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Abstract—This paper presents an extension of the stochastic
FDTD method to predict the standard deviation of currents and
charges in the Holland FDTD sub-cell method for thin wires. A
discussion is presented on the effect of cross-correlation between
the variables affected by uncertainty, and the variability of the
observed quantities. For this, a simple dipole antenna loaded with
a Wu-King profile is analyzed, and the results are validated with
the Monte Carlo method.

Index Terms—FDTD, stochastic methods, Monte Carlo
method, thin-wire model, Wu-King antenna.

I. INTRODUCTION

The Finite Difference Time Domain (FDTD) method [1]
is probably the one most widely used in computational elec-
tromagnetics. It is based on the replacement of the space
and time derivatives in Maxwell curl equations by second-
order accurate finite differences (and averages) [2]. With this
method, we can simulate the broadband response of highly
complex systems, including arbitrary materials, by an explicit
marching-on-in-time algorithm which is easily parallelized in
modern architecture.

The Holland’s method [3] is a sub-cell technique which
enables us to deal in FDTD with thin wires of radii smaller
than the mesh size (less than half the space step). The current
and charge (or voltage) along the wire fulfill transmission-line
equations that can be solved by a 1D FDTD method. They
are coupled with the Yee 3D FDTD in a full-wave two-way
procedure, exchanging information in the form of independent
sources. Holland’s method has been extended to deal with
multiwires including lumped circuits at wire-wire and wire-
structure junctions [4], complex cable bundles [5], oblique
wires [6] [7], carbon nanotube antennas [8], etc..

Several approaches exist to cope with the prediction of
the uncertainty in FDTD calculations [9]. Among these, the
stochastic FDTD method (S-FDTD) presented in [10] employs
a FDTD-like algorithm, in order to find also the standard
deviation σ on the fields, as a function of the σ of the ma-
terial constitutive parameters. S-FDTD is a single-realization
algorithm, as opposed to the classical Monte Carlo (MC)
FDTD method, which uses a brute-force approach to find the
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statistical parameters from the simulation of a set of problems
(often several thousand) with material properties randomly
generated. The stochastic methodology has been extended
to deal with transmission lines [11], to the finite difference
frequency domain method [12], etc.

In this paper, we present an extension of the S-FDTD
method to the Holland’s thin-wire subcell model, and we
describe a simple implementation in existing MPI FDTD
codes. The proposed method is validated by modeling a Wu-
King loaded antenna [13] with statistical variations on its
resistive load values.

The rest of this paper is organized as follows. Section II
briefly reviews the fundamentals of Holland’s thin-wire model.
Section III describes the extension of S-FDTD to the coupled
algorithm Holland FDTD/Yee FDTD. Section IV provides
a quick description of an easy implementation of S-FDTD
in existing FDTD MPI codes. Section V applies this new
approach to a simple Wu-King loaded dipole, and we conclude
in Section VI with some remarks on the applicability of
the S-FDTD method depending on the correlation coefficient
between the load values at different space positions. Specif-
ically, we show that the results agree with MC-FDTD only
when perfect correlation exits between the loads at different
space points. We also show that σ, for the random non-
correlated case, can be determined by performing one S-FDTD
simulation per each load with non-null σ, and combining the
results.

II. HOLLAND’S SUBCELL METHOD FOR THIN WIRES

The Yee FDTD scheme solves Maxwell curl equations by
placing the electric and magnetic field components staggered
in space and time by half space and time steps, and replacing
the derivatives by finite differences. It finds the unknown field
components at a given time step as a function of them at earlier
times and at adjacent space positions. For instance, for the Ez
component1

En+1/2
zi,j,k

= Cai,j,kE
n−1/2
zi,j,k

+ Cbi,j,k

(
Jnzi,j,k+ (1)

Hn
yi+1/2,j,k

−Hn
yi−1/2,j,k

∆x
−
Hn
xi,j+1/2,k

−Hn
xi,j−1/2,k

∆y

)
where Ca and Cb are constants depending on the permittivity
ε and the conductivity σ

Cai,j,k =
2εi,j,k −∆tσi,j,k
2εi,j,k + ∆tσi,j,k

, Cbi,j,k =
2∆tεi,j,k

2εi,j,k + ∆tσi,j,k
(2)

1We follow a notation similar to that of [14], but shifting the usual indexes
i, j by half an increment, for the ease of writing of this manuscript.
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The Holland’s formulation for wires thinner than the FDTD
mesh step, discretizes the wire along its length, and finds
the current I , and the charge Q per unit length (p.u.l.), by
transmission-line equations. For instance, for a wire aligned
along the z direction

∂I

∂t
+
R

L
I + c2

∂Q

∂z
=

1

L
〈Ez〉 (3)

∂Q

∂t
+
∂I

∂z
= 0 (4)

where R and L are the p.u.l. resistance and inductance, and
c is the free-space light speed. L consists on the sum of a
given arbitrary term, and an intrinsic term (in-cell inductance),
this being found by some average across the FDTD cell
perpendicular to the wire direction [3] resulting in

Lintr = f(a,∆x,∆y) (5)

where a is the wire radius, and ∆u the usual FDTD space
steps. Similarly, 〈Ez〉 is an average value of the E-field over
a surface perpendicular to the wire direction, usually simply
taken as the point-wise usual Ez field component found by
Maxwell equations if the wire path runs along FDTD electric
edges.

With the application of a 1D FDTD scheme to Eqs. (3)(4),
an explicit advancing algorithm is found at wire locations x =
i0∆x, y = j0∆y, z = k∆z

In+1
k = GakI

n
k +Gbk

(
Q
n+1/2
k−1/2 −Q

n+1/2
k+1/2

)
+GckE

n+1/2
zi0,j0,k

Q
n+1/2
k+1/2 = Q

n−1/2
k+1/2 +

∆t

∆z

(
Ink − Ink+1

)
(6)

with

Gak =
2Lk −Rk∆t

2Lk +Rk∆t
, Gbk =

c2

∆z

2Lk∆t

2Lk +Rk∆t

Gck =
2∆t

2Lk +Rk∆t
(7)

Eqs. (6) are coupled to FDTD Eq. (1) in a two-way manner:
the value E

n+1/2
zi0,j0,k is taken from (1) and plugged into (6),

playing the role of distributed voltage sources, while the
currents from (6) are injected back into (1), playing the role
of current density sources Jnzi0,j0,k

=
Ink

∆x∆y .

III. S-FDTD FOR THIN-WIRE EQUATIONS

The impact of the uncertainty of the circuital properties on
the uncertainty of the currents flowing along the thin wire,
can be predicted by extending the S-FDTD method of [10] to
Holland’s equations. The mean values µ{I}, µ{Q}, henceforth
plainly noted as I and Q, are proven to be advanced by S-
FDTD also with Eqs. (6). Their standard deviation (σ) is found
by using the Delta method, which states in general

σ2 {f(x1, ..., xN )} '
∑
∀i

(
∂f

∂xi

∣∣∣∣
µ{x1},...

)2

σ2 {xi}+

∑
∀i,j,i6=j

2

(
∂f

∂xj

∂f

∂xi

)∣∣∣∣
µ{x1},...

σ {xi}σ {xj} ρxi,xj (8)

with ρxi,xj
denoting the usual Pearson correlation coefficient.

Applying the Delta method to all the additive and multi-
plicative terms in Eqs. (6), we find a set of advancing equations
for σ{I}, σ{Q} formally identical to (6) but differing in the
addition of a set of independent sources, which in turn depend
on the mean values previously found by Eqs. (6)

σ{In+1
k } =Gakσ{Ink }+Gbk

(
σ{Qn+1/2

k−1/2} − σ{Q
n+1/2
k+1/2}

)
+

Dak Ink +Dbk

(
Q
n+1/2
k−1/2 − Q

n+1/2
k+1/2

)
+

Gckσ
{
Enzi0,j0,k

}
+DckE

n
zi0,j0,k

(9)

σ{Qn+1/2
k+1/2} = σ{Qn−1/2

k+1/2}+
∆t

∆x

(
σ{Ink } − σ{Ink+1}

)
(10)

The constants Gνk are given by Eqs. (7), while Dak , Dck , Dbk

(ν = {a, b, c}) are found by

Dνk ≡ σ {Gνk} =
∂Gνk
∂Lk

σ {Lk} ρLk,Ik +
∂Gνk
∂Rk

σ {Rk} ρRk,Ik

(11)

Note that the expression above can be easily extended to take
into account the uncertainties in the wire radius, by applying
the same rule to find σ {Lintr,k} from Eq. (5).

The 3D S-FDTD updating equations for σ{Ez} must also
be modified by including the σ{I} of the currents. Hence, the
S-FDTD counterpart of (1) becomes

σ{En+1/2
zi,j,k

} =Cai,j,kσ{En−1/2
zi,j,k

}+ Cbi,j,k

(
σ{Ink }
∆x∆y

+

σ{Hn
yi+1/2,j,k

} − σ{Hn
yi−1/2,j,k

}
∆x

−

σ{Hn
xi,j+1/2,k

} − σ{Hn
xi,j−1/2,k

}
∆y

)
(12)

where the term σ{Ink }
∆x∆y is added only at the wire locations

(i0, j0, k). No independent-source terms depending on the
mean value of the fields need to be added to Eq. (12), since in
this paper no uncertainty is assumed to exist on the material
properties of the surrounding space.

The choice of cross-correlation coefficients deserves some
discussion, since these parameters are generally not known be-
forehand. The S-FDTD procedure followed to find Eqs. (9)(10)
reasonably assumes a good correlation between fields at close
space positions2. In our case, this translates into ρIk,Ik−1

'
1, ρQk+1/2,Qk−1/2

' 1. It also typically assumes good corre-
lation in multiplicative terms; in our case between unknowns
and wire parameters ρRk,Ik ' 1, ρLk,Ik ' 1.

It can also be demonstrated that a good correlation is also
implicit between wire parameters at adjacent space locations
(e.g. ρRk,Rk−1

). This has impact on the comparison with
the MC method, as will be shown in Section V. The latter
can be appreciated if we track down the iterative process of
Eqs. (9)(10). Let us just write one of the terms,

σ{Ink } = . . .
(
DbkGck−1

+Dck−1
Gbk

)
σ{In−2

k−2 } . . . (13)

2Other choices can also be taken into account (see [10]).
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Fig. 1. Workflow of the implementation of S-FDTD using a MPI paradigm.
The green, orange, and blue arrows show the MPI-comunications between the
MPI process.

and its counterpart from Eqs. (6),

Ink = . . .
(
GbkGck−1

)
In−2
k−2 . . . (14)

Taking the standard deviation of (14), and following the
same procedure used to yield (11), we get (13), only if we
assume unit correlation between the material parameters at
adjacent cells ρGbk

,Gck−1
= 1. This observation agrees with

the discussion of [15] and the work of [9].

IV. MPI IMPLEMENTATION

The computer implementation of the S-FDTD algorithm
into a FDTD program already coded with a MPI paradigm is
straightforward in general. For this, we take advantage of the
full similarity between S-FDTD and the usual FDTD schemes,
and the fact that S-FDTD only uses FDTD values as inde-
pendent sources at each time step. First, two groups of MPI
communicators are created: one for the FDTD domain, and
another for the S-FDTD domain, which run simultaneously.
Each group, in turn, divides the geometry into slices along
the z-direction which communicate in the usual manner (as
described in [16]). At the end of each iteration, the FDTD
slice sends the magnitudes to the S-FDTD corresponding slice,
to be added as independent sources. The whole procedure is
depicted in Fig. 1.

In particular, the results shown in the next section were
found with the MPI-OMP SEMBA-UGRFDTD code [17]
using this methodology to incorporate S-FDTD with a min-
imum effort: no drastic changes in the algorithm, no code
duplication, the same absorbing conditions, etc..

V. VALIDATION WITH A DIPOLE ANTENNA

Let us illustrate the application of the method presented
above to the analysis of the uncertainty on the current I0 at

the center of a wire dipole antenna loaded with a Wu-King
resistive profile [13]

R(z) =
R0

l/2− |z|
, −l/2 < z < l/2 (15)

The antenna, consisting of a thin wire of 0.2 cm radius, and
length l = 41 m, is discretized into segments of ∆z = 1 m,
numbered from k = −20 to k = 20. It is placed in a PML-
truncated free-space 3D Yee FDTD region, with a uniform
and isotropic mesh with ∆x = ∆y = ∆z = 1 m. The antenna
is fed at its center segment k = 0 with a matched voltage
source having a Gaussian broadband profile, and R0 = 50Ω
of internal resistance. The resistance at each segment is taken
by averaging Eq. (15) along the segment length.

For the simplicity of our analysis, only the two segments im-
mediately above and below the feeding segment are assumed
to have a non-null standard deviation taken as σ{Rk} = 0.2Rk
with k ∈ {−2,−1, 1, 2}.

First, we generate two different MC populations of N =
25000 simulations each, with a normal distribution: one of
them assuming random non-correlated values ρRk,Rk′ =
0 , k 6= k′ ∈ {−2,−1, 1, 2}, and another with well-correlated
values ρRk,Rk′ = 1. The mean value of the current µ{I0} ≡
I0, and its σ {I0} is found in the usual way,

µ{I0}=
1

N

N∑
m=1

I0m
, σ {I0}=

√√√√ 1

N

N∑
m=1

(I0m
− µ{I0})2 (16)

where the subscript m stands for the value found from the
m-th MC-FDTD simulation.

For S-FDTD, we have analyzed two different scenarios:
the first one (S-FDTD1) running a single simulation with
non-null standard deviation simultaneously for all the four
resistances σ{Rk} 6= 0,∀k ∈ {−2,−1, 1, 2} (inherently with
unit correlation among them); and the second one (S-FDTD4)
running four different simulations, assuming that only one
of the resistances has non-null standard deviation at a time,
and setting the other three standard deviations equal to zero
σ {Rk} 6= 0, σ {Rk′} = 0,∀k′ 6= k ∈ {−2,−1, 1, 2}.

Fig. 2 compares the absolute value of σ{I0} for MC-
FDTD, S-FDTD4, and S-FDTD1. S-FDTD1 directly finds σ
from the simulation (green line). For S-FDTD4 two alternative
calculations are considered in the post-processing:

1) S-FDTD4 Uncorrelated (red line):

σ{I0} =

√ ∑
k=−2,−1,1,2

σ2{I0}|σ{Rk}6=0,σ{Rk′}=0,∀k′ 6=k

(17)

2) S-FDTD4 Correlated (blue line):

σ{I0} =
∑

k=−2,−1,1,2

√
σ2{I0}|σ{Rk}6=0,σ{Rk′}=0,∀k′ 6=k

(18)

Reasoning in terms of the variance σ2, we conclude that
the variance found with the MC non-correlated population
coincides with that of the S-FDTD4 uncorrelated red-line
results. This is reasonable because Eq. (17) actually finds
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Fig. 2. Comparison of the absolute value of the standard deviation of the
current at the center of a Wu-King loaded dipole, computed by the MC and
S-FDTD methods.

the variance by summing each individual-simulation variance,
which is the usual formula of the variance of a sum for non-
correlated data. On the other hand, the variance found with
the MC fully-correlated population coincides with that of the
S-FDTD4 correlated blue-line results, also reasonable since
Eq. (18) actually finds the variance by the usual formula
of the variance of a sum, assuming correlated data. Finally,
note that the agreement of the S-FDTD1 single-simulation
results with the S-FDTD4 correlated (blue-line) results, can
be deduced from the linearity of the equations: the response
of the system to the sum of different sources is the sum of their
single responses. This corroborates that the usual S-FDTD
method actually assumes unit correlation between the material
parameters affected by uncertainty, as already claimed.

In any case, a more proper choice of the correlation coef-
ficients ρRk,Ik in S-FDTD1, could be found by applying the
method of [18], to correct Eq. (11) according to Eq.(8). An
extended work, including this topic, is left for a full-length
forthcoming paper.

VI. CONCLUSIONS

Here we present a method to analyze thin-wire structures by
the S-FDTD method, and study its validity depending on the
assumption of cross-correlation between material parameters
at different space locations. For this, we have reproduced the
two extreme scenarios with the MC method: full correlation
between the material parameters everywhere (four resistances
in our case), and no correlation between them. A simple post-
processing after the S-FDTD simulations, isolating the vari-
ance of each parameter at a time, enables us to find the fully
uncorrelated case, with a dramatic reduction in computational
requirements compared with MC, requiring just one simulation
per cell or group of cells with non-null uncertainty.

On the other hand, we show that a single-simulation of
S-FDTD with all parameters having a non-null variance is
equivalent to performing a MC analysis with unit correlation
between the parameters everywhere. Hence, S-FDTD results
may be realistic for single-material situations, or for materials
with correlated variations (e.g. due to ageing). Total random

media would require a single S-FDTD simulation per random
material. This could be more (or less) computationally intense
than a brute-force MC approach, depending on the number
of random parameters compared to the size of the population
required for MC multiple realization. In most practical appli-
cations, the approach based on a single S-FDTD simulations
per random parameter, may achieve dramatic reductions with
respect to the MC approach.
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