Numerical, analytical and experimental non-dimensional results for the
three runs are superimposed on Fig. 4.38. Figure depicts history of bubble
head position hb (Fig. 4.38a), free surface height hfs (Fig. 4.38b), and bub-
ble pressure hp (measured in height of water column) (Fig. 4.38c), where
{h∗b , h∗fs, h∗p}={hb, hfs, hp}/Ld, and t∗=t

√
gd/Ld. There are appreciable dif-

ferences among laboratory series due to fluctuations in the valve opening at
early stages of experiments. After initial transients during bubble forma-
tion, numerical output shows a quasi-constant bubble celerity, with a good
agreement with the three laboratory series (Fig. 4.38a). Experimental tests
also evince a strong dependency of free surface vertical displacement on ini-
tial conditions, particularly on the phase of its oscillations. This uncertainty
makes difficult a proper comparison with numerics. Nevertheless free surface
numerical solutions show a proper capture of its history, coinciding almost al-
ways with Run 3 (Fig. 4.38b). Furthermore, bubble release in the laboratory
is consequential in inner bubble pressure fluctuations [79]. Fluctuations are
visible in model results (Fig. 4.38c), suggesting a realistic coupling between
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Figure 4.37: Geysering Test. Sketch and dimensions

fluids due to the weakly compressible premise. Numerical results are again
in the range of experimental results. Analytical results also match well with
numerical and laboratory outputs, although it indicates a slight underpre-
diction in bubble celerity and free surface position. Conversely, theoretical
pressure values are in the range of laboratory data.

4.3.5 Two bubbles rising in a vertical duct

Now the semi-analytical approach for multiple bubbles dynamics (see Section
2.2.4) is assessed by comparing it with the numerical model. Experiment in-
corporates a vertical duct of length Ld=2.0 m and diameter d=0.05 m filled
with water up to z=0.75 m (origin of z coordinate is at half the height of
the tube). Two air bubbles are inside the duct with their noses situated at
z=0.4 m and at z=-0.41 m; both bubbles have a length Lb=0.305 m (see
Fig. 4.40a). At initial time fluids are at rest, and bubbles air pressure values
are 0.35 m and 1.16 m of water column respectively. Same initial conditions
are applied for both the analytical and numerical models. For numerical
simulation, axisymmetric version of the numerical model is used. Physical
parameters values are the same as in section 4.3.3. Average element length
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of axisymmetric mesh is δ=6.25
√

2 · 10−4 m, ∆t=4 · 10−5 s, reinitialisation
parameters are ε=0.83∆l, ∆τ=0.1∆l2/(8ε), and parameter Υ=∆l/(6000ε).
Slip condition is applied on all boundaries except on the upper one, where
inlet/outlet condition is used to allow the air to inflow/outflow. Gas ex-
pansion effect is not as consequential as in tests performed in section 2.2.3,
nevertheless it is relevant to compare analytical and numerical approaches to
scrutinise constraints of the theoretical model.

History of free surface position hfs and bubbles nose positions hb1, hb2 are
plotted in Fig. 4.39, where analytical and numerical outputs are marked with
dashed and solid lines, respectively. Free surface position is specified as the
highest point on tube axis with φ > 0.5, and position of each bubble nose is
specified as highest position with φ < 0.5. Numerical results at different times
are depicted in Figs. 4.40b-4.40e. Free surface and bubbles head positions are
well captured by the analytical model for t < 1.6 s, although a slight over-
prediction of upper bubble position is observed between t=0.8 s and t=1.6 s.
This is probably due to detached secondary small bubbles (see Figs. 4.40b-
4.40c), only attained by the numerical algorithm. The detachment reduces
gas mass and bubble length, altering gas expansion effect and bubble velocity.
Furthermore, effect of downstream wakes emergence during pocket rising is
not considered in the analytical approach. Once upper bubble reaches free
surface, analytical solution predicts a sudden decrease in free surface level
because the entire gas mass is assumed to be released at the same time.
Instead, free surface in numerical simulation is transformed into a diffuse
air/water interface because of previously detached bubbles (see Figs. 4.39,
4.40d and 4.40e), seemingly, a more realistic event. Due to this reason,
numerical model can not capture free surface location precisely. Nonetheless
both solutions tend to converge over time (see results in Fig. 4.39, e.g. at
t≈3.1 s). Lastly, trailing bubble position is accurately foretold by analytical.
The slight underprediction from t≈2 s on is attributed to the leading bubble
wake, altering dynamics of trailing bubble.

4.3.6 Geysering Experiments

This section gives an account of two experiments reproducing the physical
process leading to a geysering event. While first test simulates last stage,
where Taylor bubble is developed and ascends generating the geyser, second
one computes a closed air cavity propagation, the air and momentum transfer
from nearly horizontal to vertical conduits, the resulting rising Taylor bubble
and final geysering event. Experiments set-up are the following. First test
consists on a vertical conduit of 4.0 m length and 0.5 m diameter filled of
water up to a height of 3.90 m. This duct has two chambers connected to
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Figure 4.39: Two bubbles rising in a vertical duct, analytical and numerical
results for free surface and bubbles positions as a function of time. Solid and
dashed lines represent numerical and analytical results respectively. Red
lines depict free surface position and blue and green lines show leading and
trailing bubbles position respectively.
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(a) (b) (c) (d) (e)

Figure 4.40: Two bubbles rising in a vertical duct, numerical results at times
(a)0.00s, (b)1.28s, (c)1.60s, (d)1.92s and (e)2.24s. Horizontal axis is scaled
by 2.
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its upper and lower ends with the same objective as in experiment of section
4.3.4 (see Fig. 4.41). This test is performed with axisymmetric and full three
dimensional models. For axisymmetric simulation, the grid is structured with
δ=0.01

√
2 m, and time step is 1.2·10−5 s; hydrodynamics solution parameter

Υ=∆l/(12000ε), to properly capture flow at the moment when entrapped air
is explosively released to the atmosphere. For the full complete simulation,
an unstructured tetrahedral mesh with average element length5 of δ3D=1.42 ·
10−2 m is generated, ∆t=5.0 · 10−5 s, and Υ=∆l/(6ε). Second experiment
consists on an air bag entrapped in an inclined duct connected to ground level
by a saturated vertical shaft (Fig. 4.42). Main duct has a diameter of 1.5 m,
a length of 17 m, and an inclination of 5o with respect to the horizontal.
Vertical conduit has a diameter of 0.5 m, a length of 4.207 m, and joins main
duct at a distance of 5.0 m from main duct left end. Moreover, a 4× 4× 5 m
chamber with its basis on ground level (see Fig. 4.42) allows water to leave the
domain and air to outflow/inflow. Average element length is δ3D=1.71 · 10−2

m, ∆t=2.0 · 10−4 s and Υ=∆l/(600ε). Slip boundary condition is applied
on solid walls (black lines in Fig. 4.42) and inlet/outlet condition is used on
chamber upper boundary (red line in Fig. 4.42). At initial time, water level is
situated at 0.1 m below ground level, and air occupies approximately last 8
meters of the inclined duct. Initial air volume is about 14 m3 and air pressure
is 5.5 m of water column. Fluids are assumed nearly-incompressible in both
cases. Physical parameters are ρ1=1.225 kg/m3, µ1=1.8·10−5 kg/ms, a2

1=105

m2/s2 (air), ρ2=1000 kg/m3, µ2=10−3 kg/ms, a2
2=2.2 · 106 m2/s2 (water),

σ=0.07 N/m and |g|=9.81 m/s2.

Aim of first experiment is to compare results of axisymmetric and com-
plete models. Concerning axisymmetric simulation, water starts to emerge
from the duct at t=0.51 s, when air cavity head is situated at a height of
0.8 m. Selected results at subsequent times are shown in Fig. 4.43. Figure
4.43a depicts the water phase at time 1.38 s. At this time, air cavity head
is still travelling inside the duct and free surface has a twofold shape. Along
with the radial propagation of a shallow layer of water, a volume of water
with mushroom shape raise, in agreement with observations (see first frame
of Fig. 4.46, captured from a real footage). When air bubble head reaches
ground level, water and air are expelled upwards in the form of a high ve-
locity jet (see second frame of Fig. 4.46). Figure 4.43c shows a slice of the
numerical results, highlighting the mixing of phases (blue signifies φ=1 and
white corresponds to φ=0). Although the model does not cover all the subtle
details of the highly complex mixing, it achieves a good agreement with the

5Average element length for 3D unstructured meshes is δ3D=
3

√∑N
1 Vi

N , where Vi is the
volume of tetrahedron i and N is the total number of tetrahedrons.
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Figure 4.41: Domain for geysering simulation 1. Black colour boundary: Slip
condition; red colour boundary: inlet/outlet condition. Blue colour indicates
regions occupied by water at initial time step.
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Figure 4.42: Domain for geysering simulation 2. Black colour boundary: Slip
condition; red colour boundary: inlet/outlet condition. Blue colour indicates
regions occupied by water at initial time step.
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general topology of the phenomenon. The distribution shows, both in real
and numerical cases, a shallow radial flux, two central widening of the jet,
and a sharp front propagating in vertical direction.

Solution given by the full three dimensional model shows that air bubble
reaches the top of the duct at t=1.554 s, while in axisymmetric solution
this time is 1.434 s. This lag is ascribed to a small overprediction of bubble
velocity by the axisymmetric model when bubble’s head is close to the free
surface. Overall flow pattern is almost axisymmetric and full 3D model
results are very similar to outputs obtained with the simplified model until
bubble head reaches street level (see Fig. 4.43b). Although three dimensional
simulation differs from axisymmetric once water and air are expelled, main
topological features remains very similar (compare Figs. 4.43c and 4.43d). In
this case it is also evident that resolution of the three dimensional mesh is
not enough to capture the spray flow.

Regarding second experiment, numerical results are shown in Figs. 4.44
and 4.45. At initial propagation stage, entrapped air expands because pres-
sure is discontinuous across air/water interface; as a consequence, free surface
in vertical shaft rises as can be seen in Fig. 4.44a. Cavity reaches the basis of
vertical duct at t≈1.63 s and starts to ascend. Bubble nose position is plot-
ted in Fig. 4.47 superimposed to analytical solution. Although both solutions
show same trend, in numerical simulation bubble velocity is higher when
pocket starts to rise. This is due to the extra momentum picked up during
the cavity propagation along the inclined duct, which is partially transferred
to vertical component (e.g. at the state plot in Fig. 4.44b). Both numerical
and analytical bubble velocities are much higher than U∞=0.764 m/s (see
section 2.2.1) because gas expansion effects are significant. As air pocket trav-
els along vertical tube, water free surface also shows typical mushroom (see
Figs. 4.44b-4.44d and Fig. 4.45a). Bubble reaches ground level at t≈2.58 s,
and then water is ejected upwards, resulting in a geyser that reaches a height
of 4.0 m over the ground level (see sequence 4.44e-4.44g and Fig. 4.45b).
Although again mesh resolution is not enough to capture the waterspray ex-
pelled from the duct, flow pattern (almost axisymmetric) is similar to real
geyser events (compare Fig. 4.45b and second frame of Fig. 4.46).

This chapter has collected simulations performed with the numerical
method for two-phase flows with interfaces. Assessment tests indicate that
model captures accurately the interface and dynamics of both fluids, prevent-
ing oscillations in phase function and spurious momentum transfers between
fluids. Furthermore, experiments of air cavities propagation and rising Tay-
lor bubbles prove that numerical method is suitable to predict and evaluate
these phenomena, as well as geysering events, occurring in sewer systems.
Next chapter contains conclusions of the Thesis.
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(a) Axisymmetric numerical results at t=1.380 s

(b) Three dimensional numerical results at t=1.440 s

Figure 4.43: Geysering simulation 1
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(c) Slice for axisymmetric numerical results at t=1.578 s

(d) Three dimensional numerical results at t=1.848 s

Figure 4.43: Geysering simulation 1 (cont.)
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(a) t=0.75 s.

(b) t=2.00 s.

Figure 4.44: Geysering experiment 2, phase function results.
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(c) t=2.50 s. (d) t=2.625 s.

(e) t=2.675 s. (f) t=2.725 s.

Figure 4.44: Geysering experiment 2, phase function results (cont.).
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(g) t=2.850 s.

Figure 4.44: Geysering experiment, phase function results (cont. 2).

(a) t=2.375 s. (b) t=2.875 s.

Figure 4.45: Geysering experiment 2, HD plots.
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Figure 4.46: Frames from a footage of a geyser
(https://www.youtube.com/watch?v=dM2L9EHNM5o).
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Figure 4.47: Geysering experiment 2. Numerical and analytical results for
bubble position in vertical duct.
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Conclusions

This Thesis has reported a new numerical model for the simulation of two-
phase flows with moving interfaces, and then it has been applied to scrutinise
intrusion and propagation of air cavities in ducts and geysering events. This
dynamics was also explored with analytical solutions based on control vol-
ume analysis. The numerical model was constructed on the basis of the
Non-Oscillatory Finite Element Method, including effective customised ex-
tensions of flux correction techniques in the three stages of the resolution
procedure. Solution of phase function transport equation needs the compu-
tation of two conservative approaches, a high order solution obtained with
the Characteristic Galerkin algorithm and an independent positive definite
low order solution calculated with an upwind scheme, which introduces the
(nearly) minimum diffusion to achieve positivity. However, original limit-
ing methodology introduces high order mass residuals because of the use of
different discrete fluxes computation. To amend this issue, it has been pro-
posed a modification of the correction algorithm by computing two additional
global coefficients, in terms of total positive and negative element contri-
butions, that counteract mass residuals. Performed benchmarks tests have
shown that final answers, attained after applying modified flux correction
procedures, preserves sign (or monotonicity under certain flow conditions).
Regarding conservation property, mass error is reduced to round-off order in
all performed tests. Comparison between errors in usual norms and ad-hoc
interface capture error measures before and after the activation of new cor-
rections proves that additional mass rebalancing does not worsen accuracy
of original algorithm. Despite the good performance of new correction func-
tions, an improved version without the adjustment of the mass distribution
indiscriminately in the entire grid will be considered for future investigations.

After advection, reinitialisation step reconstructs the phase function to
preserve numerical representation of the interface. This stage requires an
equilibrium between the amount of artificial compressibility and the amount
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of artificial diffusion to maintain stability and accuracy of the simulation.
Too large diffusion could give spurious answers of the flow dynamics, while a
too low diffusion can produce oscillations in the phase field. In this work, it
has been introduced a novel reinitialisation procedure based on a non-linear
anisotropic diffusion equation that accommodates both aforementioned ef-
fects. Unlike original reinitialisation, computation of this diffusion equation
gives locally conservative fluxes, making straightforward the implementation
of flux correction techniques. Then, resulting phase field after reinitialisation,
calculated by an efficient and iterative explicit process, is conservative and
monotone respect to advection solution. Numerical tests have shown that
this new reinitialisation procedure enhances interface definition, since errors
in standard norms and enclosed volume error substantially decrease. More-
over, the higher mesh resolution, the better effect of reinitialisation. Never-
theless, as reinitialisation could adjust the discontinuity location, interface
error slightly increases for the most part of examined cases. To amend this
problem, accuracy of reconstruction can be powered thanks to an improved
calculation of interface normals. Proposed procedure, only involving static
data, constrains normal calculation to a few elements surrounding the inter-
face and extends normal direction values from the nearest element containing
the border between phases. Effectiveness of this new strategy is higher in
simulations without too close interfaces, reaching a substantial reduction in
every measured error. Besides, these errors are generally of the same order
or better than those provided by existing models of similar class. Drawback
of last improvement lies in its use for extensive three dimensional simula-
tions, where a huge amount of memory (RAM) has to be dedicated to store
necessary static data for normals computation. An interesting issue to inves-
tigate in the future is the upgrading of reinitialisation to diminish interface
artificial displacements. One possible solution could be the incorporation of
a new term proportional to |φ− 0.5| in the diffusion equation.

Solution of two incompressible or weakly compressible fluid flows by con-
tinuous numerical models needs for any treatment (especially in convective
acceleration terms) to avoid spurious momentum transfers between phases.
In this work, the Non-Oscillatory Finite Element Method was implemented
to control this pathology because low order solution of hydrodynamics (cal-
culated with an upwind finite element scheme) almost entirely eliminates
velocity overshoots due to its high diffusivity. However, the final solution
obtained after adding anti-diffusive fluxes to low order solution did not pre-
serve this quality, especially for very small density ratios. The reason is that
standard flux limiting procedure did not take into account interface location.
Thus, bounds for a node situated at one phase were computed with velocity
values of the other phase. Hence, an enhanced bounds estimation strategy
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has been proposed, including a parametric dependence on interface location
into the bounds calculation. By means of this procedure, it is favoured, in
some way, the prevalence of low order solution at those nodes close to the in-
terface. Accomplished numerical experiments involving two fluids with very
different density values (e.g. air-water) have shown a noticeable reduction
of velocity peaks once enhanced bounds are used. Notwithstanding, an al-
ternative strategy that does not require to tune additional parameters is an
attractive idea to scrutinise in future research. It is worth noting that limit-
ing procedure is just applied to the velocity predictor field, thus avoiding the
computation of two complete hydrodynamics solutions each time step. While
this course of action gives almost identical results that monolithic approach,
its computational cost is nearly a half.

Continuous numerical representation of the contact discontinuity and
parametrical definition of density gives rise to a virtual stratification between
phases that can provoke false amplifications in problems including Kelvin-
Helmholtz instabilities. Stability analysis demonstrates the beneficial effect
of an active equivalent surface tension force to attenuate high frequency wig-
gles, and determines the necessity of reducing the interface thickness to some
extent to avoid spurious amplifications. After considering some strategies to
reduce transition thickness, the most suitable solution is an adaptive mesh
refinement in the interface neighbourhood, thus preserving original density
interpolation. Grid adaptivity method proposed assures conservation and
monotonicity of variables in refinement/unrefinement processes by means of
a procedure founded on flux correction techniques. Moreover, used nested
grids enable an undemanding dynamic computation. Simulations of two flu-
ids advancing in opposite directions have exhibited a substantial reduction
of artificially exited perturbations when local refinement is activated. In ad-
dition, extra computational cost was about 30%, a much lower value than
simulations with a complete refined mesh.

A relevant portion of of this Thesis has been dedicated to study dynamics
of air cavities and geysering events either by analytical approaches or by the
numerical approximations. Proposed analytical model takes into account gas
expansion effects and free surface position to accurately predicts dynamics of
rising Taylor bubbles and of liquid column situated above them. Although
the theoretical model filters some local details of flow as the detachment of
small bubbles, comparison with laboratory experiments reveals that main
characteristics as time evolution of air cavity and free surface positions, or
bubble pressure, are correctly reproduced. Besides, it was obtained a the-
oretical solution, whose principal parameter is the relation between bubble
gas volume and the square of duct diameter, able to predict sudden de-
compressions of the bubble. It has been proved by existing experiments
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and numerical simulations that, when this condition is near to be fulfilled,
bubble and free surface velocities heavily increase, provoking a strong gey-
sering event. Thus, despite its constraints, theoretical model may constitute
an efficient tool to evaluate risk of geysering events in simple sewer system
configurations. Furthermore, from analytical solution of consecutive rising
bubbles, liquid expelled in first geyser is the principal reason why following
air pockets cause stronger eruptions. This is because pressure of subsequent
bubbles instantly decrease when part of above water leaves the duct, then
air bags expand and drive remainder liquid to the conduit upper end with
a higher strength. Nonetheless, strength of succeeding geysers also depends
on bubbles gas volume and the liquid column remainder inside the duct.

Two-dimensional, axisymmetric and full three dimensional versions of
numerical model were used to perform simulations involving air cavities and
geysering events. Firstly, numerical method assessed air cavities propagating
in straight and inclined ducts. Results indicate that cavity and bore celerities
are accurately predicted with errors lower than 5% respect to experimental
results. Besides, conditions for air cavity entrapment in inclined ducts due to
partially open weirs match fairly well with laboratory outputs. Additionally,
minimum necessary flow rate under which air is not allowed to intrude in
ducts was determined. While duct inclination appears to be inconsequential
(at least for moderate slopes), weir position plays the most important role.
For low gate heights, velocity of liquid flowing in the duct has to be close
to real air cavities celerity (i.e. close to 0.464

√
gd). Conversely, for higher

gate positions, threshold is related to the admissible flow rate over the weir,
that can be calculated with a simple equation. Strategy to determine these
conditions has proved to be effective for a realistic configuration and its
future application for more complex geometries of sewer and stormwater
storage systems is encouraging. Results accomplished can be useful to avoid
geysering events by forcing a water inflow in the conduit or by controlling a
gate situated at the lower end of the system, to prevent air intrusion. On the
other hand, if emergence of air cavities is unavoidable, depressurisation could
be beneficial to avert the geyser. This preventive action should be located at
those critical locations that promote the cavity sealing (e.g. section changes
or obstacles).

Last series of tests involved rising Taylor bubbles in vertical conduits and
geysering events. In these cases, accuracy of capture of momentum exchanges
between bubble and liquid column above is critical to determine the geyser
strength, making imperative the use of weak-compressibility assumption and
three dimensional simulations (or, at least, axisymmetric for circular con-
duits). In the case of multiple bubbles simulations, numerical model has
supplemented to a large degree available outputs of analytical approach by
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providing details of the dynamics not well reproduced by theoretical proce-
dure. As an example, it was captured the effect of downstream wakes over
trailing bubble, which alters moderately the expected bubble velocity given
by analytical model. Finally, for geysering experiments, axisymmetric and
full three dimensional numerical approaches provided main topological fea-
tures of the flow once water and air were expelled from the vertical duct. In
qualitative terms, obtained geysers were similar to real events occurring in
sewer systems. A challenging issue to be developed will be the coupling of
present model with shallow water flow models to simulate street level surface
flows for integrated studies of urban floodings. Moreover, future applications
of present numerical method for interfaces in other fields will be explored.
Some targets are sediment transport processes and fluid-structure interaction
problems.
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Appendix A

Integral Form of Conservation Equations

The integral form of Conservation Laws are written as:

� Mass conservation:

d

dt

∫
Ω(t)

ρ(x, t) dΩ +

∫
Γ(t)

ρ(x, t)(u(x, t)− b) · nb dΓ = 0 (A.1)

� Momentum conservation:

d

dt

∫
Ω(t)

ρ(x, t)u(x, t) dΩ +

∫
Γ(t)

ρ(x, t)u(x, t)(u(x, t)− b) · nb dΓ =∫
Ω(t)

ρ(x, t)g dΩ +

∫
Γ(t)

f(nb,x, t) dΓ (A.2)

� Energy conservation for flows with constant internal energy and with-
out heat fluxes:

d

dt

∫
Ω(t)

ρ(x, t)
|u(x, t)|2

2
dΩ+

∫
Γ(t)

ρ(x, t)

[
|u(x, t)|2

2
(u(x, t)− b)

]
· nb dΓ

=

∫
Ω(t)

ρ(x, t)g · u(x, t) dΩ +

∫
Γ(t)

f(nb,x, t) · u(x, t) dΓ , (A.3)

where Ω represents a control volume bounded by Γ, nb is the normal unit
vector to the control volume boundary, b is the boundary velocity and f
represents external forces applied on control volume boundary.
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Appendix B

Characteristic-Galerkin Formulation

Characteristic-Galerkin formulation for transport equation is reported in
Ref. [61]. Here, steps to obtain final forms are reproduced for completeness.

Transport equation of a scalar field B is,

∂B

∂t
+ u · ∇B +R

′
= 0 , (B.1)

R
′
= R +B∇ · u , (B.2)

where R comprises source terms. As
∂xj
∂t

=uj, Eq. (B.1) can be rewritten as,

dB

dt
= −R′ , (B.3)

where d
dt

represents the material derivative. Consider Fig. B.1, where both
the temporal and spatial dimensions are represented. Quantity B(P ) is de-
termined by B(Q) and velocity field at both points. The aim is to obtain an
expression to get B(P ) in function of values at the same spatial position, i.e.
B(K) and uj(K). Firstly, Eq. (B.3) is discretized along the characteristics to
obtain B(P ) and B(Q),

B(P ) = B(Q) + ∆t
dB

dt

∣∣∣∣
t(Q)

+
∆t2

2

d2B

dt2

∣∣∣∣
t(Q)+θ∆t

(B.4)

B(Q) = B(P )−∆t
dB

dt

∣∣∣∣
t(P )

+
∆t2

2

d2B

dt2

∣∣∣∣
t(P )−θ∆t

, (B.5)

where ∆t=tn+1− tn and θ ∈ [0, 1]. Next, operating with Eqs. (B.4) and (B.5)
and taking θ=1/2,

B(P )−B(Q) =
∆t

2

(
dB

dt

∣∣∣∣
t(Q)

+
dB

dt

∣∣∣∣
t(P )

)
= −∆t

2

(
R
′
∣∣∣
t(Q)

+ R
′
∣∣∣
t(P )

)
.

(B.6)
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t

xi

tn+1

tn

δi

Q K

P

Figure B.1: Characteristic-Galerkin scheme

On the other hand, following the same procedure, next equations can be
obtained,

xj(P ) = xj(Q) + ∆t
∂xj
∂t

∣∣∣∣
t(Q)

+
∆t2

2

∂2xj
∂t2

∣∣∣∣
t(Q)+θ∆t

, (B.7)

xj(Q) = xj(P )−∆t
∂xj
∂t

∣∣∣∣
t(P )

+
∆t2

2

∂2xj
∂t2

∣∣∣∣
t(P )−θ∆t

, (B.8)

xj(P )− xj(Q) = δj =
∆t

2

(
uj|t(Q) + uj|t(P )

)
. (B.9)

Now, an equation of B(Q) in function of B(K) is constructed as follows,

B(Q) = B(K)− δi
∂B

∂xi

∣∣∣∣
tn

+
δiδj
2

∂2B

∂xi∂xj

∣∣∣∣
tn

; (B.10)

which is reformulated by introducing Eq. (B.9) into Eq. (B.10),

B(Q) = B(K)− ∆t

2

(
ui|t(Q) + ui|t(P )

) ∂B
∂xi

∣∣∣∣
tn

+

∆t2

8

(
ui|t(Q) + ui|t(P )

)(
uj|t(Q) + uj|t(P )

) ∂2B

∂xi∂xj

∣∣∣∣
tn
. (B.11)

It is interesting to eliminate values at Q from previous equations, for that



165

purpose next expressions are taken into account,

ui|t(Q) = ui|tn − δj
∂ui
∂xj

∣∣∣∣
tn

+
δjδk

2

∂2ui
∂xj∂xk

∣∣∣∣
tn
, (B.12)

R
′
∣∣∣
t(Q)

= R
′
∣∣∣
tn
− δj

∂R
′

∂xj

∣∣∣∣
tn

+
δjδk

2

∂2R
′

∂xj∂xk

∣∣∣∣
tn
. (B.13)

ui|t(Q) = ui|tn −
∆t

2

(
uj|t(Q) + uj|t(P )

) ∂ui
∂xj

∣∣∣∣
tn

+

∆t2

8

(
uj|t(Q) + uj|t(P )

)(
uk|t(Q) + uk|t(P )

) ∂2ui
∂xj∂xk

∣∣∣∣
tn
, (B.14)

ui|t(Q) = ui|tn −
∆t

2

(
uj|tn − δl

∂uj
∂xl

∣∣∣∣
tn

+
δlδm

2

∂2uj
∂xl∂xm

∣∣∣∣
tn

+ uj|t(P )

)
∂ui
∂xj

∣∣∣∣
tn

+

∆t2

8

(
uj|tn − δl

∂uj
∂xl

∣∣∣∣
tn

+
δlδm

2

∂2uj
∂xl∂xm

∣∣∣∣
tn

+ uj|t(P )

)
(
uk|tn − δl

∂uk
∂xl

∣∣∣∣
tn

+
δlδm

2

∂2uk
∂xl∂xm

∣∣∣∣
tn

+ uk|t(P )

)
∂2ui
∂xj∂xk

∣∣∣∣
tn
, (B.15)

where Eqs. (B.14) and (B.15) are obtained by introducing Eq. (B.9) into
Eq. (B.12) and Eq. (B.12) into Eq. (B.14) respectively. Neglecting third order
terms from previous equation, next equation is obtained

ui|t(Q) = ui|tn −
∆t

2

(
uj|tn + uj|t(P ) − δl

∂uj
∂xl

∣∣∣∣
tn

)
∂ui
∂xj

∣∣∣∣
tn

+

∆t2

8

(
uj|tn + uj|t(P )

)(
uk|tn + uk|t(P )

) ∂2ui
∂xj∂xk

∣∣∣∣
tn
. (B.16)

Then, replacing again Eq. (B.9) into Eq. (B.16) and neglecting third order
terms, next equation is achieved

ui|t(Q) = ui|tn−
∆t

2

(
uj|tn + uj|t(P ) −

∆t

2

(
uk|tn + uk|t(P )

) ∂uj
∂xl

∣∣∣∣
tn

)
∂ui
∂xj

∣∣∣∣
tn

+

∆t2

8

(
uj|tn + uj|t(P )

)(
uk|tn + uk|t(P )

) ∂2ui
∂xj∂xk

∣∣∣∣
tn
. (B.17)
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Similar equation is obtained for Eq. (B.13),

R
′
∣∣∣
t(Q)

= R
′
∣∣∣
tn
−∆t

2

(
uj|tn + uj|t(P ) −

∆t

2

(
uk|tn + uk|t(P )

) ∂uj
∂xl

∣∣∣∣
tn

)
∂R

′

∂xj

∣∣∣∣
tn

+

∆t2

8

(
uj|tn + uj|t(P )

)(
uk|tn + uk|t(P )

) ∂2R
′

∂xj∂xk

∣∣∣∣
tn
. (B.18)

Now, Eqs. (B.17) and (B.9) are introduced into Eq. (B.11),

B(Q) = B(K)−∆t

2

(
ui|tn + ui|t(P ) −

∆t

2

(
uj|tn + uj|t(P )

) ∂ui
∂xj

∣∣∣∣
tn

)
∂B

∂xi

∣∣∣∣
tn

+

∆t2

8

(
ui|tn + ui|t(P )

)(
uj|tn + uj|t(P )

) ∂2B

∂xi∂xj

∣∣∣∣
tn
, (B.19)

and Eq. (B.18) into Eq. (B.6),

B(P ) = B(Q)− ∆t

2

(
R
′
∣∣∣
tn

+ R
′
∣∣∣
t(P )
− ∆t

2

(
uj|tn + uj|t(P )

) ∂R′
∂xj

∣∣∣∣
tn

)
.

(B.20)
Third order terms have been neglected in last two equations. Finally, by

introducing Eq. (B.19) into Eq. (B.20) and recalling
(·)|tn+ (·)|t(P )

2
=(·)n+1/2,

B(P )=Bn+1 and B(K)=Bn, final equation is obtained,

Bn+1 = Bn −∆tu
n+1/2
i

∂B

∂xi

∣∣∣∣
tn
−∆tR

′n+1/2 +
∆t2

2
u
n+1/2
j

∂ui
∂xj

∣∣∣∣
tn

∂B

∂xi

∣∣∣∣
tn

+

∆t2

2
u
n+1/2
i u

n+1/2
j

∂2B

∂xi∂xj

∣∣∣∣
tn

+
∆t2

2
u
n+1/2
i

∂R
′

∂xi

∣∣∣∣
tn
, (B.21)

or, replacing R
′
=R +B ∂ui

∂xi
,

Bn+1 = Bn −∆t

[
u
n+1/2
i

∂B

∂xi

∣∣∣∣
tn

+Bn+1/2 ∂uk
∂xk

∣∣∣∣
tn

+Rn+1/2

]
+

∆t2

2

[
u
n+1/2
i

∂uj
∂xi

∣∣∣∣
tn

∂B

∂xj

∣∣∣∣
tn

+ u
n+1/2
i u

n+1/2
j

∂2B

∂xi∂xj

∣∣∣∣
tn

+

u
n+1/2
i

∂

∂xi

(
Bn ∂uk

∂xk

∣∣∣∣
tn

)
+ u

n+1/2
i

∂R

∂xi

∣∣∣∣
tn

]
. (B.22)
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Matrix Formulation

This appendix reports the matrix form of finite element discretisation of
solved equations. Here linear shape functions for triangular elements are
used for clarity. Note that equations for linear tetrahedrons (3D formulation)
can be straightforward constructed. Following equations are calculated for a
single element, and full system of equations is built by the suitable assembling
of individuals matrices.

C.1 Transport Equation

Phase function transport equation is obtained by replacingBn+1/2≈Bn, B=φ,
and R=0 in Eq. (B.22). Then, standard Galerkin procedure, calling N l to
shape function of node l, over one element Ω gives

1︷ ︸︸ ︷∫
Ω

N l∆φ dΩ = −∆t

2︷ ︸︸ ︷∫
Ω

N l
∂
(
φnu

n+1/2
i

)
∂xi

dΩ

+
∆t2

2




3︷ ︸︸ ︷∫
Ω

N lu
n+1/2
i

∂unj
∂xi

∂φn

∂xj
dΩ

+


4︷ ︸︸ ︷∫

Ω

N lu
n+1/2
i

∂

∂xi

(
φn
∂unk
∂xk

)
dΩ



+


5︷ ︸︸ ︷∫

Ω

N lu
n+1/2
i u

n+1/2
j

∂2φn

∂xi∂xj
dΩ


 . (C.1)
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Integral 1∫
Ω

N l∆φ dΩ =
A

12

(
∆φl + ∆φa + ∆φb + ∆φc

)
for l = a, b, c , (C.2)

where A is the area of element Ω and super-indexes a, b and c indicate
values of the three nodes of the triangle. Integral evaluation for each node is
obtained by replacing l=a, b, c respectively.

Integral 2

∫
Ω

N l
∂
(
φnu

n+1/2
i

)
∂xi

dΩ =

2a︷ ︸︸ ︷
−
∫

Ω

∂N l

∂xi
φnu

n+1/2
i dΩ +

2b︷ ︸︸ ︷∫
Γ

N lφn
(
u
n+1/2
i · nb,i

)
dΩ for l = a, b, c . (C.3)

In last equation, Γ represents the domain boundary and nb,i is the i compo-
nent of the boundary normal. Note that last integral is only calculated at
those elements with any edge belonging to the boundary.

Integral 2a

−
∫

Ω

∂N l

∂xi
φnu

n+1/2
i dΩ =

− A

3

[
∂N l

∂xi

(
(φa)n (uai )

n+1/2 +
(
φb
)n (

ubi
)n+1/2

+ (φc)n (uci)
n+1/2

)]
for l = a, b, c . (C.4)

Integral 2b

∫
Γ

N lφn
(
u
n+1/2
i · nb,i

)
dΩ =

LΓ

6

[((
φl
)n (

uli
)n+1/2

+ (φa)n (uai )
n+1/2 +

(
φb
)n (

ubi
)n+1/2

)
nb,i

]
for l = a, b , (C.5)

where LΓ is the length of the boundary edge joining nodes a and b.
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Integral 3

∫
Ω

N lu
n+1/2
i

∂unj
∂xi

∂φn

∂xj
dΩ =

A

12

(
uli + uai + ubi + uci

)n+1/2
(
∂unj
∂xi

∂φn

∂xj

)
for l = a, b, c ,

(C.6)

where derivatives are calculated as

∂ui
∂xj

=
∂Na

∂xj
uai +

∂N b

∂xj
ubi +

∂N c

∂xj
uci ,

∂φ

∂xj
=
∂Na

∂xj
φa +

∂N b

∂xj
φb +

∂N c

∂xj
φc .

Integral 4

∫
Ω

N lu
n+1/2
i

∂

∂xi

[(
φ
∂uk
∂xk

)n]
dΩ =

4a︷ ︸︸ ︷
−
∫

Ω

∂

∂xi

(
N lu

n+1/2
i

)(
φ
∂uk
∂xk

)n
dΩ

+

4b︷ ︸︸ ︷∫
Γ

N l

(
φ
∂uk
∂xk

)n (
u
n+1/2
i · nb,i

)
dΓ . (C.7)

Integral 4a

−
∫

Ω

∂

∂xi

(
N lu

n+1/2
i

)(
φ
∂uk
∂xk

)n
dΩ ≈

− A
[
φ
n
(
∂uk
∂xk

)n(
u
n+1/2
i

∂N l

∂xi

)]
for l = a, b, c . (C.8)

In last equation, overlined terms are calculated as ui =
uai + ubi + uci

3 and

φ =
φa + φb + φc

3 .
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Integral 4b

∫
Γ

N l

(
φ
∂uk
∂xk

)n (
u
n+1/2
i · nb,i

)
dΓ ≈

LΓ

12

[(
φa + φb

)n(∂unk
∂xk

)] [(
uai + ubi + uli

)n+1/2 · nb,i
]

for l = a, b respectively . (C.9)

Integral 5

∫
Ω

N lu
n+1/2
i u

n+1/2
j

∂2φn

∂xi∂xj
dΩ =

5a︷ ︸︸ ︷
−
∫

Ω

∂

∂xi

(
N lu

n+1/2
i u

n+1/2
j

) ∂φn
∂xj

dΩ

+

5b︷ ︸︸ ︷∫
Γ

N lu
n+1/2
j

∂φn

∂xj

(
u
n+1/2
i · nb,i

)
dΓ . (C.10)

Integral 5a

−
∫

Ω

∂

∂xi

(
N lu

n+1/2
i u

n+1/2
j

) ∂φ

∂xj
dΩ ≈ −A

(
∂N l

∂xi
u
n+1/2
i

)(
∂φn

∂xj
u
n+1/2
j

)
for l = a, b, c . (C.11)

Integral 5b

∫
Γ

N lu
n+1/2
j

∂φn

∂xj

(
u
n+1/2
i · nb,i

)
dΓ ≈

LΓ

12

[(
uaj + ubj

)n+1/2 ∂φn

∂xj

] [(
uai + ubi + uli

)n+1/2 · nb,i
]

for l = a, b . (C.12)

C.2 Hydrodynamics Solution - Velocity Predictor

First step of hydrodynamics solution is the calculation of velocity predic-
tor u∗. Equations for both velocity predictor components are attained by
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replacing B=um and

R = −1

ρ

∂Tmj
∂xj

− gm −Tm − um∇ · u ,

for m=1, D, where T is the viscous stress tensor and T is the surface tension
term. Here, Rn+1/2 ≈ Rn is assumed to obtain a full explicit discretisation.
As in previous section, standard Galerkin method over one single element Ω
gives

1︷ ︸︸ ︷∫
Ω

N l∆u∗m dΩ = −∆t

2︷ ︸︸ ︷∫
Ω

N l∂u
n
mu

n+1/2
i

∂xi
dΩ +∆t

3︷ ︸︸ ︷∫
Ω

N l 1

ρ

∂T nmj
∂xj

dΩ

+ ∆t

4︷ ︸︸ ︷∫
Ω

N lgm dΩ +∆t

5︷ ︸︸ ︷∫
Ω

N lTn
m dΩ +∆t

6︷ ︸︸ ︷∫
Ω

N lunm
∂unk
∂xk

dΩ

+
∆t2

2




7︷ ︸︸ ︷∫
Ω

N lu
n+1/2
i

∂unj
∂xi

∂unm
∂xj

dΩ



+


8︷ ︸︸ ︷∫

Ω

N lu
n+1/2
i

∂

∂xi

(
−1

ρ

∂T nmj
∂xj

− gm −Tn
m

)
dΩ



+


9︷ ︸︸ ︷∫

Ω

N lu
n+1/2
i u

n+1/2
j

∂2unm
∂xi∂xj

dΩ


 for m = 1, D. (C.13)

In last equation, ∆u∗m=u∗m − unm and integrals 1, 2, 7 and 9 can be obtained
from Eqs. (C.2), (C.3), (C.6) and (C.10) by replacing φ with um. Summation
convention is not applied to subindex m in previous and following equations.

Integral 3

∫
Ω

N l 1

ρ

∂T nmj
∂xj

dΩ ≈

3a︷ ︸︸ ︷
−1

ρ

∫
Ω

∂N l

∂xj
T nmj dΩ +

3b︷ ︸︸ ︷
1

ρ

∫
Γ

N lT nmj · nb,j dΓ , (C.14)
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where

Tmj = µ

(
∂Na

∂xj
uam +

∂N b

∂xj
ubm +

∂N c

∂xj
ucm +

∂Na

∂xm
uaj +

∂N b

∂xm
ubj +

∂N c

∂xm
ucj

)
,

ρ =
ρa + ρb + ρc

3
,

µ =
µa + µb + µc

3
.

Integral 3a

− 1

ρ

∫
Ω

∂N l

∂xj
T nmj dΩ = −A

ρ

(
∂N l

∂xj
Tmj
)n

for l = a, b, c , (C.15)

Integral 3b

1

ρ

∫
Γ

N lT nmj · nb,j dΓ =
LΓ

2ρ

(
T nmj · nb,j

)
for nodes a, b . (C.16)

Integral 4 ∫
Ω

N lgm dΩ =
A

3
gm for nodes a, b, c . (C.17)

Integral 5 ∫
Ω

N lTn
m dΩ =

A

3
Tn
m for nodes a, b, c . (C.18)

Surface tension term T is calculated by element in the following way,

1. Calculation of nodal values of ∇φn by using Eq. (D.4) and improved
normals (see section 3.4),

2. Calculation of interface curvature by using shape functions and nodal
values of ∇φ,

κn = −∇ · ∇φ
n

|∇φn|
=

−

[
∂Na

∂x1

(
∇φn

|∇φn|

)a
1

+
∂N b

∂x1

(
∇φn

|∇φn|

)b
1

+
∂N c

∂x1

(
∇φn

|∇φn|

)c
1

+

∂Na

∂x2

(
∇φn

|∇φn|

)a
2

+
∂N b

∂x2

(
∇φn

|∇φn|

)b
2

+
∂N c

∂x2

(
∇φn

|∇φn|

)c
2

]
.
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3. Calculation of surface tension term,

Tn
m ≈

2σ

(ρ1 + ρ2)(ρ2 − ρ1)
κn

∂ρ

∂xm
,

∂ρ

∂xm
=
∂Na

∂xm
ρa +

∂N b

∂xm
ρb +

∂N c

∂xm
ρc .

Integral 6

∫
Ω

N lunm
∂unk
∂xk

dΩ =
A

12

(
∂unk
∂xk

)(
ulm + uam + ubm + ucm

)n
for l = a, b, c . (C.19)

Integral 8

∫
Ω

N lu
n+1/2
i

∂

∂xi

(
−1

ρ

∂T nmj
∂xj

− gm −Tn
m

)
dΩ =

8a︷ ︸︸ ︷
−
∫

Ω

∂

∂xi

(
N lu

n+1/2
i

)(
−1

ρ

∂T nmj
∂xj

− gm −Tn
m

)
dΩ

+

8b︷ ︸︸ ︷∫
Γ

N l

(
−1

ρ

∂T nmj
∂xj

− gm −Tn
m

)(
u
n+1/2
i · nb,i

)
dΓ . (C.20)

Integral 8a

−
∫

Ω

∂

∂xi

(
N lu

n+1/2
i

)(
−1

ρ

∂T nmj
∂xj

− gm −Tn
m

)
dΩ ≈

− A
[
(−gm −Tn

m)

(
u
n+1/2
i

∂N l

∂xi

)]
for l = a, b, c . (C.21)
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Integral 8b

∫
Γ

N l

(
−1

ρ

∂T nmj
∂xj

− gm −Tn
m

)(
u
n+1/2
i · nb,i

)
dΓ ≈

LΓ

6
(−gm −Tn

m)
((
uai + ubi + uli

)
· nb,i

)n+1/2

for l = a, b . (C.22)

C.3 Hydrodynamics Solution - Pressure Calculation

Second step of hydrodynamics solution is the calculation of pressure incre-
ment. Equation (3.47) can be written as

∂

∂t

(
p− p0

a2
1 + (a2

2 − a2
1)φ

)
+ θ1∇ ·

(
ρ
′
∆u∗∗

)
= −∇ ·

(
ρ
′
un
)
− θ1∇ ·

(
ρ
′
∆u∗

)
,

(C.23)

where ρ
′
=ρ1 +

p− p0

a2
1 + (a2

2 − a2
1)φ

, density values are calculated after solving

phase function transport equation and reinitialisation, and ∆u∗∗ includes
pressure terms (see Eq. (3.48)). Now, a forward Euler time discretisation is
employed and weighted residual method is applied to the resulting equation
over one single element Ω,

∫
Ω

N l 1

a2

∆p

∆t
dΩ−∆tθ1θ2

∫
Ω

N l∇ ·
(
ρ′

ρ
∇(∆p)

)
dΩ =

−
∫

Ω

N l∇ ·
(
ρ
′
un
)

dΩ− θ1

∫
Ω

N l∇ ·
(
ρ
′
∆u∗

)
dΩ

+ ∆tθ1

∫
Ω

N l∇ ·
(
ρ′

ρ
∇pn

)
dΩ .
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Note that pressure second order term vanishes because linear finite elements
are used. Next, integration by parts is applied over some integrals,

1︷ ︸︸ ︷∫
Ω

N l 1

a2

∆p

∆t
dΩ +∆tθ1θ2

ρ′

ρ

2︷ ︸︸ ︷∫
Ω

∂N l

∂xi

∂ (∆p)

∂xi
dΩ =

3︷ ︸︸ ︷
−
∫

Ω

N l∇ ·
(
ρ
′
un
)

dΩ +θ1ρ
′

4︷ ︸︸ ︷∫
Ω

∂N l

∂xi
∆u∗i dΩ

−∆tθ1
ρ′

ρ

5︷ ︸︸ ︷∫
Ω

∂N l

∂xi

∂pn

∂xi
dΩ−θ1ρ

′

6︷ ︸︸ ︷∫
Γ

N l

(
∆u∗i −

1

ρ

∂pn+θ2

∂xi

)
· nb,i dΓ . (C.24)

a2 = a2(φ) = a2
1 + (a2

2 − a2
1)φ ,

ρ′ =
ρ′a + ρ′b + ρ′c

3
.

For clarity, integrals 1 and 2 will be expressed in matrix form because they
constitute the coefficients matrix of the equations system.

Integral 1

∫
Ω

N l 1

a2

∆p

∆t
dΩ =

1

a2∆t

A

12

 2 1 1
1 2 1
1 1 2

 ∆pa

∆pb

∆pc

 , (C.25)

a2 =
(a2)a + (a2)b + (a2)c

3
.

Integral 2

∫
Ω

∂N l

∂xi

∂ (∆p)

∂xi
dΩ =

A


(
∂Na

∂x1

)2

+
(
∂Na

∂x2

)2
∂Na

∂x1
∂Nb

∂x1
+ ∂Na

∂x2
∂Nb

∂x2
∂Na

∂x1
∂Nc

∂x1
+ ∂Na

∂x2
∂Nc

∂x2

∂Nb

∂x1
∂Na

∂x1
+ ∂Nb

∂x2
∂Na

∂x2

(
∂Nb

∂x1

)2

+
(
∂Nb

∂x2

)2
∂Nb

∂x1
∂Nc

∂x1
+ ∂Nb

∂x2
∂Nc

∂x2

∂Nc

∂x1
∂Na

∂x1
+ ∂Nc

∂x2
∂Na

∂x2
∂Nc

∂x1
∂Nb

∂x1
+ ∂Nc

∂x2
∂Nb

∂x2

(
∂Nc

∂x1

)2

+
(
∂Nc

∂x2

)2


 ∆pa

∆pb

∆pc

 ,

(C.26)
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Integral 3

−
∫

Ω

N l∇ · (ρ′un) dΩ ≈ −ρ′A
3

(
∂unk
∂xk

)
for nodes a, b, c. (C.27)

Integral 4

∫
Ω

∂N l

∂xi
∆u∗i dΩ = A

(
∂N l

∂xi
∆u∗i

)
for l = a, b, c , (C.28)

∆u∗i =
(∆u∗i )

a + (∆u∗i )
b + (∆u∗i )

c

3
.

Integral 5

∫
Ω

∂N l

∂xi

∂pn

∂xi
dΩ = A

(
∂N l

∂xi

∂pn

∂xi

)
for l = a, b, c , (C.29)

∂p

∂xi
=
∂Na

∂xi
pa +

∂N b

∂xi
pb +

∂N c

∂xi
pc .

Integral 6

∫
Γ

N l

(
∆u∗i −

1

ρ

∂pn+θ2

∂xi

)
· nb,i dΓ ≈

LΓ

2

[(
(∆u∗i )

a + (∆u∗i )
b + (∆u∗i )

l

3
− 1

ρ

∂pn

∂xi

)
· nb,i

]
for l = a, b . (C.30)

Note that last integral vanishes on boundaries with wall or slip conditions.
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C.4 Hydrodynamics Solution - Velocity Calculation

Final step is the computation of un+1=un + ∆u∗+ ∆u∗∗. Standard Galerkin
method for Eq. (3.48) gives over one single element Ω,

1︷ ︸︸ ︷∫
Ω

N l∆u∗∗m dΩ = −∆t

2︷ ︸︸ ︷∫
Ω

N l 1

ρ

∂pn+θ2

∂xm
dΩ

+
∆t2

2

3︷ ︸︸ ︷∫
Ω

N lu
n+1/2
i

∂

∂xi

(
1

ρ

∂pn+θ2

∂xm

)
dΩ , (C.31)

where pn+θ2=pn + θ2∆p and integral 1 can be obtained from Eq. (C.2) by
replacing φ with ∆u∗∗m .

Integral 2 ∫
Ω

N l 1

ρ

∂pn+θ2

∂xm
dΩ ≈ 1

ρ

A

3

∂pn+θ2

∂xm
for nodes a, b, c . (C.32)

Integral 3

∫
Ω

N lu
n+1/2
i

∂

∂xi

(
1

ρ

∂pn+θ2

∂xm

)
dΩ =

3a︷ ︸︸ ︷
−
∫

Ω

∂

∂xi

(
N lu

n+1/2
i

)(1

ρ

∂pn+θ2

∂xm

)
dΩ

+

3b︷ ︸︸ ︷∫
Γ

N l

(
1

ρ

∂pn+θ2

∂xm

)(
u
n+1/2
i · nb,i

)
dΓ . (C.33)

Integral 3a

−
∫

Ω

∂

∂xi

(
N lu

n+1/2
i

)(1

ρ

∂pn+θ2

∂xm

)
dΩ ≈

− A

ρ

[
∂pn+θ2

∂xm

(
u
n+1/2
i

∂N l

∂xi

)]
for l = a, b, c . (C.34)
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Integral 3b

∫
Γ

N l

(
1

ρ

∂pn+θ2

∂xm

)
u
n+1/2
i · nb,i dΓ ≈

LΓ

6

1

ρ

(
∂pn+θ2

∂xm

)[(
uai + ubi + uli

)n+1/2 · nb,i
]

for l = a, b . (C.35)



Appendix D

First Order Upwind Scheme

D.1 Advection Equation

The proposed low order approach is an upwind monotone scheme indepen-
dent of the high order solution. Procedure to construct the low order re-
sponse was reported in Ref. [61], where it was demonstrated that standard
Galerkin discretisation of an advective equation plus an added numerical dif-
fusion has an equivalent discretisation on median dual grids (where bounds
pass through the centroid of the elements and midside of edges). A similar
conclusion can be found in Ref. [2]. Now consider Fig. D.1, where G is the
centroid of triangle Ω, ab, bc and ca are the middle points of edges a-b, b-c
and c-a respectively, and nabG, nbcG and ncaG are the normals to the seg-
ments G-ab, G-bc and G-ca respectively. Then, according to aforementioned
premise, next equation is satisfied,∫

Ω

∂N l

∂xi
Bnuni dΩ−

∫
Ω

∂N l

∂xi
Kij

∂Bn

∂xj
dΩ =

−
[

1

2

(
uab +

∣∣uab∣∣)LabGBn
a +

1

2

(
uab −

∣∣uab∣∣)LabGBn
b

]
+[

1

2
(uca + |uca|)LcaGBn

c +
1

2
(uca − |uca|)LcaGBn

a

]
if l = a ,

−
[

1

2

(
ubc +

∣∣ubc∣∣)LbcGBn
b +

1

2

(
ubc −

∣∣ubc∣∣)LbcGBn
c

]
+[

1

2

(
uab +

∣∣uab∣∣)LabGBn
a +

1

2

(
uab −

∣∣uab∣∣)LabGBn
b

]
if l = b , and

−
[

1

2
(uca + |uca|)LcaGBn

c +
1

2
(uca − |uca|)LcaGBn

a

]
+

+

[
1

2

(
ubc +

∣∣ubc∣∣)LbcGBn
b +

1

2

(
ubc −

∣∣ubc∣∣)LbcGBn
c

]
if l = c .

(D.1)

179



180 APPENDIX D. FIRST ORDER UPWIND SCHEME

a

b

ab

c

bc

ca

G

nabG

nbcG

ncaG

Figure D.1: Element Ω from a discretised domain.

In last equations, N l is the shape function of node l, Kij is an artificial
diffusivity tensor, Lpq is the length of segment p-q and

uab =

[
ua + ub

2
· nabG

]n
,

ubc =

[
ub + uc

2
· nbcG

]
,

uca =

[
uc + ua

2
· ncaG

]
.

Then, the resulting LO scheme for a node p after a forward Euler discretisa-
tion in time is,

∆bpLO =
∆t

ML,pp

(
e∑
FInflow −

e∑
FOutflow

)
, (D.2)

where ∆bpLO=(bp)n+1
LO − (Bp)n (bLO is the LO answer), ML,pp is the lumped

mass matrix element corresponding to node p, e is the total number of sur-
rounding elements connected with node p and FInflow, FOutflow can be com-
puted from equation (D.1).

D.2 Source Terms Integration

Now a transport equation with source term Q is considered. If it is assumed
that source values are known per node, final solution (D.2) can be modified
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as follows,

∆bpLO =
∆t

ML,pp

(
e∑
FInflow −

e∑
FOutflow

)
+ ∆tQp . (D.3)

However, if source term involves derivatives, these are obtained per element
in the FE domain. In this case, source term can be reconstructed from
element values to nodal values in the following way,

Qp =
1

ML,pp

e∑
q=1

QqM
q
L,p . (D.4)

In last equation, subindexes p and q indicate values per node and per el-
ement respectively, and Mq

L,p is the term corresponding to node p of the
individual lumped mass matrix of finite element q. Hence, for linear trian-
gles Mq

L,p=Aq/3, and for bilinear quadrilateral Mq
L,p=Aq/4, where Aq is the

area of finite element q.
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Appendix E

Matrices for Refinement

Two refinement methodologies are designed, the first one divides each triangle
into three triangles by introducing an additional node at the triangle centre
(see Fig. E.1). In this case, for refinement, new node values can be calculated
as

B4 =
B1 +B2 +B3

3
,

which conserves the element mass and respects the bounds. However, for
unrefinement process, it must be employed the procedure proposed in section
3.7. System (3.90) for unrefinement process of a single element is

Ω

12

2 1 1
1 2 1
1 1 2

 B1
∗

B2
∗

B3
∗

 =
Ω

108

14 5 5 12
5 14 5 12
5 5 14 12



B1

B2

B3

B4


Second alternative divides the element into four triangles by adding nodes

at edges middle points. Thus, there are three types of elements shown in
Fig. E.2. For this kind of refinement, new nodal values can not be calculated
as the average of edge nodal values because resulting field is not always
conservative. Specifically, it is not possible when it is transformed an element
previously divided in two triangles into an element divided in four triangles.

1
2

3

1
2

3

4

Figure E.1: Refinement: Alternative 1
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1
2

3

1
2

3

4
1

2

3

4

6
5

Figure E.2: Refinement: Alternative 2

In this manner, there are seven different cases of refinement or unrefinement.
For each option, system (3.90) for a single element is:

1. From two triangles to one triangle (unrefinement), see Fig. E.3:

1
2

3

4
1

2

3

Figure E.3: Two triangles to one triangle

Ω

12

2 1 1
1 2 1
1 1 2

 B1
∗

B2
∗

B3
∗

 =
Ω

48

5 1 4 6
1 5 4 6
2 2 8 4



B1

B2

B3

B4



2. From four triangles to one triangle (unrefinement), see Fig. E.4:

1
2

3

4

6
5

1
2

3

Figure E.4: Four triangles to one triangle
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Ω

12

2 1 1
1 2 1
1 1 2

 B1
∗

B2
∗

B3
∗

 =
Ω

96

6 1 1 10 4 10
1 6 1 10 10 4
1 1 6 4 10 10



B1

B2

B3

B4

B5

B6


3. From four triangles to two triangles (unrefinement), see Fig. E.5:

1
2

3

4

6
5

1
2

3

4

Figure E.5: Four triangles to two triangle

Ω

24


2 0 1 1
0 2 1 1
1 1 4 2
1 1 2 4



B1
∗

B2
∗

B3
∗

B4
∗

 =
Ω

192


10 0 1 7 1 13
0 10 1 7 13 1
2 2 12 8 20 20
4 4 2 26 14 14



B1

B2

B3

B4

B5

B6


4. Change edge, see Fig. E.6:

1
2

3

4
1

2

3

6

Figure E.6: Change edge

Ω

24


2 1 0 1
1 4 1 2
0 1 2 1
1 2 1 4



B1
∗

B2
∗

B3
∗

B6
∗

 =
Ω

144


10 1 3 10
3 15 12 18
1 4 15 4
10 4 18 16



B1

B2

B3

B4
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1
2

3

1
2

3

4

Figure E.7: One triangle to two triangles

5. From one triangle to two triangles (refinement), see Fig. E.7:

Ω

24


2 0 1 1
0 2 1 1
1 1 4 2
1 1 2 4



B1
∗

B2
∗

B3
∗

B4
∗

 =
Ω

48


5 1 2
1 5 2
4 4 8
6 6 4


B1

B2

B3


6. From one triangle to four triangles (refinement), see Fig. E.8:

1
2

3

1
2

3

4

6
5

Figure E.8: One triangle to four triangles

Ω

48


2 0 0 1 0 1
0 2 0 1 1 0
0 0 2 0 1 1
1 1 0 6 2 2
0 1 1 2 6 2
1 0 1 2 2 6




B1
∗

B2
∗

B3
∗

B4
∗

B5
∗

B6
∗

 =
Ω

96


6 1 1
1 6 1
1 1 6
10 10 4
4 10 10
10 4 10


B1

B2

B3



7. From two triangles to four triangles (refinement), see Fig. E.9:

Ω

48


2 0 0 1 0 1
0 2 0 1 1 0
0 0 2 0 1 1
1 1 0 6 2 2
0 1 1 2 6 2
1 0 1 2 2 6




B1
∗

B2
∗

B3
∗

B4
∗

B5
∗

B6
∗

 =
Ω

192


10 0 2 4
0 10 2 4
1 1 12 2
7 7 8 26
1 13 20 14
13 1 20 14



B1

B2

B3

B4
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Figure E.9: Two triangles to four triangles
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Appendix F

Axisymmetric Model

Axisymmetric formulation is obtained from conservation equations in cylin-
drical coordinates (see e.g. Appendix B of Ref. [40]), by neglecting terms in
the azimuthal direction and derivatives respect to the azimuthal coordinate.
Thus, transport and Navier-Stokes equations are,

∂φ

∂t
+∇o · (uoφ) = 0 , (F.1)

∂

∂t

(
p− p0

a2
1 + (a2

2 − a2
1)φ

)
+∇o ·

(
ρ
′
uo

)
= 0 , (F.2)

∂uo
∂t

+∇o · (uouo) = −1

ρ
∇op+

1

ρ
∇o · τo + g + T + Qo , (F.3)

where uo=(ur, uz), ur, uz are radial and axial velocity components, ∇o ·
τo=µ

(
∇2
our − ur

r2

)
r+µ (∇2

ouz) z, Qo=uo(∇o·uo) and operators∇2
of = 1

r
∂
∂r

(
r ∂f
∂r

)
+

∂2f
∂z2

, ∇of=∂f
∂r

r + ∂f
∂z

z, ∇o · fo=1
r
∂(rfr)
∂r

+ ∂fz
∂z

, r and z are the radial and axial
coordinates, f is a scalar field and fo is a vector field.

Now, taking into account that differential volume is 2πrdΩ, discretisation
according to characteristic Galerkin method of previous equations are:

� Solution of phase function is defined by the finite element spacesWh ⊂
W = {w ∈ H1(Ω) | w = 0 on Γ−φ } and Φh ⊂ Φ={φ ∈ H1(Ω) | φ =

189
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φ on Γ−φ }, and it is formulated as: Find φh ∈ Φh such that(
rwh,

∆φh

∆t

)
Ω

=
(
un+1/2
o · ∇ow

h, r(φh)n
)

Ω
−

∆t

2

{〈
r∇o ·

(
wh
(
uhou

h
o

)n+1/2
)
,∇o(φ

h)n
〉

ΩI
−〈

rwh
(
(uho)

n+1/2 · ∇o(u
h
o)
n
)
,∇o(φ

h)n
〉

ΩI
+(

r∇o ·
(
wh(uho)

n+1/2
)
,
(
φh∇o · uho

)n)
ΩI

}
−[

wh, rφhuo
]n

Γ+ −
[
wh, rqφ

]n
Γ−q

, ∀ wh ∈ Wh . (F.4)

� Find (ph)n+1 ∈ Ph for all t ∈ [to, T ], such that(
r

(a2)n+1/2
wh,

∆ph

∆t

)
Ω

+
θ∆t

2

〈
∇ow

h,
(ρ′)n+1/2

ρn+1/2
r∇o(∆p

h)

〉
Ω

=

−
(
rwh,∇o ·

(
ρ′uho

))n
Ω

+
1

2

〈
∇ow

h, (ρ′)n+1/2r∆u∗ho
〉

Ω
−

∆t

2

〈
∇ow

h,
ρ′

ρ
r∇op

h

〉n
Ω

−

1

2

[
wh, (ρ′)n+1/2r∆uho

]
Γ
, ∀ vhi ∈ Vhi , wh ∈ Wh , (F.5)

� Find (uhi )
n+1 ∈ Uhi , (i = r, z) for all t ∈ [to, T ], such that(

rvhi ,
∆u∗hi
∆t

)
Ω

= −
(
rvhi ,∇o ·

(
(uho)

n+1/2(uhi )
n
))

Ω
+
(
rvhi , f

h
i

)n+1/2

Ω
+

(
rvhi , gi

)n
Ω
− ∆t

2

{〈
r∇o ·

(
vhi
(
uhou

h
o

)n+1/2
)
,∇o(u

h
i )
n
〉

ΩI
−〈

rvhi
(
(uho)

n+1/2 · ∇o(u
h
o)
n
)
,∇o(u

h
i )
n
〉

ΩI
+(

r∇o ·
(
vhi (uho)

n+1/2
)
,
(
uhi∇o · uho

)n)
ΩI

+(
rvhi , (u

h
o)
n+1/2 · (∇o(f

h
i + gi))

n
)

ΩI
+
(
r∇o · vh(uho)n+1/2, (∇op

h)ni
)

ΩI

}
,

(F.6)

where f=µ
ρ

((
∇2
our − ur

r2

)
r + (∇2

ouz) z
)
+T+Qo. For nearly incompress-

ible flows, viscous terms depending on velocity divergence are neglected.

Second order terms in last equations are constructed considering r as a con-
stant value per element. The domain Ω is delimited by the axis of symmetry.
Ω is subdivided by E elements Ωj, (j = 1, E) such that Ω =

⋃
Ωj, while ΩI

is the domain without elements with sides belonging to the boundary.
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