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Abstract: This contribution deals with introducing the innovative concept of extended fuzzy set
(E-FS), in which the S-norm function of membership and non-membership grades is less than or
equal to one. The proposed concept not only encompasses the concept of the fuzzy set (FS), but it
also includes the concepts of the intuitionistic fuzzy set (IFS), the Pythagorean fuzzy set (PFS) and
the p-rung orthopair fuzzy set (p-ROFS). In order to explore the features of the E-FS concept, set and
algebraic operations on E-FSs, average and geometric operations of E-FSs are studied and an E-FS
score function is defined. The superiority of the E-FS concept is further confirmed with a score-based
decision making technique in which the concepts of FS, IFS, PFS and p-ROFS do not make sense.

Keywords: fuzzy set (FS); intuitionistic fuzzy set (IFS); pythagorean fuzzy set (PFS); p-rung orthopair
fuzzy set (p-ROFS); extended fuzzy set (E-FS); decision making

1. Introduction

Decision making is one of the most important and critical activities of the human
being. However, human beings’ opinions or preferences are pervaded with vagueness and
imprecision. Zadeh [1] proposed a new methodology to address vagueness and imprecision
based on the concept of ‘fuzziness or gradual degree of membership’ to a set, which was
term ’fuzzy set’ (FS). Since then, fuzzy sets have been extensively studied and extended
with other types of fuzziness based sets: intuitionistic fuzzy set (IFS) [2], Pythagorean
fuzzy set (PFS) [3] and p-rung orthopair fuzzy set (p-ROFS) [4] . The definitions of FS, IFS,
PFS and p-ROFS rely on the concepts of membership and non-membership degrees of an
element to a set. In the case of FSs, the sum of membership and non-membership degrees
of an element to a set is constrained to be equal to one; for IFSs, this sum is constrained to
be less than or equal to one; while constraints on the sum of powers of membership and
non-membership degrees to be less than or equal to one are used in the case of PFS (powers
of two) and p-ROFSs (p-power). Recall that if p = 1 and p = 2, then a p-ROFS reduces to
an IFS and a PFS, respectively, making IFS and PFS special cases of the p-ROFS.

The concepts of FS, IFS, PFS and p-ROFS have been applied to a wide-range of deci-
sion making problems including aggregation-based studies, information measure-based
research and ranking-based developments [5–8]. Among a large number of aggregation-
based studies, we highlight those carried out by Xu and Yager [9], where geometric
aggregation operators were introduced, and He et al. [10] where the geometric interaction
average operators for IFSs was proposed. By using Einstein operations, Garg [11] presented
the concept of information and geometric aggregations for PFSs; Liu and Wang [12] ex-
tended the weighted average and geometric operators to p-ROFSs, while Wei et al. [13] and
Peng et al. [14] investigated the Heronian mean and an exponential operations for p-ROFSs,
respectively. Abundant information measure-based research studies have been dedicated
to the concepts of FS, IFS, PFS and p-ROFS. Wu et al. [15] exploited the isomorphism be-
tween IFSs and interval-valued FSs to formally develop an approach to consistency of IFSs.
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Garg and Kumar [16] studied a class of similarity measures of IFSs, while Wu and Chiclana
in [17] and Ureña et al. in [18] applied IFSs approaches to estimate missing preferences
and consensus building. Zhang [19] worked on a multiple criteria group decision making
technique of PFSs, and Guolin et al. [20] proposed a new decision-theoretic rough set
model with p-ROFSs.

An important topic worth attention is how to compare and rank FSs, IFSs, PFSs or
p-ROFSs. Xu and Yager [9] presented a score and accuracy functions on IFSs. Peng [21]
introduced a score function for PFSs and then investigated a number of its properties.
Farhadinia and Liao [22] first reviewed the existing score functions for p-ROFSs, and then
proposed a parametrised score function of p-ROFSs.

It is worth noting that, as p value increases in p-ROFSs, the space of acceptable
orthopairs increases and more orthopairs satisfy the boundary constraint. Therefore, we
can express a wider range of fuzzy information by using p-ROFSs than using FSs, IFSs or
PFSs. However, it is observed that their approaches are limited in nature. For example,
if an expert provides the value 0.95 for membership degree and the value 0.9 for non-
membership degree, then 0.95 + 0.9 6= 1, 0.95 + 0.9 6≤ 1, (0.95)2 + (0.9)2 6≤ 1, while
(0.95)p + (0.9)p ≤ 1 when p ≥ 10, which restricts the option of selecting p in p-ROFS
theory. Hence, FSs, IFSs, PFSs and p-ROFSs cannot describe this information properly
and effectively. To manage such a situation, and releasing the restriction of p selection in
p-ROFS theory, the concept of extended fuzzy set (E-FS) is introduced herein with a S-norm
function of the membership and non-membership degrees being constrained to be less than
or equal to 1. The proposed E-FS concept is therefore more effective and more general than
the existing concepts for handling uncertain information in real-life decision processes.
Indeed, our proposed E-FS concept expresses a wider range of fuzzy information than
p-ROFS without needing to consider the extra parameter p, which is essential in defining
a p-ROFS. In addition, the proposed E-FS diminishes the restriction that FS, IFS, PFS
and p-ROFS impose on membership grades and it provides decision-makers with more
elasticity to express their opinions according to the membership grades of an element than
the concepts of FS, IFS, PFS and p-ROFS.

Summarising, this study main research contributions are:

1. The introduction of the concept of E-FS, as an overarching concept of FS to include
the concepts of IFS, PFS and p-ROFS;

2. The study of the fundamental principles of E-FSs in comparison to FSs, IFSs, PFSs
and p-ROFSs;

3. The definition of some algebraic and set operations on E-FSs, including the average
and geometric operations on E-FSs;

4. The presentation of a score function for E-FSs.

The rest of this contribution is organised as follows—Section 2 provides a brief review
of some preliminaries needed before the concept of E-FS is introduced. Sections 3–5 are
devoted to the study of set and algebraic operations on E-FSs, average and geometric
operations of E-FSs and a score function of E-FSs, respectively. Section 6 presents the
application of the proposed E-FS score function to solve a decision making problem.
Conclusions are drawn in Section 7.

2. Fundamental Principles

This section is devoted to reviewing some existing basic concepts and notions that are
of importance in fuzzy set theory. Then, we deal with the main part of this contribution,
which is the introduction of the concept of extended fuzzy set (E-FS).

Formally, given a universal set X, a set A on X is characterised by two functions on X
that measure the degree of membership (µA(x)) and the degree of non-membership (νA(x))
to A of each element of the universal set x ∈ X.

• A is a classical set (CS) when µA and νA range is {0, 1} and verify the property

µA(x) + νA(x) = 1, ∀x ∈ X. (1)
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In this case, the membership function is known as a characteristic function and usually
denoted by δA; the non-membership function is uniquely defined by (1).

• A is a fuzzy set (FS) when µA and νA range is [0, 1] and verify the property

µA(x) + νA(x) = 1, ∀x ∈ X. (2)

Consequently, as with CSs, the non-membership function νA is uniquely defined from
the membership function.

• A is an intuitionistic fuzzy set (IFS) when µA and νA range is [0, 1] and verify the
property

µA(x) + νA(x) ≤ 1, ∀x ∈ X. (3)

In this case, given a membership function, multiple non-membership functions ver-
ifying (3) may exist. The concept of hesitancy is therefore present in an IFS, which
is modelled in this framework via the hesitancy function πA = 1− (µA(x) + νA(x)).
For IFSs, membership and non-membership functions are specifically denoted as
µAIFS and νAIFS , respectively.

• A is a Pythagorean fuzzy set (PFS) when µA and νA range is [0, 1] and verify the
property

µ2
A(x) + ν2

A(x) ≤ 1, ∀x ∈ X. (4)

As with IFSs, a membership function may have associated more than one non-
membership functions as per (4). For PFSs, membership and non-membership func-
tions are specifically denoted as µAPFS and νAPFS , respectively.

• A is a p-rung orthopair fuzzy set (p-ROFS) (p ≥ 1) when µA and νA range is [0, 1] and
verify the property

µ
p
A(x) + ν

p
A(x) ≤ 1, ∀x ∈ X. (5)

If p = 2, then (5) becomes (4); while if p = 1, then (5) becomes (3).

It is obvious from examining the above set concept definitions that all of them follow
the same pattern in that all impose a constraint to the membership and non-membership
functions of the type {

φ : [0, 1]× [0, 1] −→ [0, 1]
φ(µA(x), νA(x)) ∈ [0, 1], ∀x ∈ X.

(6)

A CS requires that µA(x), νA(x) ∈ {0, 1}, and can be seen as a subclass of FS, IFS,
PFS or p-ROFS. Although, the concept of p-ROFS has been widely studied by researchers,
very little is known about the pre-determination of the parameter p. This motivates us to
propose the concept of extended fuzzy set (E-FS), which is not dependent on any value
of p.

Definition 1. Consider the referential set X. An extended fuzzy set (E-FS) AE−FS on X is
characterised by two functions, µAE−FS : X → [0, 1] and νAE−FS : X → [0, 1], called the membership
and non-membership functions of AE−FS, respectively, that verify the property

0 ≤ µAE−FS(x)� νAE−FS(x) ≤ 1, ∀x ∈ X, (7)

where � is a S-norm or union function. Using set theoretic notation, an extended fuzzy set (E-FS)
on X will be denoted as follows

AE−FS =
{
〈x, µAE−FS(x), νAE−FS(x)〉 : x ∈ X

}
.

Recall that an S-norm is a binary function � : [0, 1]× [0, 1] → [0, 1] that satisfies the
following properties (see e.g., [23])

1. �(x, 0) = x (boundary condition);
2. ∀x, y, z ∈ [0, 1], if y ≤ z, then �(x, y) ≤ �(x, z) (monotonicity);
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3. ∀x, y ∈ [0, 1], �(x, y) = �(y, x) (commutativity);
4. ∀x, y, z ∈ [0, 1], �(x,�(y, z)) = �(�(x, y), z) (associativity).

The following S-norms are respectively known as Algebraic, Einstein, Hamacher and
Frank norms:

�1(x, y) = x + y− xy;

�2(x, y) =
x + y

1 + xy
;

�ε
3(x, y) =

x + y− xy− (1− ε)xy
1− (1− ε)xy

, ε > 0;

�ε
4(x, y) = 1− logε(1 +

(ε1−x − 1)(ε1−y − 1)
ε− 1

), ε > 1.

Proposition 1. Any FS, IFS, PFS and p-ROFS on X is an E-FS on X.

Proof of Proposition 1 is in Appendix A.1.

Remark 1. The converse is not true. Indeed, an E-FS may not necessarily be a p-ROFS for all
values of p ∈ [1, ∞). For instance, the E-FS

{(
µAE−FS(x), νAE−FS(x)

)}
= {(0.95, 0.9)} is not a

p-ROFS for any p ∈ [1, 10).

Remark 2. In order to simplify the following discussions,
(
µAE−FS(x), νAE−FS(x)

)
is called an

extended fuzzy number (E-FN). This is nothing else than a special case of E-FS. Furthermore, since
the same treatment strategy will be applied for all types of S-norm �, we only consider � := �1 in
what follows.

3. Set and Algebraic Operations on E-FNs

The usual operations of addition and multiplication between E-FSs are denoted by
⊕ and ⊗ while the operation relating the membership and non-membership degrees of
an E-FS is denoted by �1. We now propose a number of set and algebraic operations on
E-FNs.

Definition 2. For any E-FNs AE−FN = (µAE−FN , νAE−FN ) and BE−FN = (µBE−FN , νBE−FN ), the
following operations are defined:

Ac
E−FN = (µAc

E−FN
, νAc

E−FN
) = (νAE−FN , µAE−FN ); (8)

AE−FN ∩ BE−FN = (µAE−FN∩BE−FN , νAE−FN∪BE−FN )

=
(
min{µAE−FN , µBE−FN}, max{νAE−FN , νBE−FN}

)
;

(9)

AE−FN ∪ BE−FN = (µAE−FN∪BE−FN , νAE−FN∩BE−FN )

=
(
max{µAE−FN , µBE−FN}, min{νAE−FN , νBE−FN}

)
;

(10)

AE−FN⊕BE−FN = (µAE−FN⊕BE−FN , νAE−FN⊕BE−FN )

=
(
1− (1− µAE−FN )(1− µBE−FN ), νAE−FN νBE−FN

)
;

(11)

AE−FN⊗BE−FN = (µAE−FN⊗BE−FN , νAE−FN⊗BE−FN )

=
(
µAE−FN µBE−FN , 1− (1− νAE−FN )(1− νBE−FN )

)
;

(12)

λAE−FN =
(
µλAE−FN , νλAE−FN

)
=
(

1− (1− µAE−FN )
λ, (νAE−FN )

λ
)

; (13)

Aλ
E−FN =

(
µAλ

E−FN
, νAλ

E−FN

)
=
(
(µAE−FN )

λ, 1− (1− νAE−FN )
λ
)

, λ > 0. (14)

Proof of Definition 2 operations are well defined is in Appendix A.2.
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Definition 3. For any E-FNs AE−FN = (µAE−FN , νAE−FN ) and BE−FN = (µBE−FN , νBE−FN ),

AE−FN ⊆ BE−FN ⇐⇒
[
µAE−FN ≤ µBE−FN ∧ νAE−FN ≥ νBE−FN

]
. (15)

An early source of representation of fuzzy subsets can be found in [24,25].

4. Average and Geometric Operators of E-FNs

The weighted average operator and the weighted geometric operator of a set of E-FNs
are defined. Some of their properties are also outlined.

Definition 4. The weighted average operator for a set of E-FNs is a mapping E− IFWA: E− FN×
· · · × E− FN → [0, 1] given by:

E− IFWA(A1E−FN , . . . , AmE−FN) =
m⊕

i=1
ωi AiE−FN =

(
1−

m

∏
i=1

(
1− µAiE−FN

)ωi ,
m

∏
i=1

νωi
AiE−FN

)
(16)

where ωi ≥ 0 for any 1 ≤ i ≤ m, and ∑m
i=1 ωi = 1.

Theorem 1. The output of the weighted average operator E-IFWA is an E-FN.

Proof of Theorem 1 is in Appendix A.3.
The above-proposed aggregation operator satisfies the impotency, boundary and

monotonicity properties, which are stated below.

Theorem 2. (Idempotency property) The weighted average operator E− IFWA satisfies

E− IFWA(A1E−FN , . . . , AmE−FN) = AE−FN (17)

for a set of equal E-FNs AE−FN := A1E−FN = · · · = AmE−FN .

Proof of Theorem 2 is in Appendix A.4.
If we set

AlE−FN =
(

µAlE−FN , νAlE−FN

)
=

(
min

1≤i≤m
{µAiE−FN}, max

1≤i≤m
{νAiE−FN}

)
(18)

AuE−FN =
(
µAuE−FN , νAuE−FN

)
=

(
max

1≤i≤m
{µAiE−FN}, min

1≤i≤m
{νAiE−FN}

)
, (19)

then we have the following result.

Theorem 3. (Boundedness property) The weighted average operator E− IFWA satisfies

AlE−FN ⊆ E− IFWA(A1E−FN , . . . , AmE−FN) ⊆ AuE−FN (20)

for a set of E-FNs A1E−FN , . . . , AmE−FN .

Proof of Theorem 3 is in Appendix A.5.

Theorem 4. (Monotonicity property) Suppose that for any two classes of E-FNs A1E−FN , . . . ,
AmE−FN and B1E−FN , . . . , BmE−FN , it holds that AiE−FN ⊆ BiE−FN for all 1 ≤ i ≤ m. Then,
the weighted average operator E− IFWA satisfies

E− IFWA(A1E−FN , . . . , AmE−FN) ⊆ E− IFWA(B1E−FN , . . . , BmE−FN). (21)

Proof of Theorem 4 is in Appendix A.6.
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Definition 5. The weighted geometric operator for a set of E-FNs is a mapping E − IFWA :
E− FN(X)× · · · × E− FN(X)→ [0, 1] given by:

E− IFWG(A1E−FN , . . . , AmE−FN) =
m⊗

i=1
Aωi

iE−FN =

(
m

∏
i=1

µωi
AiE−FN

, 1−
m

∏
i=1

(
1− νAiE−FN

)ωi

)
(22)

where ωi ≥ 0 for any 1 ≤ i ≤ m, and ∑m
i=1 ωi = 1.

The weighted geometric operator E− IFWG also satisfies idempotency, monotonicity
and boundedness properties.

5. Score Function of E-FNs

In what follows, we propose a score function for E-FNs based on the S-norm �1, and
prove its properties.

Definition 6. Given an E-FN AE−FN , we define its score function

Sc�1(AE−FN) =
(
1− νAE−FN

)
− λ

(
1− µAE−FN�1νAE−FN

)
=
(
1− νAE−FN

)
− λ

(
1−

(
1−

(
1− µAE−FN

)(
1− νAE−FN

)))
,

(23)

where λ ∈ [0, 1].

It is Sc�1 ∈ [0, 1] for any µAE−FN , νAE−FN , λ ∈ [0, 1]. When λ increases in [0, 1], the
score function Sc�1 decreases from the value 1− νAE−FN (for λ = 0) to the value µAE−FN
(1− νAE−FN ) (for λ = 1).

One of the superiorities of the proposed E-FS score function with respect to the existing
p-ROFS score functions, given next in Equations (25)–(31), is that it is defined based on
the multiplication of µAE−FN and (1− νAE−FN ), (1− νAE−FN )

(
(1− λ) + λµAE−FN

)
, while

existing p-ROFS scores are mainly based on the difference µAE−FN − νAE−FN , which is
meaningless in the case µAE−FN = νAE−FN . In addition, for all λ ∈ [0, 1], it can be easily
observed from Definition 6 and the S-norm �1 that

• Sc�1(AE−FN) = 1 if AE−FN = (1, 0);
• Sc�1(AE−FN) = 0 if AE−FN = (0, 1).

Thus, the maximum score is obtained for full membership, while complete non-
membership has associated a score value of 0. We provide below other interesting proper-
ties for the proposed score function.

Theorem 5. For any two E-FNs AE−FN and BE−FN , if AE−FN ⊆ BE−FN , then

Sc�1(AE−FN) ≤ Sc�1(BE−FN). (24)

Proof of Theorem 5 is in Appendix A.7.

Theorem 6. For any E-FN AE−FN = (µAE−FN , νAE−FN ), the score function Sc�1(AE−FN) is
monotonically increasing with respect to µAE−FN and monotonically decreasing with respect to
νAE−FN .

Proof of Theorem 6 is in Appendix A.8.

Lemma 1. For any E-FN AE−FN , the score function Sc�1(AE−FN) is a decreasing function of λ.

Proof of Lemma 1 is in Appendix A.9.
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6. Decision Making with E-FSs

Through this section, we first compare the performance of the proposed E-FS score
function and the existing p-ROFS scores in the same setting on the pairs of p-ROFS and
E-FS datasets. A classical multiple attribute group decision making (MCGDM) problem in
which the ranking order of alternatives based on the Evaluation based on Distance from
Average Solution (EDAS) method is a worthy topic for this evaluation study.

6.1. A Critical Analysis of all Existing p-ROFS Score Functions

In what follows, we first present a set of existing score functions of p-ROFSs, and then
compare their outcomes with the proposed E-FS score function from a point of view of
finding weaknesses in them. Notice that in all cases discussed the higher the value of a
score the more preferable the p-ROFS is.

Let Ap−ROFS = {〈x, µAp−ROFS(x), νAp−ROFS(x)〉 : x ∈ X}, the following existing p-ROFS
score functions in the literature are:

• Yager’s [4] score function:

ScY(Ap−ROFS) = µ
p
Ap−ROFS

(x)− ν
p
Ap−ROFS

(x); (25)

• Wei et al.’s [13] score function:

ScW(Ap−ROFS) =
1
2

(
1 + µ

p
Ap−ROFS

(x)− ν
p
Ap−ROFS

(x)
)

; (26)

• Peng et al.’s [14] score function:

ScPDG(Ap−ROFS) = µ
p
Ap−ROFS

(x)− ν
p
Ap−ROFS

(x) +

 e
µ

p
Ap−ROFS

(x)−ν
p
Ap−ROFS

(x)

e
µ

p
Ap−ROFS

(x)−ν
p
Ap−ROFS

(x)
+ 1
− 1

2


× (1− µ

p
Ap−ROFS

(x)− ν
p
Ap−ROFS

(x));

(27)

• Mi et al.’s [26] score function:

ScMLL(Ap−ROFS) =
2 + µ

p
Ap−ROFS

(x)− ν
p
Ap−ROFS

(x)(
2− µ

p
Ap−ROFS

(x) + ν
p
Ap−ROFS

(x)
)
×
(

2− µ
p
Ap−ROFS

(x)− ν
p
Ap−ROFS

(x)
) ; (28)

• Farhadinia and Liao’s [22] score function:

ScFL(Ap−ROFS) = µ
p
Ap−ROFS

(x) + λ
(

1− µ
p
Ap−ROFS

(x)− ν
p
Ap−ROFS

(x)
)

, 0 ≤ λ ≤ 1. (29)

• Peng and Huang’s [27] score function:

ScPH(Ap−ROFS) = µ
p
Ap−ROFS

(x)− ν
p
Ap−ROFS

(x) + ln
(

2− µ
p
Ap−ROFS

(x)− ν
p
Ap−ROFS

(x)
)

; (30)

• Peng and Dai’s [14] score function:

ScPD(Ap−ROFS) =
µ

p
Ap−ROFS

(x)− 2ν
p
Ap−ROFS

(x)− 1

3
+

λ

3
(µ

p
Ap−ROFS

(x) + ν
p
Ap−ROFS

(x) + 2); (31)

The above score functions may not provide good performance, even when considering
different p-ROFSs. For instance, if we consider p-ROFSs A = (0.3, 0.3) and B = (0.2, 0.2),
then the first, second, third and seventh score functions are not able to distinguish between
them when p = 1, 2, 3 (refer to Tables 1–3). This is not the case with the proposed new
score function (denoted ScFC in Table 4). Furthermore, it is not possible to apply the
existing score functions of p-ROFSs to E-FSs that are not p-ROFSs. For instance, if we have
A = (0.9, 0.8) and B = (0.2, 0.2), then the existing score functions when p = 1, 2, 3 cannot
be applied because, for such p-values, A = (0.9, 0.8) is not a p-ROFS. Therefore, existing
score functions of p-ROFSs are not useful in ranking A and B, but we can use the proposed
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new score function (see Table 5). All of these findings indicate that the proposed E-FS
score function Sc�1 allows the decision-maker to effectively discount the influence of other
score-based decisions.

Table 1. The ranking of p− ROFS A = (0.3, 0.3) and B = (0.2, 0.2) with existing score functions with
p = 1.

Score Function A–Score B–Score Ranking

ScY 0 0 A = B

ScW 0.5 0.5 A = B

ScPDG 0 0 A = B

ScMLL 0.7143 0.625 A > B

ScFL (λ = 1) 0.7 0.8 A < B

ScPH −0.3365 −0.47 A > B

ScPD 0 0 A = B

Table 2. The ranking of p− ROFS A = (0.3, 0.3) and B = (0.2, 0.2) with existing score functions with
p = 2.

Score Function A–Score B–Score Ranking

ScY A = B

ScW 0.5 0.5 A = B

ScPDG 0 0 A = B

ScMLL 0.5495 0.5208 A > B

ScFL (λ = 1) 0.91 0.96 A < B

ScPH −0.5988 −0.6523 A > B

ScPD 0 0 A = B

Table 3. The ranking of p− ROFS A = (0.3, 0.3) and B = (0.2, 0.2) with existing score functions with
p = 3.

Score Function A–Score B–Score Ranking

ScY 0 0 A = B

ScW 0.5 0.5 A = B

ScPDG 0 0 A = B

ScMLL 0.5139 0.504 A > B

ScFL (λ = 1) 0.973 0.992 A < B

ScPH −0.6658 −0.6851 A > B

ScPD 0 0 A = B

Table 4. The ranking of p− ROFS A = (0.3, 0.3) and B = (0.2, 0.2) as extended fuzzy sets (E-FSs)
with new score function.

ScFC (λ) A–Score B–Score Ranking

ScFC (λ = 1) 0.21 0.16 A > B

ScFC (λ = 1/2) 0.455 0.48 A < B

ScFC (λ = 0) 0.7 0.8 A < B
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Table 5. The ranking of A = (0.9, 0.8) and B = (0.2, 0.2) as E-FSs with new score function.

ScFC (λ) A–Score B–Score Ranking

ScFC (λ = 1) 0.18 0.16 A > B

ScFC (λ = 1/2) 0.19 0.48 A < B

ScFC (λ = 0) 0.2 0.8 A < B

6.2. E-FS-Based EDAS Technique for MCGDM

The EDAS model is useful to determine the best alternative(s) corresponding to the
biggest value of positive distance from average solution (PDAS) and the smallest value of
negative distance from average solution (NDAS), that is, it is useful to deal with conflicting
attributes [28].

Suppose that {R1, R2, ..., Rm} is the set of alternatives, {C1, C2, ..., Cn} a set of criteria,
and {E1, E2, ..., El} a set of experts who evaluate alternatives against criteria using E-FNs
AijtE−FN

=
(

µAijtE−FN
, νAijtE−FN

)
for i = 1, 2, ..., m, j = 1, 2, ..., n, t = 1, 2, ..., l. Assume

that {ωE1 , ωE2 , ..., ωEl} and {ωC1 , ωC2 , ..., ωCn} are these of weights of experts and criteria,
respectively, subject to the constraints: 0 ≤ ωEt , ωCj ≤ 1, ∑l

t=1 ωEt = ∑n
j=1 ωCj = 1. The

E-FS-based EDAS technique for MCGDM problem may be carried out by the following steps:
Step 1. Construct the individual experts’ evaluation matrices At =

[
AijtE−FN

]
m×n

t =

1, 2, ..., l.

Step 2. Apply a weighted aggregation operator, for instance operator E− IFWA (16), to
compute the E-FN group matrix AE−FN =

[
AijE−FN

]
m×n

.

Step 3. Compute the following average value for each alternative

(
µAE−FN , νAE−FN

)
i =

 p

√√√√1−
n

∏
j=1

(
1− µ

p
AE−FN

) 1
n ,

n

∏
j=1

(
νAE−FN

) 1
n

, i = 1, 2, ..., m. (32)

Step 4. Apply Sc�1 (23) to derive the positive distance (PD) and negative distance (ND)
from AE−FN :

PD
(
µAE−FN , νAE−FN

)
ij =

max
{

0, Sc
((

µAE−FN , νAE−FN

)
ij

)
− Sc

((
µAE−FN , νAE−FN

)
i

)}
Sc
((

µAE−FN , νAE−FN

)
i

) , (33)

ND
(
µAE−FN , νAE−FN

)
ij =

max
{

0, Sc
((

µAE−FN , νAE−FN

)
i

)
− Sc

((
µAE−FN , νAE−FN

)
ij

)}
Sc
((

µAE−FN , νAE−FN

)
i

) , (34)

where Sc and Sc stand for the score function of E-FNs and their average E-FN,
respectively.

Step 5. Compute the positive weighted distance Pi (i = 1, 2, ..., m) and the negative
weighted distance Ni (i = 1, 2, ..., m):

Pi =
n

∑
j=1

ωCj PD
(
µAE−FN , νAE−FN

)
ij, (35)

Ni =
n

∑
j=1

ωCj ND
(
µAE−FN , νAE−FN

)
ij, (36)

Step 6. Normalise Pi (i = 1, 2, ..., m) and Ni (i = 1, 2, ..., m)

Pi =
Pi

max{P1, P2, ..., Pm}
; (37)
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Ni =
Ni

max{N1, N2, ..., Nm}
. (38)

Step 7. Compute the integrative appraisal scores

ISci =
1
2
(

Pi + 1− Ni
)
, i = 1, 2, ..., m. (39)

Step 8. Produce the ranking of alternatives, with best alternative being the one with
maximum ISci value.

6.3. An EDAS-Based Case Study

A refrigerator is an essential appliance that contributes most in the living standards of
a household, although it also consumes a considerable amount of energy due to its continue
24-h running. Therefore, the adequate selection of refrigerator can benefit positively to
the individual household by reducing its energy-consumption cost, and to the general
environment sustainability on the other side. Below, we consider a decision-making process
related to the purchasing of a refrigerator within the context of information dealt with in
this paper.

In a recent contribution, Li et al. [29] proposed a MCGDM technique based on the
EDAS model with p-ROFS data, which they applied to the application problem of buying an
adequate refrigerator based on the following 6 criteria: C1 ≡ safety, C2 ≡ the performance
of refrigeration, C3 ≡ designation, C4 ≡ the reliability scale, C5 ≡ the economical benefit,
C6 ≡ aesthetics for deciding which of 5 available refrigerators Rj (j = 1, 2, 3, 4, 5) should be
bought. All the criteria are of benefit-type, and their corresponding weights are considered
as ωC = (ωC1 , ωC2 , ..., ωC6) = (0.20, 0.15, 0.25, 0.17, 0.13, 0.10), and obtained the below p-
ROFS collective decision matrix D by applying the q-ROFHA operator, with entry dij the
decision value of the pair (Ci, Rj):

D =



(0.618, 0.3734) (0.5438, 0.4149) (0.3948, 0.3148) (0.5283, 0.2186) (0.546, 0.3148)
(0.5928, 0.4149) (0.6304, 0.362) (0.4937, 0.3148) (0.5693, 0.3037) (0.3948, 0.3148)
(0.4937, 0.3148) (0.5928, 0.3148) (0.547, 0.1945) (0.6297, 0.3053) (0.4937, 0.4149)
(0.3948, 0.2133) (0.6923, 0.4149) (0.5225, 0.3148) (0.3961, 0.4334) (0.4937, 0.3148)
(0.4937, 0.3402) (0.5925, 0.3036) (0.4651, 0.2623) (0.296, 0.4649) (0.3948, 0.3513)
(0.4281, 0.2572) (0.6014, 0.3169) (0.5928, 0.4149) (0.3948, 0.3148) (0.4247, 0.2856)


With the above p-ROFS collective decision matrix at hand, the average p-ROFS of

each of its rows with p = 3 in (32) results in the following alternatives average p-ROFSs:

(
µAp−ROFS , νAp−ROFS

)
I
=

 3

√√√√√1−
5

∏
j=1

(
1− µ3

Ap−ROFS

)1
5 ,

5

∏
j=1

(
νAp−ROFS

)1
5

, i = 1, 2, . . . , 6

(
µAp−ROFS , νAp−ROFS

)
1
= (0.5378, 0.32),

(
µAp−ROFS , νAp−ROFS

)
2
= (0.5514, 0.3397),(

µAp−ROFS , νAp−ROFS

)
3
= (0.5583, 0.3003),

(
µAp−ROFS , νAp−ROFS

)
4
= (0.5314, 0.3281),(

µAp−ROFS , νAp−ROFS

)
5
= (0.4725, 0.3382),

(
µAp−ROFS , νAp−ROFS

)
6
= (0.5083, 0.3138).

Table 6 presents the score values of the average p-ROFSs based on the score functions
(25)–(31), and the proposed one (23).



Mathematics 2021, 9, 770 11 of 19

Table 6. Score values of alternatives average p-rung orthopair fuzzy sets (p-ROFSs).

Score Function (µA, νA)1 (µA, νA)2 (µA, νA)3 (µA, νA)4 (µA, νA)5 (µA, νA)6

ScY 0.1228 0.1284 0.1469 0.1147 0.0668 0.1004
ScW 0.5614 0.5642 0.5735 0.5574 0.5334 0.5502

ScMLL 0.6242 0.6342 0.6441 0.6182 0.5761 0.6017
ScPDG 0.1477 0.1539 0.1762 0.1381 0.0811 0.1214
ScFL 0.9672 0.9608 0.9729 0.9647 0.9613 0.9691
ScPH −0.4715 −0.4555 −0.4402 −0.4811 −0.5515 −0.5081
ScPD 0.0614 0.0642 0.0735 0.0574 0.0334 0.0502

ScFC (λ = 1) 0.3657 0.3641 0.3906 0.3570 0.3127 0.3488

If we denote the ij-th entry of Table 6 by
(

µAp−ROFS , νAp−ROFS

)
ij

, then the score matrices

obtained by applying the considered score functions in this contribution are:

ScY =


0.1840 0.0894 0.0303 0.1370 0.1316
0.1369 0.2031 0.0891 0.1565 0.0303
0.0891 0.1771 0.1563 0.2212 0.0489
0.0518 0.2604 0.1114 −0.0193 0.0891
0.0810 0.1800 0.0826 −0.0745 0.0182
0.0614 0.1857 0.1369 0.0303 0.0533

; ScW =


0.5920 0.5447 0.5152 0.5685 0.5658
0.5684 0.6015 0.5446 0.5783 0.5152
0.5446 0.5886 0.5782 0.6106 0.5245
0.5259 0.6302 0.5557 0.4904 0.5446
0.5405 0.5900 0.5413 0.4627 0.5091
0.5307 0.5928 0.5684 0.5152 0.5267

;

ScMLL =


0.7025 0.6186 0.5405 0.6227 0.6317
0.6667 0.7203 0.5915 0.6544 0.5405
0.5915 0.6784 0.6395 0.7252 0.5808
0.5461 0.8137 0.6122 0.5284 0.5915
0.5892 0.6790 0.5773 0.4954 0.5374
0.5583 0.6881 0.6667 0.5405 0.5551

; ScPGD =


0.2166 0.1065 0.0372 0.1658 0.1581
0.1615 0.2386 0.1080 0.1872 0.0372
0.1080 0.2107 0.1886 0.2610 0.0588
0.0639 0.2990 0.1344 −0.0234 0.1080
0.0980 0.2143 0.1007 −0.0908 0.0223
0.0753 0.2204 0.1615 0.0372 0.0653

;

ScFL =


0.9479 0.9286 0.9688 0.9896 0.9688
0.9286 0.9526 0.9688 0.9720 0.9688
0.9688 0.9688 0.9926 0.9715 0.9286
0.9903 0.9286 0.9688 0.9186 0.9688
0.9606 0.9720 0.9820 0.8995 0.9566
0.9830 0.9682 0.9286 0.9688 0.9767

; ScPH =


−0.3536 −0.4803 −0.6153 −0.4739 −0.4596
−0.4056 −0.3287 −0.5252 −0.4243 −0.6153
−0.5252 −0.3885 −0.4474 −0.3222 −0.5434
−0.6050 −0.2076 −0.4908 −0.6379 −0.5252
−0.5290 −0.3876 −0.5494 −0.7024 −0.6211
−0.5828 −0.3743 −0.4056 −0.6153 −0.5886

;

ScPD =


0.0920 0.0447 0.0152 0.0685 0.0658
0.0684 0.1015 0.0446 0.0783 0.0152
0.0446 0.0886 0.0782 0.1106 0.0245
0.0259 0.1302 0.0557 −0.0096 0.0446
0.0405 0.0900 0.0413 −0.0373 0.0091
0.0307 0.0928 0.0684 0.0152 0.0267

; ScFC (λ=1) =


0.3872 0.3182 0.2705 0.4128 0.3741
0.3468 0.4022 0.3383 0.3964 0.2705
0.3383 0.4062 0.4406 0.4375 0.2889
0.3106 0.4051 0.3580 0.2244 0.3383
0.3257 0.4126 0.3431 0.1584 0.2561
0.3180 0.4108 0.3468 0.2705 0.3034

.

In order to save space, we only provide the PD and ND matrices for ScY and the
proposed ScFC (λ = 1).

PDScY =


0.4984 0 0 0.1158 0.0716
0.0658 0.5811 0 0.2184 0

0 0.2054 0.0638 0.5056 0
0 1.2693 0 0 0

0.2119 1.6946 0.2359 0 0
0 0.849 0.3631 0 0

; NDScY =


0 0.2719 0.7529 0 0
0 0 0.306 0 0.7638

0.3934 0 0 0 0.6671
0.5483 0 0.0287 1.1679 0.2231

0 0 0 2.1159 0.7278
0.3882 0 0 0.6979 0.4692

;

PDScFC =


0.0589 0 0 0.1288 0.023

0 0.1047 0 0.0888 0
0 0.0398 0.1279 0.1198 0
0 0.1345 0.0027 0 0

0.0417 0.3195 0.0972 0 0
0 0.1778 0 0 0

; NDScFC =


0 0.13 0.2603 0 0

0.0474 0 0.0709 0 0.257
0.134 0 0 0 0.2605

0.1301 0 0 0.3714 0.0526
0 0 0 0.4935 0.1810

0.0883 0 0.0056 0.2244 0.1301

.

The positive and negative weighted distances, with (ω1, ω2, ω3, ω4, ω5, ω6) =
(0.2, 0.15, 0.25, 0.17, 0.13, 0.1) adopted from [29], are computed and the corresponding
integrative appraisal scores are obtained and reported in Table 7, from which we observe
slightly different arrangements of possible refrigerators, based on the existing p-ROFS
score functions and the E-FS one, although the best refrigerator is same. Needless to say
that if the decision matrix D elements are E-FSs, then existing p-ROFS-based methods
would be inapplicable.
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Table 7. Ranking of alternatives with considered score functions.

Score-Based EDAS
Method ISc1 ISc2 ISc3 ISc4 ISc5 Ranking Order

ScY (Equation (25)) 0.392 0.95 0.3776 0.1382 0.0868 R2 > R1 > R3 > R4 > R5
ScW (Equation (26)) 0.3489 0.9387 0.3317 0.2326 0.013 R2 > R1 > R3 > R4 > R5

ScMLL (Equation (28)) 0.3067 0.9874 0.2584 0.2657 0.0096 R2 > R1 > R4 > R3 > R5
ScPDG (Equation (27)) 0.3944 0.9488 0.3829 0.1419 0.0902 R2 > R1 > R3 > R4 > R5
ScFL (Equation (29)) 0.4911 0.0733 0.876 0.3131 0.2953 R3 > R1 > R4 > R5 > R2
ScPH (Equation (30)) −6.6229 23.0165 −9.6394 −6.9174 −20.1849 R2 > R1 > R4 > R3 > R5
ScPD (Equation (31)) 0.392 0.95 0.3776 0.1382 0.0868 R2 > R1 > R3 > R4 > R5

ScFC (λ = 1) 0.3408 0.9132 0.4978 0.3201 0.0233 R2 > R3 > R1 > R4 > R5

7. Conclusions

To deal with the complexity of decision making techniques in practice, this contribu-
tion introduced the concept of E-FS, which extends the concept of FS, and the concepts of
IFS, PFS together with p-ROFS. The prominent role of E-FS concept is apparent in that the
concepts of FS, IFS, PFS and p-ROFS do not make sense in all the situations with uncertainty.
Other main contributions of the work are summarised in the following:

1. Development of E-FS algebraic and set operations;
2. Presentation of E-FS average and geometric aggregating operations;
3. Introduction of an E-FS score function.

The direction of the future work of this research may be be focused on different
forms of E-FS information aggregation operators and E-FS information measures, decision
makers’ preference information [30] of E-FSs, individual consensus and group consensus
measures [31] of E-FSs.
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Abbreviations
The following abbreviations are used in this manuscript:

A Classical set (CS)
AFS Fuzzy set (FS)
AIFS Intuitionistic fuzzy set (IFS)
APFS Pythagorean fuzzy set (PFS)
Ap−ROFS p-rung orthopair fuzzy set (p-ROFS)
AE−FS Extended fuzzy set (E-FS)
AE−FN Extended fuzzy number (E-FN)

Appendix A. Proofs of Main Results

Appendix A.1. Proof of Proposition 1

Proof. A p-ROFS Ap−ROFS is defined as follows:

Ap−ROFS =
{
〈x, µAp−ROFS(x), νAp−ROFS(x)〉 : x ∈ X

}
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in which the membership degree µAp−ROFS ∈ [0, 1] and the non-membership degree

νAp−ROFS ∈ [0, 1] satisfy 0 ≤ µ
p
Ap−ROFS

(x) + ν
p
Ap−ROFS

(x) ≤ 1 for any x ∈ X and p ∈ [1, ∞).
Now, if we set (

µAE−FS(x), νAE−FS(x)
)
=
(

µ
p
Ap−ROFS

(x), ν
p
Ap−ROFS

(x)
)

, (A1)

then, the latter relation implies that:

Case 1 (� := �1):

µAE−FS(x)�1 νAE−FS(x) := µAE−FS(x) + νAE−FS(x)− µAE−FS(x)νAE−FS(x)

= 1− (1− µAE−FS(x))× (1− νAE−FS(x))

= 1−
(

1− µ
p
Ap−ROFS

(x)
)
×
(

1− ν
p
Ap−ROFS

(x)
)
≤ 1.

Case 2 (� := �2):

µAE−FS (x)�2 νAE−FS (x) :=
µAE−FS (x) + νAE−FS (x)

1 + µAE−FS (x)νAE−FS (x)

=
µAE−FS (x) + νAE−FS (x)− µAE−FS (x)νAE−FS (x) + µAE−FS (x)νAE−FS (x)

1 + µAE−FS (x)νAE−FS (x)

=
µ

p
Ap−ROFS

(x) + ν
p
Ap−ROFS

(x)− µ
p
Ap−ROFS

(x)νp
Ap−ROFS

(x) + µ
p
Ap−ROFS

(x)νp
Ap−ROFS

(x)

1 + µ
p
Ap−ROFS

(x)νp
Ap−ROFS

(x)
.

Once again, applying (A1), we find that

µAE−FS(x)�2 νAE−FS(x) ≤
1 + µ

p
Ap−ROFS

(x)νp
Ap−ROFS

(x)

1 + µ
p
Ap−ROFS

(x)νp
Ap−ROFS

(x)
= 1.

Case 3 (� := �3):

µAE−FS (x)�3 νAE−FS (x) :=

µAE−FS (x) + νAE−FS (x)− µAE−FS (x)νAE−FS (x)− (1− ε)µAE−FS (x)νAE−FS (x)
1− (1− ε)µAE−FS (x)νAE−FS (x)

=
µ

p
Ap−ROFS

(x) + ν
p
Ap−ROFS

(x)− µ
p
Ap−ROFS

(x)νp
Ap−ROFS

(x)− (1− ε)µ
p
Ap−ROFS

(x)νp
Ap−ROFS

(x)

1− (1− ε)µ
p
Ap−ROFS

(x)νp
Ap−ROFS

(x)
.

Again, applying equation (A1), we deduce that

µAE−FS(x)�3 νAE−FS(x) ≤
1− (1− ε)µ

p
Ap−ROFS

(x)νp
Ap−ROFS

(x)

1− (1− ε)µ
p
Ap−ROFS

(x)νp
Ap−ROFS

(x)
= 1

for any ε > 0.

Case 4 (� := �4):

µAE−FS (x)�4 νAE−FS (x) := 1− logε

1 +

(
ε

1−µAE−FS
(x) − 1

)(
ε

1−νAE−FS
(x) − 1

)
ε− 1


= 1− logε

1 +

(
ε

1−µ
p
Ap−ROFS

(x)
− 1
)(

ε
1−ν

p
Ap−ROFS

(x)
− 1
)

ε− 1

.
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The fact that ε > 1 gives rise to ε − 1 > 0 together with ε
1−µ

p
Ap−ROFS

(x)
− 1 ≥ 0

and ε
1−ν

p
Ap−ROFS

(x)
− 1 ≥ 0 for any µ

p
Ap−ROFS

(x), ν
p
Ap−ROFS

(x) ≤ 1. By taking these out-

comes into account, we get logε

1 +

(
ε

1−µ
p
Ap−ROFS

(x)
− 1
)(

ε
1−ν

p
Ap−ROFS

(x)
− 1
)

ε− 1

 ≥
logε1 = 0, and

µAE−FS(x)�4 νAE−FS(x) ≤ 1,

for any ε > 1.

The above results demonstrate that 0 ≤ µ
p
Ap−ROFS

(x) + ν
p
Ap−ROFS

(x) ≤ 1 for any x ∈ X

and p ∈ [1, ∞) leads to 0 ≤ µAE−FS(x)� νAE−FS(x) ≤ 1, that is, a p-ROFS Ap−ROFS is an
E-FS AE−FS.

Appendix A.2. Proof of Definition 2 Operations Are Well Defined

Proof. Below, we prove that (8)–(14) are well-defined. It suffices to prove that 0 ≤ µE−FS�1νE−FS
≤ 1 in all cases.

Proof of (8). It is obvious for any E-FN AE−FN , we have 0 ≤ µAE−FS�1νAE−FS ≤ 1. There-
fore, from the fact that µAc

E−FN
�1νAc

E−FN
= νAE−FN�1µAE−FN , we conclude that 0 ≤

µAc
E−FS
�1νAc

E−FS
≤ 1, that is, Ac

E−FN = (µAc
E−FN

, νAc
E−FN

) is an E-FN.

Proof of (9). Since AE−FN and BE−FN are two E-FNs, that is,

0 ≤ µAE−FS�1νAE−FS := µAE−FS + νAE−FS − µAE−FS νAE−FS

= 1− [1− µAE−FS ]× [1− νAE−FS ] ≤ 1

and
0 ≤ µBE−FS�1νBE−FS := µBE−FS + νBE−FS − µBE−FS νBE−FS

= 1− [1− µBE−FS ]× [1− νBE−FS ] ≤ 1

therefore from definition AE−FN ∩ BE−FN , it results that

µAE−FN∩BE−FN�1νAE−FN∪BE−FN = min{µAE−FN , µBE−FN}�1 max{νAE−FN , νBE−FN}

= 1−
[
1−min{µAE−FN , µBE−FN}

]
×
[
1−max{µAE−FN , µBE−FN}

]
= 1−max

{
1− µAE−FN , 1− µBE−FN

}
×min

{
1− µAE−FN , 1− µBE−FN

}
.

By taking the non-negativity property of all the terms 1− µAE−FN , 1− µBE−FN , 1−
µAE−FN and 1− µBE−FN into consideration, we are able to get that

0 ≤ µAE−FN∩BE−FN�1νAE−FN∪BE−FN

= 1−max
{

1− µAE−FN , 1− µBE−FN

}
×min

{
1− µAE−FN , 1− µBE−FN

}
≤ 1.

Proof of (10). The proof is much like that of (9).

Proof of (11). Follows from definition AE−FN⊕BE−FN , we conclude that

µAE−FN⊕BE−FN�1νAE−FN⊕BE−FN =
[
1− (1− µAE−FN )(1− µBE−FN )

]
�1
[
νAE−FN νBE−FN

]
= 1−

[
1−

[
1−

(
1− µAE−FN

)(
1− µBE−FN

)]]
×
[
1−

[
νAE−FN νBE−FN

]]
= 1−

(
1− µAE−FN

)(
1− µBE−FN

)
×
(
1− νAE−FN νBE−FN

)
.
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Again, the non-negativity property of all the terms 1− µAE−FN , 1− µBE−FN and 1−
νAE−FN νBE−FN gives rise to

0 ≤ µAE−FN⊕BE−FN�1νAE−FN⊕BE−FN

= 1− (1− µAE−FN )(1− µBE−FN )× [1− νAE−FN νBE−FN ] ≤ 1.

Proof of (12). The proof is much like that of (11).

Proof of (13). The proof is immediate from the fact that

0 ≤ µλAE−FN�1νλAE−FN = 1−
(

1−
[
1−

(
1− µAE−FN

)λ
])
×
[
1−

(
νAE−FN

)λ
]

= 1−
(
1− µAE−FN

)λ ×
(

1−
(
νAE−FN

)λ
)
≤ 1.

Proof of (14). The proof is much like that of (13).

Appendix A.3. Proof of Theorem 1

Proof. We prove this by induction on the number of aggregated E-FNs, denoted here by m.
For m = 2, from parts of (11) and (13) of Definition 2, we easily conclude that

E− IFWA(A1E−FN , A2E−FN) = ω1 A1E−FN⊕ω2 A2E−FN

is an E-FN, that is,

0 ≤ µω1 A1E−FN⊕ω2 A2E−FN�1νω1 A1E−FN⊕ω2 A2E−FN

=
(

1−
(
1− µA1E−FN

)ω1
(
1− µA2E−FN

)ω2
)
�1

(
νω1

A1E−FN
νω2

A2E−FN

)
= 1−

(
1−

(
1−

(
1− µA1E−FN

)ω1
(
1− µA2E−FN

)ω2
))
×
(

1−
(

νω1
A1E−FN

νω2
A2E−FN

))
= 1−

(
1− µA1E−FN

)ω1
(
1− µA2E−FN

)ω2 ×
[
1− νω1

A1E−FN
νω2

A2E−FN

]
≤ 1.

Now, we assume that the result holds for m and prove it for m + 1. Therefore, we
suppose that

E− IFWA(A1E−FN , . . . , AmE−FN) =
m⊕

i=1

ωi AiE−FN

is an E-FN. We prove now that

E− IFWA(A1E−FN , . . . , AmE−FN , Am+1E−FN) =
m+1⊕
i=1

ωi AiE−FN

is also an E-FN. To do this, we have

E− IFWA(A1E−FN , . . . , AmE−FN , Am+1E−FN) =
m+1⊕
i=1

ωi AiE−FN

=
m⊕

i=1

ωi AiE−FN⊕ωm+1 Am+1E−FN
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in which

0 ≤µ⊕m
i=1 ωi AiE−FN⊕ωm+1 Am+1E−FN

�1ν⊕m
i=1 ωi AiE−FN⊕ωm+1 Am+1E−FN

=

(
1−

m

∏
i=1

(
1− µAiE−FN

)ωi
(
1− µAm+1E−FN

)ωm+1

)
�1

(
m

∏
i=1

ν
ωi
AiE−FN

× ν
ωm+1
Am+1E−FN

)

= 1−
(

1−
(

1−
(

1−
m

∏
i=1

(
1− µAiE−FN

)ωi
(
1− µAm+1E−FN

)ωm+1

)))

×
(

1−
(

m

∏
i=1

ν
ωi
AiE−FN

× ν
ωm+1
Am+1E−FN

))

= 1−
(

1−
m+1

∏
i=1

(
1− µAiE−FN

)ωi

)
×
(

1−
m+1

∏
i=1

ν
ωi
AiE−FN

)
≤ 1.

This completes the proof.

Appendix A.4. Proof of Theorem 2

Proof. Taking the equality relationship between all the unified E-FNs, that is, AE−FN :=
A1E−FN = · · · = AmE−FN together with the condition ∑m

i=1 ωi = 1 in which ωi ≥ 0 for any
1 ≤ i ≤ m, we conclude that

E− IFWA(A1E−FN , . . . , AmE−FN) = E− IFWA(AE−FN , . . . , AE−FN) =
m⊕

i=1

Aωi
E−FN

=

(
1−

m

∏
i=1

(1− µAE−FN )
ωi ,

m

∏
i=1

ν
ωi
AE−FN

)
=
(

1−
(
1− µAE−FN

)∑m
i=1 ωi , ν

∑m
i=1 ωi

AE−FN

)
=
(

1−
(
1− µAE−FN

)
, νAE−FN

)
= AE−FN .

Appendix A.5. Proof of Theorem 3

Proof. Let ∑m
i=1 ωi = 1 such that ωi ≥ 0 ∀i. Denoting

Minµ = min1≤i≤m{µAiE−FN}; Maxµ = max1≤i≤m{µAiE−FN};
Minν = min1≤i≤m{νAiE−FN}; Maxν = max1≤i≤m{νAiE−FN}.

Since ωi ≥ 0 , it is:

(1−Minµ)ωi ≥ (1− µAiE−FN )
ωi ≥ (1−Maxµ)ωi ;

(Minν)ωi ≤ (νAiE−FN )
ωi ≤ (Maxν)ωi ,

which implies

(1−Minµ)∑m
i=1 ωi ≥ ∏m

i=1(1− µAiE−FN )
ωi ≥ (1−Maxµ)∑m

i=1 ωi ;

(Minν)∑m
i=1 ωi ≤ ∏m

i=1(νAiE−FN )
ωi ≤ (Maxν)∑m

i=1 ωi .

Since ∑m
i=1 ωi = 1, it is

Minµ ≤ 1−∏m
i=1(1− µAiE−FN )

ωi ≤ Maxµ;

Minν ≤ ∏m
i=1(νAiE−FN )

ωi ≤ Maxν.
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From

Minµ ≤ 1−
m

∏
i=1

(1− µAiE−FN )
ωi and

m

∏
i=1

(νAiE−FN )
ωi ≤ Maxν ,

we deduce that
AlE−FN ⊆ E− IFWA(A1E−FN , . . . , AmE−FN),

while from

Minµ ≤ 1−
m

∏
i=1

(1− µAiE−FN )
ωi and

m

∏
i=1

(νAiE−FN )
ωi ≤ Maxν ,

we deduce that
E− IFWA(A1E−FN , . . . , AmE−FN) ⊆ AuE−FN ,

which completes the proof.

Appendix A.6. Proof of Theorem 4

Proof. Let ∑m
i=1 ωi = 1 such that ωi ≥ 0 ∀i. From Definition 3

AE−FN ⊆ BE−FN ⇐⇒
[
µAE−FN ≤ µBE−FN ∧ νAE−FN ≥ νBE−FN

]
.

Since ωi ≥ 0 , it is:

1−
m

∏
i=1

(
1− µAiE−FN

)ωi ≤ 1−
m

∏
i=1

(
1− µBiE−FN

)ωi ∧
m

∏
i=1

(
νAiE−FN

)ωi ≥
m

∏
i=1

(
νBiE−FN

)ωi .

Therefore, we conclude that

E− IFWA(A1E−FN , . . . , AmE−FN) ⊆ E− IFWA(B1E−FN , . . . , BmE−FN).

Appendix A.7. Proof of Theorem 5

Proof. Since AE−FN ⊆ BE−FN , it is

µAE−FN ≤ µBE−FN ∧ νAE−FN ≥ νBE−FN ,

which implies

−(1− µAE−FN ) ≤ −(1− µBE−FN ) ∧ 1− νAE−FN ≤ 1− νBE−FN .

Algebraic manipulation lead to the following:

1− (1− µAE−FN )(1− νAE−FN ) ≤ 1− (1− µBE−FN )(1− νBE−FN ),

1−
(
µAE−FN�1νAE−FN

)
≥ 1−

(
µBE−FN�1νBE−FN

)
,

(1− νAE−FN )− λ(1− µAE−FN�1νAE−FN ) ≤ (1− νBE−FN )− λ(1− µBE−FN�1νBE−FN ).

The latter inequality implies that Sc�1(AE−FN) ≤ Sc�1(BE−FN).

Appendix A.8. Proof of Theorem 6

Proof. The first partial derivatives of

Sc�1(AE−FN) =
(
1− νAE−FN

)
− λ

(
1−

(
1−

(
1− µAE−FN

)(
1− νAE−FN

)))
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are:

∂Sc�1(AE−FN)

∂µAE−FN

= λ(1− νAE−FN );

∂Sc�1(AE−FN)

∂νAE−FN

= −νAE−FN − λ(−νAE−FN )(1− µAE−FN )

= −νAE−FN

(
1− λ(1− µAE−FN )

)
.

It is obvious that
∂Sc�1(AE−FN)

∂µAE−FN

≥ 0 while
∂Sc�1(AE−FN)

∂νAE−FN

≤ 0 for any λ ∈ [0, 1].

Appendix A.9. Proof of Lemma 1

Proof. The partial derivatives of Sc�1(AE−FN) with respect to λ is:

∂Sc�1(AE−FN)

∂λ
= 0−

(
1−

(
1−

(
1− µAE−FN

)(
1− νAE−FN

)))
= −

(
1− µAE−FN

)(
1− νAE−FN

)
.

It is obvious that
∂Sc�1(AE−FN)

∂λ
≤ 0 for any λ ∈ [0, 1].
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