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Abstract: Genomic analysis and digitalization of medical records have led to a big data scenario 

within hematopathology. Artificial intelligence and machine learning tools are increasingly used to 

integrate clinical, histopathological, and genomic data in lymphoid neoplasms. In this study, we 

identified global trends, cognitive, and social framework of this field from 1990 to 2020. Metadata 

were obtained from the Clarivate Analytics Web of Science database in January 2021. A total of 525 

documents were assessed by document type, research areas, source titles, organizations, and coun-

tries. SciMAT and VOSviewer package were used to perform scientific mapping analysis. Geo-

graphical distribution showed the USA and People’s Republic of China as the most productive 

countries, reporting up to 190 (36.19%) of all documents. A third-degree polynomic equation pre-

dicts that future global production in this area will be three-fold the current number, near 2031. 

Thematically, current research is focused on the integration of digital image analysis and genomic 

sequencing in Non-Hodgkin lymphomas, prediction of chemotherapy response and validation of 

new prognostic models. These findings can serve pathology departments to depict future clinical 

and research avenues, but also, public institutions and administrations to promote synergies and 

optimize funding allocation. 

Keywords: artificial intelligence; hematopathology; lymphoid neoplasms; digital image analysis; 

machine learning 

 

1. Introduction 

The storage of clinical information in the electronic medical record and the incorpo-

ration of omics data (genomic, transcriptomic, and proteomic) into the patient’s history 

have led to a novel scenario within pathology departments. Currently, large volumes of 

information are available for investigators and clinicians, who need to process, integrate, 

and translate them into daily medical practice.  

This data-driven paradigm of 4P medicine (predictive, personalized, preventive, and 

participative) [1] requires the implementation of computer systems able to process this 

huge amount of clinical information. In this setting, artificial intelligence (AI) and machine 
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learning (ML) tools have the potential to meliorate diagnostic precision and improve pre-

diction accuracy, and, thus, contribute to a better planification of personalized therapeutic 

strategies [2]. 

In recent years, several countries have made public their national research, develop-

ment, and innovation (RDI) strategies in AI [3–5]. The European Union (EU) [6], the 

United States of America (USA) [7–9], and the United Kingdom (UK) [10,11] have com-

municated their plans for economic coordination in AI and, specifically, an investment 

increase of 20 billion euros per year is foreseen until 2027 in the EU to develop its coordi-

nated strategy in AI [6]. 

Among medical disciplines, the field of hematopathology has been pioneering in the 

application of novel methodologies into the clinical setting, leading to milestones in trans-

lational cancer research, such as molecular targeted therapies in chronic myeloid leukemia 

and acute promyelocytic leukemia, which have rendered curable diseases once consid-

ered fatal [12,13]. 

Regarding this, several works have reported the crescent use of AI and ML tools in 

the diagnosis of hematological diseases [14,15]. Among hematological malignancies, lym-

phoid neoplasms (LN) constitute one of the most active foci of research in this area, and 

different AI algorithms have been developed to improve accuracy in lymphoma subtyp-

ing [16,17], validation of prognostic models [18], and prediction of chemotherapy re-

sponse [19,20]. However, a global analysis of the major trends, leading producers, and 

scientific mapping of AI and ML applications to diagnostic pathology in LN has not yet 

been undertaken. 

In this study, we evaluated AI and ML applications in LN through bibliometric tech-

niques. Documental evolution, prediction on future production, and leading research cen-

ters and countries were identified. Furthermore, we performed scientific mapping analy-

sis (SMA) by means of the packages SciMAT (Science Mapping Analysis Software Tool) 

[21] and VOS (Visualizing Of Science) viewer [22] to longitudinally assess the cognitive 

framework and social structure of this research field. 

2. Materials and Methods 

2.1. Sample 

The metadata used in the study were obtained from the Clarivate Analytics Web of 

Science (WoS) core collection database of the Thomson Reuters Institute for Scientific In-

formation (ISI) (Philadelphia, PA, USA). Documents were retrieved by searching ((“arti-

ficial intelligence” or “deep learning” or “machine learning” or “neural network” or “sup-

port vector” or “natural language”) and (“lymphoid neoplasm” or lymphoma or lym-

phoproliferative or lymphocytic or gammopathy or myeloma or histiocytic)) as topics in 

the SCI-Expanded Collection for a period range from 1990 to 2020. The dataset was ex-

tracted in January 2021 and downloaded in a tab delimited TXT format.  

WoS provides information for more than 250 disciplines and, when performing bib-

liometric analysis, citation data availability is considered one of its main advantages in 

comparison with other scientific databases such as MedLine [23,24]. Additionally, because 

of its wide use among the biomedical community, and to evaluate the consistence of our 

query, we also tested it in PubMed, filtering by article type (journal articles and reviews), 

subject (cancer; neither AIDS nor complementary medicine), journal (MEDLINE; neither 

dental journals nor nursing journals), and for the same period (1990–2020). A total of 528 

documents was obtained, and we could confirm homogeneity in the retrieved results. 

2.2. Performance Analysis 

Obtained results were classified by document type and then, analysis by research 

areas, source titles, organizations, and countries was performed on original articles, re-

views, proceeding papers, and meeting abstracts, by excluding other minor types such as 

letters, book chapters, and editorial material. 
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2.3. Science Mapping Analysis (SMA) 

SciMAT (Version 1.1.04., University of Granada, Granada, Spain, License GPLv3) and 

VOS Viewer (Version 1.6.16., Centre for Science and Technology Studies, Leiden Univer-

sity, Leiden, The Netherlands) software were used to perform SMA. In order to achieve a 

better comprehension of the development of the research field, the analysis was per-

formed for the subperiods: (1) 1990–2005, (2) 2006–2014, and (3) 2015–2020, allowing for a 

homogeneous distribution of documents. 

2.3.1. SMA for Cognitive Framework 

SciMAT was employed to longitudinally evaluate the cognitive framework of the 

area, as previously reported [24]. Briefly, SciMAT uses the author’s keywords (AK) of each 

article to construct a co-occurrence matrix (CM). Each significant concept (or theme) is 

defined as the group of AK employed by different researchers during the period analyzed. 

At this point, the simple center algorithm is applied to construct a thematic network from 

the CM previously defined. Consequently, the volume of the spheres shown in the strate-

gic diagram is proportional to the number of published articles that contain this specific 

notion. 

Regarding the sources used to construct these strategic diagrams with SciMAT, the 

package employs the files containing the bibliometric information required, that is, the set 

of keywords included in each document within the dataset, as it is retrieved from WoS 

after performing the query term above mentioned. In this sense, a co-occurrence of two 

keywords during the process of analysis is defined as the joint appearance of two key-

words in the same document, as originally conceived by Callon et al. in the seminal papers 

which laid the foundations of co-word analysis [25,26]. In this study, we employed the 

simple center algorithm to perform this task, but other approaches were also described 

such as the single-linkage or sum-linkage [27,28]. Nevertheless, the simple center algo-

rithm has also been validated and employed to identify, characterize, and visualize the 

cognitive evolution of scientific research in other disciplines [23]. 

Once these concepts (themes) are obtained, a two-dimensional strategic diagram is 

depicted based on Callon´s centrality and Callon´s density [25]. These parameters allow a 

research field to be comprehended as a set of research themes, and SciMAT enabled us to 

map them into four groups: 

(a) Motor themes (MT): Present a high density and a strong centrality signifying the most 

developed themes for the research area studied (upper-right quadrant); 

(b) Basic and transversal themes (BT): Represent themes shared for several disciplines; 

thus, their foundations are well-established (lower-right quadrant); 

(c) Emerging or declining themes (ED): Have a weak density and a low centrality and, 

thus, represent marginal areas of knowledge (lower-left quadrant); 

(d) Highly developed or isolated themes (HDI): Show a high density, meaning a signifi-

cant internal development. However, they are less connected with other themes in 

the research field because of their low centrality values (upper-left quadrant). 

2.3.2. SMA for social framework  

VOSviewer was used as previously described by Van Eck and Waltman [22]. 

VOSviewer allows users to create scientific maps based on network data and exploring 

them. Its workflow consists of three steps. 

First, VOSviewer defines a CM based on the times that any pair of items appear to-

gether within the documental corpus. Second, the software applies an algorithm to dis-

play a distance-map where each point represents an item in a space. Herein, the 

VOSviewer uses the SMACOF algorithm to approximate actual Euclidean distances to an 

ideal model [29]. Third, the maps obtained need to be translated, rotated, and reflected to 

achieve consistent results. 
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In our analysis, institutions and countries were evaluated according to its biblio-

metric coupling relation, that is, the existence of a common cited reference in their refer-

ence list [30]. The number of documents published and the number of cites received for 

each institution or country were employed as weights. Consequently, the final result was 

a map where the distance between institutions and countries was proportional to its bib-

liometric coupling relation, and the size of each label in the map was proportional to the 

number of documents reported or citations received in the period evaluated. 

3. Results 

3.1. Performance Analysis 

3.1.1. Document Type  

A total of 525 documents were retrieved after performing the search strategy. The 

journal article was the predominant type as it appeared up to 359 documents (68.38% of 

the corpus), followed by 106 proceeding papers (20.19%), reviews (6.66%), and meeting 

abstracts (6.28%) (Figure 1A). Furthermore, the growth of the field was particularly re-

markable from 2017 to present day (Figure 1B). Cumulative production can be adjusted 

to an exponential and potential model with a R2 = 0.9112 and 0.9733, respectively (Figure 

2A,B). Furthermore, a third-degree polynomic model defined by the equation y = 0.0518x3 

− 1.511x2 + 17.345x − 35.972 (R2 = 0.9701) predicted that literature would double in 2027, 

and it would be three-fold the current number near 2031 (Figure 2C). 

 

 

Figure 1. Evolution of documents referred to AI and ML applications to diagnostic pathology in 

lymphoid neoplasms from 1990 to 2020. (A) Document production trends referred to AI and ML 

applications to diagnostic pathology in lymphoid neoplasms according to document type (original 
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article, review, proceeding papers, and meeting abstracts) from 1990 to 2020. (B) Global produc-

tion trends of documents referred to AI and ML applications to the field of diagnostic pathology in 

lymphoid neoplasms from 1990 to 2020. 

 

Figure 2. Cumulative journal production by year in the area of AI and ML applications to diagnostic pathology in lymphoid neo-

plasms. (A) Adjustment to an exponential model. (B) Adjustment to a potential model. (C) Adjustment to a third degree polynomic 

model. (D) Evolution of the five most developed research areas in terms of article production (computer science, engineering, radi-

ology nuclear medicine, biochemistry molecular biology, and oncology) from 1990 to 2020. 

3.1.2. Research Areas 

During the period analyzed, the research area that gathered most of documents was 

computer science (CS) with up to 128 documents (24.38%), followed by engineering (EN) 

with 89 documents (16.95%), radiology nuclear medicine (RNM) with 61 documents 
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(11.61%), biochemistry and molecular biology (BM) with 60 documents (11.43%), and on-

cology (ON) with 54 documents (10.29%). 

Figure 2D shows the evolution of the top five research areas. From 2002 to 2020, CS 

was at the forefront of research, while ON and RNM increased their contribution to the 

area since 2008 to the present days. A general crescent trend was evident from 2014 to 

today both for biomedicine research areas (ON, RNM, and BM) and bioinformatics areas 

(CS and EN). 

3.1.3. Organizations and Research Centers 

Table 1 shows the classification of universities and research centers in terms of pub-

lications, divided for three subperiods: (1) 1990–2004, (2) 2005–2014, (3) 2015–2020, and 

globally. Of the 207 documents signed by the 20 most productive institutions, 119 were 

published in the last period. The University of Texas System (3.62%), the Institute National 

de la Santé et de la Recherche (INSERM) (2.86%), and Harvard University (2.48%) led 

global production. Thirteen of the twenty most productive institutions were located in the 

USA. 

The Assistance Publique Hopitaux Paris (APHP) (1.71%), the Centre National de la 

Recherche Scientifique (CNRS) (1.71%), the Technical University of Munich (1.52%), and 

the Goethe University of Frankfurt (1.33%) were highlighted within European centers. Fi-

nally, the Asiatic contribution showed a crescent trend from the beginning of the study, 

the Chinese Academy of Science (2.29%) being among the five most relevant centers 

worldwide for the whole period evaluated.
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Table 1. Analysis of documents referred to AI and ML applications to diagnostic pathology in lymphoid neoplasms by institutions from 1990 to 2020. Data are 

provided by subperiods (1990–2005; 2006–2014; 2015–2020) and globally. C: document count; %: percentage of documents. 

Institution 
1990–

2005 
Institution 2006–2014 Institution 2015–2020 Institution TOTAL 

 C %  C %  C %  C % 

NAGOYA  

UNIVERSITY 
5 7.81 

CORNELL 

UNIV 
4 3.50 

CHINESE ACAD 

SCI 
10 2.87 

UNIV OF TEXAS 

SYSTEM 
19 3.61 

AICHI CANC 

CTR 
4 6.25 

INDIAN 

STAT INST 
4 3.50 EMORY UNIV 10 2.87 INSERM 15 2.85 

ST JOHNS HOSP 3 4.68 
JADAVPUR 

UNIV 
4 3.50 

UNIV TEXAS MD 

ANDERSON 
8 2.29 

HARVARD 

UNIV 
13 2.47 

CENT MED 

LABS 
2 3.12 

NANYANG 

TECHNOL 

UNIV 

3 2.63 

MEM SLOAN 

KETTERING 

CANC CTR 

7 2.01 

UNIV  

CALIFORNIA 

SYSTEM 

13 2.47 

FLORIDA INT 

UNIV 
2 3.12 NCI 3 2.63 UNIV PENN 7 2.01 

CHINESE ACAD 

SCI 
12 2.28 

HARVARD 

UNIV 
2 3.12 NIH 3 2.63 

ICAHN SCH MED 

MT SINAI 
6 1.72 CORNELL UNIV 12 2.28 

NANYANG 

TECHNOL 

UNIV 

2 3.12 
RUTGERS 

STATE UNIV 
3 2.63 MAYO CLIN 6 1.72 

UTMD  

ANDERSON 

CANCER  

CENTER 

11 2.09 

OHIO STATE 

UNIV 
2 3.12 

TONGJI 

UNIV 
3 2.63 

TECH UNIV  

MUNICH 
6 1.72 EMORY UNIV 10 1.90 

THOMAS  

JEFFERSON 

UNIV 

2 3.12 
UNIV MICH-

IGAN 
3 2.63 

CHINA UNIV 

MIN TECHNOL 
5 1.43 

MEM SLOAN 

KATTERING 

CANC CTR 

10 1.90 

UNIV  

BIRMINGHAMN 
2 3.12 

UNIV  

OXFORD 
3 2.63 COLUMBIA UNIV 5 1.43 

UNIV  

PENNSYLVANIA 
10 1.90 

UNIV  

MARYLAND 
2 3.12 

UNIV  

TOKYO 
3 2.63 

GEORGIA INST 

TECHNOL 
5 1.43 APHP PARIS 9 1.71 
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UNIV ROMA LA 

SAPIENZA 
2 3.12 UNIV TURIN 3 2.63 

MASSACHUSETTS 

GEN HOSP 
5 1.43 

CENT NAT DE 

LA RECHER SCI-

ENTIFIQUE 

9 1.71 

UNIV ROMA 

TOR VERGATA 
2 3.12 

UNIV  

ZAGREB 
3 2.63 

NEW JERSEY INST 

TECHNOL 
5 1.43 

SCHOOL OF 

MED MOUNT SI-

NAI 

9 1.71 

UNIV SO CALIF 2 3.12 CHARITE 2 1.75 
OHIO STATE 

UNIV 
5 1.43 NIH 9 1.71 

UNIV TURIN 2 3.12 

DANA FAR-

BER CANC 

INST 

2 1.75 
SHANGAI JIAO 

TONG UNIV 
5 1.43 MAYO CLINIC 8 1.52 

YONSEI UNIV 2 3.12 
FLORIDA 

INT UNIV 
2 1.75 SICHUAN UNIV 5 1.43 

STATE UNIV 

SYSTEM OF 

FLORIDA 

8 1.52 

BETHESDA 

HOSP 
1 1.56 

GOETHE 

UNIV 

FRANKFURT 

2 1.75 UNIV LEIPZIG 5 1.43 
TECH UNIV OF 

MUNICH 
8 1.52 

CEDARS SINAI 

MED CTR 
1 1.56 

HARVARD 

UNIV 
2 1.75 UNIV SYDNEY 5 1.43 YONSEI UNIV 8 1.52 

CENTROL 

NACL INVEST 

ONCOL 

1 1.56 
HOP LYON 

SUD 
2 1.75 YONSEI UNIV 5 1.43 

COLUMBIA 

UNIV 
7 1.33 

CHINESE  

PEOPLES  

LIBERAT ARMY 

GEN HOPS 

1 1.56 

INDIAN 

INST TECH-

NOL 

2 1.75 CHB HOSP 4 1.14 
GOETHE UNIV 

FRANKFURT 
7 1.33 
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3.1.4. Source Titles 

A total of 397 scientific journals reported at least one of the 525 documents in the area. 

However, up to 388 journals (96.47%) have published less than five documents, signifying 

secondary sources. This pattern of scientific production was in accordance with Brad-

ford’s law of bibliographic scattering, which determines that the most of documents be-

long to a reduced nuclei of core journals, being unproductive to extend literature search 

beyond it [31]. 

Table 2 shows the classification of source titles for the period studied. Globally, the 

most productive journals were Lectures Notes in Computer Science with up to 14 docu-

ments (2.67%), Blood with 12 documents (2.28%) and the European Journal of Nuclear 

Medicine and Molecular Imaging (EJNMMI) with 10 documents (1.90%). 
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Table 2. Analysis of documents referred to AI and ML applications to diagnostic pathology in lymphoid neoplasms by source titles from 1990 to 2020. Data are provided 

for three subperiods (1990–2005; 2006–2014; 2015–2020) and globally. Bold type indicates Bradford nuclei for the 25% of total production for each period. Source titles are 

abbreviated. C: document count; %: percentage of documents. 

Source ti-

tle 
1990–2005 

Source 

title 
2006–2014 

Source 

title 
2015–2020 

Source 

title 
TOTAL 

 C %  C %  C %  C % 

ARTIFI-

CIAL  

INTELLI-

GENCE 

IN MED-

ICINE 

3 4.68 

LEC-

TURE 

NOTES 

IN 

COM-

PUTER 

SCI-

ENCE 

5 4.38 

EUROP 

JOURN 

NUCL 

MED 

MOL 

IMAG 

10 2.87 

LEC-

TURE 

NOTES 

IN 

COM-

PUTER 

SCI-

ENCE 

14 2.66 

HUMAN 

PA-

THOL-

OGY 

3 4.68 

BMC  

BIOIN-

FOR-

MATICS 

4 3.50 BLOOD 9 2.25 BLOOD 12 2.28 

LEC-

TURE 

NOTES 

IN COM-

PUTER 

SCIENCE 

3 4.68 
PLOS 

ONE 
3 2.63 

SCIEN-

TIFIC  

RE-

PORTS 

8 2.29 

EUROP 

JOURN 

NUCL 

MED 

MOL 

IMAG 

10 1.90 

PRO-

CEED-

INGS OF 

AN-

NUAL 

ICIEE-

EMBS 

3 4.68 

ANA-

LYTI-

CAL 

CELLU-

LAR  

PA-

THOL-

OGY 

2 1.75 

PRO-

CEED-

INGS OF 

THE 

SPIE 

7 2.01 

PRO-

CEED-

INGS OF 

THE 

SPIE 

9 1.71 

BLOOD 2 3.12 
ARTIFI-

CIAL  
2 1.75 

JOUR-

NAL OF 
6 1.72 

SCIEN-

TIFIC  
8 1.52 
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INTEL-

LI-

GENCE 

IN MED-

ICINE 

NU-

CLEAR  

MEDI-

CINE 

RE-

PORTS 

COMPU-

TA-

TIONAL  

BIOL-

OGY 

AND  

CHEMIS-

TRY 

2 3.12 

BMC 

GE-

NOMICS 

2 
1-

75 

LEC-

TURE 

NOTES 

IN 

COM-

PUTER 

SCI-

ENCE 

6 1.72 

BMC  

BIOIN-

FOR-

MATICS 

7 1.33 

CYTOM-

ETRY 
2 3.12 

COM-

PUTERS 

IN BIOL-

OGY 

AND 

MEDI-

CINE 

2 1.75 

COM-

PUTER 

METH-

ODS 

AND 

PRO-

GRAMS 

IN BIO-

MEDI-

CINE 

5 1.43 
PLOS 

ONE 
7 1.33 

JOUR-

NAL OF  

BIOSCI-

ENCE 

AND  

BIOEN-

GINEER-

ING 

2 3.12 

HEMA-

TOL-

OGY 

2 1.75 

FRON-

TIERS IN 

ONCOL-

OGY 

5 1.43 

ARTIFI-

CIAL  

INTEL-

LI-

GENCE 

IN MED-

ICINE 

6 1.14 

NEURO-

COMPU-

TING 

2 3.12 

IEEE  

ENGI-

NEER-

ING  

MBSCP 

2 1.75 
IEEE 

ACCESS 
5 1.43 

JOUR-

NAL OF 

NU-

CLEAR  

6 1.14 
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MEDI-

CINE 

PRO-

CEED-

ING OF 

THE 2005 

IEE 

SCIBCB 

2 3.12 
LEUKE-

MIA 
2 1.75 

LABOR-

ATORY 

INVES-

TIGA-

TION 

5 1.43 

COM-

PUTER 

METH-

ODS 

AND 

PRO-

GRAMS 

IN BIO-

MEDI-

CINE 

5 0.95 

2000 IEEE 

EMBS  

ICIT-

ABMP 

1 1.56 

PRO-

CEED-

ING OF 

THE 

SPIE 

2 1.75 

AMERI-

CAN 

JOUR-

NAL OF 

CLINI-

CAL  

PA-

THOL-

OGY 

4 1.14 

FRON-

TIERS IN 

ON-

COLOY 

5 0.95 

2001 IEE 

NU-

CLEAR 

SCIENCE 

SCR 

1 1.56 

2006 

IEEE 

IJCNNP 

1 0.87 

BLOOD  

AD-

VANCES 

4 1.14 
IEEE 

ACCESS 
5 0.95 

2004 IEE 

SCBCP 
1 1.56 

2008 

IEEE  

WOR-

SHOP 

ON 

MLSP 

1 0.87 
CAN-

CERS 
4 1.14 

JOUR-

NAL OF 

BIO-

MEDI-

CAL IN-

FOR-

MATICS 

5 0.95 

2005 27TH 

AN-

NUAL 

1 1.56 
2008  

INTER-
1 0.87 

IEEE 

ICBB 
4 1.14 

LABOR-

ATORY 
5 0.95 
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IC-IEE E-

EMBS 

NA-

TIONAL 

STCITAB 

INVES-

TIGA-

TION 

2005 IEE 

CSBCP 
1 1.56 

2009 

AN-

NUAL 

IC-IEEE-

EMBS 

1 0.87 

JOUR-

NAL OF 

BIO-

MEDI-

CAL IN-

FOR-

MATICS 

4 1.14 

AMERI-

CAN 

JOUR-

NAL OF 

CLINI-

CAL  

PA-

THOL-

OGY 

4 0.76 

2005 IEE 

NET-

WORK-

ING SCP 

1 1.56 

2009 

IEEE  

CON-

GRESS 

ON EC 

1 0.87 

MEDI-

CAL  

PHYS-

ICS 

4 1.14 

BLOOD  

AD-

VANCES 

4 0.76 

7TH 

WORLD  

CULTI-

CONFER-

ENCE 

ON SCI. 

1 1.56 

2010 7TH 

IEEE 

ISBINM 

1 0.87 
PLOS 

ONE 
4 1.14 

CAN-

CERS 
4 0.76 

AMERI-

CAN 

JOUR-

NAL OF  

DER-

MATO-

PATHOL-

OGY 

1 1.56 
2012 7TH 

ICCCT 
1 0.87 

CLINI-

CAL  

CAN-

CER  

RE-

SEARCH 

3 0.86 

COM-

PUTERS 

IN BIOL-

OGY 

AND 

MEDI-

CINE 

4 0.76 

AMERI-

CAN 

JOUR-

NAL OF 

1 1.56 

2012 9TH 

IEEE 

ISBI 

1 0.87 

GE-

NOME  

MEDI-

CINE 

3 0.86 IEE ICBB 4 0.76 
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HEMA-

TOLOGY 

AMIA 

2002 

SYMPO-

SIUM 

PRO-

CEED-

INGS 

1 1.56 
2013 12TH 

ICMLA 
1 0.87 

INTER-

NA-

TIONAL 

JOUR-

NAL OF 

LABOR-

ATORY 

HEMA-

TOL-

OGY 

3 0.86 
LEUKE-

MIA 
4 0.76 
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3.1.5. Country Distribution 

For the whole period assessed, the USA was the leading producer, reporting up to 

190 (36.19%) of all documents. Furthermore, People’s Republic of China with 72 docu-

ments (13.71%), Germany with 44 documents (8.38%), India with 35 documents (6.66%), 

and France with 31 documents (5.90%) were also highlighted as important countries in 

terms of scientific production (Table 3). Noteworthy, People’s Republic of China and India 

increased their contributions from 1.56% to 13.71%, and from 1.56% to 6.67%, respectively, 

during the whole period analyzed. 

Worldwide heterogeneity increased as times became nearer to present day, which 

could be demonstrated by the fact that the number of nations producing more than five 

documents was 3 (4.84%) in the period 1990–2005, 7 (11.29%) in the period 2006–2014, and 

19 (30.65%) in the period 2015–2020. 

Table 3. Analysis of documents referred to AI and ML applications to diagnostic pathology in lymphoid neoplasms by 

countries from 1990 to 2020. Data are provided for three subperiods (1990–2005; 2006–2014; 2015–2020) and globally. C: 

document count; %: percentage of documents. 

Country 1990–2005 Country 2006–2014 Country 2015–2020 Country TOTAL 

 C %  C %  C %  C % 

USA 25 39.06 USA 38 33.33 USA 127 36.49 USA 190 36.19 

ENG-

LAND 
6 9.37 

PEO-

PLE’S R 

CHINA 

14 12.28 

PEO-

PLE’S R 

CHINA 

57 16.37 

PEO-

PLE’S R 

CHINA 

72 13.71 

GER-

MANY 
6 9.37 INDIA 12 10.52 

GER-

MANY 
33 9.48 

GER-

MANY 
44 8.38 

JAPAN 5 7.81 
ENG-

LAND 
11 9.64 FRANCE 23 6.60 INDIA 35 6.66 

ITALY 4 6.25 ITALY 8 7.01 INDIA 22 6.32 FRANCE 31 5.90 

CAN-

ADA 
3 4.68 FRANCE 7 6.14 SPAIN 19 5.46 

ENG-

LAND 
30 5.71 

IRE-

LAND 
3 4.68 JAPAN 6 5.26 ITALY 18 5.17 ITALY 30 5.71 

SINGA-

PORE 
3 4.68 

GER-

MANY 
5 4.38 

AUS-

TRALIA 
14 4.02 JAPAN 23 4,38 

AUS-

TRALIA 
2 3.12 IRAN 5 4.38 

ENG-

LAND 
13 3.73 SPAIN 23 4.38 

NETH-

ER-

LANDS 

2 3.12 
PO-

LAND 
4 3.50 JAPAN 12 3.44 

AUS-

TRALIA 
17 3.23 

NEW  

ZEA-

LAND 

2 3.12 
SINGA-

PORE 
4 3.50 

SOUTH 

KOREA 
12 3.44 

SOUTH 

KOREA 
16 3.04 

SOUTH 

KOREA 
2 3.12 

CROA-

TIA 
3 2.63 

CAN-

ADA 
10 2.87 

CAN-

ADA 
14 2.66 

WALES 2 3.12 SPAIN 3 2.63 

SWIT-

ZER-

LAND 

10 2.87 

NETH-

ER-

LANDS 

12 2.28 

BARBA-

DOS 
1 1.56 

AUS-

TRIA 
2 1.75 

NETH-

ER-

LANDS 

9 2.58 

SWIT-

ZER-

LAND 

12 2,28 
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CROA-

TIA 
1 1.56 BRAZIL 2 1.75 

AUS-

TRIA 
8 2.29 

AUS-

TRIA 
10 1.90 

FRANCE 1 1.56 MEXICO 2 1.75 BRAZIL 8 2.29 BRAZIL 10 1.90 

INDIA 1 1.56 
SLOVE-

NIA 
2 1.75 

DEN-

MARK 
8 2.29 IRAN 10 1.90 

ISRAEL 1 1.56 
SOUTH 

KOREA 
2 1.75 SWEDEN 7 2.01 

DEN-

MARK 
9 1.71 

PEOPLES 

R 

CHINA 

1 1.56 
AUS-

TRALIA 
1 9.87 

SAUDI 

ARABIA 
6 1.72 

SINGA-

PORE 
8 1.52 

PO-

LAND 
1 1.56 

BEL-

GIUM 
1 0.87 EGYPT 5 1.43 SWEDEN 8 1.52 

3.2. SMA 

3.2.1. SMA for Cognitive Framework 

The cognitive framework of the field is shown in Figures 3 and 4. The strategic dia-

grams show the distribution of themes in MT, BT, HDI, and ED, according to Callon´s 

density and centrality. Furthermore, the numerical value inside each sphere indicates the 

number of documents that employ this concept as keyword.



Biomolecules 2021, 11, 793 17 of 31 
 

 

 

Figure 3. Two-dimensional space layout of research themes on AI and ML applications to diagnostic pathology in lymphoid neoplasms according to Callon´s density 

(vertical axis) and Callon´s centrality (horizontal axis) as shown by the SciMAT software. Research themes are categorized in Motor themes, Basic and Transversal themes, 

Emerging or Declining themes, and Highly Developed themes. Some themes that recur over time have been marked in the same color (blue and green). (A) Strategic 

diagram of the cognitive framework for the period 1990 to 2005. (B) Strategic diagram of the cognitive framework for the period 2006 to 2014. 
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Figure 4. Two-dimensional space layout of research themes on AI and ML applications to diagnostic pathology in lymphoid neoplasms according to Callon´s density 

(vertical axis) and Callon´s centrality (horizontal axis) as shown by the package SciMAT. Strategic diagram of the cognitive framework for the period 2015–2020. Themes 

that recur over time have been marked in the same color (blue). The dashed marks in green show clinical entities that have appeared in the last period, compared to non-

Hodgkin’s lymphomas in the previous diagrams, also shown in green with continuous lines. The second topic that agglutinates a higher number of documents in the 

period 2015–2020 (lymphoma classification) has been highlighted in red.
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As time approached the present, an increase in the number of terms linked to medical 

practice took place. First, the ensemble classifier was the only MT identified in the first 

period, while non-Hodgkin, machine learning, support vector machine, and subgroups 

were identified as MT in the second period. Moreover, notions such as antitumor drug 

design, resistance, and magnetic resonance were identified as MT in the last period. 

In parallel, BT evolved from the notions of bioinformatics and support vector (period 

1990–2005) to neural networks, mass spectrometry, antitumor drug design, and poor 

prognosis (period 2006–2014). Finally, lymphoma classification, chronic lymphocytic leu-

kemia, Hodgkin lymphoma, and random forest were identified as BT in the period 2015–

2020. 

3.2.2. SMA for Social Framework 

The relations among institutions are shown in Figures 5–7. Two different regions can 

be observed: (1) a cluster of institutions sited in the USA, European centers, and some 

Asiatic organizations, and (2) an area represented by the Chinese Academy of Science 

(Figure 5). When citation counts were evaluated, the structure of the map did not change 

in terms of institutions location; however, the role of Harvard University notably in-

creased (Figure 6).
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Figure 5. World map showing the structure of relations among research institutions as shown in the network visualization module of the 

VOSviewer software. The map shows the bibliometric coupling relation among institutions according to the number of documents published for 

each institution. 
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Figure 6. World map showing the structure of relations among research institutions as shown in the network visualization module of the 

VOSviewer software. The map shows the bibliometric coupling relation among institutions according to the number of citations received for each 

institution.
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The global distribution by countries is shown in Figure 7. On the one hand, the USA 

and People’s Republic of China stood out when documental production was assessed 

(Figure 7A). Moreover, England, Japan, and a network of European nations (Italy, Spain, 

Germany, and France) collaborated with the USA, which acted as the central node of the 

map. On the other hand, the analysis of citation impact revealed some variations, showing 

a decrease in Asiatic contributions and a maintenance of the USA and England as the ma-

jor contributors of the area (Figure 7B). 
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Figure 7. World map showing the structure of relations among countries as shown in the network visualization module of the VOSviewer soft-

ware. (A) Map for the bibliometric coupling relation among countries according to the number of documents published for each country. (B) Map 

for the bibliometric coupling relation among countries according to the number of citations received for each country.
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4. Discussion 

Human reasoning works by integrating new knowledge to previous experience. 

Thus, it is limited by the volume of information it is able to store and manage. AI, as a 

computer science aimed to design, develop, and validate devices capable of mimicking 

human intelligence, has the potential to overcome that barrier. By extension, clinical and 

diagnostic reasoning could be optimized through the incorporation of AI and ML tools to 

daily practice in pathology departments. 

In the omics era [32], the volumes of data generated by sequencing techniques have 

led to new insights in the biology of hematological diseases [33], by revolutionizing how 

clinicians approach diagnosis, prognosis, and make therapeutic decisions. In this sense, 

research in hematopathology has been pioneering in the translation from bench to bedside 

[34], allowing for the clinical use of risk stratification models and targeted therapies, based 

on genetic and molecular data [35,36]. 

The field of AI and ML applications to diagnostic pathology in LN constitutes an 

active focus of research [14,15]. Specifically, digitalization of histopathological slides, and 

the integration of genomic analysis oriented to optimize diagnostic platforms in LN is at 

the forefront of research [37]. The development of AI/ML methods in other medical disci-

plines such as oncology is also remarkable. In this sense, in colorectal cancer, some AI 

algorithms have been developed to automatically discriminate between neoplastic re-

gions and non-tumorous tissue [38]. Using scanned preparations, tumor areas of pancre-

atic neuroendocrine tumors can be delineated from the stroma using DL [38], which al-

lows better quantification of Ki67 in tumor areas only (97.8% sensitivity, 88.8% specificity) 

[39]. In breast cancer, it is possible to automatically pinpoint areas of intraductal carci-

noma or infiltrating carcinoma on hematoxylin-eosin and classify the digital preparations 

as benign or malignant, reaching an area under the curve (AUC) of 0.962 in digital prepa-

rations [38–40]. 

Of note, the first EU-approved DL system with CE-IVD marking (the official marking 

required for the European Community) was for the detection of prostate cancer [35]. In 

the literature, the efficacy in prostate cancer detection of DL systems is remarkably high 

(using tissue arrays or TMA, prostate biopsies, and prostatectomies), with AUC values of 

between 0.98 and 0.997 to classify prostate biopsies in benign or malignant [39,41]. 

However, the identification of the main global trends of AI applications to diagnostic 

pathology in LN, prediction of future research avenues and definition of its cognitive and 

social framework had not yet been performed. In this work, we analyzed the status of AI 

and ML applications to diagnostic pathology in LN by means of bibliometric techniques 

for a period between 1990 and 2020.  

On the one hand, documental production experienced a marked increase, especially 

since 2017. Based on the behavior of the research field studied, future production can be 

predicted through a third-degree polynomic equation (y = 0.0518x3 − 1.511x2 + 17.345x − 

35.972) which established that literature would double in 2027, and would be three-fold 

the current number near 2031. This prediction manifestly overwhelms Price´s law of the 

growth of science, which postulates that publications double each 10–15 years, approxi-

mately [42]. Biomedical literature usually does not fit in this model, because of its high 

consumption and obsolescence rates. Moreover, the use of this equation for monitoring 

future production should be interpreted cautiously. First, the mere fact of modeling the 

evolution of science constitutes a challenging activity, as revolutionary ideas usually dis-

rupt the accumulative view of scientific evolution, leading to the emergence of new para-

digms that change the way in which research activity is usually conducted, as demon-

strated by Kuhn [43]. Furthermore, the mathematical model has certain limitations. In this 

sense, polynomial regression is a form of linear regression, and consequently the accuracy 

of predictions, that is, the power of the model to assign a precise value to the dependent 

variable (i.e., future research production), depends on the number of independent varia-

bles included. Subsequently, as new data will be available, there will be the need to update 

this model. In this sense, not only polynomic models, but ay regression model, will be 
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affected by the availability of new data and, thus, by time. However, the greater the num-

ber of terms in the polynomial equation, the greater the accuracy of the model built to 

provide valuable information. Regarding this, an interesting paper by Ostertagová re-

vised the strengths and drawbacks of the use of polynomial regression for modeling [44]. 

However, it can be affirmed that the optimization of subtyping in LN by exploding 

computational analysis of large amounts of genomic information and its integration 

within platforms of digital image will prominently increase in coming years. This novel 

scenario will probably put the pathology departments and related colleagues in an un-

precedented setting, where basic concepts about bioinformatics and AI will be demanded 

to professionals in order to achieve an expertise level, both in clinics and research arenas. 

Moreover, obtained results about the scientific production in this research field can 

also be inserted in a Gompertzian model, to better evaluate the current scientific scenario 

of AI and ML applications to diagnostic pathology in LN [45]. In this way, three stages of 

scientific evolution can be defined: (1) an initial phase where seminal papers of the area 

were published, (2) an intermediate phase where an exponential growth of literature oc-

curs leading to the forefront of research, and (3) a last phase characterized by the storage 

of knowledge by means of reviews and, thus, the consolidation of the field. 

Probably, as it can be deduced from Figure 1B, the area of AI and ML applications to 

diagnostic pathology in LN remains in a transition stage between the second and third 

phases. It is worthy to note that the rate of document production has been under an expo-

nential model since 2012 (Figure 2A) and, interestingly, the publication of reviews (an 

early sign of information synthesis) is increasing since 2015 (Figure 1A). Thus, from a 

global bibliometric perspective, it can be hypothesized that this research field is not in an 

emerging phase, but rather, its consolidation constitutes an ongoing process. 

Globally, most of the documents belong to the area of CS. Nevertheless, RNM has 

become a major focus of research in recent years. Of note, the integration of molecular 

imaging and AI algorithms will, probably, constitute an essential pillar in LN manage-

ment in the near future, not only with diagnostic and staging purposes, but also as a prog-

nostic marker. Regarding this, several AI algorithms have been tested for this purpose, 

such as deep learning (DL) for the reconstruction of positron emission tomography (PET) 

image in Hodgkin lymphoma (HL) [46], convolutional neural networks (CNNs) for the 

prediction of diffuse large B-cell lymphoma (DLBCL) total metabolic tumor based on 

PET/computed tomography (CT) [47] and support vector machine (SVM) to discriminate 

hypermetabolic lymphomatous lesions and noncancerous processes [48]. 

On the other hand, the analysis of source titles shows that three journals, Lecture 

Notes in Computer Science, Blood, and the EJNMMI, were the most productive journals 

in the area. In this sense, as there is not a unique bibliographic database covering the 

whole scientific production in any area, continuous monitoring and updating of the con-

tent included in the different available databases are of paramount importance to pre-

cisely characterize the scenario where scientific research takes place. In this study, we have 

used WoS as it constitutes the standard database in bibliometric studies for identifying 

and monitoring research trends [49]. WoS provides information for more than 250 disci-

plines, 21,000 scientific journals, and 1.6 billion of cited references from 1900 to the present 

[24]. However, the list of source titles showed in this work and, hence, the classification 

of journals could vary if a different bibliographic database is consulted. As a consequence, 

these results should be interpreted with caution and tacking into consideration the com-

plex process of indexing journal information and bibliometric indicators into the different 

available bibliographic databases. 

Furthermore, our results are in concordance with Bradford’s law of scattering as a 

minority of sources are responsible for the most of scientific production [28]; in fact, up to 

388 journals (96.47%) published less than five documents during the whole period stud-

ied. Similar patterns have been demonstrated in other growing areas in biomedicine such 

as medical advanced therapies [50]. In our study, 103 from the 128 documents retrieved 

were published in the last period, proving the important editorial effort made in recent 
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years. Regarding this, relevant journals in the area such as Leukemia, Frontiers in Oncol-

ogy, and the American Journal of Clinical Pathology appeared in the top 20 of source titles. 

In terms of contributions, the USA (36.90%), People’s Republic of China (13.71%), 

Germany (8.38%), India (6.67%), and France (5.91%) were at the front of the research. 

Among the top five centers worldwide, three of them are located in the USA (University 

of Texas System, Harvard University, and University of California System), and the IN-

SERM and the Chinese Academy of Sciences were highlighted among European and Asi-

atic centers, respectively. In this context, the evolution of the People’s Republic of China 

is remarkable as it has increased its contributions from 1.56% in the first period to 13.71% 

in the last period, also suggesting an important increase in financial investment in the 

research area. 

Furthermore, we also performed SMA of the field in order to elucidate its cognitive 

and social framework [51]. Regarding this, several SMA tools have been developed and 

validated to analyze collaboration patterns among institutions [24,52] , identify growing 

scientific areas of interest [53] and optimize funding allocation in scientific research [54]. 

Here, we have used the software SciMAT and VOSviewer, because of their proven quality 

to perform both conceptual and social evaluation on biomedicine related disciplines 

[21,22]. 

First, the cognitive framework of AI and ML applications to diagnostic pathology in 

LN showed a crescent clinical application of these tools. Interestingly, the ensemble clas-

sifier was the only MT identified in the first period. Briefly, EC methods compensate par-

tial errors by introducing the output of one base model as the input for the next algorithm 

in the sequence, thus, improving the average prediction power [55]. Interestingly, a pre-

vious study used this approach to predict mortality after hematopoietic stem cell trans-

plantation (HSCT) [56]. 

In recent years, most research has been focused on lymphoma subtyping by integrat-

ing different AI algorithms. On the one hand, ML, neural networks (NNs), and SVM ap-

peared as MT and BT in the second and third periods, respectively. On the other hand, 

lymphoma classification was among the most developed concepts in the last period. Spe-

cifically, the integration of digital image analysis and genomic sequencing by means of 

different AI algorithms in non-Hodgkin lymphoma (NHL) constitutes a major topic of 

research in this area. In this way, logistic regression and Cox proportional hazards have 

been employed for building a cell-of-origin (COO) classifier in DLBCL based on targeted 

RNA sequencing (RNA-seq) data [20]. Gene expression profiling (GEP) of 414 DLBCL pa-

tients treated with CHOP/R-CHOP were used as inputs for a SVM model which accu-

rately stratified them in two biologically distinct subgroups [57]. Furthermore, a random 

forest algorithm was trained and validated to discriminate the most frequent B-cell NHL 

categories among 510 cases of NHL, based on ligation-dependent RT-PCR and next-gen-

eration sequencing (NGS) [16]. 

Moreover, immunophenotyping, either by flow cytometry [58] or immunohisto-

chemistry [59], has been also employed to train AI models for the diagnosis of B-cell NHL. 

A CNN algorithm was developed based on digital histopathological slides using Aperio 

ImageScope (Leica Biosystems, Buffalo Grove, IL) to discriminate between Burkitt lym-

phoma (BL) and DLBCL [60], and interesting approaches grounded on fuzzy logics have 

demonstrated high accuracy to subclassify DLBCL based on transcriptional profiling data 

obtained from “lymphochip” DNA microarrays [61]. 

Drug discovery and prediction of response were also identified as relevant topics in 

this area. Regarding this, the notion of sensitivity constituted an HDI during the first and 

second periods, likely accounting for a pre-clinical application of ML to drug evaluation, 

while antitumor drug design was the most developed concept in the last period. Interest-

ingly, since the original description of DL in drug discovery [62], there have been consid-

erable efforts to expand these kinds of AI applications within hematopathology research. 

In this setting, Turki et al. developed a transfer learning algorithm to predict sensitivity to 

Bortezomib in multiple myeloma [63], and a model based on Bayesian network and NNs, 
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combined with RNA-seq, has identified novel mechanisms of resistance in 150 drugs eval-

uated in DLBCL [64]. Thus, the advent of powerful ML approaches also has the potential 

to open new horizons in drug evaluation and pharmacogenomic areas [65]. 

As mentioned, when analyzing research areas and source titles, functional imaging 

analysis and AI constitutes a growing area of interest. Regarding this, it could be defined 

a cognitive evolution from general concepts such as medical image analysis (first and sec-

ond periods) to more specific tools such as magnetic resonance and CT. Herein, deep 

CNNs have been employed to discriminate patterns of tumor infiltration in PET/CT in 327 

patients with NHL [66], and prediction of response to conventional chemotherapy by in-

tegrating AI and molecular techniques also constitutes a growing area of interest in recent 

years [47,67]. 

In addition, the cognitive evaluation of the field also leads to the identification of 

particular hematological disorders in which applications of AI and ML are being carried 

out, such as chronic lymphocytic leukemia (CLL) and Hodgkin lymphoma (HL). Alt-

hough NHL accounts for the most of research conducted during the whole period, here 

we also reported ML approaches to identify CLL patients at high risk of infection [68] and 

to optimize CLL diagnosis through GEP and artificial NNs (ANNs) [69]. In relation to AI 

and ML applications to the diagnosis of HL, the complexity to adequately isolate Hodgkin 

and Reed–Stenberg (HRS) cells within a major non-tumoral microenvironment can be un-

der the relative absence of AI applications for this entity. However, stimulating works 

have proved the potential of ML algorithms to predict prognosis in HL, both in adults [70] 

and pediatric patients [71]. 

To better comprehend the structure of this research field, we also evaluated its social 

framework by means of the software VOSviewer [22]. First, the role of the USA in the 

development of the area was highlighted both in terms of scientific contributions and ci-

tation impact. As depicted in Figure 5, two major nodes of production were identified. On 

the one hand, there was a cluster of organizations mainly located in the USA and Europe, 

which also collaborate with certain Asiatic centers (Shanghai Jiao Tong University, Tongji 

University, Yonsei University, Sichuan University). On the other hand, the Chinese Acad-

emy of Sciences appeared relatively isolated towards the periphery of the map. 

Obtained results can be explained in terms of different patterns of collaboration, 

where European and USA institutions tend to a more collaborative trend, while Asiatic 

centers conduct a more unified research strategy. However, this hypothesis requires more 

in-depth studies to evaluate the particular structure of each country in terms of scientific 

investment and science promotion policies. Additionally, when citation impact was as-

sessed, institutions cited in the USA, such as Harvard University, appeared as relevant 

centers within the map. 

In summary, the results of this study show an important increase in scientific pro-

duction and predict a more accelerated growth over the next 10 years in the field of AI 

and ML applications to diagnostic pathology in LN. Moreover, the integration of genomic 

and molecular data with digital image analysis through different AI algorithms will prob-

ably constitute an important pilar in the future practice within pathology departments, 

both to optimize diagnostic and prognostic procedures. In this sense, a better comprehen-

sion of the social and cognitive structure of the area can also serve to public institutions 

and administrations to optimize funding allocation, identify areas of growing interest, 

and promote synergies among clinical and research centers, which is an unavoidable con-

dition for the right progress of hematopathology. 

5. Conclusions 

The use of AI and ML tools in diagnostic hematopathology is increasing over time, 

as demonstrated by the crescent trends reported in the literature. On the one hand, most 

of the research has been focused on the study of non-Hodgkin´s lymphomas in particular, 

in the analysis of genomic data for improving lymphoma classification, digitalization of 
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histopathological slides, and medical image analysis. On the other hand, different re-

search centers located mostly in Europe and USA highlighted in the social analysis of the 

research field. Finally, although the results of this work show a growing trend in research 

and publications on AI applications in the evaluation of LN, the full clinical implementa-

tion of these systems in the future will require the training and development of collabora-

tive programs between pathologists, bioinformaticians and clinicians. 
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