	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19	
	Article No. : 537	□ LE	TYPESET	
\sim	MS Code : QUQU-D-17-00222	CP	🖌 DISK	
Qual Quant DOI 10.1007/s11135	-017-0537-0		Cre	ossMark

2

- A mixed-mode sensitive research on cannabis use 3
- and sexual addiction: improving self-reporting by means 4
- of indirect questioning techniques 5
- Pier Francesco Perri¹ · Beatriz Cobo Rodríguez² · 6
- María del Mar Rueda García² 7
- 8 9 © Springer Science+Business Media B.V. 2017

10 Abstract In this article, we describe the methods employed and the results obtained from a

11 mixed-mode "sensitive research" conducted in Spain to estimate certain aspects concerning patterns of cannabis consumption and sexual addiction among university students.

12

13 Three different data-collection methods are considered and compared: direct questioning, 14 randomized response technique and item sum technique. It is shown that posing direct

15 questions to obtain sensitive data produces significantly lower estimates of the surveyed

16 characteristics than do indirect questioning methods. From the analysis, it emerges that

17 male students seem to be more affected by sex addiction than female students while for

- 18 cannabis consumption there is no evidence of a predominant gender effect.
- 19 Keywords Bar-Lev et al. (2004) method · Item sum technique ·
- 20 Mixed-mode surveys · Privacy protection
- 21
- 22

	A2 A3	Pier Francesco Perri pierfrancesco.perri@unical.it; http://www.ecostat.unical.it/perri/
A4	A5	Beatriz Cobo Rodríguez beacr@ugr.es
A6	A7	María del Mar Rueda García mrueda@ugr.es
A8	1 A9	Department of Economics, Statistics and Finance, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
410 A	2 A11	Department of Statistics and Operational Research, University of Granada, Campus Fuentenueva S/N, 18071 Granada, Spain

	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	□ LE	□ TYPESET
\sim	MS Code : QUQU-D-17-00222	CP	🖌 DISK

24 1 Introduction

25 Nowadays, large-scale surveys of human population delve increasingly into sensitive topics, which notoriously produce dishonest or misleading answers, and these, in turn, 26 27 generate a well-known source of bias in survey, called social desirability bias, i.e. the 28 tendency to present oneself in a positive light. Survey participants exhibit this bias when 29 they overreport socially acceptable attitudes which conform to social norms (e.g., giving to 30 charity, believing in God, church attendance, voting, healthy eating, doing voluntary work) 31 and underreport socially disapproved, undesirable behaviours which deviate from social 32 rules (e.g., xenophobia, anti-Semitism, gambling, consumption of alcohol, abortion, 33 smoking among teens and by pregnant women, drug legalization). This type of bias generally produces an over/underestimation of the behaviour under study which may lead 34 35 to inconsistent analyses and erroneous conclusions. Sometimes respondents may be 36 reluctant to answer questions that do not specifically pertain to social desirability attitudes, 37 for example concerning *taboo* topics which appear intrusive in some way of respondents' 38 private sphere. Questions about income, sexual practices, domestic violence, stalking, 39 political parties, religion and so on fall into this category and risk offending respondents 40 regardless of their true status on the matter. Other questions may instead provoke concerns 41 about the threat of disclosure, i.e., fears about the negative consequences that might occur 42 to the respondents if confidential data collected by the researcher were released to third 43 parties not directly involved in the survey, even if the protection of confidentiality and data 44 nondisclosure were guaranteed. Questions falling in this case concern, for instance, illegal 45 drug use and pushing, tax dodging, sexual abuses, and non-compliance with rules and 46 regulations.

Doing "sensitive research" (see, e.g., Liamputtong 2007; Tourangeau and Yan 2007; 47 48 Dickson-Swift et al. 2008) on stigmatizing, highly personal, embarrassing, threatening or 49 even incriminating issues - especially by direct questioning (DQ) modes - is not an easy 50 matter since it is likely to meet with three sources of errors: (1) refusal to cooperate (unit-51 non-response); (2) refusal to answer specific questions (item-non-response); (3) untruthful 52 answers (measurement error). Refusal to answer and false information constitute non-53 sampling errors that are difficult to deal with and can seriously flaw the quality of the data, 54 thus jeopardizing the usefulness of subsequent analyses, including the statistical inference 55 on unknown characteristics of the population under study. Although these errors cannot be 56 totally avoided, they may be mitigated by increasing respondents' cooperation, carefully 57 considering key points such as the modes in which the survey is administered, the presence 58 of the interviewer, whether it is the interviewer who poses the questions, the format of the 59 questionnaire, the wording and the placing of the sensitive items in the questionnaire, the 60 data-collection setting, the presence of other people and, above all, strongly assuring about 61 anonymity and confidentiality (on this, see, e.g., Tourangeau and Smith 1996; Groves et al. 62 2004).

63 Since the decision to cooperate honestly greatly depends on how survey participants 64 perceive the possibility of their privacy being infringed, survey modes which ensure 65 respondents' anonymity or, at least, a high degree of confidentiality, may go some way to 66 improving cooperation and, consequently, to obtaining more reliable information on sen-67 sitive topics than can be gathered with DQ. In order to increase respondents' cooperation, 68 many different strategies have been developed. One possibility for improving reporting on 69 sensitive topics is to limit the influence of the interviewer in the question and answer 70 process, as the presence of the interviewer tends to increase socially desirability effects. 71 This goal is traditionally pursued by means of self-administered questionnaires (SAQs)

• •	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537		TYPESET
\$	MS Code : QUQU-D-17-00222	CP	DISK

with paper and pencil, the interactive voice response (IVR) technique, computer-assisted
 telephone interviewing (CATI), computer-assisted self interviewing (CASI), audio computer-assisted self interviewing (ACASI) or by computer-assisted Web interviewing
 (CAWI).

76 Alternatively, since the 1960s a variety of questioning methods have been devised to ensure respondents' anonymity and to reduce the incidence of evasive answers and the 77 over/underreporting of socially undesirable acts. These methods are generally known as 78 indirect questioning techniques (IQTs; for a review see Chaudhuri and Christofides 2013) 79 and they obey the principle that no direct question is posed to survey participants. 80 81 Therefore, there is no need for respondents to openly reveal whether they have actually 82 engaged in activities or present attitudes that are socially sensitive. Their privacy is protected because the responses remain confidential to the respondents and, consequently, 83 84 their true status remains uncertain and undisclosed to both the interviewer and the 85 researcher. Nonetheless, although the individual information, provided by the respondents according to the rules prescribed by the adopted IQT, cannot be used to discover their true 86 status regarding the sensitive issues, the information gathered for all the survey participants 87 can be profitably employed to draw inferences on certain parameters of interest for the 88 89 study population, including the prevalence of a sensitive behaviour pattern, its frequency, the mean of a sensitive quantitative variable, the level of sensitivity of a question and so 90 91 on.

92 The IQTs comprise various strategies for eliciting sensitive information, which mainly encompass these approaches: the randomized response (RR) technique (RRT), the item 93 94 count technique (ICT) and the nonrandomized response technique (NRRT). In terms of the 95 volume of research conducted in this field since Warner's (1965) pioneering work on 96 indirect questioning, the RRT maintains a prominent position among IQTs. Fundamentally, the RRT employs (at least in its original formulation) a physical randomization device 97 98 (decks of cards, coloured numbered balls, dice, coins, spinners, random number generators, 99 etc.) which determines whether respondents should answer the sensitive question or 100 another, neutral one or even provide a pre-specified response (e.g., "yes") irrespective of 101 their true status concerning the sensitive behaviour. The randomization device generates a probabilistic relation between the sensitive question and the answer given, which is used to 102 draw inferences on unknown parameters of interest. The rationale of the RRT is that the 103 respondents are less inhibited when the confidentiality of their responses is guaranteed. 104 105 This goal is achieved because all responses are given according to the outcome of the randomization procedure, which is unknown to both the interviewer and the researcher 106 107 and, hence, respondents' privacy is preserved.

Similar protection is assured by the ICT (Miller 1984). Without loss of generality, by using this approach, the respondents receive a list of sensitive and innocuous items and are asked to report the total number of items that apply to them without revealing which item applies individually.

Finally, in the NRRT, no physical device is adopted, and neither are respondents asked to conduct a randomizing procedure (Tian and Tang 2014). Instead, the respondents answer according to their true beliefs regarding the sensitive question and to one or more nonsensitive variables.

In this article, we discuss the use of two IQTs in order to analyze some patterns of drug use and sexual behaviour which, traditionally, represent sensitive research fields that are difficult to investigate empirically. In recent years, although the IQTs have grown in popularity as effective methods for investigating the two issues, and various surveys have been conducted to measure the prevalence of drug use and sexual behaviour, very few

 Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
Article No. : 537	□ LE	□ TYPESET
MS Code : QUQU-D-17-00222	CP	🖌 DISK

121 studies have focused on estimating the characteristics of quantitative variables related to 122 these topics. Therefore, we focus on the use of the RRT and the ICT in a real study 123 conducted in Spain to investigate the frequency of certain sensitive phenomena concerning 124 drug addiction and sexual behaviour among university students. In particular, given the 125 quantitative nature of the variables surveyed, we use *ad hoc* procedures, termed the 126 scrambling response method by Bar-Lev et al. (2004) and the recent variant of the ICT, 127 termed the item sum technique (IST), proposed by Chaudhuri and Christofides (2013) and first employed by Trappmann et al. (2014) in a CATI survey. To the best of our knowl-128 129 edge, this is the first time that these two IQTs have been simultaneously employed to 130 investigate cannabis consumption and sexual addiction, and both compared with the DQ 131 method.

The motivating idea of the article is to compare the estimates obtained through DQ with those stemming from the above-described IQTs. The results of this study clearly show that DQ produces underreporting of the incidence of sensitive phenomena while the IQTs procure significantly larger estimates of the characteristics of interest, and at the same time enhance respondents' confidentiality and, thus, reduce nonresponse rates.

137 The article is also inspired by some considerations and suggestions given in Trappmann 138 et al. (2014) who state (p. 68): "Survey researchers aiming at measuring sensitive 139 behaviors at a quantitative scale could therefore benefit from using the IST. Nonetheless, 140 our study can only be regarded as a first step in the development and evaluation of the new 141 technique". The present paper is a step in this direction, providing empirical evidence of the effectiveness of the IST. The authors also affirm (p. 68): "Although RRT schemes 142 143 tailored to quantitative sensitive characteristics have been proposed in the literature [...] 144 there is little evidence on how these techniques perform in practice". Our contribution 145 seeks to fill this gap, describing the practical implementation of the RRT for quantitative 146 sensitive characteristics, making use of a smartphone mobile application, and evaluating 147 the performance of the RRT and the estimates obtained.

148 The rest of the article is organized as follows. In Sect. 2, we introduce and discuss some 149 issues related to cannabis consumption and sexual behaviour. Section 3 describes, in a 150 general setting, the Bar-Lev et al. (2004) procedure (Sect. 3.1) and the IST (Sect. 3.2) used 151 in the study. Section 4 is devoted exclusively to the description of our research. In particular, Sect. 4.1 outlines the main features and the fieldwork conducted in the survey, 152 153 while Sect. 4.2 comments the results obtained for the sensitive characteristics investigated. 154 In Sect. 5, we acknowledge a recent contribution concerning optimal sample size alloca-155 tion in IST surveys, and investigate the improvement upon the efficiency of the estimates

156 through a simulation study. Section 6 concludes the article with some final considerations.

157 2 Measuring cannabis use and sexual behaviour

158 Illicit drugs use damages the health and well-being of millions people. Cardiovascular 159 disease, stroke, cancer, HIV, hepatitis, respiratory diseases, neurological/mental or emo-160 tional disorders (agitation, aggression, psychosis and anxiety) can all be provoked or 161 aggravated by drug use. Moreover, drugs have a severe impact in terms of social costs.

Estimating the prevalence of illicit drug use is a major concern for health and social operators, government agencies and policymakers seeking to evaluate the social and economic impact of illicit substances. Accurate data in this respect are needed to plan public intervention programmes, to promote drug prevention campaigns and to gauge

	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537		□ TYPESET
\$	MS Code : QUQU-D-17-00222	Г СР	DISK

progress towards improving the behavioural health of the population and towards reducinginjurious effects and social costs.

Cannabis (or marijuana), the crude drug derived from *Cannabis Sativa L*. pistillate inflorescence, is the most widely-consumed illicit drug in the world, especially among young people. Although young males have historically had a higher prevalence of cannabis use, current results indicate that male-female differences in cannabis use are decreasing (Johnson et al. 2015).

173 Cannabis is often used for its mental and physical effects, such as heightened mood and 174 relaxation, and it has been cited in the medical literature as a potential secondary treatment 175 agent for severe pain, muscle spasticity, anorexia, nausea, sleep disturbance and numerous 176 other conditions (Lamarine 2012). As with the majority of drugs, cannabis causes neu-177 rological effects both in the short term (alerted senses, changes in mood, insomnia, 178 impaired body movement, difficulty in thinking and problem-solving, impaired memory) 179 and in the long term (reduced cognitive, memory and learning functions). In addition, it 180 may provoke mental consequences such as hallucinations, paranoia and schizophrenia.

181 There exists an enormous volume of government reports, medical and sociological 182 research articles and data from various sources on the spread of cannabis, its determinants and 183 effects. According to the latest data published by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA 2016) over 88 million adults, or just over a quarter of the EU 184 185 population aged 15-64, are estimated to have tried illicit drugs at some point in their lives. 186 Across all age groups, cannabis is the illicit drug most likely to be used. An estimated 16.6 187 million young Europeans aged 15-34 (13.3% of this age group) used cannabis in the last year 188 before the survey, with 9.6 million of these aged 15-24 (16.4% of this age group). Cannabis 189 accounts for the majority of illicit drug use among school-aged children.

Table 1 shows some data for Spain referred to year 2013. On average, 17% of young adults (23.6% of males and 10.3% of females) consumed cannabis at some time during the 12 months preceding the survey and, among all individuals aged 15–64, the estimated prevalence of those who have consumed cannabis at least once in their lifetime is nearly 30.4%. The use of cannabis is more prevalent among males than females.

	Use		
	Lifetime	Last year	Last month
All adults (15–64)			
Total	30.4	9.2	6.6
Males	37.9	12.9	9.8
Females	22.7	5.4	3.4
Young adults (15-34)			
Total	40.2	17.0	12.2
Males	47.8	23.6	17.7
Females	32.3	10.3	6.6
Young (15-24)			
Total	38.0	21.0	14.7
Males	43.9	27.2	20.1
Females	31.7	14.5	9.1

 Table 1 Prevalence (in percentage) of cannabis consumption among the Spanish population. Source:

 EMCDDA (2016)

	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	□ LE	□ TYPESET
\sim	MS Code : QUQU-D-17-00222	🖌 СР	🖌 DISK
			D IDIT

P. F. Perri et al.

195 Levels and patterns of illicit drug use, their determinants, related behaviour and atti-196 tudes are traditionally measured through self-reporting methods of investigation. However, 197 drug addiction is a sensitive topic that produces desirability bias and threat of disclosure, 198 which can seriously flaw the validity of the results obtained by such methods. For this reason, the soundness of self-reported data has long been questioned (see, e.g., Harrison 199 200 and Hughes 1997) and assessed by urine, blood or hair analyses. Although less intrusive survey methods, such as CATI, ACASI and CAWI, have also been used, in a bid to 201 202 increase confidentiality, the results obtained continue to present errors, mostly due to 203 misreporting. For instance, some studies show that individuals under criminal justice 204 supervision are loath to report drug use on confidential and anonymous surveys, and others 205 have observed that a non-negligible percentage of individuals who test positive for drugs by urinalyses deny having used drugs. Underreporting of drug consumption is therefore 206 207 both evident and determined by threat of disclosure. Hence the need for alternative, 208 indirect questioning methods to address the problem. In this respect, the RRT and its 209 variants are increasingly employed in real-life studies of the use of drug, athletic and 210 cognitive performance-enhancing substances. For instance, Kerkvliet (1994) used randomized response data in a logistic regression model, in which the academic performance 211 212 of university students, their personal habits and socioeconomic characteristics were 213 incorporated to estimate a logit model capable of predicting whether or not the students 214 had consumed cocaine. Weissman et al. (1986) examined whether telephone interviewing 215 could be a viable alternative to field interviewing as a method for eliciting drug use 216 information. In this study, a variant of Warner's (1965) RR model was employed, and the 217 telephone responses obtained with the RRT were compared with those obtained through 218 DQ. Pitsch et al. (2007) used the RRT to examine whether the use of performance-assisting 219 doping was prevalent in certain professional sports. Striegel et al. (2010) estimated the 220 prevalence of doping and illicit drug abuse among athletes. In this study, the subjects were 221 either asked to complete an anonymous standardized questionnaire or were interviewed 222 using the RRT. According to this analysis, doping tests produced 0.81% positive test 223 results, but the RRT showed that the prevalence was 6.8%. In another study, Dietz et al. 224 (2013) reported that 20% of students used drugs in order to improve their cognitive performance. The authors concluded that the RRT revealed a high 12-month prevalence of 225 226 cognitive-enhancing drug use by university students and suggested that other direct survey 227 techniques might underestimate the use of these drugs, a fact which should be taken into 228 consideration in the development of drug prevention programmes. Other studies related to 229 the use of IQTs for investigating illicit drug consumption include Goodstadt and Gruson 230 (1975), Simon et al. (2006), Stubbe et al. (2013) and Shamsipour et al. (2014).

231 The transition from childhood to adulthood normally marks the beginning of sexual 232 behaviour. In this stage of life, important behavioural patterns are formed and may become 233 lifelong. Improper sexual behaviours, too, often begin at this stage of life. In some countries, rapid economic and social changes have strongly contributed to modifying 234 235 sexual culture, leading to more frequent and different forms of sexual violence (Aggleton 236 et al. 2006) and unconventional sexual behaviour (exhibitionism, voyeurism, masturbation, 237 pornography, cybersex, commercial sex involvement, swapping partners, anonymous or 238 group sex, etc.). In the spectrum of problematic sexual behaviour, the impact of sexual 239 addiction has increased notably in recent years and, for the serious psychological and social 240 problems that it poses to sex addicts, has attracted the attention of mental health practi-241 tioners which are engaged in the assessment, diagnosis and clinical treatment of this mental disorder. Sex addiction is a chronic, relapsing disorder in which repeated, compulsive 242 243 sexual stimulation persists despite serious negative consequences. Sexual arousal induces

• •	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	□ LE	TYPESET
\$	MS Code : QUQU-D-17-00222	CP	V DISK

244 pleasant states (euphoria in the initial phase) and relieves stress. On the other hand, it can 245 lead to dependence, craving and relapse. In the nervous system, sexual addiction produces 246 the same effects as cocaine, amphetamines and compulsive gambling and is dangerous in 247 the same way as is heroin (Levine 2010). Moreover it often coexists with substance 248 addiction (alcohol, drugs, etc.). Studies of the prevalence of sex addiction have reported 249 questionable results, partly due to the use of imprecise subjective methods to estimate 250 behaviour patterns, or in other cases to the use of (unreliable) self-reported survey data. To 251 the best of our knowledge, very few studies have discussed the use of IQTs in the 252 investigation of sexual behaviour. Among these few are LaBrie and Earleywine (2000) and 253 Walsh and Braithwaite (2008) who used IQTs to investigate risky sexual activity. Miner 254 (2008) explored the use of the RRT for estimating the mean number of sexual offences 255 taking place and found that RRT estimates were significantly higher than the official 256 figures (2.20 vs. 0.51). The use of the RR estimates was, therefore, recommended, rather 257 than data from official records, in order to evaluate sex offender treatment interventions. 258 Krebs et al. (2011) applied the ICT to measure the prevalence of sexual assaults. Jong et al. 259 (2012), incorporating different RR methods, examined permissive sexual attitudes and 260 risky sexual behaviour among samples of adults from different countries, including Spain. 261 Geng et al. (2016), employing different RR methods for quantitative and qualitative 262 variables, investigated the behavioural risk profile of men who had homosexual relations. 263 This research focused on estimating the mean number of male sex partners, the mean age at 264 first homosexual encounter and the prevalence of condom use. Srivastava et al. (2015) 265 discussed the use of a multi-proportion RR method to assess the extent of sexual abuse 266 among children.

267 3 Methodological aspects: indirect questioning techniques

268 In this section, we describe the methodological aspects of the data-collection techniques 269 we used in our study to investigate cannabis consumption and sexual addiction. In par-270 ticular, we illustrate the RR method proposed by Bar-Lev et al. (2004; hereafter BarLev) to 271 scramble the responses for sensitive quantitative variables, and the IST. Our analysis is 272 conducted under a generic sampling design in order to provide the methodological 273 framework for obtaining estimates and variance estimation for a wide class of survey 274 designs. It is assumed that the reader is familiar with basic sampling elements (see, e.g., 275 Cochran 1977).

276 Without loss of generality, let $U = \{1, ..., N\}$ be a finite population consisting of 277 N different and identifiable units. Let y_i be the value of the sensitive variable under study, 278 namely \mathcal{Y} , for the *i*th population unit. Suppose that \mathcal{Y} is quantitative and its population mean, $\bar{Y} = N^{-1} \sum_{i \in U} y_i$, is unknown and must be estimated on the basis of a sample s of 279 280 fixed size *n* selected from *U* according to a generic sampling design $p(\cdot)$ which admits positive first- and second-order inclusion probabilities, $\pi_i = \sum_{s \ni i} p(s)$ and $\pi_{ij} = \sum_{s \ni i,j} p(s)$ 281 with $i, j \in U$. For the sake of notation, let $d_i = \pi_i^{-1}$, $\check{y}_i = d_i y_i$, $\Delta_{ij} = \pi_{ij} - \pi_i \pi_j^{-1}$ and 282 $\check{\Delta}_{ii} = \Delta_{ii}/\pi_{ii}$. Under a DQ survey mode, let $\hat{\vec{Y}}_{HT}$ denote the well-known Horvitz-Thompson 283 284 estimator (hereafter HT-estimator; Horvitz and Thompson 1952) of \overline{Y}

• •	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	□ LE	TYPESET
5	MS Code : QUQU-D-17-00222	Г СР	🖌 DISK

P. F. Perri et al.

$$\widehat{\bar{Y}}_{\rm HT} = \frac{1}{N} \sum_{i \in s} \check{y}_i.$$
⁽¹⁾

286 The estimator is unbiased and has variance

$$\mathbb{V}(\widehat{\bar{Y}}_{\mathrm{HT}}) = \frac{1}{N^2} \sum_{i \in U} \sum_{j \in U} \Delta_{ij} \check{y}_i \check{y}_j,$$

288 which can be unbiasedly estimated by

$$\widehat{\mathbb{V}}(\widehat{\bar{Y}}_{\mathrm{HT}}) = \frac{1}{N^2} \sum_{i \in s} \sum_{j \in s} \check{\Delta}_{ij} \check{y}_i \check{y}_j.$$
⁽²⁾

290

291 **3.1 The BarLev model**

Let us consider a generic RR model which induces a scrambled response z_i and, hence, a revised randomized response r_i which is an unbiased estimation of y_i , $\mathbb{E}_{R}(r_i) = y_i$, $\forall i \in s$ (see Chaudhuri and Christofides 2013). Then, in this RR framework, the HT-estimator for

295 the \overline{Y} takes the form

$$\widehat{\bar{Y}}_{\text{RRT}} = \frac{1}{N} \sum_{i \in s} \check{r}_i, \tag{3}$$

297 with variance

$$\mathbb{V}(\widehat{\bar{Y}}_{\mathsf{RRT}}) = \frac{1}{N^2} \sum_{i \in U} d_i \mathbb{V}_{\mathsf{R}}(r_i) + \mathbb{V}(\widehat{\bar{Y}}_{\mathsf{HT}}),$$

where $\check{r}_i = d_i r_i$ while $\mathbb{V}_{\mathbb{R}}(r_i)$ denotes the variance of r_i induced by the specific randomization mechanism adopted to mask the true value y_i . The variance of $\hat{\overline{Y}}_{\mathbb{R}\mathbb{R}\mathbb{T}}$ is unknown and can be unbiasedly estimated by

$$\widehat{\mathbb{V}}(\widehat{\bar{Y}}_{\mathrm{RRT}}) = \frac{1}{N^2} \left(\sum_{i \in s} d_i \widehat{\nu}_{\mathrm{R}}(r_i) + \sum_{i \in s} \sum_{j \in s} \check{\Delta}_{ij} \check{r}_i \check{r}_j \right),\tag{4}$$

where $\hat{v}_{R}(r_{i})$ denotes the estimated variance of r_{i} which becomes explicit only after the RR mechanism is chosen.

In order to introduce the BarLev method, let S denote an innocuous quantitative variable unrelated to \mathcal{Y} and assume that its distribution, mean μ_s and variance σ_s^2 are all known. The BarLev procedure works as follows: with probability q the *i*th respondent is asked to release the true value of the sensitive variable y_i , whereas with probability 1 - qhe or she is asked to generate a number s_i from S and multiply it by y_i . Hence, the observed randomized response for the *i*th respondent will be

$$z_i = \begin{cases} y_i & \text{with probability } q \\ y_i s_i & \text{with probability } 1 - q \end{cases}$$

Here, q denotes a *design parameter* which is controlled by the researcher. Consequently, the revised response r_i under the BarLev method easily follows as

•	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	🗆 LE	TYPESET
S	MS Code : QUQU-D-17-00222	СР	🔽 DISK

$$r_i = \frac{z_i}{q + (1 - q)\mu_s},$$

315 and the expression of $\overline{\hat{Y}}_{RRT}$ is determined accordingly.

316 It is straightforward to prove that r_i is a RR-unbiased estimator of y_i , while simple 317 algebra yields the expression of its variance

$$\mathbb{V}_{\text{RRT}}(r_i) = \frac{(1-q)[q(1-\mu_s^2)+\sigma_s^2]}{[q+(1-q)\mu_s]^2}y_i^2,$$

319 which is estimated by

$$\widehat{\mathbb{V}}_{\text{RRT}}(r_i) = \frac{(1-q)[q(1-\mu_s^2) + \sigma_s^2]}{\left[q + (1-q)\mu_s\right]^2} r_i^2.$$

321 Hence, the estimated variance of the BarLev estimator easily follows.

We note that computing $\widehat{\mathbb{V}}(\widehat{\overline{Y}}_{HT})$ and $\widehat{\mathbb{V}}(\widehat{\overline{Y}}_{RRT})$ requires knowledge of the second-order inclusion probabilities for each pair of sampled units. In a complex sampling design, variance estimation may be an hard matter to deal with that, however, can be achieved by using resampling procedures like bootstrap or jackknife (see, e.g., Wolter 2007). Resampling methods for BarLev variance estimation have been recently implemented in the R package RRTCS by Cobo et al. (2015).

328 **3.2** The item sum technique

329 The IST is a variant of the well-known and widely used ICT, which was proposed by 330 Chaudhuri and Christofides (2013) to deal with quantitative sensitive variables. Due to its 331 very recent introduction, this technique for conducting sensitive research is as yet little 332 known among survey practitioners. Up to now, to the best of our knowledge, only 333 Trappmann et al. (2014) used the technique to estimate the amount of undeclared work 334 performed in Germany. Surely, it is the first time in the literature that the procedure is 335 employed to investigate cannabis consumption and sexual addiction and compared with 336 another indirect questioning method.

337 The IST, like the ICT, requires the selection of two independent samples. Therefore, 338 with the same notation discussed above, let s_1 and s_2 be two samples of size n_1 and n_2 , 339 respectively, selected from U according to the sampling design $p(\cdot)$. Without loss of 340 generality, assume that units belonging to s_1 are given a questionnaire with a long list (LL) 341 of items containing G + 1 questions of which G refer to nonsensitive characteristics and 342 one pertains to the sensitive variable \mathcal{Y} under investigation. The units sampled in s_2 are 343 provided with a short list (SL) of items containing only the G innocuous questions present 344 in the LL-sample. All the items refer to quantitative variables, possibly measured on the 345 same scale as the sensitive one. The units in both samples are requested to report the total 346 score of their answers to all the questions in their list without revealing the individual score 347 for each question.

Let \mathcal{T} be the variable denoting the total score applicable to the *G* nonsensitive questions, and $\mathcal{Z} = \mathcal{Y} + \mathcal{T}$ be the total score applicable to the nonsensitive questions and the sensitive question. Hence, the answer of the *i*th respondent will be

	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	□ LE	TYPESET
\$	MS Code : QUQU-D-17-00222	CP	🔽 DISK

P. F. Perri et al.

$$z_i = \begin{cases} y_i + t_i & \text{if } i \in s_1 \\ t_i & \text{if } i \in s_2. \end{cases}$$

Under the design $p(\cdot)$, let $\hat{\overline{Z}}_{HT}$ and $\hat{\overline{T}}_{HT}$ be the HT-estimators of $\overline{Z} = N^{-1} \sum_{i \in U} (y_i + t_i)$ and $\overline{T} = N^{-1} \sum_{i \in U} t_i$, respectively. Hence, a HT-type estimator of \overline{Y} under the IST can be easily obtained as

$$\hat{\bar{Y}}_{\rm IST} = \hat{\bar{Z}}_{\rm HT} - \hat{\bar{T}}_{\rm HT}.$$
(5)

From the unbiasedness of \hat{Z}_{HT} and \hat{T}_{HT} , it readily follows that the estimator \hat{Y}_{IST} is unbiased for \bar{Y} . The variance of \hat{Y}_{IST} , as long as the two samples s_1 and s_2 are independent, can be expressed as

$$\mathbb{V}(\widehat{\bar{Y}}_{\text{IST}}) = \frac{1}{N^2} \left(\sum_{i \in U} \sum_{j \in U} \Delta_{ij} \check{z}_i \check{z}_j + \sum_{i \in U} \sum_{j \in U} \Delta_{ij} \check{t}_i \check{t}_j \right)$$
(6)

360 and unbiasedly estimated by

$$\widehat{\mathbb{V}}(\widehat{\bar{Y}}_{\mathrm{IST}}) = \frac{1}{N^2} \left(\sum_{i \in s_1} \sum_{j \in s_1} \check{\Delta}_{ij} \check{z}_i \check{z}_j + \sum_{i \in s_2} \sum_{j \in s_2} \check{\Delta}_{ij} \check{t}_i \check{t}_j \right),\tag{7}$$

362 where the meaning of \check{z}_{\perp} and \check{t}_{\perp} is clear.

363 4 Estimating patterns of cannabis consumption and sexual addiction: 364 some evidence from a real study

365 In this section, we describe the results obtained and the salient aspects of a mixed-mode 366 survey conducted in two Spanish universities to investigate patterns of cannabis con-367 sumption and sexual addiction. In particular, we aim to evaluate the effectiveness of the 368 above-described IOTs in comparison with the DO survey mode. It should be noted that 369 these two topics have different degrees of sensitivity. While the use of cannabis is widely 370 accepted nowadays and is commonly experienced by younger people, unconventional 371 sexual behaviour is much more sensitive and continues to represent a taboo for young 372 people.

373 **4.1 The survey design**

The survey was carried out at the universities of Granada and Murcia during the academic year 2015/2016. The data-collection and the fieldwork were performed by the FQM356 research group as part of the Andalusian Research Plan, University of Granada.

A stratified sample of 2398 students enrolled in different faculties were selected such
 that degree programs and year of degree were represented in proportion to their total
 numbers of students.

380 Moving from Trappmann et al. (2014), and from some budget, time and fieldwork 381 constraints, we firstly decided to recruit 500 students by the DQ method and then to 382 oversize the samples of students to assign to the BarLev and the IST survey modes due to 383 the lower statistical power of the two IQTs. In particular, the size of the sample to be

•	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	\Box LE	TYPESET
	MS Code : QUQU-D-17-00222	CP	🖌 DISK

384 surveyed by using the BarLev method was increased at a ratio of 1.20 to 1 (DO) while the 385 size of the IST sample was increased at a ratio of 2.5 to 1 (DQ) in order to have enough 386 students to assign to the LL-sample and SL-sample. Additionally, we increased the size of 387 the LL-sample size at a ratio of 1.5 to 1 (SL-sample) in order to compensate for the larger 388 variability of the estimates. The students were contacted in class and randomly assigned to 389 one of the three survey modes. Some extra students, recruited in a second moment during 390 an academic event, were added to the survey and assigned to the BarLev method (25%) 391 and the IST (75%). At the end of the fieldwork, 492 students were surveyed using DQ, 613 392 using the BarLev method and 1293 with the IST (773 in the LL-sample and 520 in the SL-393 sample). To motivate students' participation, the scientific nature of the survey was 394 emphasized. No incentives of any kind were provided. The questionnaires were distributed 395 during the class time break to the students who provided signed informed consent to 396 participate in the study. The classroom setting facilitated cooperation and no objection to 397 the survey was raised.

398 Except for some differences stemming from the different ways of providing the sen-399 sitive information, all students received the same questionnaire covering academic items 400 and personal characteristics. The sensitive questions for the DQ survey mode and the 401 experimental section for the IQTs were positioned at the end of the questionnaire.

402 In the DQ survey mode, the questionnaire had a block containing four sensitive 403 questions:

- 404 01: How many cannabis cigarettes did you consume last year?
- 405 Over the past 90 days, how many days did you consume cannabis? **Q2**:
- 406 Over the past 90 days, how many times have you had trouble stopping your sexual **O3**: behaviour when you knew it was inappropriate?
- 407 Over the past 90 days, how many times has sex been an escape from your problems? **Q4**:
- 408

409 Questions Q1 and Q2 concerning cannabis consumption were taken from the questionnaire

410 on drug addiction given in Miller and Rollnick (2015), while the sensitive questions Q3 411 and Q4 referring to sexual behaviour were freely adapted from Carnes' Sexual Addictions 412 Screening Test (Carnes 1989).

413 To collect sensitive information using the BarLev method, we used as a randomizing 414 device the smartphone application of the "Baraja Española", a deck composed of 40 cards, 415 divided into four families or suits, each numbered from 1 to 7, and three figures for the 416 each suit. The students assigned to this method were requested to install the application on 417 their smartphone. The application is very simple to use: the user touches the screen and a 418 card is shown. For each sensitive question, the students were asked to run the application 419 and to give the true sensitive response if the card shown was a figure. If the screen did not 420 show a figure, the students were asked to multiply the real sensitive value of the response 421 by the number shown on the card. In this way, the design parameter q of the BarLev model 422 was set to q = 3/10. All the explanations on how to proceed were clearly given in the 423 questionnaire and a blank space was provided in which to write the responses.

424 For the IST, four different nonsensitive questions, each corresponding to one of the 425 sensitive questions, were formulated. For cannabis use, the student "Selectivity" mark¹ was used as an innocuous variable. Hence, the students who were assigned to the IST 426 427 received two different questionnaires, depending on whether they belonged to the SL-

¹ The Selectivity mark is the score obtained in the university entrance examination. It is computed by 1FL01 1FL02 summing the marks of two phases, the general and the specific. The general phase consists of four tests, and 1FL03 is scored from 0 to 10. The specific phase consists of two tests and is scored from 0 to 4.

Article No. : 537 □ LE □ TYPESET MS Code : OUQU-D-17-00222 □ ✓ CP □ ✓ DISK		Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
MS Code : QUQU-D-17-00222 CP D ISK		Article No. : 537	□ LE	TYPESET
	\sim	MS Code : QUQU-D-17-00222	CP	🖌 DISK

- 428 sample or the LL-sample. The IST described in Sect. 3.2 was repeated four times by the 429 students, one run for each of the sensitive questions Q1–Q4.
- The students in the SL-sample received the questionnaire with the following innocuousquestions:
- 432 **IQ1:** What was your general mark in the Selectivity exam, without counting specific subjects? (Value between 0 and 10)
- 433 IQ2: What was your Selectivity mark counting specific subjects? (Value between 0 and 14)
- 434 IQ3: What is the number of subjects in which you have enrolled in the academic year?
- 435 **IQ4:** What is the final digit of your mobile phone number?
- The students in the LL-sample received a questionnaire with text explaining the IST procedure followed by a block consisting of pairs of questions, the sensitive question and the corresponding nonsensitive question. More precisely, the sensitive question Q1 was paired with the innocuous question IQ1, Q2 with IQ2, Q3 with IQ3, and Q4 with IQ4. For each pair of questions, the students were asked to report the sum of the scores of the two questions, without revealing the individual responses.
- 443 For both the BarLev method and the IST, when the questionnaires were distributed, the 444 students were assured of the confidentiality of their responses. It was emphasised that the 445 investigators would not be able, from the responses given, to discover their true status with 446 respect to the sensitive characteristic being investigated, since they would not know which 447 card was generated by the mobile application or the individual score to the LL-questions. 448 Moreover, in order to reassure the students and to maximize response rates, it was stressed 449 that, although individual responses could not be used to infer any personal and confidential 450 status, the responses of all of them could be used to produce collective knowledge of the
- 451 phenomena under study.

452 4.2 Results

In this section we present and analyze the results of our research. The main aim is the show how the reported amount of the four investigated sensitive characteristics depend on the data-collection method. Given the sensitive nature of the issues in question, we expected a systematic underreporting of cannabis use and sexual behaviour in the DQ survey. Hence, according to the "more-is-better" assumption (Lensvelt-Mulders et al. 2005), the datacollection method that provided higher estimates of the sensitive characteristics was considered to be the more valid one.

Question	Direct questioning	BarLev method	Item Sum Technique
Q1	10.96	14.03	1.93 ** ★ 1.55 ^{**}
Q2	11.79	4.40^{*}	1.55**
Q3	21.14	6.69**	0.15 ***
Q4	16.67	6.20**	0.23 * **

Table 2 Percentage nonresponse rates for DQ, BarLev and IST survey modes

One-tailed *t*-test for difference between two proportions: ${}^{*}p < 0.05$, ${}^{**}p < 0.01$, ${}^{***}p < 0.001$ for IQTs versus DQ, and ${}^{*}p < 0.05$, ${}^{**}p < 0.01$, ${}^{***}p < 0.001$ for IST versus BarLev

•	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	🗆 LE	TYPESET
S	MS Code : QUQU-D-17-00222	СР	🔽 DISK

460 The first notable result that emerges from the study is the significant reduction in the 461 nonresponse rate in the case of the IQTs. Table 2 shows the nonresponse rates (in percentage) for the four questions under the three data-collection methods. As expected, the 462 463 DO nonresponse rate is higher for questions Q3 and Q4 than for Q1 and Q2. This is 464 probably due to the fact that sexual matters are much more confidential and intrusive of the 465 personal sphere than are patterns of cannabis consumption, among university students. 466 Both IQTs obtained a significantly higher level of cooperation than the DQ method, except 467 the BarLev model for Q1. There was a remarkable reduction in the nonresponse rate for 468 question Q3, which seems to be the most sensitive one. Comparison of the two IQTs 469 reveals that the IST nonresponse rate for questions Q1, Q3 and Q4 is statistically lower than that of the BarLev method. In general, the IST yielded a very low nonresponse rate, no 470 471 more than 2% for any of the questions.

472 Table 3 summarizes the main results of our study. It includes the estimated means of the 473 number of cannabis cigarettes smoked in the last year, of days during the past 90 in which 474 cannabis was consumed, of number of times during the past 90 days that students had 475 difficulty in halting inappropriate sexual behaviour and of the number of times during the 476 past 90 days when sex was used to escape from personal problems. To get the estimates, the estimators $\hat{\bar{Y}}_{HT}$, $\hat{\bar{Y}}_{RRT}$ and $\hat{\bar{Y}}_{IST}$ given in (1), (3) and (5) were applied under the 477 proportional-allocation stratified sampling design. The estimated standard error of the 478 479 estimators was calculated from expressions (2), (4) and (7), together with the 95% Wald confidence interval (CI) for the unknown means and the length (L) of the interval. The 480 481 normality of the estimates under the three survey methods was ascertained by investigating 482 the sampling distribution of the estimators using a bootstrap resampling procedure.

The estimates are reported for the entire sample and for subgroups by gender (males and females). Prior to this analysis, we assessed whether the random assignment of the students to the three survey modes produced comparable groups of respondents by gender. The Chisquared test of independence confirmed the effectiveness of the random assignment.

487 The results obtained reflect the impact of the different survey methods on the estimates. 488 As expected, the DQ method produced an underestimation of the sensitive characteristics 489 investigated. Thus, the DQ estimates were statistically lower than the IQT ones, apart from 490 question Q4 under the BarLev method, where no statistical evidence of underreporting was 491 ascertained. The BarLev estimates were statistically higher than the IST ones for questions 492 Q2 and Q3, and lower for question Q4, while no significant difference was ascertained for 493 question Q1. Therefore, according to the "more-is-better" assumption, both of the IQTs 494 outperform the DQ method, but there is no evidence of a uniform superiority of one 495 indirect questioning method over the other.

We note that the lower limit of the confidence interval for direct question Q2 in the female group was negative. This does not make sense, of course. Nonetheless, we observe that there is sufficient statistical evidence to consider that the estimated mean was not significantly different from zero. For the remaining cases, the confidence intervals obtained under the three methods show that all the estimates were different from zero.

501 With respect to accuracy, the IST estimates presented lower standard errors and nar-502 rower confidence intervals than the BarLev method, except for question Q4. As expected, 503 the DQ estimates were more precise than the IQT ones, except for question Q4. The latter, 504 in fact, are in general affected by an extra source of variability induced by masking the 505 responses, other than that inherent to the sampling design.

506 An in-depth analysis of these results indicates that patterns of sexual addiction are 507 present in the population of students, with a slight predominance in the male group. The

6
\sim

Dispatch : **3-8-2017**□ LE 🖌 СР

Question	Question Direct questioning	guinc				BarLev method	ą				Item sum technique	nnique			
	0%) u	Mean	SD	cı	Г	u (%)	Mean	SD	CI	г	u (%)	Mean	SD	CI	Г
Total															
QI	492 (100%)	3.11	0.60	[1.93; 4.30]	2.37	613 (100%)	13.07^{**}	3.38	[6.43; 19.70]	13.27	1293 (100%)	14.93***	2.53	[9.97; 19.89]	9.93
Q2		1.41	0.40	[0.63; 2.19]	3.05		9.33***	1.28	[6.82; 11.84]	5.02		3.72***	0.47	[2.80; 4.65]	1.84
Q3		0.23	0.07	[0.10; 0.36]	0.26		2.12^{***}	0.42	[1.31; 2.94]	1.63		1.11***	0.29	[0.53; 1.68]	1.15
₽ ₽		2.52	0.66	[1.23; 3.81]	2.58		3.46	0.55	[2.38; 4.53]	2.14		7.60***	0.70	[6.24; 8.97]	2.73
Males															
QI	211 (42.89%)	6.35	1.43	[3.54; 9.15]	5.61	252 (41.11%)	21.14^{*}	7.20	[7.03; 35.25]	28.22	597 (46.17%)	24.65***	4.69	[15.47; 33.84]	18.37
Q2		2.23	0.76	[0.74; 3.72]	2.98		8.85***	1.67	[5.58; 12.12]	6.54		5.51***	0.81	[3.92; 7.09]	3.17
Q3		0.48	0.17	[0.15; 0.81]	0.66		2.73**	06.0	[0.97; 4.48]	3.51		1.94^{***}	0.57	[0.82; 3.07]	2.25
Q4		3.98	1.26	[1.51; 6.44]	4.93		3.65	0.91	[1.87; 5.43]	3.56		8.16***	1.05	[6.10; 10.22]	4.11
Females															
QI	281 (57.11%)	0.25	0.12	[0.01; 0.49]	0.48	361 (53.83%)	7.91**	3.06	[1.90; 13.91]	12.01	689 (53.58%)	6.48^{***}	2.34	[1.89; 11.06]	9.17
Q2		0.82	0.49	[-0.14;1.78]	1.92		9.76***	1.85	[6.13;13.39]	7.26		2.17***	0.52	[1.15; 3.18]	2.03
0 3		0.07	0.03	[0.02; 0.12]	0.10		1.75***	0.37	[1.03; 2.47]	1.44		0.39***	0.17	[0.01; 0.77]	0.76
Q4		1.86	0.83	[0.23; 3.50]	3.26		3.25	0.68	[1.91;4.60]	2.68		7.08***	0.93	[5.26; 8.91]	3.65
One-tailed	One-tailed t-test for differences in	rences it		s: ${}^*p < 0.05$,	$p^{*} < 0$.	$01, {}^{***}p < 0.00$	1 for IQT	s versu	is DQ, and \star_p	< 0.05,	** <i>p</i> < 0.01, *	$\star\star_p < 0.00$	1 for I	means: ${}^{*}_{p} < 0.05$, ${}^{**}_{p} < 0.01$, ${}^{***}_{p} < 0.001$ for IQTs versus DQ, and ${}^{*}_{p} < 0.05$, ${}^{**}_{p} < 0.01$, ${}^{***}_{p} < 0.001$ for IST versus BarLev	Ň

P. F. Perri et al.

Table 3 Mean estimates and accuracy measures under the three data-collection methods

•	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	🗆 LE	TYPESET
S	MS Code : QUQU-D-17-00222	СР	🔽 DISK

508 BarLev method indicates that, on average, 2.12 times during the 90 days prior to the 509 survey, students had difficulty in halting inappropriate sexual behaviour (2.73 times for the 510 males and 1.75 times for the females). The IST estimates suggest a more frequent use of 511 sex to escape from personal problems, on average 7.6 times in the 90 days prior to the 512 survey (8.16 times for the males and 7.08 times for the females). Similar patterns were 513 found regarding the consumption of cannabis. According to the IQTs, on average, during 514 the last year, the students smoked around 14 cannabis cigarettes, much higher than the 515 figure of roughly 3 cigarettes obtained by the DQ method. According to the BarLev 516 method, male students smoked more cigarettes than female students (21.14 vs 7.91). 517 Moreover, the students on average consumed cannabis on 9.33 days during the 90 days 518 prior to the survey (8.85 days for the males and 9.76 days for the females).

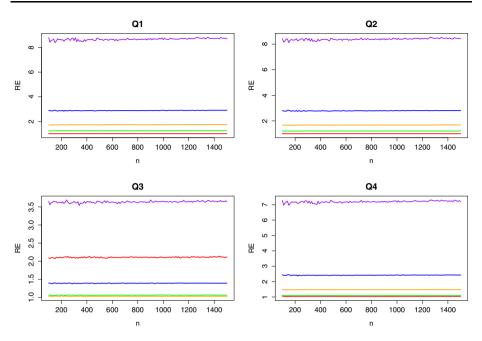
519 Unfortunately, directly comparable benchmark data are not available for the phenomena 520 investigated in this study. Nonetheless, there are very appreciable differences between the tradi-521 tional DQ survey method and the IQTs. From the recent Informe 2016 survey² conducted in Spain 522 during 2014 among secondary school students (aged 14-18 years) we know that the mean number 523 of days of cannabis consumption in the last month before the survey is roughly 1 for the entire target 524 population, 1.32 for males and 0.69 for females. It is worth noting that these estimates, obtained 525 using an anonymous self-administered questionnaire, are very close to those obtained in the present 526 study with the DQ method. We suggest, therefore, that they may underestimate the real values.

5 Optimal IST allocation 527

528 We conclude this article by acknowledging a recent advance in the IST which is of interest for 529 practical purposes and that, when our research was being planned, had not been known. In 530 general, a key problem in conducting ICT/IST surveys is how to determine the size of the LL-531 sample and SL-sample. The LL-sample is generally larger than the SL-sample in order to 532 compensate for the variability introduced in the estimates by the nonsensitive variable(s). 533 This problem was recently investigated by Perri et al. (2017), who proposed for the IST a rule 534 for optimally allocating the sample units between the LL-sample and SL-sample.

535 In this section, by simulating some scenarios from the previous real data-based study, 536 we explore the effectiveness of the optimal allocation. Following the notation set out in 537 Sect. 3.2, the idea of the optimal allocation is first to consider a sample s of size n and then 538 to optimally split it into two sub-samples, s_1 and s_2 , in such a way as to maximize the efficiency of $\hat{\bar{Y}}_{IST}$ or, equivalently, to minimize the variance of the estimator given in (6). 539 According to this criterion, after some algebra, optimal sample size allocation in simple 540 541 random sampling is given by

$$n_1^{\text{opt}} = n \frac{S_z}{S_z + S_t}, \quad n_2^{\text{opt}} = n \frac{S_t}{S_z + S_t},$$
 (8)


with $n_1^{\text{opt}} + n_2^{\text{opt}} = n$ while *S* denotes the population standard error of the variables \mathcal{Z} and \mathcal{T} which is unknown and has to be estimated, for instance, on the basis of a training sample 543 544 545 or a pilot survey.

² Informe 2016. Encuesta sobre uso de drogas en enseñanzas secundarias en España (ESTUDES). 1994–2014. 2FL01 2FL02 Observatorio español de la droga y las toxicomanías. Ministerio de Sanidad, Servicios Sociales e Igualdad.

²FL03 Available at: http://www.pnsd.msssi.gob.es/profesionales/sistemasInformacion/informesEstadisticas.

3	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	□ LE	TYPESET
\mathbf{S}	MS Code : QUQU-D-17-00222	СР	🔽 DISK

P. F. Perri et al.

Fig. 1 Relative efficiency of optimal allocation w.r.t. arbitrary allocation for different values of α under simulated populations for questions Q1–Q4; $\alpha = 0.1, 0.3, 0.5, 0.7, 0.9$ (*violet, blue, orange, green, red*). (Color figure online)

546 5.1 Simulation study

547 We investigated optimal allocation under the IST by means of a simulation study with the 548 aim to show the efficiency gain upon the estimates that can derive from wisely choose the 549 size of the LL-sample and SL-sample. The first step in this study was to generate four 550 artificial populations on the basis of the surveyed variables discussed in Sect. 3. Then, the 551 estimated variances of the optimal IST estimates were compared with those stemming from 552 an arbitrary allocation.

553 The simulation design is summarized in the following steps:

- 554 1. Generate an artificial population U of N = 50,000 sensitive values y_i from a normal 555 distribution with mean and variance μ_{DQ} and σ_{DQ}^2 computed on the sample of students 556 assigned to the DQ survey method;
- 557 2. Generate *N* nonsensitive values t_i from an independent normal distribution with mean 558 and variance μ_{SL} and σ_{SL}^2 computed on the SL-sample of students;
- 559 3. Compute the total scores $z_i = y_i + t_i$, i = 1, ..., N;
- 560 4. Select a simple random sample from U of size n and split it to obtain IST estimates 561 according to: (i) optimal allocation as given in (8); and (ii) arbitrary allocation defined 562 as $n_1 = \alpha n$ and $n_2 = (1 - \alpha)n$, with $\alpha \in (0, 1)$;
- 563 5. Compute the estimated variance of the estimator $\hat{\vec{Y}}_{IST}$ under optimal and arbitrary 564 allocations, that is, $\hat{\mathbb{V}}(\hat{\vec{T}}_{IST}^{opt})$ and $\hat{\mathbb{V}}(\hat{\vec{P}}_{IST}^{\alpha})$;
- 565 6. Repeat B = 1000 times the previous two steps and compute the mean (\mathbb{E}_B) of the estimated variances over the *B* replications, and hence compute the Relative Efficiency

•	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537		TYPESET
S	MS Code : QUQU-D-17-00222	CP	🖌 DISK

$$\mathrm{RE} = \frac{\mathbb{E}_{B}\left[\widehat{\mathbb{V}}\left(\widehat{\bar{Y}}_{\mathrm{IST}}^{\alpha}\right)\right]}{\mathbb{E}_{B}\left[\widehat{\mathbb{V}}\left(\widehat{\bar{Y}}_{\mathrm{IST}}^{\mathrm{opt}}\right)\right]};$$

569

568

570 7. Run the simulation for each of the four variables referred to by questions Q1–Q4 (see
571 Sect. 4.1).

572 The outcomes of the simulation study are graphically summarized in Fig. 1, where the 573 behaviour of the relative efficiency is shown for different sample sizes and different values 574 of α . We observe that the efficiency gain derived from the optimal allocation may be 575 considerable, for all the variables investigated. Accordingly, future applications of the IST 576 could benefit from this methodological advance.

577 6 Conclusions

578 This article discusses the salient aspects of a mixed-mode survey conducted among 579 Spanish university students to investigate the frequency of certain behaviours concerning 580 cannabis consumption and sexual addiction. Given the sensitive nature of the topics 581 investigated, and in order to reduce nonresponse rates and obtain more truthful responses, 582 the traditional DQ method based on anonymous self-administered questionnaires was 583 supported by two IQTs, namely the randomized response method proposed by Bar-Lev 584 et al. (2004), and the IST (Chaudhuri and Christofides 2013; Trappmann et al. 2014). The 585 three data-collection methods were compared and their effects evaluated in terms of the 586 reduction in nonresponse rates, and improvements upon the estimates according to the 587 "more-is-better" assumption.

As expected, the DQ survey mode produced nonresponse rates that were higher than the IQT ones. In turn, the IST nonresponse rates were lower than the BarLev ones. Moreover, the DQ method produced underreporting of the sensitive behaviours under study—cannabis use and sexual addiction—and the IST estimates appeared to be more accurate than the BarLev values.

593 When significant underreporting is produced by DQ, researchers and practitioners 594 actively engaged in organizing, managing and conducting sensitive studies should be 595 suspicious about the validity of results. At the same time, operators and policy makers 596 should proceed cautiously in the implementation of intervention programmes because the 597 social and health problems stemming from drug consumption and sexual behaviour may be 598 much more significant than is apparent from DQ self-reporting. The use of IQTs, as shown 599 by this research, may provide a better understanding of the problems and help to carefully 600 evaluate the potential extent of the phenomena under study. Even if the two methods 601 considered are not the panacea for all the problems encountered in sensitive research, and 602 may provoke mistrust among respondents, they should nevertheless represent a wake-up 603 call for researchers and government agencies engaged in sensitive surveys.

We conclude by remarking upon the strength of this research, which provided practical experience of the two IQTs and contributed to empirically evaluating their effectiveness. The results obtained seem to be promising and we hope that can contribute to a more widespread appreciation of the benefits offered by IQTs to the scientific community in general and to survey practitioners in particular.

$\mathbf{\cdot}$	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	□ LE	TYPESET
\$	MS Code : QUQU-D-17-00222	CP	🔽 DISK

609 Acknowledgements This work is partially supported by Ministerio de Economía y Competitividad (grant 610 MTM2015-63609-R, Spain), Ministerio de Educación, Cultura y Deporte (grant FPU, Spain) and by the 613 project PRIN-SURWEY (grant 2012F42NS8, Italy).

614

615 References

- 616 Aggleton, P., Ball, A., Mane, P. (eds.): Sex, Drugs and Young People: International Perspectives. Routledge, 617 London (2006)
- 618 Bar-Lev, S.K., Bobovitch, E., Boukai, B.: A note on randomized response models for quantitative data. 619 Metrika 60, 255-260 (2004)
- 620 Carnes, P.: Contrary to Love: Helping the Sexual Addict. CompCare Publisher, Minnesota (1989)
- Chaudhuri, A., Christofides, T.: Indirect Questioning in Sample Surveys. Springer, Berlin (2013)
- 621 622 623 Cobo, B., Rueda, M., Arcos, A.: RRTCS: Randomized Response Techniques for Complex Surveys. R package version 0.0.3. http://cran.r-project.org/web/packages/RRTCS/ (2015)
- 624 Cochran, W.: Sampling Techniques. Wiley, New York (1977)
- 625 De Jong, M.G., Pieters, R., Stremersch, S.: Analysis of sensitive questions across cultures: an application of 626 multigroup item randomized response theory to sexual attitudes and behavior. J. Personal. Soc. Psy-627 chol. 103, 543-64 (2012)
- 628 Dickson-Swift, V., James, E.L., Liamputtong, P.: Undertaking Sensitive Research in the Health and Social 629 Sciences: Managing Boundaries, Emotions and Risks. Cambridge University Press, New York (2008)
- 630 Dietz, P., Striegel, H., Franke, A.G., Lieb, K., Simon, P., Ulrich, R.: Randomized response estimates for the 631 12-month prevalence of cognitive-enhancing drug use in university students. Pharmacotherapy 33, 632 44-50 (2013)
- 633 European Monitoring Centre for Drugs and Drug Addiction: European Drug Report 2016: Trends and 634 Developments. Retrieved from http://www.emcdda.europa.eu/publications/edr/trends-developments/ 635 2016 (2016)
- 636 Geng, G.Z., Gao, G., Ruan, Y.H., Yu, M.R., Zhou, Y.H.: Behavioral risk profile of men who have sex with 637 men in Beijing, China: results from a cross-sectional survey with randomized response techniques. 638 Chin. Med. J. 129, 523-529 (2016)
- 639 Goodstadt, M.S., Gruson, V.: The randomized response technique: a test on drug use. J. Am. Stat. Assoc. 70, 640 814-818 (1975)
- 641 Groves, R.M., Fowler, F.J., Couper, M.O., Lepkowski, J.M., Singer, E., Tourangeau, R.: Survey Method-642 ology. Wiley, Hoboken (2004)
- 643 Harrison, L., Hughes, A.: The validity of self-reported drug use: improving the accuracy of survey estimates. 644 NIDA Res. Monogr. 167, 1-16 (1997)
- 645 Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. 646 J. Am. Stat. Assoc. 47, 663-685 (1952)
- 647 Johnson, R.M., Fairman, B., Gilreath, T., Xuan, Z., Rothman, E.F., Parnham, T., Furr-Holden, C.D.: Past 648 15-year trends in adolescent marijuana use: differences by race/ethnicity and sex. Drug Alcohol 649 Depend. 1, 155–158 (2015)
- 650 Kerkvliet, J.: Estimating a logit model with randomized data: the case of cocaine use. Aust. J. Stat. 36, 9–20 651 (1994)
- 652 Krebs, C.P., Lindquist, C.H., Warner, T.D., Fisher, B.S., Martin, S.L., Childers, J.M.: Comparing sexual 653 assault prevalence estimates obtained with direct and indirect questioning techniques. Violence 654 Against Women 17, 219–235 (2011)
- 655 LaBrie, J.W., Earleywine, M.: Sexual risk behaviors and alcohol: higher base rates revealed using the 656 unmatched-count technique. J. Sex Res. 37, 321-326 (2000)
- 657 Lamarine, R.J.: Marijuana: modern medical chimera. J. Drug Educ. 42, 1-11 (2012)
- 658 Lensvelt-Mulders, G.J.L.M., Hox, J.J., van der Heijden, P.G.M., Mass, C.J.M.: Meta-analysis of randomized 659 response research: thirty-five years of validation. Sociol. Methods Res. 33, 319-348 (2005)
- 660 Levine, S.B.: What is sexual addiction? J. Sex Marital Ther. 36, 261-275 (2010)
- 661 Liamputtong, P.: Researching the Vulnerable: A Guide to Sensitive Research Methods. Sage Publications, 662 London (2007)
- 663 Miller, J.D.: (1984). A New Survey Technique for Studying Deviant Behavior. Ph.D. Thesis, The George 664 Washington University
- 665 Miller, W.R., Rollnick, S.: Motivational Interviewing: To Prepare for Change of Addictive Behaviors. The 666 Guilford Press, London (2015)
- 667 Miner, M.H.: Improving the measurement of criminal sexual behavior. The application of randomized 668 response technique. Sex. Abuse 20, 88-101 (2008)

>	Journal : Small 11135	Dispatch : 3-8-2017	Pages : 19
	Article No. : 537	🗆 LE	TYPESET
\sim	MS Code : QUQU-D-17-00222	СР	🔽 DISK

- Perri, P.F., Rueda, M., Cobo, B.: Multiple sensitive estimation and optimal sample size allocation in the item sum technique. Biom. J. (in press) (2017). doi:10.1002/binj.201700021
- Pitsch, W., Emrich, E., Klein, M.: Doping in elite sports in Germany: Results of a www survey. Eur. J. Sport
 Soc. 4, 89–102 (2007)
- Simon, P., Striegel, H., Aust, F., Dietz, K., Ulrich, R.: Doping in fitness sports: estimated number of unreported cases and individual probability of doping. Addiction 101, 1640–1644 (2006)
- Shamsipour, M., Yunesian, M., Fotouhi, A., Jann, B., Rahimi-Movaghar, A., Asghari, F., Akhlaghi, A.A.:
 Estimating the prevalence of illicit drug use among students using the crosswise model. Subst. Use
 Misuse 49, 1303–1310 (2014)
- Srivastava, R., Nigam, A.K., Singh, N.: Application of randomized response techniques in estimation of prevalence of child sexual abuse. Stat. Appl. 13, 37–45 (2015)
- Striegel, H., Ulrich, R., Simon, P.: Randomized response estimates for doping and illicit drug use in elite athletes. Drug Alcohol Depend. 106, 230–232 (2010)
- Stubbe, J.H., Chorus, A.M.J., Frank, L.E., de Hon, O., van der Heijden, P.G.M.: Prevalence of use of performance enhancing drugs by fitness center members. Drug Test. Anal. 6, 434–438 (2013)
- Tian, G.-L., Tang, M.-L.: Incomplete Categorical Data Design: Non-Randomized Response Techniques for Sensitive Questions in Surveys. Chapman & Hall/CRC, Boca Raton (2014)
- Tourangeau, R., Smith, T.: Asking sensitive questions: the impact of data collection, question format, and question context. Public Opin. Q. 60, 275–304 (1996)
- Tourangeau, R., Yan, T.: Sensitive questions in surveys. Psychol. Bull. 133, 859-883 (2007)
- Trappmann, M., Krumpal, I., Kirchner, A., Jann, B.: Item sum: a new technique for asking quantitative sensitive questions. J. Surv. Stat. Methodol. 2, 58–77 (2014)
- Walsh, J.A., Braithwaite, J.: Self-reported alcohol consumption and sexual behavior in males and females:
 Using the unmatched-count technique to examine reporting practices of socially sensitive subjects in a sample of university students. J. Alcohol Drug Educ. 52, 49–72 (2008)
- Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. J. Am. Stat.
 Assoc. 60, 63–69 (1965)
- Weissman, A.N., Steer, R.A., Lipton, D.S.: Estimating illicit drug use through telephone interviews and the randomized response technique. Drug Alcohol Depend. 18, 225–233 (1986)
- 698 Wolter, K.: Introduction to Variance Estimation. Springer, New York (2007)

699