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Featured Application: The analysis carried out has shown that the Gompertz model has the best
predictive capabilities concerning the tumor growth. This model should substitute the exponen-
tial one in clinical practice.

Abstract: Purpose: To analyze the capabilities of different classical mathematical models to describe
the growth of multicellular spheroids simulated with an on-lattice agent-based Monte Carlo model
that has already been validated. Methods: The exponential, Gompertz, logistic, potential, and
Bertalanffy models have been fitted in different situations to volume data generated with a Monte
Carlo agent-based model that simulates the spheroid growth. Two samples of pseudo-data, obtained
by assuming different variability in the simulation parameters, were considered. The mathematical
models were fitted to the whole growth curves and also to parts of them, thus permitting to analyze
the predictive power (both prospective and retrospective) of the models. Results: The consideration
of the data obtained with a larger variability of the simulation parameters increases the width of the
χ2 distributions obtained in the fits. The Gompertz model provided the best fits to the whole growth
curves, yielding an average value of the χ2 per degree of freedom of 3.2, an order of magnitude
smaller than those found for the other models. Gompertz and Bertalanffy models gave a similar
retrospective prediction capability. In what refers to prospective prediction power, the Gompertz
model showed by far the best performance. Conclusions: The classical mathematical models that have
been analyzed show poor prediction capabilities to reproduce the MTS growth data not used to fit
them. Within these poor results, the Gompertz model proves to be the one that better describes the
growth data simulated. The simulation of the growth of tumors or multicellular spheroids permits
to have follow-up periods longer than in the usual experimental studies and with a much larger
number of samples: this has permitted performing the type of analysis presented here.

Keywords: on-lattice agent-based models; classical tumor growth models; exponential; Gompertz;
logistic; Bertalanffy; multicellular spheroids; Monte Carlo

1. Introduction

A multicellular tumor spheroid (MTS) is a spheroid-shaped cellular aggregate that
grows in suspension under controlled culture conditions [1,2]. Though actual tumors are
more complex than any in vitro biological model, MTS can be considered as an in vitro
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3D cell structure with a complexity similar in some aspects to that of in vivo tumors or
micro-metastasis with similar sizes [3–7]. As a consequence, MTS are useful for tumor
biology studies, as well as for biomedical and clinical applications [8–11]. In this regard, it
is worth noting that the growth kinetics of MTSs is similar to that of early in vivo avascular
tumors, showing the physio-pathology of tumor micro-regions and metastases, and other
characteristics such as metabolic alteration, altered gene and protein expression, necrotic
nucleus, resistance to therapy, and appearance of hypoxic regions at similar distances
from nutrients [1,10,12]. In MTSs, nutrients and oxygen penetrate their structure only by
diffusion and this means that at distances between 50µm and 250µm from the surface, the
cells are in a hypoxic, or even necrotic, state due to nutrient and/or oxygen deficiency [13].

MTSs also allow the study of how their proliferation kinetics is affected by treat-
ment strategies such as chemotherapy, hormone therapy and/or radiotherapy [14–20].
More specific phenomena such as low-dose hypersensitivity [21] or the effects of different
radiotherapy fractionation strategies [22] have also been tested in this experimental model.

Despite their complex nature, the kinetics of tumor and MTS growth seems to follow
relatively simple laws that can be expressed through a great variety of mathematical models.
The exponential, the Gompertz, the logistic, the Bertalanffy and the potential models are
among the most widely used [23,24].

All these mathematical models include several free parameters that are chosen by
fitting the corresponding functions to in vivo tumor [24,25] or in vitro MTS [23,26,27] data.
The fitted models have been applied to determine the dosage design and scheduling of
cancer drugs [28–30], or to predict the cytotoxic or anti-angiogenic effects of drugs on tumor
growth [31,32]. Another common application in clinical practice is the evaluation of the
modifications that need to be included in the treatment plan when delays or interruptions
occur in radiotherapy. As far as we know, only the exponential model has been (and is
still being) used for this purpose and we are not aware of any other of the aforementioned
models being considered for this task [33].

One of the characteristics of these mathematical models, which is crucial for the
aforementioned applications, is their predictive capability; that is, how they describe the
tumor or MTS growth at times other than those used in the fitting procedure; however,
this characteristic has not been studied in depth, may be due to the fact that, usually,
only a few growth curves, in which the amount of volume data available is typically very
small, are analyzed. For example, Benzekry et al. [24] studied the evolution of lung and
breast cancers xenografted in in vivo animal models, testing the capabilities of various
growth mathematical models. Their data series showed a follow-up of ∼15 days with
∼10 observations; they fitted the model using the first 3–9 pieces of data and compared
their prediction with the experimental observation found between 1 and 7 days later.
As another example, we can mention the work of Murphy et al. [34] who used a single
growth curve including 14 data points and spanning 114 days. The situation is similar in
many other works (see, e.g., Refs. [35–38]. Though the information obtained in this way is
useful, the predictive capability of the models cannot be tested in depth due to the limited
amount of data available for each single growth curve and the small number of such curves
in the sample.

Tumor growth can also be simulated by means of computational models of different
types [39,40] that require fulfilling a number of conditions (see, e.g., Ref. [41] and references
therein). These models have been used to study the effects of radiation on in vitro and
in vivo tumor cells, predicting the efficacy of radiotherapy treatments [42–45], to study
certain chemotherapy or surgical treatments for cancer in pre-clinical, clinical, biological,
and molecular studies [46–49], or to investigate how to personalize cancer treatments [50].

Among the different computational approaches considered to describe tumor growth,
it is worth pointing out the “agent-based models” (ABM) [51,52]. These models deal
with a discrete population of cells whose states are characterized by vector variables that
involve the position of the cell, its current cycle phase, details about how it interacts with
the environment, etc. In these models, the agents can be genes, proteins, metabolites, or
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the cells themselves, and they interact with each other according to predefined rules that
depend on their spatial situation and the instant of the system evolution that is being
analyzed. Both space and time are considered as discrete variables, no formal spatial grids
or time synchronies are required, at least a priori, and all the processes involved may
include randomness.

Recently, an on-lattice ABM of MTS growth that uses simple mathematical tools to
describe the cell evolution has been developed [53]. The model includes Monte Carlo
techniques to take into account the variability observed among the cells forming the
spheroids and takes into account the basic features that characterize the MTS behavior
when irradiated, allowing for addressing the capabilities of different therapeutic strategies
for solid tumors. This model has been developed and validated in such a way that the
simulated spheroids show the same growth behavior as the experimental ones, reproducing
characteristics such as the shapes of the different parts of the spheroids, the relation between
the radius of the necrotic core and that of the whole MTS, or dependence of the number of
proliferative plus hypoxic cells with the MTS volume.

An advantage of almost all computational models is their ability to adequately describe
the tumor evolution in time intervals longer than those usually observed in experiments
carried out with in vivo or in vitro tumor models. This is precisely the characteristic that
we want to exploit in this work to determine the predictive capabilities of various classical
tumor growth models. By fitting the models to a part of the growth curves generated by
our ABM, the ability of these classical mathematical models to reproduce the past and
future growth of the virtual tumors can be analyzed. The aim of this work is to perform
a quantitative evaluation of the predictive power of the exponential, Gompertz, logistic,
potential, and Bertalanffy models.

The results obtained in this analysis may help to establish the potential prognos-
tic capabilities of the simple mathematical models in the clinic, addressing their use in
applications such as those mentioned above.

2. Models
2.1. Classical Mathematical Models of Tumor Growth

As said above, the purpose of this work is to analyze the predictive capabilities of
various classical mathematical models that have been employed to describe MTS (and
tumor) growth. In all the classical mathematical models of the tumor growth kinetics
considered in the present work, the variable described is the total volume of the tumor, V,
as a function of time, t. Furthermore, this total volume is supposed to be proportional to
the total number of cells in the tumor. To simplify the labeling, E, G, L, P, and B have been
used to refer to the exponential, Gompertz, logistic, potential, and Bertalanffy models that
are described in what follows.

The exponential model assumes that all cells within the MTS have a cell cycle with
a constant duration [54]. The same growth behavior occurs if it is supposed that the cell
proliferation is due to a constant fraction of the MTS volume [25] or if the duration of the
cell cycle is a random variable following an exponential distribution. The mathematical
expression describing this model is:

V(t) = V0 exp(E t) , (1)

where V0, the volume at t = 0, and E are the model parameters.
The observation of non-constant doubling times in some tumors led to considering

more elaborated models. One of the most widespread and accepted is the Gompertz
model, which has been used to describe population growth in many different branches of
knowledge [25,35,37]. The Gompertz model shows a sigmoid shape, i.e., a rising curve with
an inflection point that converges asymptotically to a maximum volume. This qualitatively
reproduces the growth slowdown observed experimentally [37,55] and is consistent with
general growth patterns of organs and organisms. The essential characteristic of the
Gompertz model is that it shows a relative growth rate that reduces exponentially when



Appl. Sci. 2021, 11, 5241 4 of 18

volume increases. One of the main criticisms of the Gompertz model is that the growth
relative rate may become arbitrarily large (or, equivalently, that the volume doubling time
may reach arbitrarily small values) for small tumor volumes. In the present work, the
following expression has been used for this model:

V(t) = V0 exp{A [1 − exp(− a t)]} . (2)

In this model, V0, which gives the MTS volume at t = 0, and A and a are the model param-
eters.

The logistic model also shows a sigmoid shape [23,25]. It is based on the equilibrium of
metabolic processes and is defined by assuming that the relative growth rate reduces linearly
with the volume. In this work, the following analytical expression has been considered:

V(t) =
V0 B

V0 + (B − V0) exp(− b t)
. (3)

In this case, the model parameters are V0 ≡ V(t = 0), B, and b.
Von Bertalanffy [56] and others [57] proposed deriving the general laws governing

the organic growth from basic principles involving the energy. They established that the
net growth rate should be the result of the balance of synthesis and destruction, noting
that metabolic rates often follow the law of alometry (i.e., they scale with a power of
the total size of the system analyzed), while catabolic rates are proportional to that total
volume. The Bertalanffy model has already been successfully applied to describe tumor
growth [58,59]. The mathematical function corresponding to this model is:

V(t) =
V0

(1 − C)3 (1 − C exp(− c t))3 . (4)

Here, the model parameters are the volume at t = 0, V0, C, and c.
The potential model was derived from the Bertalanffy model [56] and does not exhibit

a clear saturation phase. Tumor growth is proportional to the number of proliferating cells,
under the assumption of a constant cell cycle duration. It is a model that produces a tumor
growth with a decreasing growth fraction and, therefore, a decreasing relative growth rate,
which also provides a description in terms of a geometric characteristic of the proliferative
tissue. The time dependence of the volume in this model is given by:

V(t) = [(V0)
p − p P t]1/p . (5)

The model parameters are V0, the volume at t = 0, P, and p.

2.2. On-Lattice Monte Carlo Agent-Based Model

In order to investigate their predictive capabilities, the classical mathematical models
described in the previous section have been fitted to data obtained with an on-lattice ABM
recently developed and tested [53], which has been used as a reference. In this ABM, cells
are situated at the vertices of a cubic grid and are organized in layers forming regions
characterized by one of the three possible states considered: proliferative (k = p), quiescent
or hypoxic (k = h), or necrotic (k = n).

Proliferative cells may divide according to a probability binomial distribution,
pdiv = pmax g(d; d0, κ), where the nutrient gradient inside the MTS, g, depends on the
depth of the cell inside the MTS, d, and the two parameters d0 and κ. After each iteration,
which corresponds to a complete cellular cycle, simple evolution rules, linked to the dis-
tance of cells to nutrients and O2, are used to simulate how these cells change from one
state to another, updating their status in the aggregate. Exfoliation of the peripheral cells is
also considered according to a binomial distribution with probability pexfol.

Region thicknesses are calculated as Tk = T n̄k, where T is a scaling factor that takes
into account the cell size and n̄k is the average of the cell number in each of the three
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possible states, in the three orthogonal directions. With these thicknesses, MTS volumes
are calculated as:

V =
4 π

3

 ∑
k=p,h,n

Tk

f 1/3
k

3

. (6)

Here, the fk are packing factors that take into account the intercellular space and the cell
compression in each MTS region.

The feasibility of the model was tested by comparing simulated growth curves with
the experimental data measured for an MTS sample of the MCF-7 cell line. The parameters
pmax = 0.37, pexfol = 0.01, and T = 15µm, as well as the number of proliferative and
hypoxic layers, Lp = 6 and Lh = 3, were chosen from the experiment [22,26,60]. The values
of the packing factors, fp = 0.9, fh = 1.0, and fn = 1.1 were selected according to
experimental evidence [61]. Finally, d0 = 6, κ = 0.8, were fine-tuned to reproduce the
experimental results obtained in [53] for the MCF-7 line.

The shapes of the experimental and simulated MTS are very similar, with the necrotic
nucleus and the hypoxic and proliferating cell regions well described. The ABM also repro-
duces the linear relation experimentally found between the radius of the necrotic nucleus
and that of the whole MTS: both the slope (bexp = 1.078± 0.096 and bsim = 1.006± 0.002)
and the independent term (aexp = −151± 44µm and asim = −142.5± 1.6µm) of the re-
spective linear regressions coincide within the uncertainties (given with a coverage factor 2).
Furthermore, the dependence of the number of hypoxic plus proliferative cells with the
total volume of the MTS shows the same behavior as the experimental data [60], agreeing
within uncertainties with them (see reference [53]).

Two samples with 1000 virtual MTS each have been generated with the ABM. These are
the data to which the mathematical models have been fitted in order to test their predictive
capabilities. In sample #1, the model parameters are left fixed at the values indicated
above for all simulated tumors. In this way, only the variability linked to the Monte
Carlo randomness of the different processes involved in the simulation has been taken
into account. The variability observed in the MTS volumes measured in the experiment
performed in [53] is within the statistical variability found in this sample #1 of simulated
MTS. However, it has been realized that, in order to be fully described, some of the
experimental details require an additional variability in the simulation. This is accounted
for in sample #2, where the model parameters for each virtual MTS were sampled by
assuming Gaussian distributions centered at the values considered in the first simulation
and with widths equal to 10% of the respective centroids.

Figure 1 shows the volume vs. time of growth plots corresponding to these two
samples. Some of the simulated MTS are shown with solid lines. The whole region covered
by the two samples are plotted with light colors. The large increase in the volume ranges
of sample #2 produced by the extra 10% of variability in the simulation parameters is
apparent. In addition, the crosses between the growth curves in sample #2 occur more
often than in sample #1, thus reproducing the experimental observations better.

The initial configuration was the same for all simulated spheroids: seven cells occu-
pying the center of the grid and the six near neighbor positions. Each simulated MTS has
been followed for 60 days. Thus, sets of volumes {Vi, i = 1, 2, . . . , 60} were obtained for
each spheroid.

In [53], the experimental follow-up of the MTS gave us volume data each 2–3 days
between 2 and 16 days after the cell sowing. By considering simulated data between days
1 and 60, we spanned a time range much larger than the experimental one, thus solving
the drawbacks mentioned in the Introduction. It is worth mentioning that the simulations
can be extended to larger time periods if necessary. The 60-day data available for each
simulated MTS are enough to perform the analysis we have done.
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Figure 1. Volume vs. time of growth (in days) corresponding to the two samples generated with
the Monte Carlo ABM. The whole regions covered by samples #1 and #2 are indicated in gray and
yellow, respectively. Solid lines show some of the simulated MTS growth curves.

2.3. Statistical Methods

The various mathematical models described in the previous section have been fitted
to the volume vs. time data set obtained with the on-lattice Monte Carlo ABM for each one
of the simulated MTS. These fits have been carried out by using the Levenberg–Marquardt
method [62], in which the model parameters are adequately changed until the minimum of
the function

χ2 =
N

∑
i=1

(Vi − V(ti))
2

σ2
i

(7)

is reached. In the previous equation, ti indicates the time values at which the MTS volumes
Vi are obtained in the simulation, σi labels the corresponding volume uncertainty provided
by the simulation, and V(ti) is the estimation of the MTS volume obtained with the specific
mathematical model. The results of the fitting procedure include the fitting parameters
that provide the best fit of the model to simulated data and their uncertainties that are
calculated following standard procedures [62].

To measure the goodness of the fit, the figure-of-merit χ has been used; it is defined as:

χ ≡ χ2

ν
. (8)

Here, ν = N − npar indicates the number of degrees of freedom in the fit that is calculated
as the difference between the number of data in the sample to which the model is fitted,
N, and the number of model parameters, npar. In this case, npar = 2 for the E-model and
npar = 3 for the other models. The quantity χ represents the χ2 per degree of freedom, and
it is worth noting that good fits can be assumed if χ = 1 [62].

A first analysis consisted in evaluating the capabilities of the mathematical models
to reproduce the behavior of the volume of the simulated MTS in the whole growth
period. However, the spheroids showed significant volume changes in the first growth
days, and the data were too noisy. To avoid numerical problems in the fitting procedure,
the mathematical models were fitted to Vi data in the interval i = [6–60]. In this case,
the figure-of-merit measuring the goodness of the fits carried out was labeled χall.

In addition, the predictive capabilities of these models were analyzed. First, the “ret-
rospective” predictive power was studied by fitting the models to volumes Vi, i = [40–60]
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and calculating the corresponding χfit
ret; these statistics inform about the goodness of the fit.

To evaluate the predictive capability of the models, the figure-of-merit χ
pr
ret was calculated

using the fitted model and the data Vi, i = [20–39], which were not included in the fit. In a
similar way, the “prospective” prediction capability was analyzed by fitting the model to
the simulated MTS volume data Vi, i = [20–40] and calculating the corresponding figure-
of-merit for the volumes Vi, i = [41–60], which were not included in the fit. In this way, the
quantities χfit

pro and χ
pr
pro were obtained. Sets of 21 consecutive volume values were chosen

because follow-ups between 20 and 30 days are usual in experiments with MTSs.
To complete the analysis carried out, a comparison between the figure-of-merit χreg,

obtained when the various models were fitted to different regions of the MTS growth data,
was carried out. Fits to subsets of volume data {Vi, i = k, k + 1 . . . k + 19}, with k varying
between 6 and 41, were carried out.

It is worth pointing out that, as the predictive capabilities of the fitted models are
checked with data from the spheroid itself used to perform the fit, no type of normalization
to common initial volume is necessary.

For all fits done, the distributions of the χ values obtained for the two samples of
simulated MTS considered were calculated. In addition, the corresponding average values,
χ̄, as well as the 95% confidence interval (CI), were obtained for each of these distributions.
The 95% CI is given as [l : u], with l and u the lower and upper limits of the interval.

3. Results and Discussion

Figure 2 shows the results of the fits to the volume vs. time simulated data obtained
with the ABM for three different MTS of sample #1. Panel (a) corresponds to the MTS #278,
which is the spheroid that is best fitted using the G-model. The results of this fit are shown
with a dotted black line. The fits obtained with L-, P-, and B-models are shown with solid
green, dashed blue, and dashed-dotted red lines, respectively. The E-model is analyzed
independently due to its particular characteristics.

In the inset, the differences between these fits and the simulated volumes are plotted
with open black squares, solid green circles, solid blue squares, and open red circles for the
G-, L-, P-, and B-models. Panel (b) shows the results corresponding to MTS #179, which is
the spheroid that is best described with the L-model. Finally, the results shown in panel
(c) correspond to the MTS #138; this is the spheroid best described by both the P- and the
B-models. In the table shown in Figure 2, the χall values were obtained in all the fits of
this figure.

G-, P-, and B-models provide a reasonable description of the data in all cases. However,
it is evident that the L-model is not able to produce a good fit of all data simultaneously,
even in the case of the MTS #179 (see panel (b)) that is the spheroid that best fits this model.

This is even clearer if one looks at the χall data shown in the table embedded in
Figure 2. The values obtained for the G-model are an order of magnitude smaller than
those found in the fits of the P- and B-models, while those found for the L-model are
between ∼40 and ∼100 times larger.

It is interesting to discuss here about the exponential model. Figure 3 shows the results
obtained when the E-model is fitted to the data of the MTS #1 (simulated in sample #1).
The first point to be noted is that this model cannot give a reasonable description of the
volume data. As it can be seen in the inset (where a semi-logarithmic plot is shown), these
data do not show a constant slope as the E-model does. As a consequence, only partial
sets of data can be described. In this case, the fits shown are those obtained when three
different data intervals, [10–40] day, [40–60] day, and [30–50] day, are chosen.

Though the data in a given time period may be nicely reproduced, the E-model fails
completely to describe the volume values outside that period. The fact that experimental
data of tumor or MTS growth are usually available for relatively short time periods (due to
the obvious difficulties inherent in the experimental monitoring of samples) may be one of
the main reasons why this model has been widely used to describe tumor growth.



Appl. Sci. 2021, 11, 5241 8 of 18

0 10 20 30 40 50 60
0

1

2

3

4

5


(c)


0

1

2

3

4

5


(b)


0

1

2

3

4

5


(a)


V
(1
09
µ
m

3
)

V
(1
09
µ
m

3
)

V
(1
09
µ
m

3
)

time (day)

MTS #138

MTS #179

MTS #248

ABM data

ABM data

ABM data

L (χall = 162.83)

B (χall = 19.30)

P (χall = 14.70)

G (χall = 3.07)

L (χall = 127.15)

B (χall = 28.35)

P (χall = 22.14)
G (χall = 2.54)

L (χall = 135.21)

B (χall = 39.63)
P (χall = 26.65)

G (χall = 1.46)

Figure 2. Best fits of the potential (dashed blue lines), Bertalanffy (dotted-dashed red lines), logistic
(solid green lines), and Gompertz ( dotted black lines) models to three simulated MTS belonging to
sample #1. Black solid circles show the volumes obtained in the ABM simulation. The MTS #138 (a)
is the spheroid, among all in sample #1, whose data best fit the potential and Bertalanffy models; the
MTS #179 (b) is the spheroid whose data best describe the logistic model, and the MTS #248 (c) is
the spheroid whose data best fit the Gompertz model. The values of χall obtained in each case are
also shown.
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Figure 3. In (a), the fits of the exponential model to the simulated ABM data of the MTS #1 of sample
#1 are shown. Solid black circles indicate the volumes of this spheroid along the whole time period
studied. Dotted red, dashed green, and solid blue lines display the results obtained when the fit
involves the data in the time intervals [10–40] day, [40–60] day, and [30–50] day, respectively; (b)
shows the corresponding semi-logarithmic plot to emphasize the MTS volume behavior.

Figure 4 shows the distributions of the χall values obtained in the first analysis carried
out. In this case, the mathematical models have been fitted to the whole sets of volume data
obtained in the simulations. The fits to data in the sample #1 (those without variability in the
ABM parameters) produced the distributions shown with dark colors, while those plotted
with light colors (and outlined in black) correspond to the sample #2 in which a variability
in the values of the ABM parameters was included in the simulations. A summary of these
results can be found in the third column of Table 1 where the average values χ̄all and the
95% CI of the distributions shown in Figure 4 are given for the four models and the two
MTS samples.

In the light of these results, the following facts deserve a comment:

1. For all models, the distributions corresponding to sample #2 were wider than those of
sample #1. This is seen in Figure 4 and also in Table 1. The sizes of the 95% CI quoted
in the table for sample #2 are larger than those of sample #1 by factors between ∼2
for the G-model and ∼5 for the P-model. In addition, the χ̄all found for sample #2 is
larger than the corresponding for sample #1, the increase ranging between 0.2% and
17% for the G- and B-models, respectively.
The variability in the AMB parameters that was considered in the simulation generat-
ing sample #2 produces more different growth shapes of the MTS and this results in
better (those with smaller χ2

all values) and worst (those with larger χ2
all) fits occuring

independently of the specific mathematical model considered.
2. In general, the best fits to the whole growth curves were provided by the G-model.

As shown in Table 1, the χ̄all obtained for this model are an order of magnitude smaller
than those corresponding to the other models considered. In the case of sample#1, the
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95% CI obtained for the G-model is clearly below those found for the other models.
For sample #2, there is a slight overlap between the CI of the G- and P-models.

3. It is noticeable the large χall values obtained for the L-model. The χ̄all values are
above 170 in both samples, and the respective 95% CI begin at 139 and 56, respectively.
This again points out the fact already discussed in connection to Figure 2 about the
difficulties of this model to describe the whole MTS growth.

4. A curiosity of these results is that all the distributions are skewed to the right (to
high χall) except that found for the P-model in the case of sample #1 where an almost
Gaussian behavior is observed.
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0 100 200 300 400 500
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80

0 20 40 60 80 100

χall χall
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Potential Bertalanffy

(a) (b)

(c) (d)

Figure 4. Distribution histograms of the values of χall obtained in the fits of the four mathematical
models considered to all simulated MTS in samples #1 (dark colors) and #2 (light colors). The results
obtained for the Gompertz (a), logistic (b), potential (c) and Bertalanffy (d) models are shown.

The predictive capabilities of the models were analyzed by looking at how well the
models, fitted to reproduce a part of the growth curves, described the remaining volume
data. The χ distributions obtained are shown in Figures 5 and 6 and summarized in
Table 1 in terms of the corresponding values of χ̄ and of the 95% CI. In the two figures, the
distributions shown in the left panels are those found in the fits, while those calculated for
the predicted data are plotted in the right panels. Again, the distributions shown with light
colors correspond to sample #2 while those with dark colors were obtained for sample #1.

The results obtained deserve several comments:

1. The best fits were now much better than those found when all volume data were
included. The maximum χ̄fit was χ̄fit

pro = 3.75, which corresponds to the L-model.
These relatively low values are due to the fact that the number of data fitted is now 21
instead of the 55 considered before.
It is worth noting that also the low limits of the 95% CI of χfit were much lower
than in the case of χall. In all cases, the values obtained are close to 1, with the
only exception of the 1.97 found for the L-model in the prospective prediction (see
Table 1). This means that, a priori, all the mathematical models could produce a
nice description of a more or less short data section of a given spheroid. However,
as pointed out in Figure 4, not all the models can describe the whole growth curve of
some of the simulated MTSs included in the samples. In this respect, it is important
to point out that, in practice, these mathematical models are fitted to a small number
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of experimental volume data and for few spheroids or tumors in the sample, and
the model that better fits the existing data may not be the one that best describes the
subsequent growth [34].

2. Contrary to what was observed in Figure 4, the χ distributions obtained for sample #2
are rather similar to those obtained for sample #1. This is corroborated by the results
quoted in Table 1 and may indicate that the main ingredient controlling the results of
the fit is the number of points to be fitted.
An exception to this seems to occur for L- and P-models in the case of the prospective
fits (see Figure 6c,e). The possible effect due the region of data fitted is discussed below.

3. As can be checked by comparing the right panels in Figures 5 and 6, the models are
more efficient in the retrospective predictions than in the prospective predictions.
As it can be seen, the distributions obtained in the latter case extend to values that are
at least twice as large as those resulting for the former. The worst situation is that of
the B-model in which the ratio χ̄

pr
pro/χ̄

pr
ret ∼ 13. This ratio is ∼2 for G- and L-models

and ∼5 for the P-model.
The retrospective predictive power of the models studied may be of interest in the
clinic when the response of tumors to treatments is analyzed. In fact, the evolution
of the regression of the irradiated tumors could be similar to looking back at the
tumor growth and what has been observed in the present analysis could provide
significant hints in that respect. Obviously, treatments may perturb the growth trends
and more specific conclusions could be drawn when irradiation is included in the
ABM simulation algorithm. Work in this direction is in progress.

4. The best results in what refer to retrospective predictions were provided by the B-
model for which the average χ̄

pr
ret ∼ 23 (see Table 1). A slightly larger value, ∼30, was

found for the G-model, whereas, for the other two models, much higher values are
achieved, in particular for the L-model where χ̄

pr
ret ∼ 480.

5. The G-model seems to be the most robust in what refers to the prospective predictive
capability. In this case, χ̄

pr
pro < 60 (slightly larger for sample #2 than for sample #1).

For P- and B-models, this average was ∼300, while, for the L-model, values larger
than 1000 were found.

6. In any case, the values obtained for both χ
pr
pro and χ

pr
ret indicate that the predictive

capabilities of the models considered here are discrete.

Table 1. Average values and 95% CI of the χ distributions obtained in the various fits carried out in
the present study.

Sample Model
All Data Retrospective Prospective

χall χfit
ret χ

pr
ret χfit

pro χ
pr
pro

#1 G 3.23 1.09 29.08 1.04 50.49
[1.89:6.29] [0.51:1.82] [5.47:68.67] [0.49:1.87] [3.78:126.70]

L 171.49 1.77 478.86 3.58 1050.98
[139.06:258.91] [0.81:2.95] [360.00:613.40] [1.97:5.51] [956.80:1140.00]

P 22.39 2.56 64.59 2.35 340.05
[17.50:27.41] [1.34:4.18] [44.49:87.20] [1.12:3.91] [212.30:501.50]

B 30.94 1.08 22.99 1.40 304.76
[21.74:46.02] [0.50:1.78] [4.74:48.63] [0.64:2.52] [92.49:694.50]

#2 G 3.79 1.11 29.76 1.11 58.79
[1.29:9.83] [0.45:2.19] [1.46:94.18] [0.44:2.12] [1.35:183.90]

L 179.48 1.80 480.19 3.75 1061.00
[56.72:378.29] [0.74:3.55] [147.10:959.40] [1.14:8.28] [467.80:1833.00]

P 24.17 2.60 65.14 2.65 340.71
[6.22:57.37] [1.12:4.85] [15.11:139.60] [0.71:6.36] [54.31:835.20]

B 31.02 1.08 23.37 1.44 315.34
[11.46:64.49] [0.46:2.17] [4.18:52.42] [0.57:2.76] [67.76:836.80]
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Figure 5. Distribution histograms of the values of χret obtained in the retrospective fits of the
four mathematical models considered to the simulated MTS in samples #1 (dark colors) and #2
(light colors). Left panels correspond to the fits to data in the time interval [40–60] day and right
panels to the retrospective fits to data in the time interval [20–39] day. The results obtained for the
Gompertz (a,b), logistic (c,d), potential (e,f) and Bertalanffy (g,h) models are shown.
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Figure 6. Distribution histograms of the values of χpro obtained in the prospective fits of the
four mathematical models considered to the simulated MTS in samples #1 (dark colors) and #2
(light colors).Left panels correspond to the fits to data in the time interval [20–40] day and right
panels to the prospective fits to data in the time interval [41–60] day. The results obtained for the
Gompertz (a,b), logistic (c,d), potential (e,f) and Bertalanffy (g,h) models are shown.

To finish the analysis of the performance of the various mathematical models with
regard to the description of the simulated MTS, the goodness of the fits when they are
done in different regions of the growth curves was studied. Figure 7 shows the average
values of χreg and the corresponding 95% CI obtained for the four mathematical models as
a function of the initial day of the data region fitted (which include 20 consecutive data).
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Solid circles and uncertainty bars correspond to sample #1, whereas solid curves and light
colored areas stand for sample #2.

The following points must be noted:

1. Similar results were found for G- and B-models that showed average values tending to
1 with increasing tk. The former appeared to be slightly robust in this sense, showing
a less noising behavior for tk < 20 day.

2. For L- and P-models, a non-negligible dependence on the data region fitted occurred.
It is worth pointing out the fluctuating behavior with tk observed in both cases.

3. This also results in the differences between the two samples studied being larger for
L- and P-models than for G- and B-models.

The analysis that has been done may help to understand how tumors, particularly
small tumors that could remain as surgical residues or micro-metastases, evolve before or
during radiotherapy, or to investigate the effects provoked by the delays and interruptions
that often occur throughout the treatment. In the case of delays in starting radiotherapy,
the prospective predictive power of the models is of great interest. For interruptions, both
the capacity for retrospection, if the trend of the growth is preserved, and prospection are
relevant. These problems can be analyzed with the ABM model and, afterwards, it would
be possible to see if the classical models are able to describe what happens in these cases.
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Figure 7. Values of χreg obtained in the fits of the four mathematical models considered to the
simulated MTS volume data {Vi, i = k, . . . k + 19} with k varying between 6 and 41. Solid circles
represent the average values and uncertainty bars indicate that corresponding to the 95% CI calculated
for the 1000 spheroids in sample #1. The solid curves and the light color areas indicate the same but
for sample #2. The results obtained for the Gompertz (a), logistic (b), potential (c) and Bertalanffy (d)
models are shown.

The E-model deserves a particular comment. As it has been shown, this model can
reproduce the growth curves only when the data considered for the fit are limited to a short
time period. On the other hand, its predictive capabilities are very poor. However, in the
clinical applications of tumor radiobiology in radiotherapy, only the exponential growth
model is used in practice. A relevant example of this is the management of interruptions
and delays occurring in fractionated radiotherapy, an important clinical problem due to its
effect on the treatment effectiveness [33]. In this case, the exponential growth model is used
to account for the increase in tumor cells when the total treatment time is extended and to
estimate the effects of this prolongation. As the sole sophistication, the so-called onset time
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is included. This time attempts to describe, somewhat crudely, the apparent period of slow
growth of the tumors that is followed by an increase in the proliferation rate [63] and that
occurs as a consequence of the reduction in the tumor cells produced by radiation after a
few weeks from the beginning of the treatment [64].

It is evident that MTSs are much simpler systems than in vivo tumors. However,
although MTSs are able to reproduce the early stages of the growth of the actual tumors,
they do not include several of the elements that most influence the growth of the latter.
The results of this work show that the E-model, even for such a simple “approach”, is clearly
inefficient for predicting tumor proliferation, and that, on the contrary, other models, such
as the G-model, constitute a much more adequate scenario. The G-model also includes, in a
simple way, the variation of the growth rate with the tumor size and, therefore, can account
for the phenomenon of accelerated repopulation. Our results indicate clearly that it should
be necessary to abandon the E-model in favor of any other, maybe the G-model, in clinical
applications in order to produce more realistic estimations of the quantities calculated.

4. Conclusions

In this work, a detailed analysis of the capabilities of the Gompertz, logistic, poten-
tial, and Bertalanffy models to describe MTS growth curves was carried out. Spheroids
simulated with an ABM recently developed were used as “pseudo-experimental” data.
Two samples of MTS in which the ABM parameters were assumed to have a different
variability were considered.

The best description of the whole growth data was provided by the Gompertz model
that showed a value of χ̄all an order of magnitude smaller than the other models.

In what refers to the predictive power, Gompertz and Bertalanffy models provided
the best retrospective predictions, and the Gompertz model was the one giving the best
prospective predictions.

Logistic and potential models had difficulties in fitting the data, even when restricted
subsets were considered.

In principle, it is possible to find a certain (reduced) number of spheroids such that
one of the models can be fitted to correctly describe a specific part of their growth curves.
However, this fitted model does not describe adequately either the remaining volume data
of the spheroids included in the fit or the data corresponding to other spheroids in the
sample. Usually, experiments of MTS or tumor growth involve quite a few individuals that
are followed during a relatively short period and this may explain the “success” of some
mathematical models in describing the corresponding growth curves.

In summary, Gompertz model appeared to be the best option to describe the MTS
growth data and showed to have enough flexibility to adapt its predictions to the volume
growth data variability observed in the simulated spheroids. This indicates that this model
should be considered in the clinical applications instead of the exponential model that is
currently used.
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