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Abstract: The aim of this paper is the imputation of missing data of COVID-19 hospitalized and
intensive care curves in several Spanish regions. Taking into account that the curves of cases, deceases
and recovered people are completely observed, a function-on-function regression model is proposed
to estimate the missing values of the functional responses associated with hospitalized and intensive
care curves. The estimation of the functional coefficient model in terms of principal components’
regression with the completely observed data provides a prediction equation for the imputation of
the unobserved data for the response. An application with data from the first wave of COVID-19 in
Spain is developed after properly homogenizing, registering and smoothing the data in a common
interval so that the observed curves become comparable. Finally, Canonical Correlation Analysis
is performed on the functional principal components to interpret the relationship between hospital
occupancy rate and illness response variables.

Keywords: functional data analysis; function-on-function regression; functional principal compo-
nents; B-splines; COVID-19

1. Introduction

The virus SARS-CoV-2 has been the main global concern ever since its start, at the
end of 2019 in China. Its rapid propagation has put all areas of society on alert, not only
the field of medicine. Nevertheless, a year and half after the beginning of the pandemic,
the virus incidence has not seemed to decrease and the number of deaths continues its
upward trend throughout the world. To obtain some idea of extremely negative impact of
the pandemic, Coronavirus Disease (COVID-19) has caused a total of 2,780,266 deaths over
the planet as of 28 March 2021, according to the real-time database developed by Johns
Hopkins University [1]. Another crucial topic derived from the illness is the economic
crisis which has devastated all countries. For instance, the unemployment rate is up 5.1%
in last three months of 2020 in the UK, according to official data.

In order to combat this terrible situation, there is a great need to understand the
development of the pandemic. Knowing its behaviour will enable correct decision making
to mitigate the spread of the virus and to restore people’s daily lives as soon as possible. To
do so, the scientific community is focusing all its efforts on developing new techniques,
capable of modelling and predicting the evolution of COVID-19. The main variables of
interest that gauge how the epidemiological situation stands in a country are the number
of positive, recovered and deceased cases. Another important indicator is the number of
people who are hospitalized or in intensive care units. From a mathematical perspective,
many authors have already attempted to tackle these variables from different statistical
perspectives. A new Bayesian indicator is introduced in [2] to forecast the beginning of a
new wave. In [3], semi-empirical models based on the logistic map are considered in order
to predict the variables in different phases of the pandemic in Spain. Likewise, Ref. [4]
apply SIR models to analyse the trend of the disease over the world and, more specifically,
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in India. These variables are also addressed from the time series design by considering
quasi-Poisson regression and two-piece scale mixture normal distribution when there is a
lack of symmetry in the error’s distribution in [5,6], respectively. Additionally, Ref. [7] make
an exhaustive comparison of five deep learning methods to forecast the number of new
cases and recovered cases in Italy, Spain, France, China, the USA and Australia. Regarding
the role of the environmental conditions in the evolution of the illness, Ref. [8] study
whether the number of cases in China is connected with the daily average temperature and
relative humidity through a generalized additive model. On this point, Ref. [9] show how
the choice of the spatio-temporal model may affect the relationship between the spread of
the virus and certain environmental conditions. Information theory metrics are also used
to understand how time series associated with the pandemic are interconnected or causally
related to each other [10]. In addition, how the incubation period distribution could vary
by age and gender is investigated in [11]. On the other hand, a new family of distributions
is introduced in [12] to model daily cases and deaths in Egypt and Saudi Arabia.

Taking the nature of the variables of interest into account, an approach based on
Functional Data Analysis (FDA) is proposed in the current paper for data imputation.
FDA is a modern branch of statistics that aims to analyse the information coming from
curves or functions that evolve over time, space or other continuous arguments. Under this
definition, it is clear that the number of COVID-19 positive, recovered, deceased, hospital-
ized and intensive care cases come from the observation of functional variables. FDA is
usually applied in many areas of knowledge, such as Biosciences, Environment, Economy,
Chemometrics and Electronics. A detailed review of the most important FDA methodolo-
gies, applications and computational aspects can be seen in books [13–17]. In this regard,
some works have been developed, focused on revealing complex patterns of COVID-19
illness from an FDA viewpoint. Functional Principal Component Analysis (FPCA) and
functional time series approaches based on dynamic FPCA are applied in [18] to explain
variability and predict COVID-19 confirmed and death cases in the United States. On the
other hand, a new Varimax rotation approach to FPCA is introduced in [19] to better
interpret the main modes of variability in COVID-19 confirmed cases in the first wave in
Spain. Time-varying FDA methods, to model the cumulative COVID-19 curves of cases by
pooling data across countries, are applied in [20]. A multivariate FDA approach was also
considered for spatio-temporal prediction of COVID-19 mortality counts in Spain [21].

All statistical models require complete and high-quality data to be able to provide
accurate predictions, but, unfortunately, neither of these aspects are normally fulfilled
during a pandemic. In the first wave of COVID-19 in Spain, a change in the way of recording
data in some Autonomous Communities produced incomplete data in hospitalized and
intensive care curves. In this paper, a functional linear regression model is proposed for
the imputation of these missing curves, so that complete data are available to estimate
the predictive models with guarantees. Although there are many works related to the
imputation of multivariate data [22,23], there is a lot to be done in the functional framework.
A novel approach for multiple imputation based on functional mixed effects models
was proposed by [24] in a longitudinal data context. Different solutions to scalar-on-
function regression with missing observations in the response are considered in [25–29].
Additionally, an extension to multiple functional regression imputation that handles both
scalar and functional response variables related to EEG data is proposed in [30]. Likewise,
different FDA imputation methods under sparse and irregular functional data settings
are performed in [31]. The extension of the function-on-function linear regression (FFLR)
model [32–34] to the case of multiple functional predictors is proposed in this paper to
estimate the curves of hospitalized and intensive care people (functional responses) from
the curves of confirmed, deceased and recovered cases (functional predictors).

In addition to this introduction, the manuscript scheme consists of a description of the
data where the process of the homogenization, registration and smoothing of the sample
curves is detailed in order to make them comparable (Section 2). The theoretical framework
of multiple function-on-function linear regression and the imputation procedure based on
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principal components regression appear in Section 3. An application to COVID-19 data in
the Spanish Autonomous Communities during the first wave of the pandemic is developed
in Section 4. Finally, Section 5 contains a discussion about the results obtained throughout
this paper.

2. Data Homogenization, Registration and Smoothing

Spain is organized administratively in autonomous communities (ACs) or territorial
governments that have transferred health affairs. This territorial organization consists of
17 ACs plus two autonomous cities (Ceuta and Melilla) located on the African continent,
and which have been excluded from the analyses presented here because they have no ex-
clusive competences in the organization of health care assumed by the Spanish government.
The 17 ACs are, in alphabetical order: Andalucía, Aragón, Asturias, Islas Baleares, Islas
Canarias, Cantabria, Castilla La Mancha, Castilla León, Cataluña, Extremadura, Galicia,
Madrid, Murcia, Navarra, País Vasco, La Rioja and Valencia. The population is highly vari-
able between the different ACs. While Madrid, Catalunya and Andalucía have more than
six, seven and eight million inhabitants, respectively (6,663,394, 7,675,217 and 8,414,240),
La Rioja has approximately three hundred thousand inhabitants (316,798).

The first wave of the COVID-19 pandemic in Spain occurred between 2 February
and 27 April 2020. In those early days of the pandemic, Spanish authorities published
daily and accumulated data of the evolution of the pandemic in Spain, based on the
information communicated by the different ACs. Specifically, the data, published daily,
correspond to the following variables: number of confirmed (positive) cases, hospitalized
people, people in intensive care units (ICUs), recovered people and deceased persons.
The observed data for some of the ACs can be seen in Figure 1. The problem that arose,
and gave rise to this work, is that some ACs (Castilla La Mancha, Castilla León, Madrid and
Galicia) modified the recording of the data associated with people in ICU and hospitalized
people from a specific day (see Figure 2). The mathematical action against COVID-19
of the Spanish Mathematics Committee (http://matematicas.uclm.es/cemat/covid19/)
(accessed on: 26 May 2021) called for the development of a meta-predictor (collaborative
prediction) based on the predictions from different models/algorithms, contributed by
interested researchers, which builds optimized combinations of them, disaggregated by
ACs. Therefore, the imputation of the missing hospitalized and ICU data is fundamental
to building forecasting models to provide optimal predictions of the evolution of the
pandemic through these variables. In order to solve this problem, a functional regression
model is proposed in this paper to estimate the expected form of the missing accumulated
data of ICU admissions and hospitalizations from the observed accumulated data of cases,
deaths and recoveries.

From this point, the time evolution of COVID-19 cases, deceases, recoveries, hospital-
izations and ICU admission will be considered as functional variables that will be denoted
as X1(t), X2(t), X3(t), Y1(t) and Y2(t), respectively (the X-variables will be considered
as predictors and the Y-variables as responses in the functional regression models). The
observed data are the number of daily cumulative informed values of these five functional
variables for the seventeen ACs in Spain from 20 February 2020 to 27 April 2020 (see data
source (https://cnecovid.isciii.es/covid19/#documentacion-y-datos) (accessed on: 26 May
2021)). Then, a random sample of curves {(xij(t), yik(t)) : i = 1 . . . , 17; j = 1, 2, 3; k = 1, 2}
which are observed daily are available.

http://matematicas.uclm.es/cemat/covid19/
https://cnecovid.isciii.es/covid19/#documentacion-y-datos
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(a) Accumulated hospitalizations (b) Accumulated ICU admissions

(c) Accumulated positive cases (d) Accumulated deaths

(e) Accumulated recoveries

Figure 1. Discrete daily observations of accumulated positive cases, deaths, hospitalizations, ICU admissions and recoveries
in Madrid, Andalucía, Cataluña and La Rioja.
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(a) Accumulated hospitalizations (b) Accumulated ICU admissions

Figure 2. Discrete daily observations of accumulated hospitalizations and ICU admissions in Madrid, Castilla La Mancha,
Castilla León and Galicia.

Before carrying out a functional analysis of the data, it is necessary to complete a
data registration, given the absence of uniformity in the publication of the observations.
This means that, in the same functional variable, the first day with available data and the
number of discrete observations in each AC are different. For example, in Andalucía, the
first recorded data of hospitalized persons were from 10 March, in which 32 hospitalized
people were registered and, for this variable, there were 49 discrete observations in this AC.
On the other hand, in Madrid, the first recorded data of hospitalized persons were from
12 March, in which 1304 hospitalized people were registered, and the number of discrete
observations in this AC was 47. However, the curves of positive cases recorded 62 and 63
discrete observations in Andalucía and Madrid, respectively. In addition, the population
size of each AC could influence the adjustments of the proposed models, as larger numbers
of cases were observed in larger communities, and the different population sizes of the
different ACs makes it impossible to compare data between them. In order to avoid both
problems, the number of cases per 10,000 inhabitants is considered, and the first observation
for each curve corresponds to the day that first exceeds the maximum of the first reported
values, discarding the previous ones.

After data homogenization, the period of observation and the number of discrete obser-
vations of each functional variable for each AC continue to differ. An important constraint
of FDA methods is that all sample curves of a functional variable must be observed in the
same domain. Classic solutions to this problem are based on the registration of all curves in
a common interval (see [13]). In this paper, we propose registering all curves in the interval
[0, 1] by applying the FDA methodologies to the synchronized curves defined by

x∗ij(u) = xij(Tij−start + u(T − Tij−start)), y∗ik(u) = yik(Tik−start + u(T − Tik−start)) ∀u ∈ [0, 1],

where [Tij−start, T] and [Tik−start, T] are the observed domains for the i−th predictor and
the k−th response curves, respectively (i = 1, . . . , 17; j = 1, 2, 3; k = 1, 2). From now on,
and by abuse of a notation that helps to simplify the exposition, xij and yik will represent
the registered curves.
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From Discrete Daily Observations to Curves

Although the functional data are sets of curves, their true functional form is unknown
and the recorded data are observations of each curve at a finite collection of timepoints.
Then, the first step in FDA is to reconstruct the functional form of the curves from the
observed discrete data.

There are different approaches to the processing of functional data, among which
we can highlight the classic ones based on a basis representation of the curves [13] and
the ones based on local–polynomial regression [16]. In this paper, basis expansions of the
curves are considered by assuming that each of the functional variables (X1, X2, X3; Y1, Y2)
generating the sample curves, are smooth stochastic processes with trajectories in the space
L2([0, 1]) of squared integrable functions in the interval [0, 1]. In what follows, the basis
expansion approach is illustrated for a random sample of a functional variable, defined
on a general interval T. In our dataset, this procedure must be performed on each of the
five considered functional variables for which the type and dimension of the basis could
be different.

Consider a random of sample curves {xi(t) : i = 1, . . . , n; t ∈ T} from a functional
variable X with values in L2(T), and let us assume that noisy observations xik are available
for each curve at a set of time knots ti1, ti2, . . . , timi ∈ T, that is,

xik = xi(tik) + εik i = 1, . . . , n; k = 1, . . . , mi.

Let us also suppose that the sample curves belong to a finite-dimensional space
generated by a basis of functions {φ1(t), . . . , φp(t)}. Therefore, each curve of the functional
data set admits a basis representation in the form

xi(t) =
p

∑
j=1

aijφj(t), i = 1, . . . , n. (1)

The functional form of each curve is then determined by the vector of its basis coef-
ficients ai = (ai1, . . . , aip)

′, which can be estimated in different ways, with least squares
approximation being the most common method, providing the following estimation:
âi = (Φ′iΦi)

−1Φ′ixi, where Φi = (φj(tik))mi×p, j = 1, . . . , p, k = 1, . . . , mi.
The type of basis must be selected according to the characteristics of the curves in the

functional dataset. The most common basis are B-splines and trigonometric functions (see,
for example, [13]). The former generates spaces of spline functions, piecewise polynomial
functions that are smoothly joined and have good local behaviour. The latter provides
suitable spaces for periodic functions. Many other bases were used in practice, such as
bases of wavelets which are more appropriate for curves with discontinuities and sharp
spikes. An application of wavelet approximation from sample curves of lupus and stress
level was developed in [32]. A robust estimation of the mean function, together with a
simultaneous confidence band, based on polynomial spline estimation, is developed in [35].

In this paper, a basis of cubic B-splines of dimension ten with equally spaced knots
was used to approximate the five samples of curves of COVID-19 from their daily discrete
data. Least squares approximation was performed on each curve to estimate the basis
coefficients. The cubic regression splines of all curves considered here can be seen in
Figure 3.
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(a) Accumulated hospitalizations (b) Accumulated ICU admissions

(c) Accumulated positive cases (d) Accumulated deaths

(e) Accumulated recoveries

Figure 3. Curves of accumulated positive cases, deaths, recoveries, hospitalizations and ICU admissions.



Mathematics 2021, 9, 1237 8 of 23

3. Functional Linear Regression Imputation with Missing Values in the Response

Motivated by the imputation of the missing curves of COVID-19 hospitalized and
intensive care people, a functional linear regression model with functional response and
several functional predictors is proposed in this paper. The general formulation of this
multiple function-on-function linear regression (MFFLR) model and its estimation in terms
of functional principal components regression are summarized in this section.

3.1. Multiple Function-on-Function Linear Model

The multiple function-on-function linear model allows for the estimation of a func-
tional response Y from a vector of J functional predictor variables denoted by X =
(X1, . . . , XJ)

′. Let us consider a random sample from (X, Y) denoted by {(xi, yi) : i =
1, . . . , n} with xi = (xi1, xi2, . . . , xi J)

′, and let us assume that all functional variables take
values on the Hilbert space L2(T) of the squared integrable functions on the interval T,
with the usual inner product defined by < f , g >=

∫
T f (t)g(t)dt, ∀t ∈ T.

Then, the functional linear model is formulated as

yi(t) = α(t) +
J

∑
j=1

∫
T

xij(s)β j(s, t)ds + εi(t), i = 1, . . . , n, (2)

where α(t) is the intercept function, β j(s, t) are the J coefficient functions and εi(t) are
independent functional errors. Model (2) can be written in matrix form as

yi(t) = α(t) +
∫

T
xi(s)′β(s, t)ds + εi(t), i = 1, . . . , n,

where xi(s) = (xi1(s), xi2(s), . . . , xi J(s))′ and β(s, t) = (β1(s, t), β2(s, t), . . . , β J(s, t))′.
This expression considers that all functional variables are defined in the same interval

T, but this is not a restriction and the model can be easily generalized for different domains
in each of the functional variables. The estimation of this model is an ill-posed problem that
is usually solved by least-squares penalized approaches and basis expansion of functional
parameters and/or sample curves [13]. Some of the basis expansion approaches reduce the
model to a multivariate linear model for the matrix of response basis coefficients in terms of
the matrix of predictors’ basis coefficients. The main problem is that this multivariate model
is affected by high multicollinearity, which causes inaccurate estimation of the parameters.
Despite the good predictive ability of the model, this fact makes its interpretation more
difficult. The most-studied solutions avoid the need for cross-validation to estimate the
penalty parameter by reducing the problem to linear regression on uncorrelated predictor
variables. Approaches based on functional PCA [36–41] and functional Partial Least
Squares (PLS) [42–47] were widely studied in the literature in the context of different
functional regression models.

In this paper, a principal components’ regression approach is considered. This can be
seen as an extension of the principal components’ prediction models developed in [48,49] to
predict a functional variable in a future interval of time from its evolution in the past. In the
so-called PCP models, the functional response and the functional predictor correspond to
the same functional variable, but were observed in different time periods. In the present
approach, truncated principal component decompositions of the functional response and
the functional predictors turn the functional linear model into a multivariate linear model
in terms of a reduced set of response and predictor principal components.

3.2. Functional Principal Component Regression

Let us consider the principal component decompositions of both the response and the
predictor functional variables, given by

xij(t) = xj(t) +
n−1

∑
l=1

ξ
xj
il f

xj
l (t), yi(t) = y(t) +

n−1

∑
l=1

ξ
y
il f y

l (t), (3)
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where the principal components scores are given by

ξ
xj
il =< xij − x̄j, f

xj
l >=

∫
T
(xij(t)− x̄j(t)) f

xj
l (t)dt, ξ

y
il =< yi − ȳ, f y

l >=
∫

T
(yi(t)− ȳ(t)) f y

l (t)dt, (4)

with the weight functions f
xj
l and f y

l being the eigenfunctions of the sample covariance
operators of xij(t) and yi(t), respectively. The principal components scores are centered
uncorrelated scalar variables with maximum variance given by the eigenvalues associated
with their weight functions: Var(ξ

xj
il ) = λ

xj
l , Var(ξy

il) = λ
y
l .

Theoretical and asymptotic properties of FPCA for Hilbert-valued random functions
were studied in [50–54]. In the case of a basis expansion for each functional variable (see
Equation (1)), each functional PCA is equivalent to the multivariate PCA of the matrix
AΨ1/2, with A = (aij) being the n× p matrix of basis coefficients and Ψ being the p× p
matrix of inner products between basis functions, Ψ = (Ψij) =< φi, φj >, i, j = 1, ..., p. The
vector of basis coefficients of the the l−th PC weight function fl(t) is given by bl = Ψ−1/2vl ,
where vl is the l−th eigenvector of the sample covariance matrix of AΨ1/2 (see [55] for a
detailed study).

The principal component decompositions given in Equation (3) turn the MFFLR Model (2)
into a linear regression model for each PC of the functional response Y on all PCs of the
functional predictors

ξ
y
ik =

J

∑
j=1

n−1

∑
l=1

b
xj
kl ξ

xj
il + εik, i = 1, . . . , n; k = 1, . . . , n− 1, (5)

with the functional coefficients given by β j(s, t) =
n−1

∑
k=1

n−1

∑
l=1

b
xj
kl f

xj
k (s) f y

l (t).

By truncating each principal component decomposition, the following principal com-
ponent multiple function-on-function linear regression (PC-MFFLR) model for the func-
tional response is obtained

ŷi(s) = y(s) +
K

∑
k=1

ξ̂
y
ik f y

k (s) = ȳ(s) +
K

∑
k=1

 J

∑
j=1

∑
l∈Lkj

b̂
xj
kl ξ

xj
il

 f y
k (s), (6)

with b̂
xj
kl being the linear least-squared estimation of the regression coefficients bkl .

Different selection model approaches were developed to select the optimum PCs
of each predictor variable (subsets Lkj), to be considered in Model (6) when it comes to
estimating the first J PCs of the response variable. It is well known that PCs are ordered
according to their explained variability and that the most explanatory components of the
predictor variable might not be the most correlated with the response variable. In the case
of the simple function-on-function linear model with only one predictor, a procedure that
selects pairs of response/predictor PCs based on both explained variability and correlation
was developed in [32]. A supervised version of FPCA that estimates the PCs by considering
the correlation of the functional predictor and response variable was developed for the
scalar-on-function regression model [56]. The usual selection models procedures based on
stepwise and best subset regression, combined with cross-validation, can be adapted to
this functional regression context.

3.3. Imputation of Missing Response Curves

Let us consider that all the predictor variables Xj are completely observed and only
the response variable Y has missing values. Let us assume, without loss of generality, that
in the sample, the first n values of the response are observed and the last m values are
missing. That means that there are n complete observed curves for all variables and m
incomplete observations that are missing values for the response.
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In order to estimate the missing response curves, the parameters bkl in Model (5) are
estimated with the complete n sample curves of response and predictors. Then, the missing
response curves {ymiss

i (s) : i = n + 1, . . . , n + m} are estimated by computing the principal
component scores of predictors {ξxj

il : i = n + 1, . . . , n + m, l = 1, . . . , n− 1} given by the
Expression (4), and substituting them in the Equation (6). Then, the estimated PC-MFFLR
model can be used to predict new response values Y on a test sample and to provide an
accurate interpretation of the relationship between the predictor and the response variables.

If the objective is to predict the response variable in a future interval, a regres-
sion model of type (6) could be estimated to predict the response variable Y(s) in the
future interval of amplitude k, denoted by [T, T + k], in terms of the predictor variables
(X1(t), . . . , XJ(t), Y(t)) in the past interval of time [0, T]. In the case of the COVID-19 data,
the parameter k must be selected by taking the average number of days it takes for a person
to develop severe symptoms and need to be admitted to the hospital into account.

4. Covid-19 Application Results

Let us remember that the main aim of this paper is the imputation of hospitalized
and intensive care curves for those ACs with missing data. To do this, multiple function-
on-function linear regression approaches are developed here. In addition, a canonical
correlation analysis (CCA) is performed to interpret the relationship between variables re-
lated with hospital occupation (hospitalized and intensive care people) and illness response
(positive, deceased and recovered people). The computational results were obtained with
the free software R (’fda’ and ’yacca’ R-packages for FPCA and CCA, respectively).

4.1. Data Imputation

The imputation problem is solved by applying a multiple function-on-function linear
regression for each of the responses Y1(t) (hospitalized) and Y2(t) (intensive care) from
the three functional predictors X1(t) (sick), X2(t) (deceased) and X3(t) (recovered). Both
functional regression models are estimated from the data of the thirteen ACs with complete
data (training sample). Then, the predictions for the four ACs with missing data (Castilla
La Mancha, Castilla León, Galicia and Madrid) are used for data imputation.

The first step is the estimation of the functional PCs for each of the five functional
predictors. As a result, the first PC explained almost all the variability in the five predictors
(99.32%, 98.73%, 97.97%, 98.59%, 96.37% for X1, X2, X3, Y1, Y2, respectively). Figures 4 and 5
show the weight functions associated to each first PC, and the perturbations of the sample
mean curves obtained, by adding and subtracting a multiple of them. In order to obtain
weight functions and PC scores which are much easier to interpret, two new functional
Varimax rotation approaches were introduced in [19] with application for COVID-19
confirmed people.

After obtaining these functional principal components’ analyses, we consider a train-
ing sample composed of all the ACs except Castilla La Mancha, Castilla León, Galicia and
Madrid, which will be considered as the prediction sample.

Taking into account that the first component of X1(t), X2(t) and X3(t) were revealed
to be highly and significantly correlated with the first components of Y1(t) and Y2(t);
meanwhile, the other cross-correlations between PCs were not significant, and the function-
on function linear regression models were reduced to the following linear models for the
first PC of the response in terms of the first PC of each of the predictors

ξ̂
yk
i1 = γ0 + ξx1

i1 γ
yk
1 + ξx2

i1 γ
yk
2 + ξx3

i1 γ
yk
3 + ε

yk
i , k = 1, 2; i = 1, . . . , 17.

These models allow for the accurate estimation of the first component of Y1(t) and
Y2(t) from the first components of X1(t), X2(t) and X3(t) with a determination coefficient
of R2 = 0.9249 and R2 = 0.7443, respectively. Finally, the Karhunen–Loève expansion, in
terms of the predictor principal components, provides the following prediction equation
for Y1(t) and Y2(t)
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ŷik(t) = yk(t) + ξ̂
yk
i1 f yk

1 (t), k = 1, 2; i = 1, . . . , 17. (7)

In order to evaluate the prediction ability of these models, the square root of the mean
squared errors between observed and predicted curves are calculated by the expression

RMSE(yik) =

(∫ 1

0
(yik(t)− ŷik(t))2dt

) 1
2

k = 1, 2; i = 1, . . . , 13.

These results can be seen in Table 1, where it can be observed that the predictions for
ICU admission curves are more accurate.

(a) PC 1 (Var. 98.6%). Hospitalizations (b) Mean curve and bands. Hospitalizations

(c) PC 1 (Var. 96.4%). ICU admisions (d) Mean curve and bands. ICU admisions

Figure 4. First weight PC functions (left), sample mean curves and the perturbations for each functional response (right)

ȳk ± 2
√

λ
yk
1 f yk

1 ; k = 1, 2.

Some of the observed and estimated training curves can be seen in Figures 6 and 7
next to confidence bands for the predicted curves. These confidence bands are obtained by
pointwise confidence intervals, computed for each fixed timepoint tp as follows

ŷik(tp)± 2× ŜE(ŷik(tp)), k = 1, 2,
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where ŜE(ŷik(tp)) = ŜE(ξ̂yk
ik ) f yk

1 (tp), k = 1, 2 with ŜE(ξ̂yk
ik ) being the standard error of the

PC prediction given by the corresponding multiple linear regression fit.

(a) PC 1 (Var. 99.3%). Positive cases (b) Mean curve and bands. Positive cases

(c) PC 1 (Var. 98.7%). Deaths (d) Mean curve and bands. Deaths

(e) PC 1 (Var. 98.0%). Recoveries (f) Mean curve and bands. Recoveries

Figure 5. First weight PC functions (a, c and e), sample mean curves and the perturbations (b, d and f) for each functional

predictor x̄j ± 2
√

λ
xj
1 f

xj
1 , j = 1, 2, 3.
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(a) Andalucía. Hospitalizations (b) Andalucía. ICU admissions

(c) Cantabria. Hospitalizations (d) Cantabria. ICU admissions

(e) Navarra. Hospitalizations (f) Navarra. ICU admissions

Figure 6. Observed and predicted curves (with pointwise confidence bands) of hospitalizations (left) and ICU admissions
(right) in some of the training ACs: Andalucía, Cantabria and Navarra.
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(a) Asturias. Hospitalizations (b) Asturias. ICU admissions

(c) Valencia. Hospitalizations (d) Valencia. ICU admissions

(e) La Rioja. Hospitalizations (f) La Rioja. ICU admissions

Figure 7. Observed and predicted curves (with pointwise confidence bands) of hospitalizations (left) and ICU admissions
(right) in some of the training ACs: Asturias, Valencia and La Rioja.
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Table 1. Root mean squared prediction errors for hospitalizations (yi1) and ICU admissions (yi2)

curves in the different training ACs.

AC RMSE (yi1) RMSE (yi2)

Andalucía 0.77577948 0.13645363
Aragón 1.51075014 0.16559390
Asturias 3.05564828 0.05135305
Islas Baleares 0.47397162 0.30168996
Islas Canarias 1.17563681 0.04168788
Cantabria 0.91993038 0.06896749
Catalunya 3.45656121 0.62176527
Valencia 0.92591220 0.04144271
Extremadura 3.30961380 0.59974926
Murcia 1.62014752 0.11596922
Navarra 1.26109742 0.20248242
País vasco 4.46884752 0.30765768
La Rioja 3.37692798 0.22644853

Finally, the expected curves provided by the regression models in Equation (7) for
hospitalizations and ICU admissions in the badly recorded ACs, next to their confidence
bands and observed curves, are drawn in Figures 8 and 9.

(a) Castilla León. Hospitalizations (b) Castilla León. ICU admissions

(c) Castilla La Mancha. Hospitalizations (d) Castilla La Mancha. ICU admissions

Figure 8. Observed and predicted curves (with pointwise confidence bands) of hospitalizations (left) and ICU admissions
(right) in Castilla León and Castilla La Mancha.
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(a) Madrid. Hospitalizations (b) Madrid. ICU admissions

(c) Galicia. Hospitalizations (d) Galicia. ICU admissions

Figure 9. Observed and predicted curves (with pointwise confidence bands) of hospitalizations (left) and ICU admissions
(right) in Madrid and Galicia.

The prediction of the missing curves using the PC-MFFLR considered models provides
a pointwise estimation of hospitalizations and ICU admissions that corrects the inaccurate
reported data. These pointwise predictions, next to their anomalous values for the first and
last days of the first wave of COVID-19 in Castilla La Mancha, Castilla León, Madrid and
Galicia, can be seen in Table 2.
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Table 2. Pointwise imputation of hospitalizations and ICU admissions for the first and last days of
the first COVID-19 wave in Castilla La Mancha, Castilla León, Madrid and Galicia.

Hospitalizations

Castilla La Mancha Castilla León Galicia Madrid

Time Obs Pred Obs Pred Obs Pred Obs Pred

1 635 413 476 495 557 570 1518 1351
2 838 565 629 630 906 676 2337 1779
3 1547 735 798 784 1043 809 2337 2247
4 1826 932 977 961 1147 961 3710 2772
5 2162 1164 1197 1163 1250 1120 3778 3371
6 2162 1436 1457 1394 1338 1276 5168 4059
7 2707 1758 1823 1656 1447 1424 6338 4853
8 2977 2124 2214 1948 1630 1564 7388 5768
9 3018 2520 2648 2259 1767 1698 8441 6794
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · 8173 8200 7080 6970 2609 3171 8191 28,159
· · · 8199 8317 7174 7064 2652 3222 7930 28,482
· · · 8243 8430 7264 7155 2674 3270 7464 28,802
· · · 8304 8542 7397 7246 2694 3316 7077 29,120
· · · 8342 8654 7506 7336 2707 3362 6601 29,434
· · · 8385 8763 7555 7424 2722 3407 6183 29,740
· · · 8417 8868 7653 7508 2735 3449 5892 30,037
· · · 8444 8969 7703 7586 2746 3484 5441 30,320
· · · 8464 9062 7777 7658 2758 3511 5039 30,587

ICU Admissions

Castilla La Mancha Castilla León Galicia Madrid

Time Obs Pred Obs Pred Obs Pred Obs Pred

1 23 37 24 35 29 27 77 127
2 23 45 43 44 35 35 102 152
3 29 56 54 54 47 44 135 184
4 37 70 69 67 55 53 180 224
5 37 88 85 83 69 63 180 273
6 65 110 106 102 86 74 253 332
7 76 136 120 124 98 85 253 404
8 142 167 137 150 112 96 340 488
9 182 202 170 178 123 107 491 587
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · 531 784 501 615 108 237 1111 2826
· · · 534 793 503 622 101 237 1076 2853
· · · 537 801 505 628 96 238 1024 2878
· · · 546 809 508 634 92 239 981 2903
· · · 553 817 510 639 87 239 949 2930
· · · 559 826 511 645 90 239 892 2962
· · · 565 838 515 653 85 239 873 3001
· · · 579 852 518 662 83 238 821 3050
· · · 584 871 522 674 73 236 780 3111

The obtained predictions can be considered as an imputation of the real behaviour of
these curves in the observation period if the mode of data communication did not change.
Thus, in Castilla La Mancha on 27 April 8464, people were reported as hospitalized and
the imputation provided by the model is 9062 cases; in Castilla León, 7777 versus 7658;
in Galicia, 2758 versus 3511; in Madrid, 5039 versus 30,587. For ICU admissions, the
differences between the registered and imputed cases are, again, evident. It can be seen
that, in Castilla La Mancha on 27 April, 584 people were registered as admitted in ICU and
the model gives an estimation of 871; in Castilla León, 522 versus 674; in Galicia, 73 versus
236; in Madrid, 780 versus 3111.
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4.2. Canonical Correlation Analysis

Once the missing data were imputed and complete curves are available for the 17
ACs, the relationship between the variables related to the number of people admitted to
hospitals (hospitalized and ICU people) and the ones affected by the disease (sick, deceased
and recovered) can be studied. Canonical Correlation Analysis (CCA) was applied on
the two sets of first principal components associated with these functional variables to
explore this relationship without necessarily distinguishing between independent and
dependent variables. The analysis makes sense because the correlations between PCs in
the two groups are very high, suggesting that the variables are not linearly independent.

In agreement with the above, the first principal component of each functional variable
is selected to carry out the analysis. Thus, the dataset consists of a sample of the seventeen
Spanish ACs in an attempt to determine which factors influence in the hospital occupancy
rate. The two groups of variables are, on the one hand, Hospital occupancy rate (HOR)
formed by the first PC of hospitalized people and of ICU people (ξ̂y1

1 , ξ̂
y2
1 ), and, on the other

hand, Illness response (IR) comprised by the first PC of positive people, deceased people
and recovered people (ξ̂x1

1 , ξ̂x2
1 , ξ̂x3

1 ). The estimates of the squared canonical correlations
between the two canonical variables for each pair appear in Table 3, next to the outcomes
associated with the Barlett’s test for testing the null hypothesis that the two canonical
variate pairs are uncorrelated. As a result, it can be concluded that both canonical pairs are
significantly correlated and dependent on each other (there is a relationship between the
two sets of variables).

Note that the squared canonical correlations represent, for each pair, the percentage of
variance in one canonical variate explained by the variation in the other one, but say nothing
about the extent to which the canonical variates themselves account for variation in the
original variables. Then, around 95.4% of the variation in the first canonical variate for HOR
(U1) is described by the variation in the first canonical variate for IR (V1), and almost 71%
of the variation in U2 is explained by V2. This fact suggests that both canonical correlations
are important. Figure 10 displays how the values of the canonical variates are spread over
the plane. The linear relation in each pair is clearly visible in these scatterplots. Likewise, it
is possible to draw conclusions about which ACs behave similarly during the first wave.
The results are in accordance with multiple studies about the COVID-19 pandemic in Spain
(see, for example, [19]).
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Table 3. Estimates of the canonical correlations next to χ2 values associated with Bartlett’s omnibus
statistic, degrees of freedom and p-values for each canonical variate pair.

Canonical Correlation Squared Canonical Correlation Stat df p-Value

0.9765693 0.9536876 55.82721 6 <0.001
0.8398669 0.7053764 15.88673 2 <0.001

Additionally, the estimated canonical coefficients (loadings) for the HOR and RI variables
are in Tables 4 and 5, respectively. The magnitudes of these coefficients give the contributions
of the individual variables to the corresponding canonical variable. Hence, the canonical
variables are determined as follows

U1 = −0.1767528× ξ
y2
1 + 0.1214623× ξ

y1
1

U2 = −3.2637387× ξ
y2
1 + 0.2556912× ξ

y1
1

V1 = 0.0336045× ξx1
1 + 0.1877252× ξx2

1 − 0.0044276× ξx3
1

V2 = 0.1094736× ξx1
1 − 1.0135127× ξx2

1 + 0.0047968× ξx3
1

Once the raw canonical coefficients have been estimated, the following step is to
interpret each canonical component. For that purpose, the squared correlations between
the variables in each group and the canonical components are computed in Table 6 and 7
for the HOR and IR groups, respectively. These parameters indicate the fraction of HOR
and IR variance associated with each of their components separately. Let us observe that,
for the second canonical variables (U2, V2), none of the correlations are large, so this pair
provides very little information about the variables. Regarding the first canonical variate
pair (U1, V1), all the correlations with the variables are uniformly high. This means that
U1 and V1 are an overall measure of HOR and IR variables, respectively, with U1 being
highly correlated with hospitalizations and V1 more correlated with positive cases and
deceased people.

Table 4. Canonical coefficients for HOR variables.

U1 U2

ICU −0.1767528 −3.2637387
Hospitalized 0.1214623 0.2556912

Table 5. Canonical coefficients for IR variables.

V1 V2

Cases 0.0336045 0.1094736
Deceased 0.1877252 −1.0135127
Recovered −0.0044276 0.0047968

These outcomes expose that the level of saturation in the hospitals are particularly
determined by the number of hospitalized people; meanwhile, the response to the pan-
demic is governed by the number of positive cases and deaths. Despite the fact that the
number of people in UCI and the number of recovered people play an important role in
the canonical variates, their contribution is smaller.

Table 6. Squared correlations between the HOR variables and the canonical variables.

U1 U2 V1 V2

ICU 0.8158880 0.184111953 0.7781023 0.129868216
Hospitalized 0.9970756 0.002924353 0.9508986 0.002062769
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Table 7. Squared correlations between the IR variables and the canonical variables.

V1 V2 U1 U2

Cases 0.9660682 0.03366429 0.9213272 0.02374600
Deceased 0.9269440 0.07237154 0.8840149 0.05104917
Recovered 0.7485881 0.04012734 0.7139192 0.02830487

Finally, a canonical redundancy analysis was performed in order to study the percent-
age of variance of one group of variables which is accounted for by the other (in the usual
least squares sense). The results of this analysis can be seen in Table 8, and the correlations
between each set of variables and the opposite group of canonical variates in Tables 6 and 7.
Table 8 shows that both components of the first canonical pair are a good overall predictor
of the opposite set of variables, since the explained proportions of variance for HOR and
IR are 0.864 and 0.839, respectively. Nevertheless, despite the significant correlation for the
second pair, these variables do not account for a great amount of variability. This statement
is corroborated by the squared correlations displayed in Table 6 and 7. These measures
indicate that the first canonical variate of the IR group has an outstanding predictive power
for the number of hospitalized (95.09%) and a considerable influence for the number of
people in ICU (77.81%) as well. Similar interpretations are reached for the first canonical
variable of HOR, which is a superb predictor of the number of cases and deaths (92.13%
and 88.40%, respectively), and to lesser extent, of the number of recuperated (71.39%).
The second canonical variables add virtually nothing given that the fraction of variance in
each variable set attributable to the other group through the respective canonical variates
barely overcomes 10% of the total variability.

Table 8. Total fraction of HOR (IR) variance accounted by IR (HOR) variables, through each canonical
variate in first row (second row).

U1 U2 V1 V2

HOR - - 0.86450046 0.06596549
RI 0.83975376 0.03436668 - -

5. Conclusions

The current economic and sanitary crisis provoked by the virus SARS-CoV-2 has
taken up most of the planet’s attention since the World Health Organization declared a
worldwide emergency state in the middle of March 2020. In order to control the propagation
of the virus, the scientific community is immersed in the development of statistical models
that enable governments to control the behaviour of the pandemic and to mitigate the
devastating effects of the COVID-19 illness. Thus, it is essential to build powerful models
to guarantee accurate predictions. Taking into account the nature of the variables of
interest (for instance, number of positive cases, deceases, recovered, hospitalised and
people in intensive care units), a wide variety of models have been tackled by considering
Functional Data Analysis methodologies. Nevertheless, the good performance of these
models depends on the quality of the data, which is not always as good as one might expect,
especially in periods of pandemic, where the data are usually incomplete. On this matter,
an extension of function-on-function linear regression is proposed for the imputation of
missing values in the response, where the functional coefficients are estimated by means of
principal components regression. The motivation for this work is to forecast the curves of
hospitalized and intensive care people (functional responses) from the curves of positive
cases, deaths and recoveries (functional predictors) for several Spanish Autonomous
Communities that changed the means of recording data related to hospital occupancy
rate. The imputation of these curves is made once the linear model is estimated, with a
training sample composed by the remainder of communities that did not modify their way
of registering data. The performance of the model is outstanding for the training sample,
since the observed and predicted curves are very similar for both functional responses.
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Regarding the prediction sample, the obtained forecasts can be considered as an imputation
of what should have been the real behaviour of these curves in the observation period
if the mode of data communication did not change. It can be observed that the model
captures the trend of the curves up to the change. Additionally, once the missing data were
imputed, a canonical correlation analysis was carried out in order to study the possible
relationship between the two groups of variables: hospital occupancy rate (number of
hospitalized people and ICU admissions) and illness response (number of positive cases,
deaths and recovered people). The first principal component score of each variable was
selected to form the canonical analysis, since only the first principal component explains
almost all the variability in the five functional variables. After an exhaustive analysis, both
sets of variables were shown to be highly correlated with each other and, moreover, each of
the first canonical variables is a good overall predictor of the opposite group of variables.
At this point, the variables with more predictive power are the number of hospitalizations,
positives and deceases. In sum, the present document introduces a new mechanism for the
imputation of missing at random functional response curves and shows the relationship
among interesting functional variables associated with the COVID-19 pandemic.

Author Contributions: All authors contributed equally in developing the methodology, implement-
ing the proposed estimation algorithms with the software R, performing the simulation study and
application, as well as in writing this manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by project MTM2017-88708-P of the Spanish Ministry of Sci-
ence, Innovation and Universities (also supported by the FEDER program), project FQM-307 of the
Government of Andalusia (Spain) and the Ph.D. grant (FPU18/01779) awarded to Christian Acal.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available at https://drive.ugr.es/index.php/s/7VWt12CYd
iAIIYt.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AC Autonomous Community
CCA Canonical Correlation Analysis
FPCA Functional Principal Component Analysis
FDA Functional Data Analysis
HOR Hospital occupancy rate
IR Illness Response
MFFR Multiple Function-on-Function Regression
PC Principal Component
PCA Principal Component Analysis
PLS Partial Least Squares
PC-MFFR Principal Components Multiple Function-on-Function Regression

References
1. Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020,

20, 533–534. [CrossRef]
2. Berihuete, A.; Sanchez-Sanchez, M.; Suarez-Llorens, A. A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve.

Mathematics 2021, 9, 228. [CrossRef]
3. Mora, J.C.; Pérez, S.; Dvorzhak, A. Application of a Semi-Empirical Dynamic Model to Forecast the Propagation of the COVID-19

Epidemics in Spain. Forecasting 2020, 2, 452–469. [CrossRef]
4. Agarwal, P.; Jhajharia, K. Data analysis and modeling of COVID-19. J. Stat. Manag. Syst. 2021, 24, 1–16. [CrossRef]

https://drive.ugr.es/index.php/s/7VWt12CYdiAIIYt 
https://drive.ugr.es/index.php/s/7VWt12CYdiAIIYt 
http://doi.org/10.1016/S1473-3099(20)30120-1
http://dx.doi.org/10.3390/math9030228
http://dx.doi.org/10.3390/forecast2040024
http://dx.doi.org/10.1080/09720510.2020.1840076


Mathematics 2021, 9, 1237 22 of 23

5. Tobias, A. Evaluation of the lockdowns for the SARS-CoV-2 epidemic in Italy and Spain after one month follow up. Sci. Total
Environ. 2020, 725, 138539. [CrossRef] [PubMed]

6. Maleki, M.; Mahmoudi, M.R.; Heydari, M.H.; Pho, K.H. Modeling and forecasting the spread and death rate of coronavirus
(COVID-19) in the world using time series models. Chaos Solitons Fractals 2020, 140, 110151. [CrossRef]

7. Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative
study. Chaos Solitons Fractals 2020, 140, 110121. [CrossRef] [PubMed]

8. Qi, H.; Xiao, S.; Shi, R.; Ward, M.P.; Chen, Y.; Tu, W.; Su, Q.; Wang, W.; Wang, X.; Zhang, Z. COVID-19 transmission in Mainland
China is associated with temperature and humidity: A time-series analysis. Sci. Total Environ. 2020, 728, 138778. [CrossRef]

9. Briz-Redon, A. The impact of modelling choices on modelling outcomes: A spatio-temporal study of the association between
COVID-19 spread and environmental conditions in Catalonia (Spain). Stoch. Environ. Res. Risk Assess. 2021. [CrossRef]

10. Zanin, M.; Papo, D. Assessing functional propagation patterns in COVID-19. Chaos Solitons Fractals 2020, 138, 109993. [CrossRef]
11. Pak, D.; Langohr, K.; Ning, J.; Cortés-Martínez, J.; Gómez-Melis, G.; Shen, Y. Modeling the Coronavirus Disease 2019 Incubation

Period: Impact on Quarantine Policy. Mathematics 2020, 8, 1631. [CrossRef]
12. Mansour, M.; Farsi, M.; Mohamed, S.; Elrazik, M. Modeling the COVID-19 Pandemic Dynamics in Egypt and Saudi Arabia.

Mathematics 2021, 9, 827. [CrossRef]
13. Ramsay, J.O.; Silverman, B.W. Functional Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2005.
14. Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis: Methods and Case Studies; Springer: New York, NY, USA, 2002.
15. Ramsay, J.O.; Hooker, G.; Graves, S. Functional Data Analysis with R and MATLAB; Springer: New York, NY, USA, 2009.
16. Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis. Theory and Practice; Springer: New York, NY, USA, 2006.
17. Horvath, L.; Kokoszka, P. Inference for Functional Data with Applications; Springer: New York, NY, USA, 2012.
18. Tang, C.; Wang, T.; Zhang, P. Functional data analysis: An application to COVID-19 data in the United States. arXiv 2020,

arXiv:2009.08363.
19. Acal, C.; Aguilera, A.M.; Escabias, M. New Modeling Approaches Based on Varimax Rotation of Functional Principal Components.

Mathematics 2020, 8, 2085. [CrossRef]
20. Carroll, C.; Bhattacharjee, S.; Chen, Y.; Dubey, P.; Fan, J.; Gajardo, A.; Zhou, X.; Müller, H.G.; Wang, J.L. Time dynamics of

COVID-19. Sci. Rep. 2020, 10, 21040. [CrossRef] [PubMed]
21. Torres-Signes, A.; Frías, M.P.; Ruiz-Medina, M.D. COVID-19 mortality analysis from soft-data multivariate curve regression and

machine learning. arXiv 2021, arXiv:2008.06344.
22. Little, R.J.; Rubin, D.B. Statistical Analysis with Missing Data, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019.
23. Graham, J.W. Missing Data: Analysis and Design; Springer Science & Business Media: New York, NY, USA, 2012.
24. He, Y.; Yucel, R.; Raghunathan, T.E. A functional multiple imputation approach to incomplete longitudinal data. Stat. Med. 2011,

30, 1137–1156. [CrossRef] [PubMed]
25. Ferraty, F.; Sued, M.; Vieu, P. Mean estimation with data missing at random for functional covariables. Statistics 2013, 47, 688–706.

[CrossRef]
26. Ling, N.; Liang, L.; Vieu, P. Nonparametric regression estimation for functional stationary ergodic data with missing at random. J.

Stat. Plan. Inference 2015, 162, 75–87. [CrossRef]
27. Ling, N.; Liu, Y.; Vieu, P. Conditional mode estimation for functional stationary ergodic data with responses missing at random.

Statistics 2016, 50, 991–1013. [CrossRef]
28. Crambes, C.; Henchiri, Y. Regression imputation in the functional linear model with missing values in the response. J. Stat. Plan.

Inference 2019, 201, 103–119. [CrossRef]
29. Febrero-Bande, M.; Galeano, P.; González-Manteiga, W. Estimation, imputation and prediction for the functional linear model

with scalar response with responses missing at random. Comput. Stat. Data Anal. 2019, 131, 91–103. [CrossRef]
30. Ciarleglio, A.; Petkova, E.; Harel, O. Multiple imputation in functional regression with applications to EEG data in a depression

study. arXiv 2020, arXiv:2001.08175.
31. Rao, A.R.; Reimherr, M. Modern multiple imputation with functional data. Stat 2021, 10, e331. [CrossRef]
32. Aguilera, A.M.; Escabias, M.; Ocaña, F.A.; Valderrama, M.J. Functional Wavelet-Based Modelling of Dependence Between Lupus

and Stress. Methodol. Comput. Appl. Probab. 2015, 17, 1015–1028. [CrossRef]
33. Valderrama, M.; Ocaña, F.; Aguilera, A.; Ocaña-Peinado, F. Forecasting pollen concentration by a two-step functional model.

Biometrics 2010, 66, 578–585. [CrossRef]
34. Qi, X.; Luo, R. Function-on-function regression with thousands of predictive curves. J. Multivar. Anal. 2018, 163, 51–66. [CrossRef]
35. Lima, I.; Cao, G.; Billor, N. Robust simultaneous inference for the mean function of functional data. Test 2019, 28, 785–803.

[CrossRef]
36. Chiou, J.M.; Müller, H.G.; Wang, J.L. Functional response models. Stat. Sin. 2004, 14, 659–677.
37. Escabias, M.; Aguilera, A.M.; Valderrama, M.J. Principal component estimation of functional logistic regression: Discussion of

two different approaches. J. Nonparametr. Stat. 2004, 16, 365–384. [CrossRef]
38. Müller, H.G.; Stadtmüller, U. Generalized functional linear models. Ann. Stat. 2005, 33, 774–805. [CrossRef]
39. Aguilera-Morillo, M.C.; Aguilera, A.M.; Escabias, M.; Valderrama, M.J. Penalized spline approaches for functional logit regression.

Test 2013, 22, 251–277. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2020.138539
http://www.ncbi.nlm.nih.gov/pubmed/32304973
http://dx.doi.org/10.1016/j.chaos.2020.110151
http://dx.doi.org/10.1016/j.chaos.2020.110121
http://www.ncbi.nlm.nih.gov/pubmed/32834633
http://dx.doi.org/10.1016/j.scitotenv.2020.138778
http://dx.doi.org/10.1007/s00477-020-01965-z
http://dx.doi.org/10.1016/j.chaos.2020.109993
http://dx.doi.org/10.3390/math8091631
http://dx.doi.org/10.3390/math9080827
http://dx.doi.org/10.3390/math8112085
http://dx.doi.org/10.1038/s41598-020-77709-4
http://www.ncbi.nlm.nih.gov/pubmed/33273598
http://dx.doi.org/10.1002/sim.4201
http://www.ncbi.nlm.nih.gov/pubmed/21341300
http://dx.doi.org/10.1080/02331888.2011.650172
http://dx.doi.org/10.1016/j.jspi.2015.02.001
http://dx.doi.org/10.1080/02331888.2015.1122012
http://dx.doi.org/10.1016/j.jspi.2018.12.004
http://dx.doi.org/10.1016/j.csda.2018.07.006
http://dx.doi.org/10.1002/sta4.331
http://dx.doi.org/10.1007/s11009-014-9424-5
http://dx.doi.org/10.1111/j.1541-0420.2009.01293.x
http://dx.doi.org/10.1016/j.jmva.2017.10.002
http://dx.doi.org/10.1007/s11749-018-0598-y
http://dx.doi.org/10.1080/10485250310001624738
http://dx.doi.org/10.1214/009053604000001156
http://dx.doi.org/10.1007/s11749-012-0307-1


Mathematics 2021, 9, 1237 23 of 23

40. Escabias, M.; Aguilera, A.; Aguilera-Morillo, M. Functional PCA and Base-Line Logit Models. J. Classif. 2014, 31, 296–324.
[CrossRef]

41. Aguilera, A.M.; Aguilera-Morillo, M.C.; Preda, C. Penalized versions of functional PLS regression. Chemom. Intell. Lab. Syst. 2016,
154, 80–92. [CrossRef]

42. Preda, C.; Saporta, G. PLS regression on a stochastic process. Comput. Stat. Data Anal. 2005, 48, 149–158. [CrossRef]
43. Escabias, M.; Aguilera, A.M.; Valderrama, M.J. Functional PLS logit regression model. Comput. Stat. Data Anal. 2007, 51, 4891–4902.

[CrossRef]
44. Aguilera, A.M.; Escabias, M.; Preda, C.; Saporta, G. Using basis expansion for estimating functional PLS regression. Applications

with chemometric data. Chemom. Intell. Lab. Syst. 2010, 104, 289–305. [CrossRef]
45. Delaigle, A.; Hall, P. Methodology and theory for partial least squares applied to functional data. Ann. Stat. 2012, 40, 322–352.

[CrossRef]
46. Febrero-Bande, M.; Galeano, P.; González-Manteiga, W. Functional principal component regression and functional partial least

squares regression: An overview and a comparative study. Int. Stat. Rev. 2017, 85, 61–83. [CrossRef]
47. Aguilera, A.M.; Acal, C.; Aguilera-Morillo, M.C.; Jiménez-Molinos, F.; Roldán, J.B. Homogeneity problem for basis expansion of

functional data with applications to resistive memories. Math. Comput. Simul. 2021, 186, 41–51. [CrossRef]
48. Aguilera, A.M.; Ocaña, F.A.; Valderrama, M.J. An approximated principal component prediction model for continuous-time

stochastic processes. Appl. Stoch. Model. Data Anal. 1997, 13, 61–72. [CrossRef]
49. Aguilera, A.M.; Ocaña, F.A.; Valderrama, M.J. Forecasting with unequally spaced data by a functional principal component

approach. Test 1999, 8, 233–254. [CrossRef]
50. Deville, J.C. Méthodes statistiques et numériques de l’analyse harmonique. Ann. De L’INSEE 1974, 15, 3–101. [CrossRef]
51. Dauxois, J.; Pousse, A.; Romain, Y. Asymptotic theory for the principal component analysis of a vector random function: Some

applications to statistical inference. J. Multivar. Anal. 1982, 12, 136–156. [CrossRef]
52. Ocaña, F.A.; Aguilera, A.M.; Valderrama, M.J. Functional Principal Components Analysis by Choice of Norm. J. Multivar. Anal.

1999, 71, 262–276. [CrossRef]
53. Hall, P.; Hosseini-Nasab, M. On properties of functional principal components analysis. J. R. Stat. Soc. B 2006, 68, 109–126.

[CrossRef]
54. Ruiz-Castro, J.E.; Acal, C.; Aguilera, A.M.; Aguilera-Morillo, M.C.; Roldán, J.B. Linear-Phase-Type probability modelling of

functional PCA with applications to resistive memories. Math. Comput. Simul. 2021, 186, 71–79. [CrossRef]
55. Ocaña, F.A.; Aguilera, A.M.; Escabias, M. Computational considerations in functional principal component analysis. Comput. Stat.

2007, 22, 449–465. [CrossRef]
56. Nie, Y.; Wang, L.; Liu, B.; Cao, J. Supervised functional principal component analysis. Stat. Comput. 2018, 28, 713–723. [CrossRef]

http://dx.doi.org/10.1007/s00357-014-9162-y
http://dx.doi.org/10.1016/j.chemolab.2016.03.013
http://dx.doi.org/10.1016/j.csda.2003.10.003
http://dx.doi.org/10.1016/j.csda.2006.08.011
http://dx.doi.org/10.1016/j.chemolab.2010.09.007
http://dx.doi.org/10.1214/11-AOS958
http://dx.doi.org/10.1111/insr.12116
http://dx.doi.org/10.1016/j.matcom.2020.05.018
http://dx.doi.org/10.1002/(SICI)1099-0747(199706)13:2<61::AID-ASM296>3.0.CO;2-I
http://dx.doi.org/10.1007/BF02595871
http://dx.doi.org/10.2307/20075177
http://dx.doi.org/10.1016/0047-259X(82)90088-4
http://dx.doi.org/10.1006/jmva.1999.1844
http://dx.doi.org/10.1111/j.1467-9868.2005.00535.x
http://dx.doi.org/10.1016/j.matcom.2020.07.006
http://dx.doi.org/10.1007/s00180-007-0051-2
http://dx.doi.org/10.1007/s11222-017-9758-2

	Introduction
	Data Homogenization, Registration and Smoothing 
	Functional Linear Regression Imputation with Missing Values in the Response
	Multiple Function-on-Function Linear Model
	Functional Principal Component Regression
	Imputation of Missing Response Curves

	Covid-19 Application Results
	Data Imputation
	Canonical Correlation Analysis

	Conclusions
	References

