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Abstract: Mathematical models have been remarkable tools for knowing in advance the appropri-
ate time to enforce population restrictions and distribute hospital resources. Here, we present a
mathematical Susceptible-Exposed-Infectious-Recovered (SEIR) model to study the transmission
dynamics of COVID-19 in Granada, Spain, taking into account the uncertainty of the phenomenon.
In the model, the patients moving throughout the hospital’s departments (intra-hospitalary circuit)
are considered in order to help to optimize the use of a hospital’s resources in the future. Two
main seasons, September–April (autumn-winter) and May–August (summer), where the hospital
pressure is significantly different, have been included. The model is calibrated and validated with
data obtained from the hospitals in Granada. Possible future scenarios have been simulated. The
model is able to capture the history of the pandemic in Granada. It provides predictions about the
intra-hospitalary COVID-19 circuit over time and shows that the number of infected is expected to
decline continuously from May without an increase next autumn–winter if population measures
continue to be satisfied. The model strongly suggests that the number of infected cases will reduce
rapidly with aggressive vaccination policies. The proposed study is being used in Granada to design
public health policies and perform wise re-distribution of hospital resources in advance.

Keywords: COVID-19; mathematical model; transmission dynamics; vaccination expectations;
hospital’s resources; COVID waves

1. Introduction

In December 2019, the Chinese public health authorities informed the world about
several cases of acute respiratory syndrome in Wuhan. By 7 Jan 2020, scientists had isolated
a novel coronavirus from these patients not previously identified in humans, referred to as
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent responsible for
the later designated coronavirus disease 2019 (COVID-19) in February 2020, and the World
Health Organization (WHO) declared a pandemic [1,2].

So far, we have been buying time looking for a balance between the overload of the
hospitals and the economy until antivirals and vaccines are available. Every time stronger
population restrictions are applied, a new wave appears because the trend of the disease
is to infect people until most of them have been infected or vaccinated. In this sense,
mathematical models have been remarkable tools for knowing in advance the appropriate
time to enforce the population restrictions and distribute the hospital resources to face the
new waves.
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Several approaches have tried to mathematically model the transmission dynamics
of COVID-19 using SIR and SEIR-type models [3–9]. Other references, such as [10–13],
moreover, consider asymptomatic infected individuals, most of the infected population,
who play an important role in spreading the virus. One of the main advantages of these
mathematical models is that different simulations can be carried out, allowing the study
of a different variety of complex scenarios, although with limitations due to the many
uncertainties regarding the disease.

One of the main parameters in the epidemiological models is the reproductive number
(R0), which quantifies the average of secondary cases generated from each infected person
in a susceptible environment during an outbreak. Different studies have estimated that the
R0 value in China at the beginning of the pandemic was between 2 and 7.1. This means that,
following [14], the pandemic is not going to be controlled until we reach herd immunity,
and it will be possible when the percentage H = 100(1− 1

R0
) of the population will be

immune, that is, recovered plus vaccinated. Thus, H = 50% for R0 = 2 and H = 86% for
R0 = 7.1. It has also been observed that R0 value drops sharply after the implementation of
control measures against COVID-19 [15] reducing the percentage to reach herd immunity.

Under a demographic point of view, Granada is a province in southern Spain with a
population of 921, 511 inhabitants, around 30% of the population live in the capital and the
province has a population density of 73.5 people per km2 [16]. Compared with the province
of Madrid with 829.6 people per km2, the province of Granada has a low population density.
Also, the percentage of accumulated infected between 1 May 2020 and 1 June 2020 was
[2.3%–4.8%] in Granada and [10.3%–13.3%] in Madrid [17,18]. Therefore, the province of
Granada had a low prevalence at the end of the first wave.

In this paper, we propose a mathematical model to study the transmission dynamics
of SARS-CoV-2. It is a SEIR model in which the circuit of patients moving throughout the
hospital dependencies is also considered, returning a more precise portrait of the use of
hospital resources with the aim of predicting hospitals’ overloads. To our knowledge, this
is a novelty that our model provides, thanks to the data retrieved from Granada’s hospitals.
We also consider the asymptomatic infectious individuals who transmit the disease but are
not reported by the health system. Furthermore, two main seasons, September–April (viru-
lence season) and May–August (non-virulence season) are considered. In these seasons,
the hospital pressure is significantly different and, consequently, so are admissions and
deaths. Once the model is implemented and calibrated, we validate it, analyze the results
and perform calculations simulating possible future scenarios to evaluate the effect of the
COVID-19 vaccination, which allow us to provide some public health recommendations.

In the whole process of calibration-validation-prediction, we consider the data uncer-
tainty. Then, we are able to obtain model parameter values with mean and 95% confidence
intervals (CI95%) and, consequently, the predictions will also be represented using means
and CI95%.

2. Materials and Methods
2.1. Model Building

With respect to COVID-19, an individual can be considered as:

• (S) susceptible, when the individual is healthy;
• (Q) in lockdown, when the individual is at home to avoid the spread of the virus.

In our model, lockdown only considers the March’s lockdown time;
• (L) latent or exposed, when the individual has been infected but it is not infectious yet;
• (I) infectious, when the individual is capable of spreading SARS-CoV-2;
• (R) recovered, when the individual recovers from the disease being asymptomatic or

having mild symptoms;
• (H) hospitalized at ward, when the individual has severe symptoms and needs to

be hospitalized;
• (U) in intensive care unit (ICU), when the individual has severe symptoms and needs

to be treated in the intensive care unit;
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• (F) deceased, when the individual dies because of the disease;
• (HU) after ICU, when an individual is transferred from ICU to other non-ICU depart-

ment due to improvement in the evolution but still requires hospitalization;
• (A) discharged, when the individual gets better and is discharged from hospital.

We are going to use data from patients hospitalized, in ICU, discharges and deaths
in the Spanish province of Granada provided by the hospital H.U. Virgen de las Nieves
and we scale these data in order to generate an inclusive model that represents the whole
province. The province of Granada has PT = 921 511 inhabitants, and we consider the PT
value as constant during the simulation time. Our simulations begin on 1 March 2020 and
the time step t is one day.

1. When the alarm state is decreed and most of the people have to be in lockdown, that
is, move from S to Q, it is modeled by the term sq(t), where the model parameter
sq(t) determines the transit of people from S to Q. sq(t) takes the value 0 except for
16 March 2020 and 31 March 2020, when the lockdown and the strict lockdown began
in Spain, and 700,000 and 150,000 more individuals in Granada, respectively, move
from S to Q [19].

2. When the lockdown finishes, the transit of individuals from Q to S is modeled by the
term qs(t) where the model parameter qs(t) is 0 except for 13 April 2020 when the
strict lockdown finishes and 150,000 individuals move from Q to S, and from 5 May
to 21 June 2020, leaving the lockdown 8750 people every day due to the gradual end
of the confinement.

3. An individual moves to latent state (L) if he/she gets infected by contact with an
infectious individual. People in the hospital are isolated and controlled and, therefore,
discarded for contagions. The transit is modeled by the non-linear term βS(t) I(t)

PT
,

where the transmission rate parameter β has to be calibrated. Furthermore, this
parameter will change over time due to the global public health interventions.

4. A latent individual transits to infectious state after a while and this is modeled by the
linear term liL(t), where the latency period t0 = 1/li is the time from the moment
in which an individual is infected until the moment in which is able to transmit the
virus, t0. This period is different to the typical incubation period time from infection
to onset, and according to [20], it takes from 2 to 7 days. Even though there is limited
evidence about the possibility of infection one or two days before onset [21], let us
consider that t0 may take values from 1 to 6 days, and li = 1/t0.

5. An infectious individual may become hospitalized (H), admitted to the Intensive
Care Unit (U) or recover (R), and these transits are modeled by the linear terms ih I(t),
iu I(t) and ir I(t), respectively. Here, we have three possible statuses for infectious
individuals. Every one takes its time and has its probability, that is, ih = p1/t1,
iu = p2/t2 and ir = (1− p1 − p2)/t3.

• p1 is the percentage of infected who become hospitalized and t1 days the time
it takes; p2 is the percentage of infected people admitted directly at ICU and t2
days the time it takes. Then, the parameters of the transition from I to H and
from I to U are ih = p1/t1 and iu = p2/t2, respectively.

• Those infected but are not hospitalized require around t3 = 14 days to re-
cover [22]. Thus, the transition from I to R is governed by the parameter
ir = (1− p1 − p2)/14.

6. Hospitalized people may move to ICU (U) if they get worse, may die (F) or may be
discharged (A). These transits are modeled by the linear terms hu H(t), h f H(t) and
haH(t), respectively. As before, here we have three possible statuses for hospitalized
individuals and each one takes its time and its probability.

• p4 is the percentage of hospitalized people who need to be admitted to ICU and
t4 days the time it takes. Hence, the people in H move to U governed by the
parameter hu = p4/t4.
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• p5 is the percentage of hospitalized people who die after an average of t5 days.
Then, the transition parameter from H to F is h f = p5/t5.

• (1− p4 − p5) is the percentage of hospitalized people who are discharged after
an average of t6 days in the hospital. Hence, the transition parameter from H to
A is ha = (1− p4 − p5)/t6.

7. People in ICU (U) may decease (F) or may get better and be transferred to other
non-ICU department (HU). These transits are modeled by the linear terms u f U(t)
and uhuU(t), respectively. Here we have 2 possible ways for individuals in ICU, die
or get better and each one takes its time.

• The transition parameter from U to F is u f = p7/t7, where p7 is the probability
to die after t7 days (in average) if the individual is in the ICU.

• The parameter that governs the transition from U to HU is uhu = (1− p7)/t8,
where t8 days is the average time an individual needs to leave the ICU because
he/she gets better.

8. Finally, an individual in HU may get better and be discharged. This transit is modeled
by the linear term huaHU(t), where hua = 1/t9, where t9 is the average time to be
discharged after leaving ICU.

Taking into account the above description of the populations and the model parame-
ters, the following system of difference Equation (1) describes the transmission dynamics
of COVID-19 in the province of Granada (Spain) over time.

S(t + 1) = S(t) + qs(t)− sq(t)− β(t)S(t) I(t)
PT

,
Q(t + 1) = Q(t) + sq(t)− qs(t),
L(t + 1) = L(t) + β(t)S(t) I(t)

PT
− liL(t),

I(t + 1) = I(t) + liL(t)− (ir(t) + ih(t) + iu(t))I(t),
H(t + 1) = H(t) + ih(t)I(t)− (hu(t) + h f (t) + ha(t))H(t),
U(t + 1) = U(t) + iu(t)I(t) + hu(t)H(t)− (u f (t) + uhu(t))U(t),
HU(t + 1) = HU(t) + uhu(t)U(t)− hua(t)HU(t),
A(t + 1) = A(t) + ha(t)H(t) + hua(t)HU(t),
F(t + 1) = F(t) + h f (t)H(t) + u f (t)U(t),
R(t + 1) = R(t) + ir(t)I(t).

(1)

Figure 1 shows a flow diagram of how individuals may move throughout the different
states with respect to the disease. Note that the right part of Figure 1 (H, U, F, A, HU)
represents the flow of patients within hospital departments. There is no movement between
infectious (I) to deceased (F) as there are no data available and, because, in Spain, most
of the people who die by COVID do it in the hospital. Even though it seems that there is
evidence of COVID re-infections [23,24], they are very few and we are not going to consider
it in our model.
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Figure 1. Flow diagram of the COVID-19 transmission dynamics. The boxes represent the states of
individuals respect to the disease, and the letters next to the arrows represent the transition rates
between states.

Since other known coronaviruses have seasonal behaviour [25], as a hypothesis, two
main periods have been considered: virulence season (September to April) and non-
virulence season (May to August). This division is supported by the available data related
to number of hospitalizations and deaths. Due to this, some model parameter values will
vary depending on the season.

2.2. Model Calibration with Uncertainty

As we have mentioned before, we obtained hospitalization data from the Spanish
province of Granada with the aim of calibrating the model parameters in such a way that
the model may describe the evolution of the pandemic in this area. Known parameters
values are shown in Table 1.

Hence, the model parameters β, t0, p1, t1, p2, t2, p4, t4, p5, t5, t6, p7, t7, t8 and t9 have
to be calibrated in the intervals described in Table 2. Most of these intervals are established
using the available data. The initial number of latent and infectious are also established to
determine an appropriate initial condition on 1 March 2020. According to the data, on 1
March there were five people in the hospital circuit and none at ICU or recovered.

To calibrate the model, we consider four different transmission rates β: (1) before the
lockdown; (2) after the lockdown; once the confinement has finished, (3) non-virulence
season and (4) virulence season. We also take into account that the basic reproductive
number of our model R0 = β/(ir + iu + ih) is consistent with real values as t goes on, time
t in days.

Our main source data (hospital’s data) collect the number of daily hospitalizations,
daily people in ICU, accumulated deaths and accumulated discharges in the hospitals of the
province of Granada from 1 March to 22 September 2020. These data allow us to determine
intervals of where to search the model parameter values during the calibration. In order to
obtain suitable numerical values of the model parameters, the 10 and 90 percentiles of the
stay time in each state of the hospital circuit (H, U, F, A, HU) are obtained and settled as
the calibration range where looking for the proper values of the parameters. The intervals
to determine the parameter values, those given by the hospital’s data and the others, can
be seen in Table 2 under the column Calibration range.

We also use the seroprevalence study [17,18], which determines the percentage of
accumulated infected people from the whole population. According to the prevalence
study of COVID-19 in Spain, carried out between May and June 2020, the accumulated
infected population in the province of Granada from the 27 April to 11 May is in the range
[1.7%, 4.4%], the range from 18 May to 1 June is [2.3%, 4.8%] and the range from 8 June to
22 June is [2.3%, 5.5%].
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Table 1. Summary of the known model parameters.

Parameter Transition Time Value

sq S −→ Q 16 March 700,000
31 March 150,000

qs Q −→ S 13 April 150,000
5 May to 21 June 8750

t3 I −→ R All simulation 14

Table 2. Summary of the model parameters to be calibrate and their calibration ranges. The calibration
ranges are obtained from the hospital’s data.

Parameter Transition Time Range Calibration Range

I(0) − 1 March 100–5000

L(0) − 1 March 100–5000

β S −→ L 1 March to 15 March 0.07–0.7
15 March to 4 May 0.03–0.4
virulence season 0.03–0.4

non-virulence season 0.03–0.4

t0 L −→ I All simulation 1–6

p1 I −→ H virulence season 0.01– 0.04
non-virulence season 0.01–0.04

t1 I −→ H All simulation 9–12

p2 I −→ U virulence season 0.001– 0.004
non-virulence season 0.001–0.004

t2 I −→ U All simulation 9–12

p4 H −→ U virulence season 0.000 –0.139
non-virulence season 0.000–0.119

t4 H −→ U virulence season 1–8.6
non-virulence season 3.2–13.6

p5 H −→ F virulence season 0.097–0.297
non-virulence season 0.018–0.218

t5 H −→ F virulence season 1–15
non-virulence season 1–15.2

t6 H −→ A virulence season 3–15
non-virulence season 4–29

p7 U −→ F virulence season 0.245–0.445
non-virulence season No deaths, p7 = 0

t7 U −→ F virulence season 1–23.3
non-virulence season -

t8 U −→ HU virulence season 6–36.2
non-virulence season 4.7–80.1

t9 HU −→ A virulence season 4–25
non-virulence season 2.7–18.9

The model calibration with uncertainty is carried out, applying the bootstrapping
technique described in [26]. This technique mainly consists of performing a deterministic
calibration using the optimization algorithm NS for PSO [27], to find a model parameter
value, in their corresponding calibration ranges in Table 2, in such a way that the model
output is as close as possible to the data of hospitalized at ward, ICU, deceases and
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discharges, and the model output for recovered are inside the prevalence confidence
interval provided by [17,18]. The closeness is measured using the following fitting function:

104 × d( R(t=11 May)
PT

, [1.7%, 4.4%])+

104 × d( R(t=1 Jun)
PT

, [2.3%, 4.8%])+

104 × d( R(t=22 Jun)
PT

, [2.3%, 5.5%])+

∑
22 Sep
t=1 Mar |H(t)− dHt|+ |U(t)− dUt|+ |A(t)− dAt|+ |F(t)− dFt|,

(2)

where

d(p, [a, b]) =
{

0 a ≤ p ≤ b,
min(|p− a|, |p− b|) otherwise,

measures the distance from a point to an interval, R(t), H(t), U(t), A(t), F(t) are the model
output corresponding to the number of recovered, hospitalized at ward, at ICU, discharges
and deaths, respectively, at the day t, and dHt, dUt, dAt, dFt are the data of hospitalized at
ward, at ICU, discharges and deaths, respectively, at the day t.

The first three terms of the fitting function (2) guarantee that the model prevalence fits
the data of the prevalence study [17,18]. The last term of (2) guarantees that the number
of hospitalized at ward, at ICU, discharges and deaths returned by the model are close to
their corresponding data.

Once the model is calibrated, we calculate the difference between the model output
and the data for each time instant (residuals). Then, we estimate a probability distribution
of the residuals. Thus, we sample 1000 times the residuals’ probability distribution, we
sum up the data generating 1000 sets of perturbed data, describing the data uncertainty.
Then, the model is deterministically calibrated, using NS for PSO, for the 1000 sets of
perturbed data. For all the model parameter values obtained we calculate the mean and
the percentiles 2.5 and 97.5 (95% confidence interval) describing the uncertainty of the
model parameters. For the model outputs, calculating the mean and the 95% confidence
intervals for each time instant, we obtain the 95% confidence bands of the evolution of the
subpopulations over time.

2.3. Vaccination

In Spain, the vaccinations started on 27 December 2020. On 23 February 2021, 3 million
doses have been administered and 1.2 million people have received the two doses [28].
In Granada, these figures correspond to an average of 526 people vaccinated every day from
the beginning of the vaccination campaign. The Spanish government expect to vaccinate
70% of people before the end of summer 2021 [29]. This implies an increase by six of the
number vaccinated daily.

In order to simulate the effect of the vaccine in the population of the Spanish region of
Granada, a new state has to be considered in the mathematical model:

• (V) vaccinated, when the individual is vaccinated and the vaccine is effective, protect-
ing the individual.

We suppose that only susceptible people are vaccinated. We assume that the vaccine
protects against the most dangerous symptoms of the COVID-19 and blocks the spread of
the disease. The transit from S to V is modeled by the term sv(t) and the transit from V to
S, it is modeled by the term vs(t). Both parameters describe the number of people who are
moving from one state to other, at time t.
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The system of difference equations, which includes the vaccination of the population
is shown in (3). In black, the new terms.

S(t + 1) = S(t) + qs(t)− sq(t)+vs(t)− sv(t)− β(t)S(t) I(t)
PT

,
Q(t + 1) = Q(t) + sq(t)− qs(t),
V(t + 1) = V(t) + sv(t)− vs(t),
L(t + 1) = L(t) + β(t)S(t) I(t)

PT
− liL(t),

I(t + 1) = I(t) + liL(t)− (ir(t) + ih(t) + iu(t))I(t),
H(t + 1) = H(t) + ih(t)I(t)− (hu(t) + h f (t) + ha(t))H(t),
U(t + 1) = U(t) + iu(t)I(t) + hu(t)H(t)− (u f (t) + uhu(t))U(t),
HU(t + 1) = HU(t) + uhu(t)U(t)− hua(t)HU(t),
A(t + 1) = A(t) + ha(t)H(t) + hua(t)HU(t),
F(t + 1) = F(t) + h f (t)H(t) + u f (t)U(t),
R(t + 1) = R(t) + ir(t)I(t).

(3)

Not every vaccinated person acquires protection against the disease. We consider
the vaccine’s effectiveness as the percentage of vaccinated people who acquire immunity.
The duration effect of the vaccine is also unknown, and we will assume a permanent
immunity for effective vaccinations, then vs(t) = 0 for all t. In [30], the authors say that the
vaccine’s effectiveness is 95%. However, in order to take into account possible mutations
that may affect the effectiveness, we will consider 75% vaccine effectiveness. Furthermore,
the first vaccination dose provides 33% effectiveness [31].

Here, we are going to perform three simulations. The simulations were carried out
on 10 March 2021. In the three, we vaccinate at the current pace, with 75% effectiveness,
from 27 December 2020 until 31 March. From 1 April,

(1) we keep vaccinating at the same pace and no new population restrictions are applied;
(2) the same as (1) applying stronger restrictions from 1 to 15 April;
(3) the same as (2) and the vaccination pace increases to fulfill 70% coverage the 31

August 2021.

3. Results
3.1. Calibration

For calibration with uncertainty, a bootstrapping technique [26] is applied. Technical
details can be seen in Appendix A. This way, we are able to capture and quantify the
uncertainty in the evolution of the disease. The results of the calibration are good enough
to represent the effects of the pandemic in Granada during the 1 March–22 September 2020
period (Figure 2).

The mean and confidence interval of all the obtained calibrated parameters are shown
in Table 3. The availability of reliable hospital data allows us to provide realistic intervals
to calibrate the model parameters and, once the model is calibrated, meaningful model
parameter values describing the transitions among states of the disease.

On 1 March 2020 (initial condition) the calibrated number of infectious is 1192, CI95%
1166–1226, (0.13%, CI95% 0.125%–0.133%) and latent 574, CI95% 559–589, (0.062%, CI95%
0.060%–0.064%). Data provided by the hospitals in the province of Granada, from 1 March
to 15 March, compared with the registry of the previous years, did not show an increase of
respiratory disease cases that could be attributable to COVID-19, which is in accordance
with our estimation of the low number of COVID-19 patients at the beginning of the
pandemic (1 March 2020). Later, the number of infected patients experienced a great
increase, which supports that the effective reproductive number R0 was initially very high,
(5.44, CI95% 5.34–5.61), value which is in accordance with Sanche et al. [32].
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Figure 2. Model calibration. (A) Number of daily hospitalized at ward people. (B) Number of daily
people in ICU. (C) Number of accumulated deceased people. (D) Number of accumulated discharged
people. (E) Number of accumulated recovered people. (F) Transmission rate β. The black bands are
the mean and the CI95%. The red points are the data from the hospitals. Vertical red lines in (E) show
the confidence intervals of the prevalence in Granada given by [17,18].
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Table 3. Summary of the calibrated model parameter values and their CI95%.

Parameter Transition Time Calibrated Value
Mean (2.5%CI–97.5%CI)

I(0) − 1 March 1192 (1166–1226)

L(0) − 1 March 574 (559–589)

β S −→ L 1 March to 15 March 0.391 (0.384–0.403)
15 March to 4 May 0.039 (0.036–0.043)
virulence season 0.125 (0.114–0.136)

non-virulence season 0.100 (0.094–0.104)

t0 L −→ I All simulation 3.8 (3.5-4.0) days

p1 I −→ H virulence season 0.027 (0.026–0.029)
non-virulence season 0.009 (0.006–0.013)

t1 I −→ H All simulation 11.5 (10.8–11.9) days

p2 I −→ U virulence season 0.00239
(0.00206–0.00278)

non-virulence season 0.00060
(0.00045–0.00075)

t2 I −→ U All simulation 10.5 (9.5–11.6) days

p4 H −→ U virulence season 0.019 (0.018–0.021)
non-virulence season 0.018 (0.017–0.020)

t4 H −→ U virulence season 4.3 (4.3–4.4) days
non-virulence season 8.3 (8.2–8.4) days

p5 H −→ F virulence season 0.136 (0.135–0.137)
non-virulence season 0.075 (0.071–0.084)

t5 H −→ F virulence season 8.6 ( 8.5–8.7) days
non-virulence season 7.5 (7.4–7.6) days

t6 H −→ A virulence season 13.6 (13.5–13.7) days
non-virulence season 13.2 (13.2–13.3) days

p7 U −→ F virulence season 0.248 (0.243–0.254)
non-virulence season 0

t7 U −→ F virulence season 13.7 (13.6–13.8 ) days
non-virulence season -

t8 U −→ HU virulence season 15.0 (14.8–15.1) days
non-virulence season 19.9 (19.3–20.6) days

t9 HU −→ A virulence season 13.7 (13.6–13.7) days
non-virulence season 11.0 (10.9-11.1) days

After the beginning of the lockdown declared by the Spanish government in 16 March,
the number of infected kept growing as a consequence of the contagions produced in
the previous weeks with high transmission rate β. Nevertheless, the basic reproductive
number R0 decreased to 0.55, CI95% 0.50–0.60, not only because of lockdown but also the
social distancing, the use of face-masks and other population measures, reducing the β, as
can be seen in Figure 2F.

During the non-virulence season after the lockdown is finished, May–August, the inci-
dence of the disease kept low, with a stabilization of the number of hospitalizations and
deaths. The R0 value was low, 1.40, CI95% 1.31–1.46, but it increases until slightly higher
values than at the beginning of the virulence season (R0 = 1.74, CI95% 1.59–1.89). This
can be observed with the increase of hospitalized and intensive care unit people, together
with the end of the stagnation in the number of deceased and discharged in September on
Figure 2 (leftmost part of the figure).
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Different calibrated model parameter values can be seen in Table 3 for virulence and
non-virulence seasons. More precisely, the percentage of infected people who needed
hospitalization (hospitalization at ward p1, or ICU treatment p2). During the virulence
season, about 2.7% of the infected people needed hospitalization, and 0.24% of the infected
people entered the ICU directly without passing through the hospitalization ward. Dur-
ing the non-virulence season, about 0.9% of the infected people need hospitalization at
ward, and 0.06% of the infected people enter the ICU directly without passing through the
hospitalization ward. Analogous differences can be seen in probability parameters p5 and
p7 where in the non-virulence season the probability to get worse is significantly lower.

Furthermore, in Figure 3, we can see the evolution of the infection fatality ratio (IFR),
that is, the proportion of infected people who die (accumulated). This is a measure of the
disease severity [33]. After April 2020, the IFR decreased until October, corresponding to
the non-virulence season.
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Figure 3. Infection Fatality Ratio (IFR). Evolution of the IFR over time in Granada. Observe that IFR
is decreasing in the non-virulence season (May–September).

3.2. Model Validation

In order to validate the calibration of the model, data from 23 September 2020 until
26 January 2021 have been collected with the aim of comparing the error between the
model evolution and the real data not used for calibration. The results can be seen in
Figure 4. The model 95% confidence bands capture most of the data after 23 September
(red vertical line) taking into account that this is the infectious disease most intervened in
history with interventions whose actual effect is unknown or contains a lot of uncertainty.
In fact, the model is able to predict the evolution of the second and the beginning of the
third wave.
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Figure 4. Model validation. (A) Number of daily hospitalized at ward people. (B) Number of daily
people in ICU. (C) Number of accumulated deceased people. (D) Number of accumulated discharged
people. The vertical red lines (23 September 2020) divide the calibration from the validation. The black
bands are the mean and the CI95% of the model outputs. The red points are the data collected from
the hospitals. The model captures most of the data red points after 23 September, predicting the
evolution of the second and the third wave.

3.3. Vaccination Simulation

Once the model has been calibrated and validated, we can simulate with reliability
possible scenarios for the future. In Figure 5 we can see the result of the simulation scenarios:
(1) the current situation does not change; (2) scenario (1) with stronger restrictions from
1–15 April; (3) scenario (2) and 70% of population is vaccinated at the end of Summer with
an effectiveness of 75%.

Figure 5 shows that the 3rd wave is finishing and the 4th wave will start soon because
at the beginning of March the restrictions have been relaxed. However, the peak of this
4th wave may be high if we are not careful satisfying the population measures (solid black
line in Figure 5). The application of strong restrictions again or the increase of the pace
of vaccination are the strategies to avoid a new high wave (dotted and dashed lines in
Figure 5) and quickly starts to decline the number of infected. Similar effects can be seen in
hospitalizations and ICU graphs. In Figure 5D, a stabilization in the deaths can be seen
around May.
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Figure 5. Average COVID-19 evolution in the three proposed scenarios with 70% of vaccine effective-
ness. Scenario 1, continuous line. Scenario 2, dotted line. Scenario 3, dashed line. (A) Number of
infected people. (B) Number of daily hospitalized at ward people. (C) Number of daily people in
ICU. (D) Number of accumulated deaths. (E) Number of recovered people. (F) Number of vaccinated
people. The wave in October 2021 in hospitalized and ICU appears because we are in the virulence
season and the probability to be hospitalized or at ICU increases and the time to enter decreases.

As we can see, in the three cases, when next May starts, we enter the non-virulence
season and the number of infected people declines. In the scenarios (1) and (2) where the
vaccination pace does not increase, the decline may have new waves for hospitalized at
ward and ICU next October. Although this wave is very low for infected, as we are in the
virulence season, the transition parameters to subpopulations H and U are significantly
higher, explaining why a very small wave in infected people produce noticeable waves in
hospitalized at ward and ICU. In the scenario (3) the decline is very fast, keeping it low
without new waves.

This general decline happens because the percentage of immunized people (recovered
+ vaccinated), appearing in the last row (% immunized) of each scenario in Table 4, is close
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or greater than the percentage of immunized people required for the herd immunity, given
by H = 100(1− 1/R0), rows H in Table 4.

It is noticeable that in September, starting the next virulence season, the percentage
of immunized people is high enough to avoid a new infected wave (see Figure 5) if we
are careful and we satisfy non-pharmaceutical measures as the use of face-masks, social
distancing, etc. Especial mention deserves the scenario 3, because on 1 September the
percentage of immunized people is so high that the return to normal life may be very likely.

Table 4. Comparison between the required percentage to reach the herd immunity (H) with the
percentage of immunized people the 1 May and the 1 September (% immunized). Observe that
the percentage of immunized people is very close to the required in Scenarios 1 and 2, and greater
in Scenario 3. This explains why, after 1 May, there is a decline in the number of infected, more
significant in scenario 3 where the vaccination pace increases.

Scenario 1

1 May 2021 1 September 2021

R0 1.40, (1.31–1.46) 1.74, (1.59–1.89)
H 28.47%, (23.66%–31.51%) 42.53%, (37.11%–47.09%)

Recovered 164, 902, (121916–212431) 223, 362, (168,933–275,884)
Vaccinated 77, 948 170, 135
Immunized 242, 850, (199,864–290,379) 393, 497, (339,068–446,019)

% immunized 26.35%, (21.69%–31.51%) 42.70%, (36.79%–48.40%)

Scenario 2

1 May 2021 1 Sep 2021

R0 1.40, (1.31–1.46) 1.74, (1.59–1.89)
H 28.47%, (23.66%–31.51%) 42.53%, (37.11%–47.09%)

Recovered 162738, (120,647–209,646) 204643, (154,719–253,861)
Vaccinated 77, 948 170, 135
Immunized 240, 685, (198,594–287,593) 374, 779, (324,855–423,997)

% immunized 26.12%, (21.55 %–31.21%) 40.67%, (35.25 %–46.01%)

Scenario 3

1 May 2021 1 Sep 2021

R0 1.40, (1.31–1.46) 1.74, (1.59–1.89)
H 28.47%, (23.66%–31.51%) 42.53%, (37.11%–47.09%)

Recovered 162737, (120,641–209,647) 185, 675, (138,932–235,429)
Vaccinated 113, 917 648, 532
Immunized 276, 654, (234,558–323,564) 834, 207, (787,464–883,961)

% immunized 30.02%, (25.45%–35.11%) 90.53%, (85.45%–95.93%)

Although these results seem to be optimistic, the social distancing, face-masks and
other non-pharmaceutical measures cannot be removed suddenly. Otherwise, the transmis-
sion rate increases, also R0, and a new outbreak (wave) may arise when virulence season
comes again, except, maybe, in scenario 3 where most of the people is immunized, mainly,
because the increase of the vaccinated pace.

The simulations shown in Figure 5 may help policy makers in hospitals and public
health to plan the use and distribution of resources to face the coming months.

4. Discussion

Explanatory mathematical models of infectious diseases are intended to allow to
predict the evolution of the disease considering a wide range of possible scenarios. They
should be able to estimate the healthcare demands that will have to be covered by hospitals
early enough as to implement management and operative adaptations regarding multiple
aspects, including the extension of ICU to other places that could be equipped and be used
for the management of the COVID-19 patients, as well as the reservation of out-of-hospital
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stays, such as hotels, for health personnel or even for patients with low severity who must
be lockdown in a controlled environment [34].

In this paper we propose a mathematical model to study the current transmission
dynamics of SARS-CoV-2. It is a SEIR model where the circuit of patients moving inside
the hospital dependencies, the particular features of the disease and the asymptomatic
infectious, a principal source of contagiousness [35], are considered, returning a more
precise portrait of the use of hospital resources, taking into account the uncertainty of the
phenomenon and the data. We tested the model using registered cases and population
data from the hospitals of the Spanish province of Granada that represent a size of near 1
million citizens. In this province, there is low density of population and there was a low
prevalence of COVID-19 on the spring 2020 outbreak. The model is able to predict the third
and the fourth wave of the pandemic.

A direct and permanent line of communication is important for the transmission of
data in real time between the heads of hospital centres and the teams in charge of analysing
the epidemiological evolution of the disease, especially through tools such as the one
presented in this paper. This will ensure the optimization of future predictions on the basis
of the augmentation of the knowledge database, contributing to face the fluctuations that
may appear in the transmission of the virus depending on variables that are not sufficiently
clarified at the moment.

One of the strong aspects of our model is that it is possible to calibrate and validate
from data collected and reported through an informative protocol agreed at the province
of Granada, which ensures homogeneity as well as prevents biases that may appear on the
count of each type of subject, consideration of infected by diagnostic, etc. Also, the model
has been fed regularly with new data to update the predictions.

Good planning supported by models like the one we propose permits better distri-
bution of the hospital resources, preparing a COVID-19 area without reducing the care
attention to patients with other diseases, preventing the collapse of the health services,
as happened last March-April 2020 and January-February 2021.

Our simulations show that we have to keep population measures and/or increase the
vaccination pace in order to control the pandemic and avoid new concerning outbreaks.
However, a decline in the number of infectious is expected to start in May without a
new increase in September when the virulence season arrives if we are able to maintain
population non-pharmaceutical measures as the use of face-masks, social distancing, etc.

The transmission capacity of the virus at the beginning of the pandemic was very
high, with R0 greater than 5. Numerous studies have stated the effectiveness of non-
pharmaceutical measures in reducing the transmission of respiratory virus [36–45]. Then,
R0 decreased significantly, reaching an average of 1.4 and making it possible to control the
pandemic by approaching to 1. The return to normal life as it was before the pandemics,
is not to be expected in the short term, because our simulations assume low transmission
rates due to the social distancing, face-masks, restricted schedules, curfew and other non-
pharmaceutical measures. However, we expect these non-pharmaceutical measures will be
relaxed as the immunized people increases. Nevertheless, if the rate of vaccination grows
sufficiently, it is possible that the return to normal life becomes very likely.

5. Conclusions

Mathematical models allow us to make predictions that may provide enough time
for the health systems to establish the appropriate measures to face outbreaks that could col-
lapse human and material resources. Moreover, future pharmaceutical and non-pharmaceutical
interventions, as well as aspects related to SARS-CoV-2 biology and behaviour, can be
represented through the model parameters to act as modulator of the transmission rate β
what provide the required flexibility to adapt the model throughout the time.

The modified SEIR model presented in this paper can be a useful tool for providing
insight into the transmission dynamics of SARS-CoV-2. It considers the circuit of patients
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moving inside the hospital dependencies, returning a more precise portrait of the use of
hospital resources to foresee future needs.

Once the model is calibrated and validated, three scenarios are simulated to evaluate
the evolution of COVID-19 in Granada. The simulations show that we are finishing the 3rd
wave but the 4th wave is around the corner reaching the peak in May 2021. In the worst
case, the 4th wave seems to be a bit lower than the previous ones.

In any case, a decline in the number of infected people is expected in all the simulated
scenarios, starting in May and maintained when we change to the virulence season next
September. This is possible if we keep lower transmission rates, and consequently low
R0, due to the social distancing and other non-pharmaceutical measures. That is, we will
not be out of danger yet. Nevertheless, we will be able to resume the life as we knew it
before the pandemic relaxing measures of social situation and face-masks in a gradual and
controlled way to avoid new outbreaks as the percentage of immunized people increases.

Limitations of the Model

The proposed model is a classical system of difference equations. For its building, we
assume usual hypotheses as the homogeneous mixing of the population (any individual
may infect any individual). No age groups are considered, and the hospitalization and
decease rate may vary depending on the age of the individuals. Also, we assume that all
lockdown people are susceptible, when latent, asymptomatic infectious and recovered may
also be in lockdown. Furthermore, mobility and other spatial aspects are not considered.

Furthermore, we assume that there is no re-infection or is not significant and the
vaccine blocks the transmission of COVID-19. Furthermore, we assume a permanent
protection for those who the vaccine is effective. If these hypotheses were eventually not
true, an increase in the number of cases could be seen next autumn.

Transitions from infected (I) or latent (L) to quarantine (Q) may be included in the
model as infected individuals that are quarantined after tested positive or via contact
tracing. However, it turns the model more complex as mentioned in [46,47] where the
authors say that in a standard ODE, to incorporate additional heterogeneities, as household
structure, requires a considerable degree of model complexity and large computational
expense. And, also, the transitions should be fed with data, not always available.

It is clear that the tests are being an important tool with the aim at controlling the
pandemics and quarantining the positive people. However, when a person is tested and
the test is positive, he/she may have been previously a period of time (unknown) infecting
others and it may reduce the global transmission rate. However, a high percentage of the
infections are due to the asymptomatic infected people, which percentage is still unknown
but it seems to be high (“the proportion of symptomatic cases is low, ranging from 13 to
18%” [48]) and their control may be reduced.

The not consideration of the above details in the model and others, may increase a bit
the transmission rate beta respect the real one and it may affect the estimation or R0 and
the periods where herd immunity is reached will be a bit later.

It is important to consider that the model must be particularized for each population,
either provincial or larger, since the transmission rate must respond to the effect of health
policy measures and the response of the population to the recommendations, such as
opening educational centers, social distancing, use of face-masks, adaptation of public and
private services to establish physical barriers that hinder the spread of the virus, etc.
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Appendix A

Taking into account the general procedure presented in [26], we study error terms for
the estimated parameters and resample these error terms using bootstrapping. Then, we
obtain new data by adding the resampled error to the output model. For each new data,
we estimate the parameters.

This is based on the bootstrapping method, more specifically in residual bootstrapping,
which is a commonly used and robust method, that can deal fitly dynamical systems, which
in turn often violate the standard assumptions for residuals of traditional methods such as
normality, independence, homoscedasticity and not autocorrelation.

To do this, we implement the following steps. First we calibrate the model to the data,
thus obtaining a first estimate of the parameters. Then, residuals are obtained from the
difference of the outputs of the model fitted to the data and the real ones. In Figure A1 we
can see the residuals for ICU (solid line).

Now, we apply the Pearson correlation coefficient in order to analyze the correlation
between the error terms. The results appear in Table A1. We reject the null hypothesis if
the p-value is less than α = 0.05.

Table A1. Pearson correlation coefficient and the corresponding p-values.

Coefficient p-Value Coefficient p-Value

ρ12 0.693 0 ρ23 0.019 0.782
ρ13 −0.213 0.00215 ρ24 −0.122 0.08
ρ14 −0.115 0.00769 ρ34 0.3164 0

We would like to comment about the correlation coefficient ρ12 = 0.693 in Table A1. It
denotes a moderate correlation, however, in order to simplify the analysis and assuming
the corresponding errors, we are going to ignore this moderate correlation.

In the next step, we check the assumptions for residuals of asymptotic methods by
computing a hypothesis test, where the purpose of it is whether the autocorrelation values
are significantly different from zero or not. In other words, this non-parametric test is
used to check the hypothesis that the elements of a sequence are mutually independent.
For that, we figure out the autocorrelation function values and their variances in the
residual terms for different lags k, according to the formulas in [26]. In all the cases (people
hospitalized at ward, people at ICU, discharged people and deceased people) there is
significant autocorrelation for lags k = 6, k = 9, k = 11 and k = 10, respectively.

Accordingly, the auto-dependency of residuals can be described using autoregressive
model (AR) for each residual term. Hence, we can estimate the underlying white noise by
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subtracting the autocorrelation from the errors. In Figure A1 (dashed line) we can see the
AR for ICU.
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Figure A1. Residuals of ICU. Solid line are the actual residuals and the dashed line is the
AR approximation.

In the following step, we assess the independence of the underlying white noise by
autocorrelation and normality test. With regard to the former, we implement the same
procedure as before and the test statistic is not significant for all lags in the four cases.
This means that there is no significant autocorrelation in the underlying noise, that is,
independence. Regarding the normality test, Kolmogorov-Smirnov test is used to make
a determination as to whether the distribution of underlying white noise matches the
characteristics of a normal distribution. In all cases, the underlying error terms are not
normally distributed. This fact is reflected in the Figure A2.

In the next step we resample this white noise using a nonparametric bootstrapping,
since it is not normally distributed, to obtain new residual values for each time instant.
In this technique, each new set of residuals is generated by resampling randomly, with re-
placement, from the original white noise dataset. In total, we use 1000 bootstraps. These
sets are added to the data, thereby creating 1000 new data sets. Then, new model param-
eter values are obtained by calibrating the model to each one of the 1000 new data sets.
At the end of the process, we have 1000 estimates for the parameters, which can be used to
construct the empirical distribution.
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Figure A2. White noise histogram of AR model for ICU residual terms.
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