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Abstract The couplings of axion-like particles are probed
by different experiments across a huge range of energy scales.
Accordingly, a consistent analysis of the corresponding con-
straints requires the use of the renormalization group equa-
tions. We compute the full one-loop renormalization group
evolution of all — relevant and marginal — parameters in the
effective field theory for axion-like particles up to dimen-
sion five, above and below the electroweak scale, assuming
only that new physics does not violate CP. We also include
a detailed discussion of the different bases used in the liter-
ature, the relations among them and the interplay of the CP
and shift symmetries.
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1 Introduction

Axion-like particles (ALPs), s, are pseudo-scalar singlets of
the Standard Model (SM) gauge group, whose interactions
are typically assumed to respect an approximate shift sym-
metry s — s + o with constant o. They arise naturally in
theories with a spontaneously broken global symmetry such
as the Peccei—Quinn solution to the strong CP problem [1-
4], composite Higgs models [5—7] and others [8,9], as well
as in different explanations for dark matter [10—12] and for
the flavour [8, 13—15] and hierarchy [16] problems. The shift
symmetry must be broken explicitly by at least the ALP mass,
and potentially also by its marginal couplings to the Higgs
boson and even by higher-dimensional interactions. In the
following we will consider a generic pseudo-scalar in which
the shift symmetry is not imposed at any level. As we will
discuss in detail below, it is easy to enforce shift invariance
in the couplings we consider a posteriori.

The phenomenology of ALPs is mostly triggered by effec-
tive operators, the first of which arise at dimension five.
Their impact has been studied at photon regeneration exper-
iments [17-20], beam dumps [21,22] and high-energy col-
liders including LEP [23-25] and more recently the LHC
[23-34] and future facilities [35-37]; see also Refs. [38—40].
Searches for ALPs produced from the blackbody photons in
the solar core [41] and in other astrophysical events [42—49]
have been performed too. ALP searches in flavour experi-
ments have been studied recently in Refs. [S0-55]; while CP
violation signatures of ALPs have been considered in Ref.
[56]. (Recent reviews on the physics of ALPs can be found
for example in Refs. [57,58].)

These experiments span a huge range of energies, across
which the Wilson coefficients of the ALP effective field the-
ory (EFT) run, and mix, following the corresponding renor-
malization group equations (RGEs). Different computations
of parts of the RGEs are spread in the literature [24,59,60].
However, to the best of our knowledge, there is no system-
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atic study of the entire ALP anomalous dimension matrix in
any concrete basis of operators. We fill this gap in this work,
extending also previous computations in different ways. In
particular we compute the gauge dependence of the ALP-
fermion—fermion operators running, as well as the RGE
dependence on the ALP-Higgs marginal coupling. Moreover,
we work in a basis closer in spirit to the Warsaw basis [61]
of the SMEFT,; i.e. involving operators with less derivatives,
not limiting to purely shift-invariant interactions. However,
we cross check (and update where necessary) previous par-
tial results performed with different sets of operators. Most
importantly, we match at tree level at the electroweak (EW)
scale the ALP EFT onto the low-energy version in which the
heavy top quark, the Higgs and the Z and W gauge bosons are
integrated out, and we compute the running within this ALP
low-energy EFT (ALP LEFT) too, including the mixing of
higher-dimensional operators into renormalizable ones, as
well as the mixing between purely SM EFT operators and
others that do involve the ALP. For the sake of generality,
we compute this running for an arbitrary ALP LEFT, i.e.
independently of whether the EFT above the EW scale is the
ALP EFT or a more generic theory. As far as we are aware,
essentially all results in this latter EFT are completely new.
The article is organised as follows. In Sect. 2 we intro-
duce the ALP Lagrangian, including a Green basis of effec-
tive operators and their on-shell relations. We compute the
one-loop counterterms for effective operators in Sect. 3. In
Sect. 4 we obtain the complete anomalous dimension matrix
for dimension-five operators at one loop. The different layers
of the EFT valid at energies below the EW scale as well as
their connection through renormalization and matching are
discussed in Sect. 5. In Sect. 6 we present some phenomeno-
logical implications of the previous results, most importantly
the possibility of probing ALP interactions to the Z boson or
to the top quark through their mixing into ALP-lepton oper-
ators. We conclude in Sect. 7. In Appendix A we provide the
different Feynman diagrams computed for the renormaliza-
tion of the ALP EFT. In Appendix B we report our results
in a different basis commonly used too in phenomenological
studies, while in Appendix C we collect the renormalization
group running of renormalizable parameters within this EFT.
Finally, in Appendix D we report the Feynman diagrams nec-
essary for the computation of the RGEs in the ALP LEFT.

2 Effective field theory for ALPs

The renormalizable Lagrangian of the SM extended with a
real pseudo-scalar singlet, s, reads,

1 1
_ZGQVGZU - ZW/ZUWcﬁw -

+qiila] + DI + uGiPuf + diiDdy + iy

1
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where « and $ are flavour indices, ¢z and [, denote the left-
handed (LH) quark and lepton doublets, respectively, and
ug, dg and eg the right-handed (RH) up-type, down-type
quark and charged lepton singlets, respectively. The gluon
and the EW gauge bosons are represented, as usual, by G
and by W and B, respectively. The Higgs doublet is called
¢, while its conjugate is given by EE = €¢* = iop¢*, with
o7 being the second Pauli matrix. A possible tadpole term
has been eliminated via a field redefinition of s and we use
the minus-sign convention for the covariant derivative. In the
renormalizable Lagrangian above, all coefficients are real
except for the Yukawa couplings. Complex phases in these
Yukawa couplings, as well as the couplings ky and k4, induce
CP violation.

The first tower of effective interactions arise at dimension
five. We provide a Green basis (checked with BasisGen
[62]) of such set of operators in Table 1. Any other dimension-
five operator can be written in terms of these via algebraic or
integration by parts identities. We have collected the opera-
tors in the table according to their CP properties, with CP-
even and CP-odd operators in the top and bottom panels of
the table, respectively. All the operators in the table are her-
mitian (for fixed values of flavour indices if present) and the
corresponding Wilson coefficients are therefore real param-
eters (real matrices for operators involving flavour). A min-
imal basis of non-redundant operators, enough to describe
all physical processes, is given by the operators named with
O. The ones denoted by R can be written in terms of the
ones in the minimal basis by performing field redefinitions
and are therefore equivalent to them in all physical observ-
ables. To O(1/A) accuracy, these field redefinitions can be
enforced through the equations of motion of the dimension-
four Lagrangian, namely,

K Aos>
0% = —m’s — =57 = = —kspl9l? = Agslel, @)
D¢ = — 12 — 201912 Pk — KspSPr
As¢ —
- ; 5" bx —yZ,qujejku’Z
— & dRal — vieRlsy. 3)
ima_d dﬁ u 7 B i DIY, = vE B 4
drk = yaﬁ¢k rT yaﬁff’kMRy LIPly e = yaﬁd’keR, “)
iDuSy = Viidlal.  iDd% = yiielal. iD= y5ielll:
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where we use Latin indices for SU (2). Using these equations
we can arrive at the following identities, valid for physical
observables:

rs¢>DRs¢|:| = _rsqSEIRe(yu)Osuq)
+ rsq)DRe(yd)Osdd) + rsd)DRe(ye)Ose(b
+rY¢DIm(yu) m¢

- rY¢DIm(y ) sde rS(bDIm(ye)O@s (6)

rsqRsq = —rsqRe(y")Ogugp — rque(yd)Osdqg.

+ rggIm(y" )Ofv—i- rsqlm(y YO——, oS @)
rsiRs = —rsiRe(y) Oseq + rilm(y) O, (®)
FaReu = Re(y)rl, Osup — Im(y" )rsuo;;;;, ©)
rsaRsa = Re(yrjOsap —Im(yHriy O (10)
reeRse = Re(y*)r{,Osep — Im(y)r], O o (11)

where flavour indices are left implicit and we have always
assumed that each Wilson coefficient and its corresponding
operator have the flavour indices in the same order so that,
for instance,

Re(y )rée sep = Re(y )ay("u)yﬂoseqy (12)

with repeated indices summed over.
For the CP-odd ones we have

K Ag
rORso = —rSszs3 —ry0 fs — rSD3_AvOS5
— ry0ksps |¢1° — riohsp O3, (13)
—~—— — — ——— 2 — ——
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ﬁlm()f“)(’)sm - rﬁlm(y )Osag

NIm(ye)Oseqba (14)
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A
= rps073, O = Tgssgll* = 25605, (15)
reg Ry = regRe(y")O—— i rS?Re(yd)(Q,V

+ rgIm(y") Ogug + rigIm(yH) Osap.  (16)
iRy = raRe(y) O + rgIm(y©) Oyeg, (17)
raRs = Re(y IO+ G L Osup, (18)
raRo = Re(yd)r Osgg + Im(y)rk Oy, (19)
rseRse = Re(y® )rS~e foort + Im(y° )r Ose- (20)

For the sake of generality we have not made use of the free-
dom to make y¢ and one of y* or y¢ diagonal, with real and
positive entries, in the equations above.

Note that, despite their field content, the operators R 40
and R—— ~o00 do not induce the process s¢p — ¢Z. Indeed, by
using the field redefinitions above we note that these opera-
tors are equivalent to Yukawa-like operators (or to operators
with no gauge bosons in the CP-odd case), which clearly do
not trigger the aforementioned process. An explicit calcula-
tion with these operators shows indeed that the corresponding
amplitude goes with p%, which vanishes on-shell as the Z
boson is massless before EW symmetry breaking (EWSB).!

In the following we will consider that CP is a good sym-
metry of the EFT. This amounts to setting the coefficients
of the CP-odd operators to zero, including x; = kg = 0
in the renormalizable Lagrangian and the ones in the bottom
panel of Table 1. This is a radiatively stable choice up to the
complex phase in the SM Yukawa couplings. The main goal
of the present paper is to obtain the RGEs for the CP-even
sector in isolation. However, we will provide our results for
arbitrary Yukawa couplings, so that the mixing of the CP-
even operators into the CP-odd sector via the imaginary part
of the SM Yukawa couplings can be easily obtained. Under
these conditions, the relevant Lagrangian reads:

Lcp—even = Z aslquoslluﬁ + Z as)N(OsX

Vv=u,d,e X=G,W,B
+ rs¢\:|Rs¢|:| + Z rswRsw, 2D
V=q,l,u,d,e

where all the Wilson coefficients are real or real matrices in
flavour space.

For the sake of generality we are not enforcing shift sym-
metry. However, in Appendix B we provide conditions on
the Wilson coefficients that guarantee that this symmetry is
preserved. We also explain why, although customary, trad-
ing the Yukawa-like operators Osy ¢, With ¥ = u,d, e,
by the explicitly shift-invariant terms aus(ay“\ll), with
VW = qr,lp,uR,dg, er [24,27,29,60,63], is not necessar-
ily an optimal choice, as the set of operators thus constructed
is overcomplete. Still, in the same appendix we will also
provide the RGEs of these operators under some simplifying
assumptions.

! This can be trivially shown by considering the on-shell scattering
amplitude M(1,243447). By dimensional arguments, M ~ (ij)/A
(or with squares). The only way to satisfy little-group covariance is
therefore i = j = 4, which makes M vanish due to the antisymmetry
of brackets.
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Table1 Green basis of effective operators of dimension five. All opera-

tors are hermitian (operators with flavour indices are hermitian for each

panel are CP conserving (violating). The dual field strength tensor is
defined by B*" = le,meﬂ (with €%123 = 1) and likewise for W

fixed value of @ and 8, ((’)aﬁ)T = Oyp). The ones in the top (bottom) and G
Scalar Yukawa Derivative Gauge
O, = is(qF fuly — ud'q?) Rygry = is(@' D9 — (D*¢)'¢) 0.5 =sG,GY'
0y = is(qf¢dy — dap’q?) Rf = 5@ Dq} +4f Pa?) Oy = sWik, Wi
O = is(Fpeh — ho'19) R = sqTplf + 18 B1%) O,5 = 5By B"
Ri’f = @G Puly +ub Dug)
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b _ s(eRMeR + eR lbeR)
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O = 53¢ oﬁ’i_ s@%eds +dBetq®) R0l = 612025 Osw = sWik, Wi
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3 Divergences at one loop

In order to obtain the RGEs of the ALP EFT, we have com-
puted the divergences generated by one-particle-irreducible
(1PI) diagrams at one loop with off-shell momenta and to
order O(1/A). In doing so, we have employed the back-
ground field method in the Feynman gauge in dimensional
regularisation with space-time dimension d = 4 — 2¢. The
1/€ poles obtained this way are gauge invariant. We have sub-
sequently matched these onto the Green basis of operators
of Table 1. We have implemented the model in FeynRules
[64] and used FeynArts [65] and FormCalc [66] for the
calculations. In a completely independent cross-check, we
have evaluated by hand the Yukawa and A4 pieces of each
of the Feynman diagrams as obtained with Qgraf [67].

In the remainder of this section we will go through the dif-
ferent amplitudes that we need for matching the divergences
in the ALP EFT. For each amplitude we will provide the
ultraviolet (UV) divergence, matched onto our Green basis.
We will denote the corresponding Wilson coefficients with a
prime in order to distinguish them from the ones of the opera-
tor insertion in the one-loop calculation (which appear, with-
out a prime, on the right-hand side of our equations). Recall
that we assume the EFT to preserve CP and we are interested
in the RGEs of the CP-even operators among themselves. In
particular we will consider only insertions of CP-even oper-

@ Springer

ators in the one-loop calculation. Within our assumptions
the corresponding divergences can be again parameterized
in terms of the CP-even operators up to the imaginary part
of the SM Yukawa couplings. In this section we will provide
the matching in the full basis, including the contribution via
complex Yukawa couplings to the CP-odd operators so that
the interested reader can obtain the corresponding mixing. In
all these equations we leave flavour indices implicit.

o s(p®] (p2) = a3, (p3)u(pa)
The relevant diagrams, given in Fig. 1, produce the fol-
lowing UV divergence,

/ s 7
asu¢ lm

1 5¢%  3g2  16g2
=‘m{[“¢ (36”7”73 s

—yy T agug — asapy™ ¥ + ylalsyy } (22)

o s(pGi(p2) = 45, (p3)dg(pa)
The relevant diagrams, given in Fig. 2, produce the fol-
lowing UV divergence,

/ -/
Asdgp — ngg
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1 g 385 l6g3
= lae = (2L 4202 4 283 |4
(471)26{[ s (36+ 4 T3 )b

— ¥y asap — asupy" Ty + yaj, 4" } (23)

o s(pGi(p2) — 1%, (p3)ek (pa)
The diagrams in Fig. 3 give,

I 9% _ 3¢
a;e(b = —m [)"S(]b — T — T Ase- (24)

o s(p1) = $i(p2)$](p3)
The diagrams are shown in Fig. 4, and give

1
/ s/ _ e T
"0 T8 T T Tem2e {1e [yl
+3 Tr [yda;rd¢ - asu(byu-":l] )
rho =0. (25)

e s(p1) = V¥(p2)WA(p3) o
For the process s(p1) — W*(p2)WA(p3), with ¥ =
qrL,!lr,uR,dg and e, we collect the one-loop diagrams
in Figs. 5, 6, 7, 8, 9, respectively. The resulting diver-
gences read’:

}";q + 1}’;~q = m |:asu¢yuT + asdqbydT
812 2 2
— 3 %E 9824 — 1683%6} (26)
. 1 . 2 2
rg +iry = m[amﬁyd —3g1a,5 — 982%%/}»
27
- L[ 8 2 2
r;u +1r§~u = _m _asu¢)yu - gglasg - 8g3as5 ’
(28)
- L [+ 4 2, 2
ra Hirg = = oz | dsagY” — 38145 — 8834,G |-
] (29)
) I
rs/‘e + lrjl‘\é = - 167T2€ a:‘e(bye - 6g%aS§}' (30)

We have partially cross-checked the results above by
computing some amplitudes related to the ones above by
gauge invariance. As an example the process sB — WW
allows us to cross check the anti-symmetric combination

(rS\I/)Dtﬂ - (V‘Y\I/)ﬂa-

2 Note that only the terms proportional to the imaginary part of the
Yukawa couplings contribute to the corresponding CP-odd operators.

o s(p1) = V(p2)V(p3)
No diagrams can be written at the order we are con-
sidering for the process s — BB. The Feynman dia-
grams for the amplitudes s — W3W3 and s — GG are
shown in Figs. 10 and 11, respectively. The correspond-
ing amplitudes are all non divergent. For W bosons, the
second diagram is zero while the divergences of all oth-
ers together vanish. In the case of gluons, the second and
third diagrams vanish, while the divergences of the rest
of the diagrams cancel each other. It is evident from the
diagrams that Yukawa-like operators do not renormal-
ize ALP-vector-vector ones (redundant operators do not
contribute to ALP-vector-vector couplings either). This

is in agreement with the non-renormalization results in
Refs. [68,69].

CP-even renormalizable couplings do not receive any con-
tribution from dimension-five operators at one loop. This is
easy to see from the fact that CP-even renormalizable opera-
tors are even under s — —s whereas all dimension-five oper-
ators are odd under such replacement and therefore they can-
not induce one-loop corrections to the renormalizable ones.

3.1 Eliminating redundancy

Once we have matched all the possible one-loop divergences
onto our Green basis, we can use the relations in Eq. (11) to
obtain the divergences in the minimal basis. From this point
on, even though we will continue writing Yukawa couplings
in matrix form, we will neglect their complex phases. This
amounts to the following replacements:

/ / ’ u ’ou u, /T
asudJ_)asugb—rs(pI]y —TsqY + YTy,

_ =L T, 25 3 16g3
T @2 \"" T 36 T4 T s )

. 1
="y s — asagy ™y + y'alypy" + Sasgy"y"

1
+ zasd(indTyu + yuyuTasuqb

—Tr [yeaze(p + 3ydazd¢ — 3asu¢y“T] ¥
17 9
- (ggfasg + 5834, + 16g§as6> y“], (31

/ ’ ’ d ro.d d T
asd¢_>asd¢+rs¢\:|y _rsqy + Y rg

_ U el e 1683
@mle |[\™ 736 4 3 | %o

- yuyu+asd¢ - asu(/Jy”Tyd

1
+ "0y + S gy
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1
+§axd¢ydT v 4 ydydig, Ao

+Tr [yea;!-w +3ydal

d
do — 3asu¢yuT] y

5 9
- (gglzasg + Eggasﬁf + 16g§as6) yd] ’ (32)

T
a, ¢—>ase¢ +rs¢|:|y —riyS+y°rl,

-1 9g? 3g2 1
| R I o RS T

+ vy T agep + Tr [yea;re¢ +3y%a! sdp — 3asu¢y”] y¢

15 9 B
— 2g1a53+2g2asw . 33)

4 Anomalous dimensions and comparison with the
literature

In the previous section we have determined completely the
divergent Lagrangian in the physical basis as

Cam

Laiv = Ona =0 —> 327[26

(34)
where n, m run over all operators (including flavour indices
when present) and the coefficients Cp,, involve only dimension-

four couplings. The B-function governing the RGEs is given
by

da
Bay = 167 1—" = Yumam, (35)

dup
where y is the anomalous dimension matrix. It is completely
determined by the divergence matrix C up to the wave func-
tion renormalization factor for the different operators:
Ynm = —Cum + Kffsnm)a (36)
where K ' parametrises the divergences in the wave function
renormalization factors of each operator:

F
F _ n
Zn =1+ 3272’ (37)
with
w ZgZyZugs Zo ~ = \/7, (38)
2610 =V ZaZoZax. 26 = 2w, (39)
26,y =N ZoZer, 26 =Z, (40)
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and the following wave function renormalization factors, in
agreement with Refs. [70,71],3

1 1 9
Zy =1— ——| - 82243y y" T34y T,
9L 9672¢ 6g1+2g2+ s3 3y T +3yy
41)
1 _ e et
ZIL_l_M 81 +383 +2)°y (42)
1 _4 ut u
ZuR =1- m §g1 +4g3 + 3y (43)
1 :1
Zay =1~ Jg—- 581 +4g3 +3y" Ty d} (44
LT
ZeR =1- m g% + y”ye], (45)
1 : y
Z¢— 1+m g12+3g2—2y( )], (46)
41g2
S T “n
19g%
Zw =1+ —=, 48
W +967[2€ (48)
14¢3
Zg =1+ Tomle” (49)
where we have defined
ydg )_Tr[yeT e+3yu0 u+3ydv d] (50)

The final result for the B-functions, written as usual in
matrix form with flavour indices implicit, reads:

17¢f  9¢3 >, 1o
P =2 (o = 55 = 75 453+ 347 Yo

3 5 _
— =y ag + =3y agug + asupy™ y"

4 4
1
+ 7 algy" = Sasagy 'y
17g} 982
- < 6 as§+ 2 3W+1683a5G

+ Tr [y“a;re,,, + Sydal-dtz, — 3asu¢y”T] )yu} (51)

5¢%  9g2 1
Baway = 2[(/\s¢> =L - 22 gt~y )asas

2
5
vy agy + asapy?’ y?

3
_ _yuyuTasd¢ + 1

4
1

_asuqbyuTYd

+ y”a;rwyd ~5

5g1 9g2 2
—( 6 B+Taw+1683as5

3 Note however that in Ref. [70] the Higgs is also split into background
and quantum fields, therefore comparing Z in this case is not straight-
forward. It can be also trivially seen that Z; vanishes.



Eur. Phys. J. C (2021) 81:181

Page 70f 34 181

—Tr [y Agep t 3y a — 3asu¢yuT] )yd]’ (52)
157 9g2 1
ﬁaé‘ed) = 2|:ase¢<)\5¢ — T] _ ?2 + E)/(;Y))

5
+ Zyeydasw + aseqsy”ye

15g12 B 9g§ ~
- T%B TQSW
—Tr I:yea;!-e(b + Syd(lsTdd) — SaxuqbyuTiI )yei| ) (53)

41 ,

Pa = 3 814,85 (54
19

R L (55)

Ba s = —l4gia;. (56)

A more graphic picture of the operator mixing can be
obtained for the case in which different fermion families
factorize, so that all dimension-five Wilson coefficients are
flavour diagonal, ans = dupas (and neglecting also off-
diagonal Yukawa couplings). Writing y,,,,, where n runs over
Ofup Osagr Osepr Osi» Oy and O, and m over the same
operators but with flavour index p, we can express the anoma-
lous dimensions in the following form:

Note that, due to the contribution to rgy, even in the
flavour diagonal case there is inter-generational mixing but
the choice of diagonal Wilson coefficients is radiatively sta-
ble (up to the small non-diagonal terms in the SM Yukawa
couplings).

Different pieces of the anomalous dimension matrix have
been previously computed in the literature. In particular,
the mixing of the operators Oy,g, Osap and Ogey driven
by Yukawa interactions has been obtained in Ref. [60].
Such work relies, however, on a different basis of effec-
tive interactions, where the fermionic operators take the
form (aMS)EC\p)/M\I’. Using the relation between their
Wilson coefficients and agug, dsqp and asey we have
obtained the beta functions for the latter from the results
in Ref. [60] and compared them with our direct calcu-
lation reported in Egs. (51)—(53). The results completely
agree up to a sign difference in the terms proportional to
Tr [yea],—eqb + 3yda1d¢ — 3asu¢y”] y, with ¥ = u,d,e.
Unfortunately, we do not find enough information to track
the origin of this discrepancy.

It is also worth emphasizing that the set of effective opera-
tors used in Ref. [60] is over-complete. As we discuss in detail
in Appendix B, if the Yukawa couplings commute with Cy,
a minimal explicitly shift-invariant basis involves only RH
currents. The RGE:s in this new basis read:

yin 6yl Y§yE —6ydyy =28yl —32g5yd —9g5yd  —Haiys
YEVS = 6Y5Yl van +6y5Y] 2y8ye —32g3y5 93y —3ghy§
—6y¢ Vil 6y ¥} ys3 + 20850 —9g3y¢  —15g7y¢ 57
Y= ;
0 0 0 —14¢g3 0 0
19 .2
0 0 0 -58 0
41 2
0 0 0 0 381
ﬂCu _ yu kyuc +2C yuT 7
where a 8,4, should be understood in every entry in which the + 2056 Cu + ") ! dCd ydT “
p-index does not explicitly appear, and we have defined 17
+ 5 81Cs +982Cw +3283Cc — 27/, (61)
2 — (v8)* + 2 @)? By = y"TyCa+2Cay "y
Vil = 2As¢ 3 Ya ) Yu + 2004 Ca + (yd)—lyucuymyd
e 2 gy (58) 5
1281 4g 33 ) +3g1CB+9g Cw+32g Ce +2y, (62)
3 > 9 2
v =2k — 5 (00)" +5 (09) Be, = ¥ TyCe+2CeyTy*
5 9 + 245¢Ce + 15g7Cp +9g5Cw + 2y, (63)
gt ——g3 —8g3+v,". (59) e e ’
12 4
=2 —(y¥) - — . 60
i =2ksp+5 (06) = 3 g — 182+7 ©0)
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v =Te[yCoy T+ 3ieay’ =3y ] 64

Cp,Cw and Cg are the Wilson coefficients of g%(’)s 3>
g%@sﬁ, and g%(’)sa, respectively.

The dependence of the RGEs above on Cp, Cw and Cg
was computed already in Ref. [24]. We find exact agreement.
Likewise, in Ref. [59] it was shown that Cp, Cw and Cg are
scale invariant, i.e. they do not depend on . This is consis-
tent with our results, for which all the running of a (7 5
can be accounted for by the running of the corresponding
gauge couplings, which are determined by the wave function
renormalization of the gauge fields in the background field
method.

Finally, the RGEs for the dimension-four operators in the
ALP EFT Lagrangian must be provided in order to fully
determine the theory. We have obtained these with the help
of Pyr@te [72]; they are reported in Appendix C. Let us
remind once more that the RGEs of renormalizable interac-
tions are not perturbed by higher-dimensional operators at
order O(1/A).

5 Matching and running below the electroweak scale

At energies smaller than the EW scale, set by the Higgs vac-
uum expectation value (VEV), v ~ 246 GeV, the ALP phe-
nomenology must be described by a different EFT, that we
call ALP LEFT, organised in inverse powers of v, in which
the now massive top quark and the Higgs, Z and W bosons
are not present. Assuming still CP conservation, the corre-
sponding ALP LEFT Lagrangian, to dimension five, takes
the following form:

1 1 s
L1EFT = E(aﬂs)(aﬂs) — Enﬁzsz — 4—3!_?4

Y

1 1 A ~Apv
— ZAwA" = ZG,GA

+ ) {Wiwa - [<m¢>aﬁ?gw£

Vv=u,d,e
— i@ )ap VI VE + h.c.] }
+a.pzs GA G 4G s A, AR
sG Ay sA ny

p>

{(5¢A>aﬂfza““w£ Ay
Vv=u,d,e

+ (@y)ap VT TaYR G, + 52 @y)ap ViV + h.c.},
(65)

where «, B are flavour indices that run over the three families
for d and e and over the lighter two for the case of u.

The assumed CP invariance forces all coefficients to be
real (matrices in case flavour is involved). When no chi-
ralities for the fermions are explicitly written we assume

@ Springer

Y = ¥ + Y¥r and the covariant derivative in this regime
reads D, = 0, —i€QA, —igsT*G/, with Q being the
electric charge. We emphasise that contrary to the ALP EFT
above the EW scale, in this case there are (lepton-number
conserving) effective operators of the same dimension with
and without the ALP. Note that, as explicitly written above,
we work in a flavour basis in which mass matrices are not nec-
essarily diagonal. At the level of computation, this is equiva-
lent to promoting the masses to Yukawa couplings of a spu-
rion scalar field which is later set to its VEV. Technically,
every time we have to integrate out one of the SM fermions
(the top in this case, lighter fermions as we go to lower ener-
gies, see below) we go to the physical basis in which the
mass matrix is diagonalised; off-diagonal mass terms being
generated by running to lower energies.

The following redundant operators arise at dimension five:

Lp= )

v=u,d,e

+i (Foyr) g5 SURIDVR + h.c.], (66)

[ (Fy0)up VID YR +i (o) s SYTipyy

where again the operators are CP-even for real Wilson
coefficients. The purely SMEFT redundant operator can be
removed by making use of the relation

0 ~ ~
D* =D’ + =% (2QA™ + 56" Ta). (67)

The first term in the equation above can then be further
reduced by applying the equations of motion for fermions
in the ALP LEFT,

DYy = () 5 Vi + (i ap )
i (Ey) oy SV R +iE)Daps v - (68)

There is an apparent ambiguity in this process for the »?
term due to the possibility of performing integration by parts
before applying the equations of motion. However, this ambi-
guity simply corresponds to a chiral rotation and therefore
has no physical consequences (see Ref. [73] for a related dis-
cussion).* We choose to split the covariant derivative sym-

4 As an example of the mentioned apparent ambiguity, we could choose
to apply the equations of motion without the splitting in Eq. (70). In that
case we obtain the same contribution to the dimension-five operators
but a different contribution to the renormalizable ones. This difference
is however removed, after canonical normalization, by the following
chiral unitary rotation:

PR T |
rygm,, — myr
v - (1 + ‘”‘”4"’5) vL. (69)

~t ~ ~t o~
myry —r,m
IﬂR—> (1+‘// v 2 WD 1//)lﬂR.
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metrically:
P = L+ B (70)

In this case we obtain the following on-shell equivalence
relations (as usual we write our equations in matrix form in
flavour space):

YriynD Yk + hee.

PP B

_ g yeT T Tyg
2

_Fgiy RO

— VR 5 iDyr

~ ot o~ U -
LMyt qCy + Cy Ty oMy
+ I:lswL v 5 v

ipyL

R

- —eQyTyn
+SPVLEy ) ép R+ L — o= o yr A
—&3ry0
+ Y

Taouw¥rGY' + h.c.:|, (71)

sy Py, iDVL + hec.

= iYL sy, My WR + S*ULFsy, Ey WR + hec., (72)
isYRFsyiDYR + h.c.

= —isyriy i, VR — SSULEyTL, YR +he.  (73)

The parameters of the ALP LEFT can be fully fixed at the
scale © = v by requiring that it describes exactly the same
physics as the EFT before EWSB at the scale . Proceed-
ing this way at tree level, we obtain the following matching
conditions for the interactions in Eq. (65):

A
¢ = g25w = g1Cu, i =m? + %%2, (74)
2
- ~ v 2
83 = &3, )‘S = )"S - 3_2)‘54)7 (75)
my

v

(m)aﬁ=%<y“>aﬂ, s = —=(usdap.  (T6)

- v - v
(d)ap = E(y%ﬁ, Cd)ap = E(am)aﬁ, (77)
- v - v
(me)ozﬁ = E(ye)aﬂv (ce)ozﬂ = E(aseq&)aﬁ, (78)
i = ayz, ax =asgsy +agen: (79

where, as before, « and 8 are flavour indices that run over
the three families for d and e and over the first two for u; c,,
and s,, are the cosine and sine of the Weinberg angle, respec-
tively. All the other Wilson coefficients vanish at the order we
are computing. The fact that the three coefficients a, 4 . van-
ish might be surprising at first glance, as the Higgs couples
to both 52 and to fermionic currents with overall strength
~ )Ls¢y‘” /v. However, precisely because the Higgs boson

sets the scale of light masses [74], i.e. because y¥ ~ my /v,
the product Asq;y‘/’/v ~ )\s¢,m¢/v2 is of higher order in the
low-energy power counting and therefore negligible. This is
no longer true at dimension six (it is in the pure SM EFT even
at dimension six because an s-channel Higgs always involves
two powers of Yukawa couplings). Similarly, a possible con-
tribution proportional to two powers of vay,e is also higher
order in the 1/A expansion.

At energies below the bottom quark mass m;, the effec-
tive Lagrangian takes exactly the same form as in Eq. (65)
except that the flavour indices now run only over the remain-
ing fermions and the Wilson coefficients in the new EFT
have to be matched accordingly. The same logic applies as
we cross new fermionic thresholds. At the order we are con-
sidering, however, the matching is straightforward and the
only thing we have to do is to remove the Wilson coefficients
involving the particle being integrated out. The only excep-
tion arises if ¢y is unsuppressed, in which case integrating
out a massive fermion would result in the following matching
condition:

(ay)ag = —M (no sum over y), (80)
(my)y

where y corresponds to the flavour that is being integrated
out while « and g run over lighter flavours of the same type
of fermion. This term is higher order if the ALP LEFT is
obtained from the ALP EFT. However, we prefer to keep this
section completely general, independently of which theory
completes the ALP LEFT in the UV.

The running of the Wilson coefficients between different
thresholds is very different from the running above the EW
scale (the operators in Table 1). In particular, operators of
different energy dimensions, as well as operators with and
without the ALP field, will now mix under renormalization.

5.1 Divergences at one loop

Similar to how we proceeded in Sect. 3, we fix the ALP
LEFT divergences by computing a reduced set of 1PI ampli-
tudes, the 1/v term of which we reproduce below. Since the
dimension-five operators mix into renormalizable ones, we
start with the divergences that can be absorbed in the renor-
malizable operators. In particular, the divergences associ-
ated to the kinetic terms can be parametrised, at the one-loop
order, in terms of the wave function renormalization factors
as follows:

Liin =Y (1 —8Z0)iDyr + Yyr(1 — $ZR)iDPYg

1 1
+ 5(1 —8Z)(9us)(3%s) — 4_1(1 —8Zp)A AR

1
- (1=8Z6)Gy, G, (81)
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where the wave function renormalization factors are defined
in general by

Z=1+6Z, (82)

and the relative minus sign is due to the fact that the Z factors
are conventionally defined to absorb, rather than parametrise,
the corresponding divergences. As discussed above, the wave
function renormalization factors have contributions propor-
tional to only renormalizable couplings (that contribute to the
running of the non-renormalizable ones; see Figs. 12, 13, 14,
15, 16 and 17) and to dimension-five couplings (that con-
tribute to the mixing into renormalizable ones). We obtain
the following result:

| o 1 <t
Zey = 1= dre 3272 <Cec‘))

S P
- = (ealy +Geam?) (83)
1 o 1 ~t o~
Zep = 1= dre  32m2e (cece)
3e o e
— m (aeIAme + mZaeA) s (84)
1 1 1 —
Zg, =1— E E(x + oo, | — —327_[26 (cdcd)
€ (e st s i
_ Ton2e mgdg, + agam,
g [~ -~ L
+ —47_[26 (mdaj;G + ad(;mj;) , (85)
1 1 1 T~
Zag=1= 5| o+ | = g, (G0)
N
_ o2 (adAmd =+ mdadA)
83 [t - L
5 (@ +midac) (86)
1 J1 1 -
Z”L =1- E 50{ +as — —327[26 (Cucu)
28 (oot s oy
8 (. - _
Tnie (muaZG + aucml) , (87)
1 J1 1 .
L LR = G
28 (b oa o ois
+ 1672¢ (auAmu + muauA)
83 [t -~ s
+ o (aquu + m;auG) , (88)
o 1 4
ZA:l_E ng+§nd+§nu
e - .
+ e Tr [(aeAme +m,dea)

@ Springer

2@,y + fun) + @] g + ) | (89)

A 2
Zg =1+ dre 11— g(nu +nq)
83 O g AR
— mTr [adcmd +myaqG + a,gmy + muauG] )
(90)
Zo=1- - Te[ac +3 (e, +ad))]. oD

where we have defined @ = é2/(4) and oy = g~32 /(4m). For
the remaining couplings we only need to consider diagrams
with a single insertion of a dimension-five operator. The
result is given below, organised according to the amplitudes
we have used to compute the corresponding divergences. We
provide all the relevant diagrams in Appendix D.

e s(p1) — s(p2)
The amplitude given by the diagrams in Fig. 14 fixes the
divergence of the mass term,

e Y(p1) = ¥(p2)
The diagrams for ¢ = e, u, d are shown in Figs. 15, 16
and 17. They contribute to the fermion mass divergences,

= - é(na bden + Gopriiiit )+ L #2
¢ 8m2e erene eATiee 1672¢ “
(93)
~/ 2 ~f ~ ~T ~T ~
m, = 8712~€e (mumua,m —|—auAmumu)
+ §g<r7l g i + GGy )+ L2
27‘[26 3 u utu u u u 167{26 Uus
94)
~/ Lo 4. ~ ~f
my = _8712€e (mdmdadA +adAmdmd>
+ L§3 (rﬁdrﬁT&dG + &dG}’;lTI’IN’ld) + rﬁzéd
212e d d 1672¢ ’
(95)

as well as to the dimension-five contribution to the kinetic
terms reported above.

o s(p1)s(p2) — s(p3)s(p4)
The corresponding amplitude, represented by the dia-
grams in Fig. 18, fixes the ALP quartic coupling,

- 3 s s s
K= —— [Trﬁ +3 (v + 1) } (96)
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where we have defined

Tr), = T{@é@@% + g, Gyl — @l Gy, éy

T

—ay &l iy, + @), eyl iy + afpmewaﬁ]

s(p1) = ¥ (p)vP (p3)

The corresponding diagrams are shown in Figs. 19, 20
and 21 for ¢ = e, u, d. We obtain the following diver-
gences for the renormalizable operators:

~ ~ JRE 3
e 87 2¢ ( eM,Ce +Cemeae)
3¢ . ~t~ - ~ o~ ~
87 2¢ (mecgaeA + AeaC,Me — CoMydep — aeAmeCe) s
Cn)
& 1 5 omTa P
¢, = 3nc (aumucu + cumuau)
28 o oha o oabo g ks
iy (MuClaua + auacyimy — Curt)dya — ayarm; cy)
23 ~ ot~ ~ o~ ~ o~ ~ o~
~ 33 (mucuaug + auGchu — CyM ) ayG — aquZcu) R
(98)
& 1 PR I 5o~
oy = = aqm Cq + CaMm yaq

L R T T o
+ o (mdcdadA +agaCyig — Cattydga — dgam yCq

T
<md6dadc + g Eyig — i jaa — adGded) ,

T 272
(99)
and for the non-renormalizable ones:
o | 30 3¢ | .+
Tsep = — T672¢ aec, + ﬁ“am — 16?ceam,
(100)
R S 30 K
Fsep = 16”2661606 — ﬁ‘mm + mceam, (101)
o | 2 (1 .
Toup = 7 1672¢ DuCy + e (50‘%‘4 + asaSG)
2¢ . ot
mcuauA + o 83Cud, ;s (102)
. 1 .. 2 (1 . -
Tsup = maucu — n_e <§aasg —l—asaSa)
2¢ .. ot
~ Ton2e uA + 3 83CuauG) (103)
- | S 2 | .
Tsq, = —madcd + . (ﬁaasg + a5a55>
e . .t |
~ Tonle Cqdg, + mgwdad(;, (104)

- 1 ~F~ 2 1 . -
Tsdp = madcd - ; Eaasg + asa s

e

- ) B
t T Cadn + mggc;aw. (105)

o A(p) = V¥ (p)YF (p3)

The corresponding diagrams are shown in Figs. 22, 23
and 24 for ¥ = e, u, d, respectively. This process fixes
the divergences

CNZeA = —m (éaeA =+ ZEeEISZ) N (106)

. e 1. . e . .

WA= T op2e \3ONMA T WA | T g2 839G
(107)

~ P 1__ td n e . .

a;, =—— | —ea cqagy 2i_1. 8344G,

A= T oan2e \ 6“1 T A | T 360 83046
(108)

. 3.

V;D 87‘[26 €deA, (109)

B 1 .. 1 _ .

Flo= T a2e A — 55 830G (110)

1 1
~/ _ ~a~ s o~
o= S 2c eaga — 2le 8344G, (111)

as well as a contribution to the fermion kinetic term,
which we have provided fully (i.e. including all contri-
butions up to order 1/v) above.

G(p1) = ¥ (p)¥" (p3)

The diagrams for ¥ = u, d are respectively shown in
Figs. 25 and 26. Similar to the previous case, we obtain:

1 7 1

~ . B .

a,g = _87'[26 83Cudgg + —6n€asauG — megy),“‘,
(112)

~ | . 7 . N 1

A4 = 55 83Cda,G + - 0sa ————e83a44,

dG 87‘[26g3 ddsG 6rre sddG 4872¢ 834dA
(113)

as well as cross-check the previous redundant operators
and contribution to the kinetic terms for the quarks.

s(p1)s(p2) = ¥¥(p3)¥P (pa)
The diagrams for ¢ = u, d, e are given in Figs. 27, 28
and 29. We get:

., 1 R -

a,=|—a — ———

€ e 3272 [
1

(Eeéjée —2a,8¢, - 25553518)

16m2e
3é ~ ,,,—;-,, ~ ~F ~

Py (ceceaeA + aeAcece> , (114)
. 4 (1 N s ]
a,=|—|\-a4+a; ) — a
“ 3me \3 y 3272 | "

L focte o ote o ot
+ T672¢ (c,,aucu —2a,c,,¢y — 2cucuau>
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e
472¢

(Guciaun +auadc)

-5 (@uchaue +awsele) (115)

., 1 /1 s ]
@ = [? (3“ +4“f) B —mze}”
Vo e s
+ TonZe (cdadcd —2aq¢)cq — 2cdcdad)
€ (s st~ U
+ m (cdcdadA + adAcdcd)
g3

_ o2 116
2n2e (116)

(ajdac + dacejia) .

e s(p1) = V(p2)V(p3)
The diagrams for V = A, G are given in Figs. 30 and 31.

The corresponding divergences read:

S & st
a ;= 87 2c r| —|(Cea, 4 +Colen
— (Cady +Ehaan) +2 (6, +liun) }
(117)
= 1 [50,5;* + &agg + éial +5*auG].
sG 167126 dG d uG u
(118)

5.2 Eliminating redundancy

We can now go to the on-shell basis by using the redun-
dancy relations in Eqs. (71)—(73). The kinetic terms for
fermions receive an extra contribution from the coefficient
of the redundant operators,

Fy o), —i—r?z]/,fjbm

—8Zy, — =82y, — 3 , (119)
-t o~ ~F o~
r, My 4 my ry 0

=82y > 82y — L (120)

Upon replacing the values in Egs. (83)—(88) and Eqgs. (109)—
(111), we find that the contributions of dimension-five oper-
ators to the fermion kinetic terms precisely cancel in the
on-shell basis. The resulting wave function renormalization
factors then read in the on-shell basis:

o 1 <t
Zop =1 dre  32m2e (cece) ’ (120
(07 1 ~t o~
Zeg=1- e — 35 cece) , (122)
Zo =1— [ Loy ! (~ ~T) (123)
A= T3 2% T | T 302 \ )
1 1 .
Zig =1 5| o+ |~ 55 <cdcd>, (124)
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1 (1 A
ZuL =1- E 50{ +Ols - m <CuCu) . (125)
1 1 1 ot
Zup=1-5—|z0+a |- 55 (cucu), (126)
Za=1- " |nt Ly s ?
AT T e [T g
A —(@ e + M den)
27‘[26 eAllle eleA
2@ g+ L aa) — (@) i+ fhzéa’A)] ;
(127)
o 2
Zg =1+ 11— =(n, +ny)
dre 3
g?’ T ~7 o~ ~ o~ ~f o~ o~
_ m r\a;oma +myaqc +a,gmy +m,a,c |,
(128)
1 N ;
Zi=1— —Tr lecci+3(cud) +ach)]. a2

We also have a contribution to renormalizable coefficients
from redundant ones:
~ ot o~ R
My, qCy + Cylry oMy
2

Cy — Cy +
Ry tity — By Fly (130)
which results in the following values:

é, = &a_m
= e
¢ 4ple oA

1 Y it I . N
- e |:ae (cz,me — Zche) + (el — 2cemZ) ae]
3e [. . Lt
871726 MeCpleA + AeAC,Me

(131)

— Cott}@en — aemiae],
1 1
~ 2~ =2~ |~
Cy = 71’26 |:§€ asi +g3asG:|m”’
1
1672¢

[au (& —2mE,) + (), — 28,m}) a]
e
472¢

[rhua;am + Gy ACL iy — Gyl s — am;eu]

o ata - ot~ o ot "t~
- m[mucuauG + auGczmu - Cum,’lauG - aquZCu s

(132)

~ 1 1 ~2~ 4~2~ i
Ca = 471'26 ge agi + 834G |Md
1 .
T [ad (5},@ — 2n~1j15d) + (rhdél'i — 25dn*1j1) ad]

e [ . 4. ot o ata o ata
+ Fy [mdcf,adA + adAC;md - Cdm:;adA - adAded]
= 8 [ iadiiaG + GaGE g — Eatildac — e
Im2e | MdCa%dG T adGEqMa — CamgddG — AdGMaCd |-
(133)



Eur. Phys. J. C (2021) 81:181

Page 13 0of 34 181

Finally, the redundancies imply the following relations for
the coefficients of non-renormalizable operators:

Gy — Gy + EyF 8y + ey, &y — STy (134)
, - eQyry0
aya —> Ay + _wz e, (135)
. - &3ry0
dyG = ayG + (136)

resulting in the following on-shell non-renormalizable diver-
gences:

y 1o, 1 i1l
b = |:97T266 + 37‘[6g3 32n26i|au
1Tl
+ |3+ B
1
1672
1
 4nle

[ — &, &y + 3,60, + 35@&4

é[&uégauA + EzL,AEZEu}

83 it o ata
_ 3n2e [CuczauG -+ auchCu],

(137)

~/ 1 ~2 1 =2 As ~
“a= |:36rrzee T3 32n26:|ad
1 1 25
+m|:3 agx +4g3asc]cd

1

~ . e
_ m[ — CaayCq + 3aqc,Cq + 3cdcdad}

o) [P ~ o~
+ 87126e|:cdcdadA + adACdCd:|

(138)

GaChdac + dageiia |,
2m2e d d

/ 1, A 3 .
e~ |:4n266 B 327126}16 + dr2e’ sace
1
1672
3
+ 812

Qe

[ — Goll) Cp +3,C) 0 + 35652@}

E[éeaj&eA + aeAajae}, (139)

e ~~ ~ ~
=% [2¢aca + Cea ;] (140)

. e 4 _. s 2e¢ . .
G = Tianze [300A T A | T gp2e 836
e 2. .. e
3 |:—eadA + cda”i] +

(141)

- g (142
daa 24m2e | 3 9nzeg3ad6 (142)

- 8 [4.. .
GG = Tgpag | 36uA T Cu

i 1 .
asé]+mg§auc, (143)

- 23 2. . 1
ayg = g geadA +Cdasf} 2an2e g3adG (144)

5.3 Anomalous dimensions

Once we have parametrised all the relevant divergences in
the on-shell basis, we can obtain the beta functions of the
different parameters following the standard procedure out-
lined in Sect. 4. We start reporting the beta functions for the
renormalizable couplings, which read:

4 1 4 7.
ﬂézg ne+§nd+§”u e

+ 852Tr[ — (@] e A lden) + 2@, iy + )
A
(g mq + mdadA):|:
Ba = [—11+ = (nu +na))g; + 483 Tr

X [aZGmd + mdadG + aquu + %Zdl,g] , (146)

Bis, = —6&%, + %(nﬁeé‘j&‘e + Coll e + 461 E,)
+ T @erit] + Etite + 3,0, + 3E5 11,
+ 3ig &l + 3 Ea)Ee
+ 12e (memTaeA + dearit} it ) — 2m’a,, (147)

9~ 8 5.
,Bﬁt,, = _8g§mu - gezmu
| [ Yt
+ E(muczcu + Cuclmu + 4Cumzcu)
+ Tr@etit] + e + 3¢ + 3& iy + 3l + 3mEa)E
—8e (’ﬁu”hzauA + auAr;lZ’/hu)
(148)

— 1683 (uitauc + augriy i) — 2m*ay,

2,
Biny = —8831a — 3¢Ma

+ E(nadggad + EqCling + 4earn})cq)

+ Tr(Gorit) + &ty + 38,

3Dy + 3l + 3w Ea)Ey

x 4 (i ian + Gaarifia)

— 1633 (nzdnaj;adc + sz(;rh;nzd) —2m2a,,  (149)
Bir = kst + 4 Tr(GoE))

+ 12> Tr(Eg€)) + 12> Tr(E,é))

— 24Tr(5u5umumu + cdcjlmdmd)

— I8Tr (& iy + & yiig)

— 12T (&t Gt + &, &l ity

+ G a4 Ermallimg)

@ Springer



181 Page 14 of 34

Eur. Phys. J. C (2021) 81:181

— 6Tr(cum + mdc:;cdmd +c Genﬂnﬁe)

— 2Tr(4cec;fmem + 2¢.m cemz
+ 280 o El i, + ol El)

+ 8[3Tr (ﬁz!l&dmdmd + mjlmdajlmd>

(150)

72
5, = Ay —
— 144Tr (G, &1 6, E) — 48Tr(E,¢1¢,¢h)
+ 243, Tr(Eg ) + 24, Tr(E, )

144Tr(4E5E4E0)

+ 87, Tr(Eell) + 96[Tr§ +3 (Trﬁ 4 Tr§> ] (151)

24 s

Bi, = _E(E +3g3)¢u + 3¢uc,Cy

+ Z[Tr(éeEZ) + 3Tr(G4€)) + 3Tr(E, aj;)]équ
_ 32|:3e ‘%A + g3a36i|mu

+ 2[au (&l —2mlé,) + (M)

- ZEurﬁl)du]

+ 85[%53,&“ + Gy Gty — Gyl — am;,a,]

+ 1633 [ﬂzuEz&uG + dyGEimy, — &gl dyG — aanﬁEu],
(152)
o _% ~2 2\~ P
Bey = 3(e +12g3)cq + 3cqc ca
+ 2|:Tr(535:) + 3Tr(Ga)) + 3Tr (@) )]ad
1, =2~ ~
-8 3454 +4g3a.¢ |ma
2| (&g = 2la) + (macl — 200} |
d \Cymd mycq ) + |mac, Camy ) aq
—almaeta T SIS P L
4e|:mdcdadA +aqacyma — Cam ydqa adAded]

+ 1683 [nadaj,adg + daGEra — Cathdac — &dGthEd],
(153)

Bz, = —6&°C, + 3¢,1¢, + 2|:Tr(EeEZ)
+ 6Tr(Ggch) 4 6Tr(E ) )}58
— 8|:3e a A]me + Z[ae (cime —2m ce)

+ (rheEZ - 2Eerhj) ae}

@ Springer

- 125[meagaeA + oAl e — Cotit}lon — aem;ee];

(154)

where the contributions from the effective operators are
apparent from the presence of the corresponding Wilson
coefficients, and we have used Pyr@te [72] with manual
cross-checks to compute the part of the beta functions that
depend only on renormalizable couplings.

As a byproduct of this work, we have reproduced the
anomalous dimensions of purely SM operators to dimension
five given in Ref. [73]. One can also trivially reproduce the
log (mw /my ) piece of the ALP-fermion—fermion couplings
induced by ALP-vector-vector ones in Egs. 3.15 and 3.20 of
Ref. [24].

In the case of the non-renormalizable Wilson coefficients,
the beta functions read:

8. 2z |-

/3[1,, = |:_ 362 - Sg% + )Lsi|au
e 52~ |~
-32 3¢5 + 834,45 |Cu

13 . 13 ~T~]

+ 2|: — cuaTc,, + 2 —ay,C)cy + Zcucuau
4Ty [EeEZ +3 (5,15; n a,ej,)] u

+ SE[EME;E:MA - auAEj,‘au]

+ 1633 [a,ézaua + aueézéu} (155)
2.5 =2 .7 |5
Bay = | — 3¢ — 8¢5+ As |aa
l ~2~
—32 126 ag i+ g3aYG Cd
Lt o4 13
+2| —cqayca + Zadcdcd + chcdad
+4Tr [EeEZ +3 (Edaj, + a,ej,)] da
—4¢ [5d5§adA +dq Aégad}
+ 1683 |:5d525d(; + adgajlad], (156)
G = [ — 68 + Xs}ae —248%G ;¢,
- 125[565’;&6/4 + &eAajae]
. 13_ .. 13. .
+ 2|: — ceaTce + Zaeche + — 7 —CeC Taei|
+4Tr [EeEZ +3 (5,152 + a,aj)] e, (157)
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Bar = 4€Tr[ (Gealy + claen) + (Gad], + Elaan)
2 (Cuify + Ehaun ) }
+2T¢ [Gf +3 (Gad) + i) |,
8 [

1 4 -
+ ge _ng + §nd + gnui|a”§, (158)

i5 = —283Tr |Cadl + g + Eull + Cyduc

+2Tr [G] +3 (Gad) + ) |y

2|2 -
+283 30w+ na) =11 dg, (159)

- o | el
Ba,, = 108%a,4 + decoa ; + 3 (cecéagA + aeAcéce)

1 -
ne+ zng + Ny |dea,

3 3 (160)

40 , 8 . . o e
ﬁ&uA = ?e ayA — gecua”; + ?eggau(; + §g3auA

1 - ,_,T,., ~ ~T~
=+ E (cucuauA + auAcucu)

4, 1 4 1.

+ 38 et 3na S |duas (161)
10 ,_ 4 . . 32¢ _ . 8 5.

Biss = ?ezadA + gecda”; - 783%6 + gggadA

1 /. . e ata
+ 3 (CdC)gadA + adACJ[Cd)

3 (162)

16 _ __ e e
B = = 83¢aua — dgscua + §€2auG

4, 1 4 7.
+ se|ng+ gnd + gnu ada,

l ~ "T" ~ ~T,.,
+ 5 (CucuauG + auGCuCu>

1 e
+3 [2 (nu + ng) — 29:|g§au(;, (163)

Y Y aln 2 5.
Bayg = —3838adn — 483631615(; + §ezadc

L e Y
+ 5 (Cdcj}adg + adGct'icd)

1 9~
+ = [2 (ny +nq) — 29}8%%&

3 (164)

where n,, ng and n, are the number of dynamical up-type
quarks, down-type quarks and charged leptons, respectively,
for the EFT we are considering. The appearance of fermionic
dipole moments induced by ALP couplings [50] is manifest.

The equations above are fully generic, meaning that they
hold irrespective of whether the EFT in the UV is the one we
have assumed in Sect. 2 and that leads to the matching con-
ditions in Egs. (74)—(79), or rather any other EFT containing
different degrees of freedom such as for example a second

scalar doublet with arbitrary Yukawa couplings which would
lead to non vanishing a, 4 .. In the former case, though, one
should take into account that ¢, 4. are already 1/A sup-
pressed and therefore terms with more than one appearance
of these Wilson coefficients should be neglected for consis-
tency.

Within our EFT(s), the parameters a,,, aq and d, vanish at
all scales, and the renormalizable fermion and ALP masses
do not get contributions from dimension-five operators. In
general this is not the case and we have, for example,

S ~ mla,, S, ~ m’a,, (165)
and likewise for quarks.

The running of the operators involving coloured particles
should not be taken at face value at energies close or below
Agcp ~ 200 MeV, where QCD becomes strongly coupled.
Otherwise, the equations above, together with Eqs. (51)-
(54), can be used to make predictions within the ALP EFT
to leading-log accuracy across all energy scales.

6 Some phenomenological applications

The mixing of different operators can have a significant
impact in the understanding of extensions of the SM with
ALPs. To exemplify this point, we consider in this sec-
tion the following simple Lagrangian, defined at the scale
A =10TeV:

1 1
L= Lsm + EBMSE)"S + Enﬁzsz

(166)

a.s ~ ~
sZ 2 nv 2 nv
s (W W — 2B, B,
c(l) SCU

where Lgy stands for the SM Lagrangian. In this Lagrangian,
the ALP couples to pairs of Z bosons but not to pairs of pho-
tons. Despite its simplicity, this structure arises for exam-
ple in the next-to-minimal composite Higgs model based on
SO (6)/S0O(S) as aresult of quantum anomalies [6]. Within
this framework, the photophobic condition is stable, namely
a, ; remains vanishing at all scales. (The ALP can still cou-
ple to photons proportionally to 7 via loops of heavy gauge
bosons [25], for instance.) However, below the EW scale, the
ALP coupling to photons could be induced by (purely SM)
dipole operators even at dimension five if the high-energy
theory is not just the ALP EFT, but it rather involves other
states near the EW scale.

Let us assume that the physical ALP mass is O(KeV).
While a > can be directly constrained at colliders, e.g. in
pp — Zs, the corresponding bounds are very weak. For
example, values of a 7 larger than 0.2 TeV~! can be bound,
depending on the value of m, from LHC Run II data [27].
This bound can be extended to values above 0.04 TeV~! for
the High-Luminosity phase of the LHC [27]. However, a >
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does generate, through mixing, other operators with non-
vanishing Wilson coefficients, in particular a,.g, which is
very constrained experimentally. Indeed, the most stringent
bound for ALPs with masses ~ KeV comes from the modifi-
cation of Red Giants cooling due to ALP radiation. This sets
a bound on the ALP coupling to electrons &, < 3 x 10713,
for a typical core temperature of T ~ 108 K [42]. Since we
are assuming that there are no degrees of freedom other than
the ALP and the SM ones below A, ¢, runs proportional to
itself. Resumming Eqs. (145) and (154), including O(1/A)
effects, we obtain at the EW scale:

G(v) <2.8x 1071, (167)
which translates into
sep(v) < 1.6 x 10712 Tev™!, (168)

Solving numerically Egs. (51)-(56), (199)—(201) and (207)—
(209) for A5y = 0, we can compute the maximum allowed
value for a,5 (10 TeV):

a,7(10TeV) < 4.8 x 1070 TeV~!. (169)

Despite the electron Yukawa suppression, this is four orders
of magnitude stronger than prospects from direct searches.
Such analysis of the photophobic ALP was previously per-
formed in Ref. [25] by considering solely the running of the
gauge operators. As shown in Eq. (167) the running from the
EW scale down to the KeV amounts to a ~ 6% effect, which
can be taken as a systematic theory error when using only
the EFT before EWSB. See also Ref. [75] for an analysis of
the RGE effects in bounds on neutrino interactions resulting
in similar numbers.

As another example, we consider the case of a top-philic
ALP at A = 10 TeV, with Lagrangian

1 1 s
L= Lom+ Ea,isa/*s + En”azs2 + ars[ig; ¢tr +hecl,
(170)

where ¢ stands for the third generation quark doublet and,
in our notation, a; = (amd,)”. As before, a; generates, via
renormalization mixing, a non-vanishing a,.y. Proceeding
in the same way as above, we obtain a,(10 TeV) < 4.3 x
107® TeV~! from the bound & (u ~ KeV) < 3 x 10713,
Direct bounds on this coupling could in principle be obtained
from pp — tts, but they are likely to be very weak due to the
challenging final state. Other indirect constraints on a; have
been studied in Ref. [30] but they are again much weaker
than the one we have obtained.

Other interesting phenomenological implications, like the
possible impact of non-SM degrees of freedom using the
generic RGEs, and in particular the mixing between operators
of different dimensions and different ALP content, are left
for future work.
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7 Conclusions

In this article we have investigated the EFT for ALPs up
to order O(1/A) in the cutoff scale A. We have worked in a
complete basis of EFT operators to dimension five, including
both shift-preserving and shift-breaking interactions. Assum-
ing that CP is conserved in the UV, we have computed, at one
loop, the evolution of the CP-even effective operators under
renormalization group running from arbitrarily high energies
down to the EW scale. In the ALP LEFT, relevant at smaller
energies, in which the heavy top quark and the Higgs, Z and
W bosons are no longer dynamical, we have also computed
the renormalization of all, relevant and marginal, parame-
ters. We have found that, in general, effective interactions
can renormalize dimension-four ones, and operators involv-
ing the ALP mix with pure SM operators; although the lat-
ter effect vanishes if the theory above the EW scale involves
only the ALP and SM degrees of freedom. For this latter case
we have also provided the matching conditions between the
EFTs above and below the EW threshold. Interestingly, we
have shown that in the presence of SM dimension-five inter-
actions below the EW scale, the ALP coupling to photons no
longer renormalizes proportionally to itself.

To make our work more useful, we have not only given
the full list of beta functions in a minimal basis but we have
also explicitly written the corresponding counterterms of all
independent (off-shell) Green functions. This is important
for two reasons: first because without this information, the
RGEs of extensions of our EFT, e.g. by adding right-handed
neutrinos, can not be built on our results, as redundancies are
different in different EFTs;

second because while in analytical one-loop computations
within MS the counterterms might be in principle ignored by
just dropping the 1/€ poles, their precise value is of funda-
mental importance in numerical Monte Carlo simulations.

For the ALP EFT in the unbroken phase, several RGEs
have been obtained previously in the literature. These
assumed however shift invariance, and were therefore pre-
sented in a different set of operators, in which the ALP comes
always in derivatives. We have discussed some redundancies
that appear in this set of operators, and obtained conditions
on the corresponding coefficients under which they actually
form a basis of independent interactions. Upon relating this
basis to ours, we have obtained the RGEs in the former. In this
way, we have not only completely solved the full dimension-
five ALP EFT to leading-log order, but also cross-checked
several of the partial results which were somewhat spread
over different references [24,59,60].

Finally, as an example of the utilization of our results, we
have explored the possibility of indirectly probing ALP-Z
as well as ALP-top interactions through their contribution to
the ALP-electron coupling, which is bounded by very low-
energy measurements. (We leave the interesting possibility
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of testing ALP interactions through its mixing into pure SM
ones, and vice-versa, to future work.) This shows the poten-
tial of our results to study the ALP EFT phenomenology to
leading-log accuracy across all energy scales.
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Appendix A: One-loop diagrams in the ALP SMEFT

See Figs. 1,2,3,4,5,6,7,8,9, 10 and 11.
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Fig. 3 Feynman diagrams for s(p1)¢(p2) — [1(p3)er(pa)
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Appendix B: Shift symmetry and relations between dif-
ferent bases

It is often interesting to assume that the ALP EFT is strictly
invariant under the shift s — s+o, with o being constant. In
this case, the following Lagrangian is more commonly used
in the literature:

Laim—s = Z (BMS) WCy yHw+ CBg%SBMUEﬂV
W

+Cwgrs Wi, Wi + Cgg3sG, Gl (171)
where W runs over qr, [, ugr, dr, eg and Cy are hermitian
matrices in flavour space. The advantage of this parametri-
sation is that the shift symmetry is explicit. However, it must
be noted that not all terms in the Lagrangian are independent.
Indeed, focusing for concreteness on the leptons, we note that
there are 9 + 9 = 18 independent real parameters from C,
and C;. This is the same number of parameters that we have
in the lepton sector of the (non-redundant) Lagrangian used
in Sect. 2, but the latter involves all possible terms, including
those that are not shift-invariant.

One could be tempted to think that the LH operators can
be traded, on-shell, by the RH ones. This is however not true.
In general, the following relation holds on shell:

— <>
sl Crytly = dysegHy er + seg(1A)i D eg, (172)
where <D_; = D, — <D_M and H and A are hermitian and
anti-hermitian matrices, respectively, given by

1
A= 5[(y6)—‘czye - y”cz(yer”] (173)

H = —%[(ye)—lczye + ye*cz(f)—”] (174)
Sothe LH and RH operators are only equivalentif A vanishes.
A sufficient condition for this to happen is that the Yukawa
coupling commutes with C;, which happens in particular if
the ALP couples to a single lepton family.

The on-shell relation in Eq. (172) might seem counter-
intuitive at first, since the left-hand side is explicitly shift-
invariant but the term in the right-hand side proportional to
A does not seem to be. However a closer inspection shows
that this term is in fact shift-invariant as it should. To prove
it, let us consider the operator

<>
serCi D eg, (175)

with C being an arbitrary hermitian matrix of order 1/A.
In order to see under which conditions this operator is shift
invariant we perform a shift, s — s + o,

> <>
segrCi D eg — (s +0)erCi D eg, (176)

and we get an extra contribution to the e kinetic term, which
can be canonically normalized via the following field redef-
inition,

er — (1 —oC)er. 177)

Since C is of order 1/A, the only effect of this field redefini-
tion happens in the renormalizable Lagrangian and therefore
only in the Yukawa term:

ILgy‘e — ILp(y* — 0y Cler. (178)

We can now perform arbitrary chiral rotations which, to the
order we are considering, read

Ir > A+ ApDlL, er — (1 + AR)eg, (179)

where Ay g are anti-hermitian matrices of order o/ A. Under
these rotations, the Yukawa Lagrangian receives the follow-
ing correction:

Ippyer — lp(y* —oy°C — ALy® + y°Ag)er,  (180)

which is independent of o (and therefore shift invariant) if

yEAR _ ALye

y¢C = (181)

(e

Using the hermiticity of C we can eliminate Ag and get the
following sufficient condition for shift invariance:

cshift—inv _ yeTAL(ye’f)*l _ (y")*lALy", (182)

with Ay being an arbitrary anti-hermitian matrix of order
1/A (we have absorbed in its definition a factor of 1/20).
We see from Eq. (173) that 1A has precisely that form with
the identification A;, = —iC;/2 and therefore Eq. (172) is,
as anticipated, shift invariant.

Equation (172) shows that the Lagrangianin Eq. (171)isin
general redundant but also that, if A vanishes, a minimal basis
is given by eliminating the operators with LH fields in this
equation. In this case the Wilson coefficients are univocally
related in both bases and we can translate the anomalous
dimensions to the new one. The relations between the Wilson
coefficients are:

asg = Cpgi. (183)
asw = Cwgs. (184)
asc = Cgg3. (185)
agye = —Re(y/ Cyyp), (186)
ags =m0 Cyp), (187)

where i stands for u, d or e. Using the results in Sect. 4
and the SM RGEs in Appendix C, we can obtain the RGEs
in this new basis, valid in the limit of vanishing complex
phases for the Yukawa couplings. The results are presented
in Egs. (61)—(63).
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Note that the ALP-fermion—fermion operators in the new
basis are not renormalized by gauge interactions. The gauge
contributions to the sW@W operators is exactly cancelled
by the running of the Yukawa couplings. This result can be
ultimately rooted to the fact that Eyﬂ Y is a conserved current
of U (1) and therefore does not renormalize to itself off-shell
[76], and by noticing that the non-abelian structure of the
EW and color gauge interactions does not manifest in the
renormalization of 8,5y, ¥ at one loop.

Given the discussion so far, we find worth discussing shift
invariance in the basis of operators introduced in Sect. 2,
which contrary to Eq. (171) is minimal. We find the following
sufficient conditions on the Wilson coefficients for a shift-
invariant theory:

af-zgtfmv = Re(Hg, " + y" Hug). (188)

ai}lipﬁ_inv = —Im(Hqu” + " Hug), (189)
Su

atit=i™ = Re(Hy, y! + y¥ Hap), (190)

QM = —Tm(Hy, v + v Hay). (191)
S

A = Re(H), y° + ¥ Hep), (192)
SN — —Im(Hy, v + ¥ Hep), (193)

with Hy; 1, ug.dg,er DEINg arbitrary hermitian matrices.

Let us see that this is indeed the case. We show it explic-
itly for the case of leptons, quarks being a straightforward
generalization. Let us consider the following Lagrangian:

L=—I(y —isac)peg +he. + -, (194)

where o, is an arbitrary matrix in flavour space of order 1/A
and the dots stand for other interactions that are not relevant
for the present discussion. A shift s — s 4 o induces the
following change in the Lagrangian:

L— L— [E(—icrae)dwR + h.c.] . (195)

Performing again arbitrary chiral rotations as in Eq. (179) we
get, to the order we are considering,

- [E(yeAeR

We therefore see that a sufficient condition for «, to keep
shift invariance is that it has the form

L— L — Ay Y —loae)per + h.c.] . (196)

shift—inv

o TN = Hyy y© 4 Y Hey, (197)

with Hj, ., being arbitrary hermitian matrices, correspond-
ing to &iA;; ., /0 inEq. (196), respectively. Taking now into
account the relation between «, and the Wilson coefficients
in our basis, namely,

ase¢p = Rea,, —Ima,, (198)

agy =
we obtain the condition in Eqgs. (188)—(193).
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Appendix C: Running of renormalizable parameters
above the electroweak scale

The renormalizable parameters of the theory above EWSB
evolve following:

41

Bgi = ggl, (199)
19

Be, = —;gé, (200)

Bes = —783, (201)

B2 = 4hspit® 4 hgm?, (202)

B2 = As¢m2 + [ZTr(yeyeT)

9
+6Tr(y"y" 1) + 6Tr(y?y4 ") — —g1 -2 - m} 12,

2
(203)
Br, =327 + 1243, (204)
Brus = [ 1+ 4sp + 2Tr(y* ) + 6Tr( 3" )
¥ 3 9
+6Tr(y?y?") + 122 — Eg1 Zgg] Asirs (205)

1 - T ¥
Br = 503 — 6TIG"y ufyuyuty — 6Tr(ydy? ydyd")
9 3
- ZTf(yey'ZT ET) + gl + 882 + 48182

T [24,\ —3g2 —9g2 + 4Tr(yfy”)

F12Te (" y" ) + 12Te (4 y ‘”)] (206)

By = {%y“y” — %y‘lydT
3 [Tr(y“y“*) —l—Tr(yd )]

+Tr(y*y ”)— — %g%—Sgﬁ}y”, (207)
Bya = {;ydy‘” ;y”y“+3[Tr(y”y”)+Tr(yd "T)]

+Tr(y%y ”)— - %g%—Sgﬁ}yd, (208)
Bye = {; vt 43 [Tr(y”y“) + Tr(y?y! T)]

+Tr(y¢y") — fgl - §g§} . (209)

Appendix D: One-loop diagrams in the ALP LEFT

See Figs. 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26,27, 28,29, 30 and 31.
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Fig. 12 Feynman diagrams for A(p1) — A(p2)

Fig. 13 Feynman diagrams for G(p;) — G(p2)
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Fig. 22 Feynman diagrams for A(p1) — e(p2)e(p3)
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Fig. 23 Feynman diagrams for A(p1) — u(p2)u(p3)
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Fig. 27 Feynman diagrams for s(p1)s(p2) — e(p3)e(pa)
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Fig. 28 Feynman diagrams for s(p1)s(p2) — u(p3)u(pa)
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