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1 Introduction

It is a pleasure to comment on this interesting article by Devaud and Tillé,
whose paper gives us the opportunity to reflect on the important impact pro-
duced by this method of sampling parameter estimation. Since the seminal
work by Deville and Särndal, calibration has been one of the most useful tools
available with which to incorporate auxiliary information in survey sampling.
This technique ensures that the estimates obtained are coherent with those al-
ready in the public domain, while simultaneously reducing non-coverage, non-
response and selection biases ([1]). Although other important estimation meth-
ods that also use auxiliary information have been proposed (e.g. the empirical
likelihood method; [7] or that of model-based estimators; [29]), in practice,
the vast majority of national statistical agencies use calibration as a reweight-
ing technique and have developed software to compute calibrated weights in
accordance with the auxiliary information available in administrative records
and other reliable sources.

The authors have reformulated the classical calibration problem, focusing
on issues related to optimisation. In this commentary, I shall focus on certain
topics that were not discussed in the paper and that involve modifications to
the optimisation problem.

2 Model-calibrated estimation

The use of calibrated estimators obtained from the constraint
∑
k∈s ωkxk = Tx

is motivated by a linear model. If another type of curve is employed to relate
the study variable y with the auxiliary variables x, the calibration estimators
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considered to date may be ineffective.

The model-calibrated estimators suggested by [30] are based on the super-
population model: Eξ(yk|xk) = µ(xk, θ) where θ is an unknown population
parameter, µ(x, θ) is a known function of x and θ, and Eξ denotes the expec-
tation with respect to the superpopulation model. Under this model-assisted
approach, the auxiliary information should be used in accordance with the val-
ues µ(xk, θ̂) k = 1, . . . , N where θ̂ is an estimator of θ. The model-calibration

estimator of Ty is defined as T̂YMC =
∑
k∈s ωkyk but the weights ωk, minimise

a distance function subject to the new constraints:∑
k∈s

ωk = 1
∑
k∈s

ωkµ(xk, θ̂) =
∑
k∈U

µ(xk, θ̂).

[30] showed that under certain conditions the estimator is asymptotically
unbiased under the design (irrespective of whether the model is correct or not)
and also that it is approximately unbiased under the model. These authors also
obtained an expression for the asymptotic design variance. T̂YMC matches the
conventional calibration estimator when a linear model is used.

The model-assisted approach has facilitated the use of new regression tech-
niques in the calibration environment. Thus, [21] formulated calibration esti-
mators considering regression models with a random component. In recent
years, studies have also considered the use of ML algorithms for deriving
model-assisted estimators (see e.g. [4]). However, little research has been un-
dertaken in which these ML methods are applied to obtain calibrated estima-
tors. The papers by [19] and [20], which use neural networks and p-splines to
formulate non-parametric model-calibrated estimators, are important excep-
tions in this area. In a recent simulation study, [9] compared model-calibrated
estimators based on various machine learning methods.

3 Calibration for other parameters

In section 2, the authors discuss calibration with respect to the estimation
of the population total. The calibration technique can be used to estimate
more complex parameters than a population total but the constraint must be
modified to match the specific parameter to be estimated. Some examples are
presented below.

[12] considered a general case, where the parameter of interest θN is the
solution to an estimation equation of the form H(θ) =

∑
k∈U h(xk, yk, θ) = 0

for h(·) a continuous differentiable function of θ. The calibration estimator of
θN is a solution to equation Ĥ(θ) =

∑
k∈s wkh(xk, yk, θ) = 0 where wk are

determined from
∑
k∈s ωkxk = Tx. These authors obtained the asymptotic

properties of the estimator.
A case of special importance is the estimation of the finite population

distribution function (fdf) and its application to the estimation of quantiles
and poverty measures. The non-smooth character of the fdf creates certain
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complexities that have been resolved in different ways. Thus, [11] proposed
an estimator of the distribution function based on a calibration constraint
specified by the quantile of an auxiliary variable. [23] considered a pseudo-

variable gk = β̂
′
xk for β̂, the weighted estimator of the regression coeffi-

cient, and obtained new calibrated weights subject to the calibration equations
1
N

∑
k∈s ωk∆(tj−gk) = 1

N

∑
k∈U ∆(tj−gk) j = 1, 2, . . . , P . Under some con-

ditions, the estimator F̂yc(t) is a genuine distribution function. [15],[16] and
[17] addressed the problem of selecting the optimal auxiliary vector included
in the constraints. In a similiar way, [18] used a global penalised calibration
method to define a new estimator for the fdf. Other related papers include
[30], [24] and [2].

Interesting papers on the question of calibration estimation for other non-
linear estimators have been presented by [26] and [22].

4 Functional calibration

An interesting extension of calibration emerges when both the survey and
the auxiliary variables are considered as random functions. In this respect, [6]
proposed a Horvitz Thompson estimator of the mean trajectory, and under
certain assumptions regarding the sampling design, a functional central limit
theorem has been proposed. Based on this estimator, [8] extended the approach
taken to obtaining calibration sampling weights using functional data.

Assuming there exists a unique functional random variable Yi(t) that is
observed for the unit in the sample s and also that the population mean of an
auxiliary functional vector is available, the functional estimator for the popu-
lation mean Ȳ (t) based on functional calibration weights is expressed by the
linear weighted estimator 1

N

∑
k∈s wk(t)Yk(t), where the new weights satisfy

the set of constraints 1
N

∑
k∈s ωk(t)Xk(t) = X̄(t). This functional calibration

constraint is expressed as an infinite-dimensional linear inverse problem, the
solution to which is derived by means of the maximum entropy on the mean
principle.

5 Calibration in online surveys

In recent decades, new technologies have had a profound impact on survey
techniques. This impact has been observed in social and political surveys, and
particularly in market research surveys, where the greater speed and reduced
costs obtained via new technologies have changed the ways in which data are
collected. The use of web surveys is currently expanding at a rapid pace. Nev-
ertheless, estimates obtained from this source present three significant issues:
the absence of a sample design enabling the use of conventional methods of
inference in finite populations, the existence of frame coverage problems and
the danger of non-response bias. Although many statistical methods to reduce
non-coverage and non-response bias have been proposed, the problems arising
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from the non-randomness of the sample are more complex and have yet to
be satisfactorily addressed. As a result, the use of web surveys can result in
unreliable inferences being drawn.

Several methods can be used to correct selection bias in online surveys
(see e.g. [5] or [28]). Calibration can also be applied to remove the bias in
non-probabilistic samples but its application is not immediate. There are no
sample weights and therefore it is necessary to define which weights dk must
be considered in the distance function to be minimised. One straightforward
solution is to take dk = N/n, that is, to consider the sample of volunteers as
if it were obtained with a simple random sampling design. When analysing
online survey results, it is reasonable to assume that the decision to take part
depends on the respondents characteristics and that the probability of their
participating varies from one person to another. In this respect, [3] showed
that bias can be reduced through calibration only when non-response due to
volunteering has a missing at random scheme, and that this approach is not
valid in other situations (which are the most frequent).

In the last two decades, propensity score adjustment (PSA) has been in-
creasingly used as a promising means of correcting selection bias in online
surveys. In this approach, a reference probabilistic survey is conducted on the
same target population as that of the online survey, and used to estimate
the probability of participation. Research has shown that PSA successfully re-
moves bias in some situations, but at the cost of increasing the variance ([14]).
[27] showed that the estimation of a variable using PSA must be complemented
with further weighting adjustments in order to reduce the bias in the resulting
estimates. The use of PSA with further calibration has been studied by [14]
and [10], who concluded that calibration adjustments are helpful if they are
applied using appropriate covariates.
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Competitividad (Grant MTM2015-63609-R).
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