
1 

  

Computational Modeling of Graphene and Carbon Nanotube 

Structures at Infrared and Optical Regimes 

 

M. F. Pantoja1, D. Mateos Romero1, H. Lin2, S. G. Garcia1, (D. H. or P.L.) Werner3 

 

1Department of Electromagnetics, University of Granada, Granada (Spain) 

2Central China Normal University, Wu Han (China) 

3Pennsylvania State University, State College (U.S.A.) 

  



2 

  

 

1.  Introduction. 

Nowadays, the amount of research time required to develop any emerging technology has 

decreased from decades to years. This is particularly true for graphene, which has been grown 

exponentially from almost any reference prior to (Novoselov 2004) to more than 5000 papers 

and roughly 500 patents in 2011. In this sense, applications in almost any discipline have been 

envisaged and, when technology has made it possible, manufactured and tested. Those 

applications have gone beyond the nanotechnology to the macroscopic world, and the usual 

limits of this exploration are the unavailability of manufacturing processes or the monetary cost 

of the prototypes.  To overcome this situation, it is useful the development of methods able to 

computationally simulate graphene and carbon nanotubes in macroscopic configurations. Also, 

the compatibility of this procedures with the actual numerical techniques employed in any 

discipline will enable the study of nanodimensional properties of the matter from an applied 

point-of-view. 

 

This chapter attends to the development of a numerical description of the graphene and carbon 

nanotubes related to electromagnetics. In this sense, it worth to remark that most of the designs 

including electromagnetic devices based on graphene have been proposed to operate at terahertz, 

infrared and optical regimes. Then, the numerical description of graphene and carbon nanotubes 

presented in the first Section is focused in their constitutive parameters at those regimes. The link 

with the electromagnetic fields is achieved by employing the Maxwell’s equations in the second 

part of the chapter. Taking into account the maturity of the numerical simulators in the field of 

computational electromagnetics (Sadiku 2010), it is not feasible to explore all possible 
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approaches in a single chapter. However, the presentation of the algorithms starting for the 

frequency- or time- domains and the differential- or integral-equation formulations will be 

helpful to integrate graphene and carbon nanotubes as new electromagnetic materials in the 

numerical codes, no matter the particular formulation employed by the researchers. As an 

eventual result, a new generation of electromagnetic devices will be computationally explored, 

providing thus of a realistic perspective about the possibilities of graphene’s technology in the 

frame of electrodynamics.  

 

2.  Theoretical derivation of the conductivity.  

As it has been pointed out in the introduction, the main objective of this chapter is to provide a 

formulation able to translate the nanodimensional electronic transport properties of graphene into 

the macroscopic Maxwell’s equation. To this end, it is considered that the computational 

electromagnetic modeling of any material of the nature can be achieved by considering the 

constitutive parameters ( ), ,ε µ σ . Taking into account the two-dimensional character of 

graphene and carbon nanotubes, which make the electrical permittivity and magnetic 

permeability approximately equal to those of the free space, the basis of the proposal is to 

develop theoretical formulations of the conductivity. 

 

In this sense, several methods have presented in the literature to model graphene (Charlier et al. 

2007) (Castro Neto et al. 2009) from a bottom-up perspective, most of them based on the 

pioneering work (Wallace 1947). Shortly, they employ the quantum mechanics second 

quantization, supported on the electronic band description, which uses basis functions that 



4 

  

accounts the number of particles occupying each energy state in the complete set of single-

particle states. However, the knowledge required to understand this procedures is not usual for 

engineering people and researchers of other disciplines apart from physics. For this reason, 

formalism here presented is based on the first quantization, which is more intuitive because is 

based exclusively on single-particle wave functions. No matter the intermediate formulation, the 

key step to account for the microscopic electronic transport of carriers into the macroscopic 

conductivity is the Kubo’s equation (Kubo 1956), which enables explicit theoretical equations. 

Approximations of these equations to simpler forms can be made by assuming different regimes 

or under certain conditions in the physical parameters (e.g., temperature or chemical potential). 

Also, the formulation here presented allows to present carbon nanotubes as a particular case of 

graphene sheers, in which the geometrical periodicity results in a quantization of the transversal 

momentum.  

 

2.1. Graphene. 

Graphene is an allotrope of carbon arranged in a honeycomb structure made out of hexagons 

whose vertices are occupied by carbon atoms sharing covalent bonds. Electronic properties of 

graphene can be derived from the band theory of solids. To this end, it is briefly presented a 

geometrical characterization and a description of energy bands in graphene. Then, a second 

quantization procedure is applied to achieve the conductivity at any frequency, and finally 

further approximations for infrared and optical regimes are considered for deriving simpler 

mathematical expressions of the conductivity.  

 

Geometrically, a hexagonal lattice is a particular case of a rhombic lattice with rectangles which 
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are 3  times as high as wide (Kittel 2004).  In this case, a unit-cell contains two non-equivalent 

atoms (noted as A and B), each one forming a sublattice of identical primitive vectors ia
�

: 
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where a  is the modulus of the lattice vector, which is related to the carbon-carbon distance CCa  

as 3 CCa a= . The first Brillouin zone is also hexagonal (Wallace 1947), with reciprocal-lattice 

vectors ib
�

 (Figure 33.1): 
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[HERE FIGURE 33.1] 

 

In this way, three of the four electrons located in the valence band of any carbon atom are in 2sp  

hybridization, i.e., the 2s orbital is mixed with 2px and 2py orbitals to form a total of three σ 

covalent bonds with neighborhood carbon atoms. The fourth electron, whose 2pz orbital remains 

independent of the σ bonds, forms a π covalent bond. Conductivity is mainly related to this latter 

electron, because σ bands are distant of the Fermi level (Figure 33.2), being thus unlikely the 

transitions from the valence to the conductivity band. For this reason, a carbon atom in graphene 

has only one electron in valence band. 
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[HERE FIGURE 33.2] 

 

The energy of the π band can be calculated through the tight binding approximation (Wallace 

1947), in which it is assumed that only the interactions between electrons of neighborhood atoms 

are significant. To this end, it is noted the wave function of the orbital 2pz  in an isolated atom as 

( )X r
�

. Using lattice symmetry, the wave function of any equivalent A-atom can be noted as 

( )AX r r−� � , where Ar
�

 is the position vector, and similarly for B-atoms as ( )BX r r−� � . Using the 

Bloch theorem [1], the periodic Bloch waves for the sublattices A and B are: 
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 (33.3) 

where N is the number of unit-cells of the lattice. Then, the total wave function has the form: 

 ( ) ( ) ( )1 1 2 2r c r c rϕ ϕ ϕ= +� � �
 (33.4) 

with 1c  and 2c  constants associated to the normalized wave function ϕ . 

 

Let H  the Hamiltonian of the lattice which allows, among other, the calculus of the energy of an 

electron in a particular quantum state (Bransden and Joachain, 2000). Taking { }1 2,ϕ ϕ  as the 

basis of the space formed by the lattice wave functions, which satisfies  i iH Eϕ ϕ=  where E is 

the energy of the electron in the iϕ  state, then H  can be expressed as: 

 11 12

21 22

H H
H

H H

 
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 (33.5) 

where * *
ij i j jiH H dr Hϕ ϕ= =∫

�
. 
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Also, it is usual in the tight binding approach to neglect the overlapping between orbitals 2pz of 

different atoms, i.e., ( ) ( )* 0A BX r r X r r dr− − =∫
� � � � �

 for any A B≠ . Then, diagonal terms of H  

are: 

( ) ( ) ( ) ( ) ( )' * *
11 22 ' ' 0

, '

1
A Aik r r

A A A A
A A

H H e X r r HX r r dr X r r HX r r dr
N

ε− ⋅ −= = − − = − − =∑ ∫ ∫
� � � � � � � � � � � � �

 (33.6) 

where geometrical symmetry has been used to state 11 22H H= , and 0ε  corresponds to the energy 

of an electron on the 2pz in carbon. Regarding the overlap coming from different sublattices, only 

nearest neighborhoods are considered, which leads to the condition 

( ) ( )* 0A BX r r HX r r dr− − =∫
� � � � �

  if A and B are not nearest atoms, and off-diagonal terms of the 

Hamiltonian are: 

 ( ) ( ) ( ) ( )1 2*
12 21

,

1
1A Bik r r ik a ik a

A B
A B

H H e X r r HX r r dr t e e
N

− ⋅ − ⋅ ⋅= = − − = − + +∑ ∫
� � �� � � �� � � � �

 (33.7) 

where 0ε , being ρ�  the vector distance between nearest atoms, which does not depend on the 

particular atom by geometrical symmetry (Figure 33.1).  

 

Taking into account that only energy gaps are needed to characterize the electrical conduction, 

the 0ε   value can be used as origin of energies. In this way, t  is experimentally measured as 

approximately equal to 2.8 eV, and the Hamiltonian is rewritten as: 
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where ( ) ( )1 21 ik a ik aw k t e e⋅ ⋅= − + +
� �� ��

. Eigenvalues and eigenvectors of the matrix are: 
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with 1s = ± , and 
( )
( )

1 2

1 2

Im 1
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Re 1

ik a ik a

k ik a ik a
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e e
ϕ
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=

+ +

� �� �

� � �� � . 

 

Figure 33.3 shows a three dimensional picture of the dispersion relation arisen from (33.9). The 

1s= −  solution corresponds to the bonding orbitals π, which are filled in the fundamental state, 

and the 1s=  solution forms the antibonding orbitals π
* for excited states of the graphene.  A 

similar graph restricted to the Γ − Κ  and Γ − Κ  directions of the first Brillouin zone is presented 

in Fig. 2, which includes also the σ and σ* orbitals. At low temperatures only σ and  π-bands are 

occupied, and the Fermi energy is reached at K vertices of the Brillouin zone which also form the 

Fermi surface for graphene. Furthermore, the choice of 0 0ε =   as the reference for energies 

implies that Fermi energy can be considered as zero in the rest of the chapter. 

 

[HERE FIGURE 33.3] 

 

Therefore, the relation dispersion can be carried out considering a small perturbation kδ
�

 near 

the Fermi points of graphene, in the form k K kδ= +
� ��

 . In this way, a series expansion of (33.9) 

leads to: 
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where the Fermi velocity for graphene is 63
10

2F

a
v t= ≈

ℏ
 m/s. It worth to remark the linear 

dependence with kδ
�

 in (33.11), illustrated as a zoom in the right part of Figure 33.3, which 

predicts  both ballistic transport and isotropic properties for graphene. Of course, those properties 

cannot be assumed in general -e.g., in the ultraviolet regime, but they will be certain for the 

objectives of this chapter. 

 

Regarding the distribution of electrons in the energy bands, the Fermi-Dirac distribution is 

employed under the assumption that electrons behaves as fermions (Sutton, 1993): 
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where Bk  is the Boltzmann constant, T  is the temperature of the graphene and cµ  is the 

chemical potential which can be tuned through external fields applied (Fig. 33.4 shows the 

Fermi-distribution as function of  k
�

 for 0cµ = ). 

 

[HERE FIGURE 33.4] 

 

To derive the conductivity of the graphene, electromagnetic interactions are considered by the 

total linear momentum e
ck A+
�

ℏ , where A
�

 is the electromagnetic potential vector which is 

related to a harmonic electric field E
�

 as 
c

A E
iω

=
� �

. Assuming a relatively small electromagnetic 

momentum, the perturbation method can be applied and mechanical and electromagnetic terms 



10 

  

can be separated in the Hamiltonian as (Zhang et al. 2008): 

 0 'H H H= +  (33.13) 

where 0H  is given by (33.8), and 'H  is: 
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which can be rewritten as: 
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where the components of the current  J
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and: 
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with ( ) ( ) ( ) ( )23 1 1
2 2 21 4cos sin 4cosx y yk k a k a k aα = + +

�
. 

 

Therefore, Kubo’s formulation (Kubo 1956) provides us the components of the conductivity 

tensor as: 

 ( ) ( ) ( ) ( )1
0 0i t

k

dte J t J J J tω
µν µ ν ν µσ

ω
= −∑ ∫�

 (33.18) 

where  means for the trace of the matrix resulting of the product of the corresponding time-
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varying density of currents xJ
�

 and yJ
�

 and the auxiliary matrix of Fermi-Dirac distribution ρ :  
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 In our case, (33.18) gives: 
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where 
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1 1
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, and the approximation 
( )22
2k
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π
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�

 has 

been taken.  

 

For low energies, which is the case in terahertz and optical regimes, the occupied states will be 

located near the Fermi points Κ . For this reason, the series expansion k K kδ= +
� ��

 can be 

repeated leading to approximations ( ) ( ) ( )( )2
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Integral (33.21) can be carried out through change of variables 
,1 Fk

v kε ε= =�

�
ℏ  and 
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which can be rewritten by integrating by parts and applying that 
( ) ( )f fε ε

ε
ε ε

∂ ∂ − 
− ∂ ∂ 

  is an even 

function as:  
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 (33.23) 

Scattering of electrons can be taking into account by a complex frequency 2iω ω→ + Γ  (Hanson 

2008), where Γ  is related to the relaxation time τ  for the scattering of electrons in the form 

( ) 1
2τ −Γ =  . Then: 
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which is identical to the lower frequency approximation (including optical and terahertz regime) 

presented in (Gusynin et al. 2007).  

 

Terms of (33.24) can be identified as a first intraband term, analytically solved as:    

 ( )
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(33.25) 

and a interband term, which can be approximated for ( ,B ck T µ ω≪ ℏ ) , as: 
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 (33.26) 
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Equation (33.25) accounts only for intraband response, because 
( ) ( )f fε ε
ε ε

∂ − ∂
= −

∂ ∂
 and thus it 

can be rewritten as 
( )

( )2

2 0

2

2

fe
i d

i

ε
σ ε ε

π ω ε
∞ ∂

= −
+ Γ ∂∫

ℏ
 which means that only 1s=  or 1s = −  

are employed in the calculation, which is not the case for (33.26). Also, it is important to remark 

for the terahertz regime only (33.24)  needs to be considered, and when optical frequencies are 

considered then both (33.24) and (33.25) should be taken into account. 

 

2.2. Carbon Nanotubes. 

Dispersion relation (33.9) remains valid for carbon nanotubes, which can be thought as the 

enrollment form of graphene. However, then enrollment enforces a geometrical periodicity and 

the transversal momentum is quantized, simplifying thus the derivation of the conductivity. 

 

Figure 33.5 presents an extended graphene sheet. Any enrolled form is characterized by a vector 

1 2HC ma na= +
� � �

 joining to identical carbon atoms which will be located at the same point in the 

carbon nanotube. Then, HC
�

 means for the circumference of the carbon nanotubes, 

2 23HC a m mn n= + +
�

, and also can be taken as a basis vector in the unit-cell of the carbon 

nanotubes. Further, translation vector T
�

 is defined to join the reference point O with the nearest 

carbon atom, perpendicularly to HC
�

. Then, T
�

 can be expressed as: 

 1 1 2 2T t a t a= +
� � �

 (33.27) 

where 1

2

R

m n
t

d

+=  and 2

2

R

m n
t

d

+= , with  ( )gcd 2 , 2Rd m n m n= + + . In this way, axis of the 
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carbon nanotube is defined along T
�

 direction, referenced as z , and the corresponding 

perpendicular component along HC
�

, noted as φ .  

 

[HERE FIGURE 33.5] 

 

The wave functions in carbon nanotubes are periodic according to HC
�

, and applying Bloch’s 

theorem: 

 ( ) ( ) ( )Hik C
Hr C e r rϕ ϕ ϕ⋅+ = =

� ��� � �
 (33.28) 

which implies: 

 3 2
2 2x y

n m n m
k a k a sπ+ −+ =  (33.29) 

For armchair carbon nanotubes (m n= ),  (33.29) is reduced to: 

 

2

3
x

y z

s
k k
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k k

φ
π= =

=
 (33.30) 

and for zigzag carbon nanotubes ( 0m=  or equivalently m n= − ) as: 

 
2

y

x z

s
k k

m a
k k

φ
π= =

=
 (33.31) 

Then, (33.24) still holds for carbon nanotubes, but the transversal momentum quantization has to 

be taken into account for the integration. To this end we apply the identity 2 2

0
2 Fd dkvπ ε

∞
=∫ ∫

�
ℏ , 

leading to an expression for the intraband conductivity: 
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2 2
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σ ω

επ ω
∂

= −
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where 
( ) ( ) ( )

2
f f fε ε ε

ε ε ε
∂ ∂ − ∂ 

− = ∂ ∂ ∂ 
 has been applied. 

 

[HERE FIGURE 33.6] 

 

For zizag carbon nanotubes (Figure 33.6), (33.31) can be written as 
1

k s
m aφ

π= , and (33.32) is 

then: 

 ( )
( ) ( )

( )2
2

2
1

8

2 2

m

zz z F
s

fe
i dk v

i ma

επσ ω
επ ω =

∂
= −

∂+ Γ
∑∫  (33.33) 

Only Fermi points ( / 3s m=  and 2 / 3s m= ) have to be considered for the case of metallic zigzag 

( 3m n= ) , and the sum can be reduced to: 

 ( )
( ) ( )

( )
( )

2 22 / 2
2 20

8 2 3
4

22 2

a

zz z F

fe e t
i dk v i

m ii ma

π επσ ω
ε π ωπ ω

∂ 
≈ − = ∂ + Γ+ Γ  

∫
ℏ

 (33.34) 

Following the same procedure, the conductivity of armchair carbon nanotubes (Figure 33.6) is 

derived:  

 ( ) ( )
2

2

2

2zz

e t
i
m i

σ ω
π ω

=
+ Γℏ

 (33.35) 

 

3. Computational models for THz and Optical Regimes. 

Once characterized the electronic transport properties of graphene and carbon nanotubes, it 

remains the question of how to implement these characteristics in computational models of 

Maxwell's equations. For this purpose, two alternatives may be taken into consideration, a 
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differential- or a integral-based formulation, and both of them may be formulated in terms of 

frequency or time-domain approaches.  Then, several computational procedures have been 

developed in the last decades to solve the resulting equations, being the most popular the 

moment-method solution for integral equations and the finite-difference discretization for 

differential equations. Other widely extended techniques, such as finite-element or Monte-Carlo 

algorithms, can be successfully applied and present some computational advantages for 

particular cases. However, this chapter focuses only with moment-method and finite-difference 

algorithms because they address most of the common challenging issues to produce stable and 

accurate results for any computational procedure.   

 

3.1. Differential-equations based formulation. 

Any transient electromagnetic wave ( ) ( )( ), , ,E r t H r t
� �� �

 propagating along a graphene or a carbon 

nanotube structure accomplishes the Faraday's and Ampère-Maxwell's equations (Taflove 2005), 

which can be written in the form: 

 
( ) ( ) ( )

*, 1
, ,

H r t
E r t H r t

t

σ
µ µ

∂
= − ∇× −

∂

� �
� �� �

 (33.36) 

 
( ) ( ) ( ), 1

, ,
E r t

E r t H r t
t

σ
ε ε

∂
= − + ∇×

∂

� �
� �� �

 (33.37) 

where the four constitutive parameters ( )*, , ,ε µ σ σ  accounts for the specific properties of the 

any material. In our case, the two-dimensional character of graphene can be considered by a 

electric permittivity and magnetic permeability  equal to free space, a non-lossy magnetic 

material, and a electric conductivity given by the procedures previously presented -i.e., 

( )0 0, , ,0ε µ σ .  
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However, numerical simulations based on a FDTD procedure for solving equations (33.36) and 

(33.37) cannot be carried out by a direct substitution of the conductivities (33.25) and (33.26) for 

graphene, or their quantized form (33.34) or (33.35) for carbon nanotubes, because of the 

stability issues inherent to the numerical algorithm (Taflove 2005). To avoid these undesired 

instabilities, an equivalent volume conductivity eqε  is defined, assuming a very small thickness 

of graphene ∆ , in the form 0eq j

σε ε
ω

= +
∆

.  Of course, the complex relative permittivity values 

at different frequencies vary under different conditions of ( ), ,c Tµ Γ  (Figure 33.7), but a time-

domain formulation of the permittivity is required for any case. A proposed way to achieve this 

is by formulate a sum of  P  partial fractions in terms of complex conjugate pole-residue pairs as 

follows: 

 
*

0 0 *
1

P
p p

eq
p p p

c c

j a j a
ε ε ε ε

ω ω∞
=

 
= + −  − − 

∑  (33.38) 

where the relative permittivity at infinite frequency ε∞ , the -th pole pa  and residue pc , are 

found by employing heuristic techniques (Haupt 2007). Equation (33.38) presents some desirable 

numerical properties: a) it complies with Kramers-Kronig relationships, which provides it of 

physical meaning; b) it is unconditionally stable because poles are in the left complex semi-

plane; and c) it is versatile for modeling intraband or interband responses, because poles and 

residuals can describe a Drude or a Lorentz-Drude formulation.  

 

[HERE FIGURE 33.7] 
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Furthermore, it can be implemented in the time domain by a convolutional or a Auxiliary 

Differential Equation (ADE) formulation (Han 2006). To this end, the FDTD updating 

equation for the electric field (the magnetic field-update equation remains unchanged) is: 

 

{ }
( ){ }1 1/2

1
0

1

Re 1
Re

P
n n n n

p pP
p

p
p

t
E E H k J

ε ε β

+ +

=
∞

=

 ∆= + ∇× − + 
 +

∑
∑

� � � �
 (33.39) 

where n
pJ
�

 are auxiliary currents introduced by the complex conjugate pole-residue pairs, which 

are updated by employing: 

 ( )1 1pn n n n
p p pJ k J E E

t

β+ += + −
∆

� � � �
  (33.40) 

and the updating coefficients pk  and pβ  depend of the poles and residues as: 
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1 / 2

1 / 2

1 / 2

p
p

p

p
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a t
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a t

c t

a t

ε
β

+ ∆
=

− ∆

∆
=

− ∆

 (33.41) 

 

As an example of results achieved by this method, a terahertz waveguide composed of 50 nm 

parallel plate distance graphene sheets is simulated in Figure 33.8. At times a steady state, the 

wavelength can be found from the space-field distribution allows to determine both the 

wavelength of propagation and the propagation constant for symmetric and anti-symmetric 

modes.  

 

[HERE FIGURE 33.8] 

 

When carbon nanotubes are considered, the former procedure is no longer adequate because the 
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small diameter of the enrollment (roughly up to tenths of nanometers) will enforce to excessively 

fine meshes which would require large supercomputers for practical simulations. To avoid this, it 

is possible to apply a thin-wire formulation modified to include carbon nanotube structures as it 

is shown in Figure 33.9. Usual procedure to include thin-wires in FDTD consists in introduce an 

additional in-cell inductance incellL  and capacitance incellC  per unit length, both related by the 

transmission-line relationship incell incellC Lεµ= . Considering a carbon nanotube (eventually 

treated as a thin-wire of radius a  and constitutive parameters 0 0,ε µ ) placed in a mesh of size 

( ),x y∆ ∆ , the in-cell inductance is considered as (Berenger 2000): 

 
2 2 2

0
, 2

ln arctan arctan 3
4incell A

x y y x x y a
L

a x y y x x y

µ π
π
 ∆ + ∆ ∆ ∆ ∆ ∆= + + + − ∆ ∆ ∆ ∆ ∆ ∆ 

 (33.42) 

or (Boutayeb 2006):   
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 − < ∆ ∆=  ∆ ∆ ≥
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 (33.43) 

 

To account for the conductivity of the carbon nanotube, a circuital circuit model of the 

conductivity can be employed, in the form: 

 
1 1

CNT K
CNT q

R sL
sC

ρ
σ

= = + +  (33.44) 

where R , KL , and qC  are, respectively, the resistance, kinetic inductance and quantum 

capacitance per unit length. In this way, the thin-wire model including CNTs reduces to: 

 ( ) 1z z
incell k z z

incell q

I Q
L L RI E

t C C z

∂ ∂+ + + =
∂ + ∂

 (33.45) 



20 

  

which it is ready to be implemented in the FDTD update scheme by discretizing the current zI  

and charge zQ  per unit length following the classical procedure given in (Holland 1981). 

 

Results of this method are presented for a dipole of length 20 m and radius 2.712 nm, fed with a 

Gaussian voltage source at its center at frequencies up to 1 THz. Figure 33.10 plots the time-

domain current at the center of the antenna. It can be appreciated the propagation of surface 

plasmon resonance on the carbon nanotube, with a low frequency resonance mostly related to the 

kinetic inductance, and a small amplitude of the current due to the large resistance of the ballistic 

transport of carriers. Also, it becomes apparent that the inductance (33.42) provides results 

consistent with a formulation based on method-of-moments.  

 

3.2. Integral-equations based formulation. 

Maxwell's equations can be rewritten in terms of integral equations, such as the electric field 

integral equation (EFIE), the magnetic field integral equation (MFIE) or the combined field 

integral equation (CFIE). All of them can be classified in different ways: attending to the 

dimensionality of the integrals (volumetric, surface or linear integral equations), in terms of the 

domain (frequency or time), or depending of the specific unknowns of the equation (current or 

current-charge integral equations) (Volakis 2012). Usual criteria for the choice among them are 

related to the nature of the problem. For graphene sheets a surface-based integral equation could 

be employed, while for carbon nanotubes a linear version could be thought as adequate (and 

preferable taking into account that required computational resources are related to the 

dimensionality of the problem). For the domain of solution, frequency-domain solutions are 

computationally advantageous when single-frequency electromagnetic sources, or at least 
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narrowband sources, are considered. However, more information for the analysis of physical 

phenomena is achieved when time-domain is performed, which is more useful for emerging 

technologies or materials. Regarding the unknowns, the usual choice is the electric current or the 

density of current, being this a choice more related to the stability and accuracy of the 

simulations. Finally, specific choice of the integral equations depends of the geometry of the 

problem, i.e., closed or open geometries. Taking into account that actually manufacturing 

processes are mature to produce relatively simple graphene sheets or carbon nanotubes, which 

can be thought as open surfaces, the employment of EFIE is justified. 

 

Therefore, a surface EFIE taking into account the finite conductivity of the graphene can be cast 

applying appropriate surface impedance boundary conditions (Yuferev 2010). Following the 

equivalent model for graphene as a volume conductivity eqε , a graphene layer acts like a thin 

metal film when { }Re 0eqε <  and electromagnetic waves at any point r
�

 on the surface of 

graphene accomplish: 

 ( ) ( ) ( ) ( ) ( ) ( )
( )

'
0

0

1
ˆ ˆ ' , ' ' ' , ' ' si

s s sS S

J r
n E r n j J r G r r dS J r G r r dS

j r
ωµ

ωε σ
 

× = × − ∇ ∇ ⋅ +  
 

∫ ∫
� �

� � �� � � � � � �
� (33.46) 

where n̂  means for the normal vector to the graphene layer, ( )
'

, '
'

ik r re
G r r

r r

− −

=
−

� �

� �
� �  is the Green’s 

function connecting source 'r
�

 and field r
�

 points, ( )iE r
� �

 is the incident field which can be 

external for scattering problems or internal in radiation problems, ( )'sJ r
� �

 are the unknown 

density of currents ( '
s∇ ⋅  means for the surface divergence with respect to the primed 

coordinates), and ( )rσ �
 is the conductivity which can be tuned locally by changing the chemical 
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potential and thus envisaging electromagnetic devices such as surface waveguides (Vakil 2011). 

Solutions of (33.46) can be achieved by a method-of-moment Galerkin procedure using Rao-

Wilton-Glisson basis functions (as long as the graphene remains in planar layers the higher order 

basis will not increase the accuracy of solutions) (Volakis 2012). 

 

Time-domain counterpart of (33.46) can be derived using inverse Fourier transform: 

( ) ( ) ( )( )
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1 1 1
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−
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   + ×      

∫ ∫ ∫
� � �� � �

� �

�L

 (33.47) 

where 'R r r= −� �  is the distance between source and field points, c  is the velocity of light, 1−
L  

means for the inverse Laplace transform and /t R c−  is the retarded time which provides 

causality to the electromagnetic wave propagation. As it happens with differential formulation, 

stability issues appears when time-domain solutions are requested. For this reason, the term 

including conductivity in (33.47) has to be model through as an expansion of Lorentz-Drude 

series to avoid instabilities.  Again, the dispersive equivalent permittivity can be represented as 

intraband and interband equivalent conductivities (ibσ  and ibσ , respectively), from the generic 

formula:    

 
2 2

0 0

2 2
10

K
p j pib eb

j j j

f s f

s s s

ω ε ω
σ σ σ

ω=
= + = +

+ Γ + Γ +∑  (33.48) 

where the intraband (Drude) term contains ωp corresponding to the plasma frequency associated 

with the graphene layer. Also, intraband transitions are characterized by an oscillator strength f0 

and a damping constant Γ0.  The term corresponding to the interband contribution obeys a simple 
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semi-quantum model expressed in a Lorentz form, where K represents the number of oscillators 

needed to achieve a reasonable fit to the analytical conductivity. Each one of these oscillators is 

described by three parameters corresponding to their frequency ωj, strength fj and damping 

constant Γj. Figure 33.11 presents a comparison of the contributions between typical interband 

and intraband responses, which shows how the intraband response predominates as getting closer 

to terahertz regime while optical response is associated only to interband conductivity. 

 

[HERE FIGURE 33.11] 

 

To achieve a numerically efficient procedure, (33.48) can be rewritten in terms of circuital circuit 

models by defining a set of inductances jL , capacitances jC , and resistances jR , such that 
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leading to: 

 
1

10 0

1 1

j

K

j j j sCR sL R sL
σ

=

= +
+ + +∑  (33.50) 

Figure 33.12 shows a schematic representation of the circuit model which corresponds to the 

equivalent conductivity σ  of the graphene sheet. Numerical models require one RL circuit to 

represent the Drude term and at least eight RLC circuits to represent the Lorentzian responses. It 

is remarkable that the use of the circuital circuit model to the efficiency of the method does not 

add a significant computational burden to the solution, as well as provide some physical insight 

by an inspection of the values corresponding to the specific circuit elements. What is more, it can 
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be implemented to avoid the employment of any numerical inverse Laplace transform in the 

code, which  may suffer either from inaccuracies, as a result of a numerical truncation of the 

time-domain response, or from extremely poor computational performance if the complete 

response of the same term is considered. By using the RLC circuital circuit model (Pantoja et al. 

2012), the contribution of each term can be carried out numerically by a trapezoidal integration 

or a finite difference approximation of the circuital circuit response.  

 

[HERE FIGURE 33.12] 

 

Electromagnetic scattering or radiation problems regarding carbon nanotubes can be solved also 

by solving a EFIE.  Carbon nanotubes usually have a reduced radius/length ratio and, at those 

frequencies in which the axial current is much larger than the azimuthal one, they can be 

modeled by the thin-wire approximation. This thin-wire approach can be also simplified for 

achieving high computational efficiency by considering a particular case of the exact Green’s 

function usually named as the approximate kernel, which takes an advantage of the cylindrical 

symmetry of the sources and avoids the singularities that arise in the general case, by treating the 

total current as a filament on the wire axis and enforcing the boundary condition on the wire 

surface. The use of this approach allows to formulate the modified frequency-domain 

Pocklington’s EFIE in a vacuum (Harrington 1993): 
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and the corresponding time-domain EFIE is (Miller 1980):  
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 (33.52)                                              

where I
�
represents the unknown current along the arclength 'C  of the thin-wire embedded in a 

vacuum, and ' R
ct t= − accounts for the retarded time between the source and field point. It bears 

remarking that equations (33.51) and (33.52) are no longer valid in the upper part of the visible 

spectrum, where the axial current no longer dominates because the skin effect begins to become 

appreciable (Hanson 2006). For this cases, simulations of carbon nanotubes can be made out by 

employing (33.46) and (33.47). 

 

[HERE FIGURE 33.13] 

 

Results for a carbon nanotube-based dipole, modeled with a RL equivalent circuit corresponding 

to the Drude model of the intraband conductivity, in the Terahertz regime are presented. Total 

length L of the dipole is 20 µm, with a wire radius of 2.712 nm. Figure 33.13 displays the results 

for the input impedance over a range of frequencies up to 1 THz. These results demonstrate good 

agreement between the frequency-domain and time-domain EFIE solutions, and they are 

consistent with other published results (Hanson 2005). Taking into account the length of the 

dipole, these results confirm the existence of resonances at lower frequencies in CN dipoles than 

those corresponding to a standard perfect electric conductor dipole (PEC) of the same length, 

provided that they could be generated in this range of frequencies. The reason for this fact is 

found in the slower velocity of the propagation of waves for the carbon nanotubes compared to 
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the PEC wire. This effect can be analysed by depicting a space-time representation of the 

currents along the antenna. Figure 33.14 shows the currents along the carbon nanotube dipole as 

a function of temporal (X axis) and length (Y axis) intervals, where it can be appreciated the 

formation of lower frequency resonances, mainly due to the inductive propagation of carriers at 

these frequencies. The electric current reaches the ends of the antenna, forming a traveling wave 

which returns to the feeding point (at approximately 5000 time intervals), corresponding to the 

lowest resonant frequency of 0.24 THz shown in Figure 33.14.  

 

[HERE FIGURE 33.14] 

 

4. Conclussions. 

This chapter has described numerically the procedures to achieve numerical simulations of 

graphene and carbon nanotubes in the frame of electrodynamics at terahertz and optical regimes. 

The method presented is intended to be included in research and commercial software, and for 

this reason is focused in the formulation of equivalent constitutive parameters. In the first part of 

the chapter the graphene electronic properties have been achieved by a semi-classical procedure 

of quantum mechanics, named as first quantization, in which carbon atoms are considered by 

using quantum wave functions and the electromagnetic field is treated classically. As a result 

isotropic conductivities for interband and intraband effects are achieved, which covers both the 

terahertz and optical regime. The second part of the chapter has presented the methodology to 

account for graphene materials in the most widely employed algorithms in numerical 

electromagnetics, the finite-difference time-domain and the method-of-moment formulations, as 

paradigms of the resolution of Maxwell’s equation in differential and integral form. Special 
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attention has been paid to include the complementary time-domain and frequency-domain 

formulations, because both of them can be useful for simulating complex environments or for 

analyzing the unusual physical properties of graphene and carbon nanotubes. Results have 

illustrated both time-domain and frequency-domain responses at terahertz and optical regimes, 

thus enabling the envisagement of a new generation of electromagnetic devices useful for the 

nanotechnology. 
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Figure labels. 

 

Figure 33.1. Carbon-atoms arrangement in graphene: unit-cell (left) and corresponding first 

Brillouin zone (right). 

 

Figure 33.2. Energy band structure in graphene. 

 

Figure 33.3. (Left) Energy of electrons in π and π* bands. (Right) Zoom near Fermi points. 

 

Figure 33.4. Fermi-distribution of occupied states for electrons in case of 0cµ = . 

 

Figure 33.5. Geometrical structure of carbon nanotubes. 

 

Figure 33.6. Quantization of transversal momentum for (left) zigzag and (right) armchair carbon 

nanotubes. 

 

Figure 33.7. Surface conductivity of graphene for different cµ . Reprinted with permission from 

(Lin 2012-2). 
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Figure 33.8. Electric field of two parallel graphene sheets for symmetric (left) and antisymmetric 

(right) modes. Reprinted with permission from (Lin 2012-2). 

 

Figure 33.9. FDTD model of a cell including a carbon nanotube. Reprinted with permission from 

(Lin 2012-1). 

 

Figure 33.10. Current at center of a carbon nanotube dipole of length 20 µm. Reprinted with 

permission from (Lin 2012-1). 

 

Figure 33.11. Comparison of interband and intraband conductivities at optical regime. 

 

Figure 33.12. A circuital circuit model representing the Lorentz-Drude model. 

 

Figure 33.13. Input impedance of a carbon nanotube dipole of length 20 µm. Reprinted with 

permission from (Pantoja 2010). 

 

Figure 33.14. Space-time diagram of currents in a carbon nanotube dipole of length 20 µm. 

Reprinted with permission from (Pantoja 2010). 

 

 

 

 


