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1. Introduction.

Nowadays, the amount of research time requireegveldp any emerging technology has
decreased from decades to years. This is partigutae for graphene, which has been grown
exponentially from almost any reference prior t@yNselov 2004) to more than 5000 papers
and roughly 500 patents in 2011. In this sensdjagtipns in almost any discipline have been
envisaged and, when technology has made it possilaleufactured and tested. Those
applications have gone beyond the nanotechnolothetonacroscopic world, and the usual
limits of this exploration are the unavailabilitfrmanufacturing processes or the monetary cost
of the prototypes. To overcome this situations iiseful the development of methods able to
computationally simulate graphene and carbon néestin macroscopic configurations. Also,
the compatibility of this procedures with the attuamerical techniques employed in any
discipline will enable the study of nanodimensiopiperties of the matter from an applied

point-of-view.

This chapter attends to the development of a nualediescription of the graphene and carbon
nanotubes related to electromagnetics. In thisesenaorth to remark that most of the designs
including electromagnetic devices based on graphawue been proposed to operate at terahertz,
infrared and optical regimes. Then, the numeriealcdption of graphene and carbon nanotubes
presented in the first Section is focused in themnstitutive parameters at those regimes. The link
with the electromagnetic fields is achieved by emgplg the Maxwell’s equations in the second
part of the chapter. Taking into account the matwif the numerical simulators in the field of

computational electromagnetics (Sadiku 2010), itosfeasible to explore all possible



approaches in a single chapter. However, the pratsem of the algorithms starting for the
frequency- or time- domains and the differentialintegral-equation formulations will be
helpful to integrate graphene and carbon nanotabe®ew electromagnetic materials in the
numerical codes, no matter the particular formaragmployed by the researchers. As an
eventual result, a new generation of electromagmievices will be computationally explored,
providing thus of a realistic perspective aboutgbssibilities of graphene’s technology in the

frame of electrodynamics.

2. Theoretical derivation of the conductivity.

As it has been pointed out in the introduction,rtien objective of this chapter is to provide a
formulation able to translate the nanodimensiotedteonic transport properties of graphene into
the macroscopic Maxwell's equation. To this ends tonsidered that the computational

electromagnetic modeling of any material of theuratan be achieved by considering the

constitutive parametel(g, ,u,a). Taking into account the two-dimensional charaoter

graphene and carbon nanotubes, which make theieégermittivity and magnetic
permeability approximately equal to those of tleefspace, the basis of the proposal is to

develop theoretical formulations of the conductivit

In this sense, several methods have presenteé iitehature to model graphene (Charlier et al.
2007) (Castro Neto et al. 2009) from a bottom-ugsjpective, most of them based on the
pioneering work (Wallace 1947). Shortly, they enytloe quantum mechanics second

guantization, supported on the electronic bandrgegm, which uses basis functions that



accounts the number of particles occupying eaclggrstate in the complete set of single-
particle states. However, the knowledge requiraghiderstand this procedures is not usual for
engineering people and researchers of other disegphpart from physics. For this reason,
formalism here presented is based on the firsttigadion, which is more intuitive because is
based exclusively on single-particle wave functidse matter the intermediate formulation, the
key step to account for the microscopic electrard@nsport of carriers into the macroscopic
conductivity is the Kubo’s equation (Kubo 1956),igfhenables explicit theoretical equations.
Approximations of these equations to simpler fooas be made by assuming different regimes
or under certain conditions in the physical pararsete.g., temperature or chemical potential).
Also, the formulation here presented allows to @nésarbon nanotubes as a particular case of
graphene sheers, in which the geometrical peritydiesults in a quantization of the transversal

momentum.

2.1. Graphene.

Graphene is an allotrope of carbon arranged ima&yeomb structure made out of hexagons
whose vertices are occupied by carbon atoms sheowv@ent bonds. Electronic properties of
graphene can be derived from the band theory afsolo this end, it is briefly presented a
geometrical characterization and a descriptiomefgy bands in graphene. Then, a second
guantization procedure is applied to achieve thmaotivity at any frequency, and finally
further approximations for infrared and opticalinegs are considered for deriving simpler

mathematical expressions of the conductivity.

Geometrically, a hexagonal lattice is a particatase of a rhombic lattice with rectangles which



are~/3 times as high as wide (Kittel 2004). In this ¢asanit-cell contains two non-equivalent

atoms (noted as A and B), each one forming a siddaif identical primitive vectors, :

. _ (V31
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wherea is the modulus of the lattice vector, which isaitet to the carbon-carbon distarage
asa-= \/éacc. The first Brillouin zone is also hexagonal (Wa#al947), with reciprocal-lattice

vectorsh (Figure 33.1):

(33.2)

[HERE FIGURE 33.1]

In this way, three of the four electrons locatethi@ valence band of any carbon atom arsgh

hybridization, i.e., th@sorbital is mixed witi2p, and2p, orbitals to form a total of three

covalent bonds with neighborhood carbon atoms.féteh electron, whos2p, orbital remains
independent of the bonds, forms a covalent bond. Conductivity is mainly related licstlatter
electron, becausebands are distant of the Fermi level (Figure 33&ing thus unlikely the
transitions from the valence to the conductivitpdaFor this reason, a carbon atom in graphene

has only one electron in valence band.



[HERE FIGURE 33.2]

The energy of the band can be calculated through the tight bindpreximation (Wallace
1947), in which it is assumed that only the intdoacs between electrons of neighborhood atoms

are significant. To this end, it is noted the wéwection of the orbitalp, in an isolated atom as
X (). Using lattice symmetry, the wave function of ampivalent A-atom can be noted as
X (F~F,), wherer, is the position vector, and similarly for B-atoasX (T ~T,). Using the

Bloch theorem [1], the periodic Bloch waves for fublattices A and B are:

- 1 Ky N [
MN=—>» e X(T-71
A1) =5 2 e x(r-1)

L (33.3)
)=——> b X (7-F
$,(F) m; (T-7)
where N is the number of unit-cells of the latti€ben, the total wave function has the form:

#(r)=cy(r) +cg,(r) (33.4)

with ¢, andc, constants associated to the normalized wave fumgti

Let H the Hamiltonian of the lattice which allows, amantber, the calculus of the energy of an

electron in a particular quantum state (BransdehJaachain, 2000). Takirg,,#,} as the
basis of the space formed by the lattice wave fanst which satisfiesH @, = E¢, where E is

the energy of the electron in tige state, therH can be expressed as:

H, H
H :(H“ H“j (33.5)
21 22

whereH, = [#'Hg,dF = H; .



Also, it is usual in the tight binding approachmtglect the overlapping between orbitzts of
different atoms, i.e.J' X" (7 -F,)X (F -F,)dr =0 for any Az B. Then, diagonal terms d

are:
H, =H,, :%Ze‘ik'[@“‘mj X (T=T,) HX (7=, )dr = [ X" (F =7, ) HX (7 =7, )dr =&, (33.6)
A A

where geometrical symmetry has been used to stgte H,,, and &, corresponds to the energy

of an electron on th2p, in carbon. Regarding the overlap coming from défé sublattices, only

nearest neighborhoods are considered, which |estthe tcondition

'|'X* (7 -F,)HX (F -7,)dr =0 if A and B are not nearest atoms, and off-diagjterans of the

Hamiltonian are:
Hy,=H, :%Ze‘m‘@)j X (F-T)HX(F-F,)dF =-t(1+&@ + &) (33.7)
AB

where &,, being p the vector distance between nearest atoms, wioiek dot depend on the

particular atom by geometrical symmetry (Figurel33.

Taking into account that only energy gaps are neéaleharacterize the electrical conduction,

the &, value can be used as origin of energies. Invilig, t is experimentally measured as

approximately equal to 2.8 eV, and the Hamiltonsarewritten as:

H=| (33.8)

where W(R) = —t(1+ &3 4 ém?) . Eigenvalues and eigenvectors of the matrix are:



& = st\/1+ 4co{§ K a} co% K, aj+ 4c6{—; K % (33.9)

and:

& =i2 t (33.10)

im(1+ € + ™)

Re( 1+ 65 + é‘@) '

with s=+1, andtang, =

Figure 33.3 shows a three dimensional picture @fdispersion relation arisen from (33.9). The
s=-1 solution corresponds to the bonding orbitale/hich are filled in the fundamental state,
and thes=1 solution forms the antibonding orbitaisfor excited states of the graphene. A
similar graph restricted to the—K andl —K directions of the first Brillouin zone is presethte
in Fig. 2, which includes also tleands™ orbitals. At low temperatures ontyand n-bands are
occupied, and the Fermi energy is reached at Kcesrbf the Brillouin zone which also form the

Fermi surface for graphene. Furthermore, the chaficg =0 as the reference for energies

implies that Fermi energy can be considered asindfe rest of the chapter.

[HERE FIGURE 33.3]

Therefore, the relation dispersion can be carrigcconsidering a small perturbati@ near

the Fermi points of graphene, in the fokn¥ K + Jk . In this way, a series expansion of (33.9)

leads to:



£ .= sth\dq (33.11)

k,

V/3a

where the Fermi velocity for graphene'vi,_s:Z—htzlo6 m/s. It worth to remark the linear

dependence wit*ﬁﬂ in (33.11), illustrated as a zoom in the righttdigure 33.3, which

predicts both ballistic transport and isotropiogerties for graphene. Of course, those properties
cannot be assumed in general -e.g., in the ultitiegime, but they will be certain for the

objectives of this chapter.

Regarding the distribution of electrons in the ggdyands, the Fermi-Dirac distribution is

employed under the assumption that electrons bstas/éermions (Sutton, 1993):
i s He 1
fe s :[1+e ol ] (33.12)

wherek; is the Boltzmann constari, is the temperature of the graphene ands the
chemical potential which can be tuned through eeiields applied (Fig. 33.4 shows the

Fermi-distribution as function ok for u.=0).

[HERE FIGURE 33.4]

To derive the conductivity of the graphene, elettignetic interactions are considered by the

total linear momentuntk +£ A, where A is the electromagnetic potential vector which is

related to a harmonic electric fiell as A= i E. Assuming a relatively small electromagnetic
iw

momentum, the perturbation method can be applidd@echanical and electromagnetic terms
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can be separated in the Hamiltonian as (Zhang 208B):

H=H,+H" (33.13)

where H, is given by (33.8), andi * is:

e[ 0 cte"*). e[ 0 -ite"®
H'=— - Ag +
el jte ™A 0 el it 0

which can be rewritten as:

!
,\;j,x

(33.14)

Ol
()
Y

(33.15)

where the components of the currehtare:

2ey, [ —sin(@ kxa) cof1k a) i[ i coé% Ka) cds k 9+ csy ﬂ}
[

g = a(R) —i|1+co %kxa) cogtk,a)+ coéslga)} s(n€—3 I&% cfs k 4
(33.16)
and:
L2y {—cos(fk a)sifika-sifkd  -isifkd sift k3 ](33.17)
y 3a(l2) |s|n(§kxa) sin(1k,a) cos€£§ &% sifil k g+ sifk 3

with a( ) 1+4COS(J§K<3) 5”( ‘&"’9"' 4C025( K/%

Therefore, Kubo’s formulation (Kubo 1956) providesthe components of the conductivity

tensor as:
o, :;éjdté“<Jp(t) 3(0)- 3(9) 3(3) (33.18)

Where< > means for the trace of the matrix resulting ofggheduct of the corresponding time-
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varying density of current§x and jy and the auxiliary matrix of Fermi-Dirac distriboi o :

f. 0
,0=[ | J (33.19)

In our case, (33.18) gives:

Y. a(1+ cos(@ kxa) co% Iga)+ co@lgy a))z

=i nzwjdk ¥ a(k)( £, o)
_sin® (Fka)sir(3ka)
g, =4 ;;\éwjdk sin (- ;();)' % a®( £, t_.) (33.20)
0,=0,=0
oy 1 ~ 1 o or dK
where g(k) = ha)+25om o %Om , and the approxmatlo% 2](2”)2 has
been taken.

For low energies, which is the case in terahertzaptical regimes, the occupied states will be

located near the Fermi poinis. For this reason, the series expandionK + Jdk can be

repeated leading to approximatio(r]& cos(% kxa) co%—; kya)+ coékj z%)z :% K & and
sin® (@ kxa) sinz(—; kya) = % K &, which implies:

. € 1 1
=0, =i dk - f.. —f
o 2;72/*1250j {haﬁ 26, hw- sz( “ ky-l)

(33.21)

Integral (33.21) can be carried out through chasfgariablese = ¢, = th‘R‘ and
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k
@=tan* (—yj :
kX

R 1 1
ammdfo de, ds[ha)+ i 2‘9}5[ f(e)-f(-¢)] (33.22)

of (&) _of (—¢)

which can be rewritten by integrating by parts apglying thats[ 3¢ P

J iS an even

function as:

J=_iez_a){ 1 j:d{af(E)_af(‘E)Jg_j:dgw} (33.23)

7T | (hew)” o  0¢ (hw)” - (2¢)°

Scattering of electrons can be taking into acchyra complex frequencw - w+2iI' (Hanson

2008), wherd™ is related to the relaxation tinte for the scattering of electrons in the form

r =(2r)_1 . Then:

J:_ieZ(a)+2iI')[ 1 j:dgiaf(g)_af(—g)}_]-:dg f (=€)~ f (&) ](33_24)

m* | (w+2ir)? o oe (w+2ir)*=(2¢ 1n)*

which is identical to the lower frequency approxiima (including optical and terahertz regime)

presented in (Gusynin et al. 2007).

Terms of (33.24) can be identified as a first intnad term, analytically solved as:

g:—ie—zjmdg(af(5)—af(_£)J£=i 2e2|<BT {"c +2|n(ek?T+1H(33.25)
0 h

mh? (w+2iT) o€ o€ (w+2ir)| kT

and a interband term, which can be approximate@kor < |,uc|,ha)) , as:

€& (w+2M) fo . f(-&)-f(¢) - e . 2|u,|-(w+2Ar) s
e o

o=-i 33.26
mh? w+2M) =(2e 1) 4mh 2|ﬂc|+(w+2'r)hJ( )
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of (-g) _ of (&)

Equation (33.25) accounts only for intraband resppbecause 3 =3 and thus it
£ £
3 o Of
can be rewritten ag = —i —; 2e . j de (5)5 which means that onlg=1 or s=-1
mh? (w+ 2iT) Yo o€

are employed in the calculation, which is not thsecfor (33.26). Also, it is important to remark
for the terahertz regime only (33.24) needs tediesidered, and when optical frequencies are

considered then both (33.24) and (33.25) shoulken into account.

2.2. Carbon Nanotubes.

Dispersion relation (33.9) remains valid for car@motubes, which can be thought as the
enrolliment form of graphene. However, then enrofitrenforces a geometrical periodicity and

the transversal momentum is quantized, simplifging the derivation of the conductivity.

Figure 33.5 presents an extended graphene shegemkalled form is characterized by a vector

C, = ma+ ng joining to identical carbon atoms which will be&ted at the same point in the

carbon nanotube. Thef,, means for the circumference of the carbon nanstube
‘CH ‘ =/3a/nf+ mn+ A, and also can be taken as a basis vector in ibeelhof the carbon

nanotubes. Further, translation vecioiis defined to join the reference poidt with the nearest
carbon atom, perpendicularly @ . Then,T can be expressed as:
T=1a+t3, (33.27)

wheret, =$} andt, :%Zn’ with d. =gcd( 2n+ n,m+ 21). In this way, axis of the

R R
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carbon nanotube is defined alofigdirection, referenced as, and the corresponding

perpendicular component alo@ , hoted asp.

[HERE FIGURE 33.5]

The wave functions in carbon nanotubes are perattording tof:H , and applying Bloch’s

theorem:
#(r+C.) =g (1) =9(r) (33.28)

which implies:

+ p—
Vel kaxa+ n . M a= 277s (33.29)

For armchair carbon nanotubes € n), (33.29) is reduced to:

s 2
k =k ==>22°
=k m/3a (33.30)
k, =k,

and for zigzag carbon nanotubes £ 0 or equivalentlym=-n) as:

s 2
k =k ==2"
Y% ma (33.31)
k. =k,

Then, (33.24) still holds for carbon nanotubes,thattransversal momentum quantization has to
be taken into account for the integration. To #nd we apply the identitgﬂj:dg = hzj dR\é ,

leading to an expression for the intraband conditigti

o, (w)=-i ¥ (33.32)

47 Jak of ()

5 — [ dk
(2m)" (w+ 2T) o€
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has been applied.

PLICRIRIRLIC

o€ o€ o€

[HERE FIGURE 33.6]

For zizag carbon nanotubes (Figure 33.6), (33.8m)be written ax, iz s, and (33.32) is
m a

then:

o (£) V2 (33.33)
o€

_ 8rre” o
%) = I(Zﬂ)z(w+zr)ma;I I,

Only Fermi points §= m/3 ands=2m/ 3) have to be considered for the case of metaljjzag

(m=3n), and the sum can be reduced to:

L 877e? a0 (€) ). 23t
7ue()= |(27T)2(a)+zr)ma(4'[ ok Vij_lmnhz(w+2ir) (33.34)

Following the same procedure, the conductivityroiéhair carbon nanotubes (Figure 33.6) is

derived:

2e’t

Ta(@) =1 m7zh? (w+ 2ir)

(33.35)

3. Computational modelsfor THz and Optical Regimes.

Once characterized the electronic transport pragseof graphene and carbon nanotubes, it
remains the question of how to implement theseatharistics in computational models of

Maxwell's equations. For this purpose, two alteuestmay be taken into consideration, a
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differential- or a integral-based formulation, dvath of them may be formulated in terms of
frequency or time-domain approaches. Then, seeeraputational procedures have been
developed in the last decades to solve the reguuations, being the most popular the
moment-method solution for integral equations dredfinite-difference discretization for
differential equations. Other widely extended teghas, such as finite-element or Monte-Carlo
algorithms, can be successfully applied and presame computational advantages for
particular cases. However, this chapter focusegwith moment-method and finite-difference
algorithms because they address most of the conasimalienging issues to produce stable and

accurate results for any computational procedure.

3.1. Differential-equations based formulation.
Any transient electromagnetic Wa(/é(r,t) H (F,t)) propagating along a graphene or a carbon

nanotube structure accomplishes the Faraday's amere-Maxwell's equations (Taflove 2005),

which can be written in the form:

a|:| (r!t) 1 — [ — 0-* T (=
— L =—-—[xE(T,t)——H (Tt :

p” . xE(T,t) . (F.t) (33.36)
aE(Tryt) __J — [ — 1 T (=

P ;E(r,t)+EDXH(r,t) (33.37)

where the four constitutive paramet(éts ,u,a,a*) accounts for the specific properties of the

any material. In our case, the two-dimensional attar of graphene can be considered by a
electric permittivity and magnetic permeability uatjto free space, a non-lossy magnetic

material, and a electric conductivity given by grecedures previously presented -i.e.,

(&9, ,0,0) .
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However, numerical simulations based on a FDTD guiace for solving equations (33.36) and
(33.37) cannot be carried out by a direct subgtitubf the conductivities (33.25) and (33.26) for
graphene, or their quantized form (33.34) or (3Bf8bcarbon nanotubes, because of the
stability issues inherent to the numerical algonitfT aflove 2005). To avoid these undesired

instabilities, an equivalent volume conductivity, is defined, assuming a very small thickness

of graphenep, in the forme,, = &, +%. Of course, the complex relative permittivity was
J

at different frequencies vary under different coiodis of (,uc, I',T) (Figure 33.7), but a time-
domain formulation of the permittivity is requiréat any case. A proposed way to achieve this

is by formulate a sum ofP partial fractions in terms of complex conjugatéep@sidue pairs as

follows:

P c o
E =EE +E PP 33.38
eq 0% Oé[jw_ap jw_apj ( )

where the relative permittivity at infinite frequgne,, , the -th polea, and residue,, are

found by employing heuristic techniques (Haupt 20&guation (33.38) presents some desirable
numerical properties: a) it complies with Kramenokig relationships, which provides it of
physical meaning; b) it is unconditionally stabkrause poles are in the left complex semi-

plane; and c) it is versatile for modeling intratham interband responses, because poles and

residuals can describe a Drude or a Lorentz-Dradedlation.

[HERE FIGURE 33.7]



18

Furthermore, it can be implemented in the time darbg a convolutional or a Auxiliary
Differential Equation (ADE) formulation (Han 200@Jo this end, the FDTD updating

equation for the electric field (the magnetic fieijddate equation remains unchanged) is:

S _ At - c E
E™=E"+ . Ox H™2-> Ref(1+ k ) J) } (33.39)
eomZRe{ﬁp}{ s

where jg are auxiliary currents introduced by the complerjagate pole-residue pairs, which

are updated by employing:

n+l _ n IB =nt T
Ve kap+A—:( E™ - E) (33.40)

and the updating coefficients and 5, depend of the poles and residues as:

_l+a At/2
P 1-aAt/2
(33.41)
B = E,C,At
P 1-aAt/2

As an example of results achieved by this methaeranertz waveguide composed of 50 nm
parallel plate distance graphene sheets is sintliatEigure 33.8. At times a steady state, the
wavelength can be found from the space-field distion allows to determine both the
wavelength of propagation and the propagation emms$or symmetric and anti-symmetric

modes.

[HERE FIGURE 33.8]

When carbon nanotubes are considered, the formeegure is no longer adequate because the
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small diameter of the enrollment (roughly up tothsnof nanometers) will enforce to excessively
fine meshes which would require large supercomputerpractical simulations. To avoid this, it
is possible to apply a thin-wire formulation moddito include carbon nanotube structures as it

is shown in Figure 33.9. Usual procedure to inclimdie-wires in FDTD consists in introduce an

additional in-cell inductancél,,, ) and capacitancéC,.,) per unit length, both related by the
transmission-line relationshifC, ., ) = &14( L. ) - Considering a carbon nanotube (eventually
treated as a thin-wire of radi@sand constitutive parametess, 1,) placed in a mesh of size

(Ax,4y), the in-cell inductance is considered as (Bere@960):

2 2
(Licer A>:_,u 0 [ 1p X +AY +sz # DY orctarX e A% ot e T _ (33.42)
’ 4 a AX Ay Ay Ax Ay
or (Boutayeb 2006):
Ho a <
L -057— —<0.:
< '”Ce"‘A> 4 min(Ax,Ay)
<LinceII,B> = (3343)
AxAy a

- >0.3
AxAy-mad min(AxAY)

(Lncenn)

To account for the conductivity of the carbon nabet a circuital circuit model of the
conductivity can be employed, in the form:

Pent =1 =R+ Sk +% (33.44)

CNT S q
whereR, L, andC, are, respectively, the resistance, kinetic indumteand quantum

capacitance per unit length. In this way, the thire model including CNTs reduces to:

ol 1 00,
(<Iﬁncell>+|‘k) ot +R|Z+<C >+Cq 9z _<E> (3345)

incell
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which it is ready to be implemented in the FDTD afgdscheme by discretizing the currént

and chargeQ, per unit length following the classical procedgieen in (Holland 1981).

Results of this method are presented for a dipblength 20 m and radius 2.712 nm, fed with a
Gaussian voltage source at its center at frequenqgdo 1 THz. Figure 33.10 plots the time-
domain current at the center of the antenna. Itbeaappreciated the propagation of surface
plasmon resonance on the carbon nanotube, wity &éguency resonance mostly related to the
kinetic inductance, and a small amplitude of theent due to the large resistance of the ballistic
transport of carriers. Also, it becomes appareait tthe inductance (33.42) provides results

consistent with a formulation based on method-ofvraots.

3.2. Integral-equations based formulation.

Maxwell's equations can be rewritten in terms oégnal equations, such as the electric field
integral equation (EFIE), the magnetic field inedgrquation (MFIE) or the combined field
integral equation (CFIE). All of them can be cléssi in different ways: attending to the
dimensionality of the integrals (volumetric, sudaar linear integral equations), in terms of the
domain (frequency or time), or depending of thecgmeunknowns of the equation (current or
current-charge integral equations) (Volakis 201ual criteria for the choice among them are
related to the nature of the problem. For graplsteets a surface-based integral equation could
be employed, while for carbon nanotubes a lineeioe could be thought as adequate (and
preferable taking into account that required corapomal resources are related to the
dimensionality of the problem). For the domain @igion, frequency-domain solutions are

computationally advantageous when single-frequetegtromagnetic sources, or at least
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narrowband sources, are considered. However, m@amation for the analysis of physical
phenomena is achieved when time-domain is performbith is more useful for emerging
technologies or materials. Regarding the unknowresyusual choice is the electric current or the
density of current, being this a choice more relatethe stability and accuracy of the
simulations. Finally, specific choice of the intalgequations depends of the geometry of the
problem, i.e., closed or open geometries. Takibhg&ccount that actually manufacturing
processes are mature to produce relatively simalehgne sheets or carbon nanotubes, which

can be thought as open surfaces, the employmésiI&f is justified.

Therefore, a surface EFIE taking into account thigef conductivity of the graphene can be cast
applying appropriate surface impedance boundargitons (Yuferev 2010). Following the

equivalent model for graphene as a volume condtictey,, a graphene layer acts like a thin

metal film whenRe{geq} < 0 and electromagnetic waves at any pginbn the surface of

graphene accomplish:

fix E (7)= ﬁ{ jc%js js(f')G(?,?')dS'—j—;gOD L0 (T) (1, 1)ds+ 5;((:))](33_46)

e—ik\r—r'\

is the Green’s
o

where i means for the normal vector to the graphene l&G¢r, ") =

function connecting source' and field points, E' (T) is the incident field which can be
external for scattering problems or internal iniaéidn problems,jS(F') are the unknown
density of currents[{_[ means for the surface divergence with respedte@timed

coordinates), andT(F) is the conductivity which can be tuned locallydhanging the chemical
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potential and thus envisaging electromagnetic dsvstich as surface waveguides (Vakil 2011).
Solutions of (33.46) can be achieved by a methediaient Galerkin procedure using Rao-
Wilton-Glisson basis functions (as long as the gesg@ remains in planar layers the higher order

basis will not increase the accuracy of solutigi®lakis 2012).

Time-domain counterpart of (33.46) can be derivadgiinverse Fourier transform:

fixE (F,t) = ﬁx(ﬂjs{%% 3(Tht- R/ cﬂ ols—i0 S{—;j;‘m(m‘sm”g(*r,r)) d} ds}r

(33.47)

where R= |? —?'| is the distance between source and field pomis,the velocity of light[™

means for the inverse Laplace transform andR/ c is the retarded time which provides
causality to the electromagnetic wave propaga#ant happens with differential formulation,
stability issues appears when time-domain solutesagequested. For this reason, the term
including conductivity in (33.47) has to be modwelough as an expansion of Lorentz-Drude
series to avoid instabilities. Again, the dispezsequivalent permittivity can be represented as
intraband and interband equivalent conductivitie$ @nd o® , respectively), from the generic

formula:

foa? +i s&, f,a?
stl, Ss+§ +uf

U:Uib+0.eb:

(33.48)

where the intraband (Drude) term contaigscorresponding to the plasma frequency associated
with the graphene layer. Also, intraband transgiare characterized by an oscillator strerigth

and a damping constafg. The term corresponding to the interband contigiouobeys a simple
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semi-quantum model expressed in a Lorentz formyeuleepresents the number of oscillators
needed to achieve a reasonable fit to the analgiicaductivity. Each one of these oscillators is
described by three parameters corresponding tofteguencyw;, strengthf; and damping
constant’;. Figure 33.11 presents a comparison of the carttdbs between typical interband

and intraband responses, which shows how the erichbesponse predominates as getting closer

to terahertz regime while optical response is dageat only to interband conductivity.

[HERE FIGURE 33.11]

To achieve a numerically efficient procedure, (83.@an be rewritten in terms of circuital circuit

models by defining a set of inductandes capacitance€,, and resistanceR, , such that

1
L =
IS
C - (33.49)
L |
R =L
leading to:
K
! > 1 (33.50)

g= +
R+sl, = R+ Sl—*'s%j
Figure 33.12 shows a schematic representationecfithuit model which corresponds to the
equivalent conductivityr of the graphene sheet. Numerical models requiedRtrtircuit to
represent the Drude term and at least dRiI€ circuits to represent the Lorentzian responses. It
is remarkable that the use of the circuital cirocugtdel to the efficiency of the method does not
add a significant computational burden to the sofytas well as provide some physical insight

by an inspection of the values corresponding tespezific circuit elements. What is more, it can
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be implemented to avoid the employment of any nuwrakinverse Laplace transform in the
code, which may suffer either from inaccuraciassa aesult of a numerical truncation of the
time-domain response, or from extremely poor cormportal performance if the complete
response of the same term is considered. By ussm&LC circuital circuit model (Pantoja et al.
2012), the contribution of each term can be camghumerically by a trapezoidal integration

or a finite difference approximation of the cir@litircuit response.
[HERE FIGURE 33.12]

Electromagnetic scattering or radiation problengarding carbon nanotubes can be solved also
by solving a EFIE. Carbon nanotubes usually haneslaced radius/length ratio and, at those
frequencies in which the axial current is much éartpan the azimuthal one, they can be
modeled by the thin-wire approximation. This thiirevapproach can be also simplified for
achieving high computational efficiency by considgra particular case of the exact Green’s
function usually named as the approximate kernbkichvtakes an advantage of the cylindrical
symmetry of the sources and avoids the singularitiat arise in the general case, by treating the
total current as a filament on the wire axis aniemng the boundary condition on the wire
surface. The use of this approach allows to forteulee modified frequency-domain
Pocklington’s EFIE in a vacuum (Harrington 1993):

g IkR

L i+ [ @e™ 9 Rst’}(BS.Sl)

A = " - i
nx E'(T) = nx I(r) + — [ (" )ds'———| I(r")0—
(" o(f) ® ArE,w?C c® R () 4T, () as'[

and the corresponding time-domain EFIE is (MilleBQ):



{ ()'O} IC’clRSt (7 4')ds +4711£OIC'%(

1 R 9 I(F',t')ds’}

JecRar
(33.52)

where | represents the unknown current along the arcle@gtbf the thin-wire embedded in a

vacuum, and' =t —£accounts for the retarded time between the sourddi@ld point. It bears

remarking that equations (33.51) and (33.52) arlonger valid in the upper part of the visible

spectrum, where the axial current no longer doremaecause the skin effect begins to become

appreciable (Hanson 2006). For this cases, sinonlatof carbon nanotubes can be made out by

employing (33.46) and (33.47).

[HERE FIGURE 33.13]

Results for a carbon nanotube-based dipole, moddgtada RL equivalent circuit corresponding

to the Drude model of the intraband conductivity thhe Terahertz regime are presented. Total

lengthL of the dipole is 20 um, with a wire radius of 27m. Figure 33.13 displays the results

for the input impedance over a range of frequenge® 1 THz. These results demonstrate good

agreement between the frequency-domain and timeasorBFIE solutions, and they are

consistent with other published results (Hanson5200aking into account the length of the

dipole, these results confirm the existence ofmmasoes at lower frequencies in CN dipoles than

those corresponding to a standard perfect electncluctor dipole (PEC) of the same length,

provided that they could be generated in this ramfgEequencies. The reason for this fact is

found in the slower velocity of the propagationwaves for the carbon nanotubes compared to
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the PEC wire. This effect can be analysed by deyjca space-time representation of the
currents along the antenna. Figure 33.14 showsuhrents along the carbon nanotube dipole as
a function of temporal (X axis) and length (Y axis)ervals, where it can be appreciated the
formation of lower frequency resonances, mainly tiughe inductive propagation of carriers at
these frequencies. The electric current reachesrttie of the antenna, forming a traveling wave
which returns to the feeding point (at approximat000 time intervals), corresponding to the

lowest resonant frequency of 0.24 THz shown in FE@B.14.

[HERE FIGURE 33.14]

4. Conclussions.

This chapter has described numerically the pro@siar achieve numerical simulations of
graphene and carbon nanotubes in the frame ofetectamics at terahertz and optical regimes.
The method presented is intended to be includeesearch and commercial software, and for
this reason is focused in the formulation of egl@rtconstitutive parameters. In the first part of
the chapter the graphene electronic properties bage achieved by a semi-classical procedure
of quantum mechanics, named as first quantizatimowhich carbon atoms are considered by
using quantum wave functions and the electromagffietd is treated classically. As a result
isotropic conductivities for interband and intrablaifects are achieved, which covers both the
terahertz and optical regime. The second partethapter has presented the methodology to
account for graphene materials in the most widelpleyed algorithms in numerical
electromagnetics, the finite-difference time-domama the method-of-moment formulations, as

paradigms of the resolution of Maxwell’'s equatiardifferential and integral form. Special
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attention has been paid to include the complemgtitae-domain and frequency-domain
formulations, because both of them can be usefugifoulating complex environments or for
analyzing the unusual physical properties of graptend carbon nanotubes. Results have
illustrated both time-domain and frequency-domasponses at terahertz and optical regimes,
thus enabling the envisagement of a new generafietectromagnetic devices useful for the

nanotechnology.
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Figurelabels.

Figure 33.1. Carbon-atoms arrangement in graphemtecell (left) and corresponding first

Brillouin zone (right).

Figure 33.2. Energy band structure in graphene.

Figure 33.3. (Left) Energy of electronsarandz* bands. (Right) Zoom near Fermi points.

Figure 33.4. Fermi-distribution of occupied stédt@selectrons in case g, =0.

Figure 33.5. Geometrical structure of carbon naoedu

Figure 33.6. Quantization of transversal momentan{léft) zigzag and (right) armchair carbon

nanotubes.

Figure 33.7. Surface conductivity of graphene fffiecent 4. . Reprinted with permission from

(Lin 2012-2).
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Figure 33.8. Electric field of two parallel grapleesheets for symmetric (left) and antisymmetric

(right) modes. Reprinted with permission from (Ri012-2).

Figure 33.9. FDTD model of a cell including a carb@mnotube. Reprinted with permission from

(Lin 2012-1).

Figure 33.10. Current at center of a carbon namotlijole of length 20 um. Reprinted with

permission from (Lin 2012-1).

Figure 33.11. Comparison of interband and intrab@ontiuctivities at optical regime.

Figure 33.12. A circuital circuit model representihe Lorentz-Drude model.

Figure 33.13. Input impedance of a carbon nanotijbale of length 20 um. Reprinted with

permission from (Pantoja 2010).

Figure 33.14. Space-time diagram of currents iaraan nanotube dipole of length 20 um.

Reprinted with permission from (Pantoja 2010).



