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Abstract 

We present results of theoretical study of magnetorheological effect in ferrogels with 

magnetizable spherical particles chaotically distributed in a current gel.  To avoid intuitive 

constructions with uncontrolled accuracy and adequacy, the analysis is done in the frames of the 

mathematically regular pair approximation. Our results demonstrate non monotonic increase of 

the composite shear modulus with the applied magnetic field. This effect is stronger for the 

systems with the soft gel, than for the relatively rigid ones.  

I. Introduction 

Ferrogels are modern smart materials, consisting of magnetic nano – or micron-sized 

magnetic particles distributed in a polymer matrix. Combination of rich set of properties of 

polymer materials with a high response to applied magnetic field offers great opportunities in the 

various high-tech areas, such as magnetically controlled dampers, shock absorbers, sensors, 

artificial muscles, scaffolds for growing and engineering of biological tissues, etc. [1-14].  

One of the most interesting, from the scientific point of view, and valuable from the 

practical viewpoint,   features of these materials is their ability to change shape, size and 

rheological properties under the action of an external magnetic field. Analysis shows that these 

magnetomechanic effects strongly depend on the morphology of internal spatial disposition of 

the particles in the host polymer. The shear effects in the composites with the particles, united in 

various anisotropic heterogeneous structures, have been studied in refs. [15-18]. The general 

conclusion of these works is that the field can significantly increase the shear elastic modulus of 

these composites. 

Usually the anisotropic internal structures are created on the stage preceding the 

composite curing, by application of an external magnetic field (field of polymerization)to the 
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suspension of the magnetic particles in the liquid polymer. At the same time, for many 

applications (especially the bio-medical ones) magnetic gels are synthesized without the 

field[12]. In this case the spatial disposition of the particles is rather random and isotropic (see, 

for example, [19-21]). 

The goal of this work is theoretical study of influence of an external magnetic field on the 

shear elastic modulus of magnetic gels with chaotic (without heterogeneous structures)spatial 

disposition of non Brownian magnetizable particles. The non-linear dependence of the particles 

magnetization on the field is in focus of our consideration.  

II. Physicalmodel 

The main problem of the theory of composite material is analysis of cooperative effect of 

interaction between many particles of the filler. To this end various empirical and semi-empirical 

approaches have been suggested (see, for example, ref.[22]) to estimate mechanical properties of 

composites with solid non magnetic particles. Unfortunately, these methods do not allow taking 

into account magnetic interactions between the particles and important details of their spatial 

disposition in the macroscopically deformed ferrogels.   

Here, in order to avoid intuitive and heuristic constructions, we will use mathematically 

regular approximation of the pair interaction between the particles. In the other words we will 

take into account magnetic and elastic interactions between two arbitrary particles and ignore 

any effects of a third one. In the mechanics of suspensions and composite materials this 

approach, as a rule, leads to quite acceptable agreement with experiments till the particles 

volume concentrations about 15-20% [23,24].  

Let us consider two identical non Brownian magnetizable particles and denote diameter of 

the particle as 𝑑𝑝, radius-vector, linking centers of the particles as 𝒓.The particles are situated in 

an elastic incompressible medium with the shear modulus  𝐺0.  The composite is placed in a 

homogeneous magnetic field 𝑯0perpendicular to the direction of the macroscopic shear.  We will 

introduce the Cartesian coordinate system, shown in Fig.1, with the origin in the center of one 

(say, the first) of the particles, axes 𝑂𝑧 and 𝑂𝑥 aligned along the applied field 𝑯0 and direction 

of the shear respectively.  
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Fig.1.Sketch of the particles relative disposition and used coordinate system. The axis 𝑂𝑦 is not shown 

for brevity. 

We will take into account magnetic interaction between the particles in the frame of the 

simplest dipole-dipole interaction.  In this approximation the first particle can be considered as 

placed in the total magnetic field 𝑯 = 𝑯0 +𝑯2, where 

 
𝑯2 =

𝑉𝑝

4𝜋𝑟5
(3 ∙ (𝑴 ∙ 𝒓)𝒓 −𝑴 ∙ 𝒓) (1)  

is the field, created by the second particle in the place where the first one is situated, 𝑴 is the 

particle magnetization,𝑉𝑝 = 𝜋𝑑𝑝
3/6isits volume. Since the particles are identical, their 

magnetizations  𝑴 are also identical. 

Magnetic field 𝑯𝑖𝑛 inside the particle can be found from the following relation [25]: 

 
𝑯0 +𝑯2 = 𝑯𝑖𝑛 + 𝑁 ∙ 𝑴, (2)  

where 𝑁 = 1/3 – is demagnetizing factor of the spherical particle. In its turn, 

magnetization 𝑴 of the particle can be estimated by using the empirical Frolich-Kennelly  

relation [26,27]: 

 
𝑴 = 𝜒 ∙ 𝑯𝑖𝑛, 𝜒 =

𝜒0𝑀𝑠𝑎𝑡

𝑀𝑠𝑎𝑡 + 𝜒0|𝑯𝑖𝑛|
. (3)  

Here 𝜒0and 𝑀𝑠𝑎𝑡  are initial susceptibility of the particle material and its saturated magnetization 

respectively; 𝜒 is the particle susceptibility in the internal field 𝑯𝑖𝑛. Combining eqs. (2) and (3), 

one gets: 

2 

1 𝑥 

𝑯0 
𝒓 

𝑧 Shear 
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𝑯0 +𝑯2 = 𝑯𝑖𝑛 ∙ (1 +

1

3
∙

𝜒0𝑀𝑠𝑎𝑡

𝑀𝑠𝑎𝑡 + 𝜒0|𝑯𝑖𝑛|
). (4)  

Substituting here the relation (1), taking into account (3), we come to the system of equations 

with respect to the components of magnetization 𝑴: 

 

𝑀𝑥 =

[
 
 
 

1 −
6𝑀 𝑠𝑎𝑡

3𝜒0𝐻′ + 𝑀 𝑠𝑎𝑡(3 − 𝜒0) + √(𝑀 𝑠𝑎𝑡(3 − 𝜒0) + 3𝜒0𝐻′)2 + 12𝜒0𝑀 𝑠𝑎𝑡
2

]
 
 
 
𝑀 𝑠𝑎𝑡𝐻2 𝑥

𝐻′
,

𝑀𝑦 =

[
 
 
 

1 −
6𝑀 𝑠𝑎𝑡

3𝜒0𝐻′ + 𝑀 𝑠𝑎𝑡(3 − 𝜒0) + √(𝑀 𝑠𝑎𝑡(3 − 𝜒0) + 3𝜒0𝐻′)
2 + 12𝜒0𝑀 𝑠𝑎𝑡

2

]
 
 
 
𝑀 𝑠𝑎𝑡𝐻2 𝑥

𝐻′
,

𝑀𝑧 =

[
 
 
 

1 −
6𝑀𝑠𝑎𝑡

3𝜒0𝐻′ + 𝑀𝑠𝑎𝑡(3 − 𝜒0) + √(𝑀𝑠𝑎𝑡(3 − 𝜒0) + 3𝜒0𝐻′)2 + 12𝜒0𝑀𝑠𝑎𝑡
2

]
 
 
 
𝑀 𝑠𝑎𝑡(𝐻2 𝑧 + 𝐻0𝑧)

𝐻′
,

 

where 𝐻′ = √𝐻2 𝑥
2 + 𝐻2 𝑦

2 + (𝐻0 𝑧 + 𝐻2 𝑧)2. 

(5)  

It will be convenient to use the spherical coordinate system with the radius r,polar and azimuthal 

angles 𝜃and 𝜙 , defined so that (𝐻0𝑧 will be denoted as  𝐻0): 

 𝑥 = 𝑟 sin 𝜃 cos𝜙 , 𝑦 = 𝑟 sin 𝜃 sin𝜙 , 𝑧 = 𝑟 cos 𝜃, 

in this coordinates system one gets 

𝑀𝑥(𝜌, 𝜃, 𝜙, 𝐻0 ) =
8

3
𝑀(𝜌,𝐻0 ) sin 𝜃 cos 𝜃 cos𝜙,                            (6) 

𝑀𝑦(𝜌, 𝜃, 𝜙, 𝐻0 ) =
8

3
𝑀(𝜌,𝐻0 ) sin 𝜃 cos 𝜃 sin𝜙, 

𝑀𝑧(𝜌, 𝜃, 𝜙, 𝐻0 ) = 𝑀𝑧(𝜌, 𝜃, 𝐻0). 

 

Here 𝜌 = 2𝑟/𝑑𝑝    is dimensionless distance between the particles. Some results of calculations 

of the components 𝑀𝑥, 𝑀𝑦, 𝑀𝑧 are shown in Fig.2; 𝑀(𝜌,𝐻0 ) is absolute value of the particle 

magnetization, is to be determined.  
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Fig.2.The components  𝑀𝑥 ,𝑀𝑦,𝑀𝑧 vs. the applied field  𝐻0   for 𝜌 = 2, 𝜃 =
𝜋

3
, 𝜙 =

𝜋

6
 and𝑑𝑝 =

1𝜇𝑚, 𝜒0 = 15000,𝑀𝑠𝑎𝑡 = 1245
𝑘𝐴

𝑚
. 

Note that the components 𝑀𝑥, 𝑀𝑦 non monotonic, with maximums, depend on the field 𝑯0, 

parallel to the axis Oz. 

Now we are in position to determine effect of the field 𝑯𝟎 on the shear modulus G of the 

composite. We suppose that the system experiences macroscopic shear along the axis 𝑂𝑥 with 

the displacement 𝑢𝑥 = 𝛾𝑧, where 𝑧 is the Cartesian coordinate, 𝛾 is the dimensionless shear.  

The component 𝜎𝑥𝑧 of the macroscopic (measurable) stress tensor 𝝈 in the composite can 

be presented as [22, 25, 28]: 

 𝜎 = 𝜎𝑥𝑧 = 𝜎𝑚 + 𝜎𝑒𝑙 = 𝐺𝑚𝛾 + 𝐺𝑒𝑙𝛾, or 𝐺 = 𝐺𝑒𝑙 + 𝐺𝑚, 

𝐺𝑚𝛾 =
1

2
𝜑𝜇0 < 𝑀𝑥 > 𝐻0. 

(6)  

Here 𝜎𝑚  is the part of the total stress, induced by the applied field, 𝜑 is volume concentration of 

the particles; 𝜇0 is the vacuum magnetic permeability; < 𝑀𝑥 > ismean component of the particle 

magnetization averaged over all positions of the second particle;  𝜎𝑒𝑙     is the elastic shear stress 

of the composite with the hard non magnetic spheres; 𝐺𝑒𝑙  is the corresponding elastic modulus 

of the composite. We will estimate it by using the well known Batchelor-Green formula [23] 

 
𝐺𝑒𝑙 = 𝐺0(1 + 2.5𝜑 + 5.2𝜑

2), (7)  

where 𝐺0 isthe shear modulus of the pure host polymer. Usually this formula leads to quite 

acceptable agreement with experiments in the range of concentration  till   𝜑~15 − 25%  [23]. 
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In order to determine the total elastic modulus, we must determine the magnitude  < 𝑀𝑥 >. 

To this end let us introduce the pair function 𝑔(𝒓) of the particles spatial disposition in thehost 

matrix, normalized as lim
𝑟→∞

𝑔(𝒓) = 1. In the approximation of the pair interaction between the 

particles,  the 𝑥-component of the mean magnetization can be presented as 

 
< 𝑀𝑥 >=

𝜑

𝑉𝑝
∫𝑀𝑥(𝒓)𝑔(𝒓)𝑑𝒓 , (8)  

The distribution function can be written down in the form:  

 𝑔(𝒓) = 𝑔0(𝒓) + 𝛿𝑔(𝒓), (9)  

where 𝑔0(𝒓) is the function in the non deformed composite before the field application; 𝛿𝑔(𝒓) is 

change of the distribution function, corresponding to the rearrangement of the particles because 

of their magnetic interaction and macroscopic deformation of the sample. 

A  B 

 

  

 

 

Fig.3. Sketch of change of the relative distribution of the particles as a consequence of the macroscopic 

shear of the composite. А – isotropic distribution of the particles in the non deformed composite;  

B – after the shear deformation. 

We will use 𝑔0(𝒓) in the simplest form 

 

𝑔0(𝜌) =

{
 

 
0, 𝜌 < 2

1 + 8𝜑 (1 −
3𝜌

23
+
3𝜌3

27
) ,   2 <

1, 𝜌 > 4

𝜌 < 4 (10)  

here 𝜌 = 2𝑟/𝑑𝑝    is dimensionless distance between the particles.This form includes effect of 

the short-ranged order of hard spheres spatial disposition [29].  

𝑔0(𝒓) 𝑔0(𝒓) + 𝛿𝑔(𝒓) 

2 

r r 

1 

2’ 2 

x 

z z 

1 

2’ 

x 
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Substitutingeq.(10) into (9), taking into account that in an isotropic composite the equality 

∫𝑀𝑥(𝒓)𝑔0(𝒓)𝑑𝒓 = 0 is held, we get 

 
< 𝑀𝑥 >=

𝜑

𝑉
∫𝑀𝑥(𝒓)𝛿𝑔(𝒓)𝑑𝒓 . (11)  

The function 𝛿𝑔(𝒓) can be determined from the equation [30]  

 𝛿𝑔(𝒓) = −𝑑𝑖𝑣(𝑔(𝒓)𝒘), (12)  

where 𝒘 is vector of relative displacement of the particles.  

II. Particles rearrangement because of magnetic interaction 

Let us consider the non sheared composite placed into the field 𝑯0. In the frame of the 

dipole-dipole approximation, the energy of magnetic interaction between the particles has the 

form:  

 
𝑈(𝑟) = −

𝜇0𝑉𝑝
2

4𝜋
[3
(𝑴 ∙ 𝒓)2

𝑟5
−
𝑴2

𝑟3
] . (13)  

The force o fmagnetic interaction between the particles is 𝑭 = −∇𝑈(𝑟). After simple 

calculations, one can get 

 
𝐹𝒙 =

3𝜇0𝑉𝑝
2

4𝜋𝑟5
(2𝑀𝑥(𝑀𝑥𝑥 +𝑀𝑦𝑦 +𝑀𝑧𝑧) −

5𝑥(𝑀𝑥𝑥 +𝑀𝑦𝑦 +𝑀𝑧𝑧)
2

𝑟2
+ 𝑥(𝑀𝑥

2 +𝑀𝑦
2 +𝑀𝑧

2)), 

𝐹𝑦 =
3𝜇0𝑉𝑝

2

4𝜋𝑟5
(2𝑀𝑦(𝑀𝑥𝑥 +𝑀𝑦𝑦 +𝑀𝑧𝑧) −

5𝑦(𝑀𝑥𝑥 +𝑀𝑦𝑦 +𝑀𝑧𝑧)
2

𝑟2
+ 𝑦(𝑀𝑥

2 +𝑀𝑦
2 +𝑀𝑧

2)), 

𝐹𝑧 =
3𝜇0𝑉𝑝

2

4𝜋𝑟5
(2𝑀𝑧(𝑀𝑥𝑥 +𝑀𝑦𝑦 +𝑀𝑧𝑧) −

5𝑧(𝑀𝑥𝑥 +𝑀𝑦𝑦 +𝑀𝑧𝑧)
2

𝑟2
+ 𝑧(𝑀𝑥

2 +𝑀𝑦
2 +𝑀𝑧

2)). 

(14)  

Vector of the relative displacement 𝒘𝒎, induced by the magnetic interaction between the 

particles, can be determined as:   

 𝒘𝒎 = �̂� ∙ 𝑭, (15)  
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Here �̂�     is the tensor of the matrix elastic resistance to the particles displacement, which has 

the following form [24] :  

 
𝛽𝑖𝑖 = 𝛽0 ((𝐺𝐵(𝜌) − 𝐻𝐵(𝜌))

𝑥𝑖
2

𝑟2
+ 𝐻𝐵(𝜌)), 

𝛽𝑖𝑗 = 𝛽0(𝐺𝐵(𝜌) − 𝐻𝐵(𝜌))
𝑥𝑖𝑥𝑗

𝑟2
, 

𝛽0 =
2

3𝜋𝐺0𝑑𝑝
. 

(16)  

Here 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝐺𝐵(𝜌) and 𝐻𝐵(𝜌) presen tsome functions of the dimensionless 

distance 𝜌 between the particles centers; their numerical values are tabulated in [24].  Since 

explicit analytical forms of these functions are unknown, we will use the following extrapolation 

formulas, suggested in [31] 

 

𝐺𝐵(𝜌) =
2(𝜌 − 2) |1 −

3

2
𝜌−1 + 𝜌−3 −

15

4
𝜌−4 |

2(𝜌 − 2) + |1 −
3

2
𝜌−1 + 𝜌−3 −

15

4
𝜌−4 |

, 

𝐻𝐵(𝜌) =
0.401(𝜌 − 1)

0.401(𝜌 − 2) + 1
. 

(17)  

Combining eqs.(15-17), one can find the displacement vector 𝒘𝑚. In the spherical 

coordinate system (6), the components of this vector read: 

 
𝑤𝑚𝑟 = −𝜋𝑑𝑝

2𝛽0𝜇0 (
𝐺𝐵(𝜌)

𝜌4
[𝑀2(𝜌)𝑋𝑋𝑟(𝜃) + 𝑀𝑧(𝜌, 𝜃, 𝐻0)𝑀(𝜌)𝑋𝑍𝑟(𝜃) + 𝑀𝑧

2(𝜌, 𝜃, 𝐻0)𝑍𝑍𝑟(𝜃)]), 

𝑤𝑚𝜃 = −𝜋𝑑𝑝
2𝛽0𝜇0 (

𝐻𝐵(𝜌)

𝜌4
[𝑀2(𝜌)𝑋𝑋𝜃(𝜃) + 𝑀𝑧(𝜌, 𝜃, 𝐻0)𝑀(𝜌)𝑋𝑍𝜃(𝜃) + 𝑀𝑧

2(𝜌, 𝜃, 𝐻0)𝑍𝑍𝜃(𝜃)]), 

𝑤𝑚𝜙 = 0. 

Here 

𝑋𝑋𝑟(𝜃) =
4

27
(2 sin2 2𝜃 − 3 sin2 3𝜃 +3sin2 𝜃); 𝑋𝑋𝜃(𝜃) = −

16

27
sin3 2𝜃; 

𝑋𝑍𝑟(𝜃) =
4

3
sin2 2𝜃;       𝑋𝑍𝜃(𝜃) = −

4

9
𝑠𝑖𝑛 4𝜃;  

𝑍𝑍𝑟(𝜃) =
2−3sin2 𝜃

3
;       𝑍𝑍𝜃(𝜃) =

1

3
𝑠𝑖𝑛 2𝜃. 

(18)  

By using the spherical coordinate system (6), one can rewrite eq.(13) as:  
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𝛿𝑔𝑚(𝒓) = −𝑑𝑖𝑣(𝑔0(𝒓)𝒘𝑚) = −

2

𝑑𝑝
[
1

𝜌2
𝜕

𝜕𝜌
(𝑤𝑚𝑟𝑔0(𝜌)𝜌

2) +
𝑔0(𝜌)

𝜌 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝑤𝑚𝜃 𝑠𝑖𝑛 𝜃)] . (19)  

Combining eqs.(19,20), we find the explicit form of 𝑔𝑚(𝒓) . This function reflects the 

anisotropy, which appears in the relative disposition of the particles because of their magnetic 

interaction and elastic resistance of the carrier medium to the particles displacement.   

III. The structural anisotropy due to the shear deformation 

Now we will take into account the macroscopic shear deformation of the composite, 

illustrated in Fig.1. Let us introduce the vector 𝒘𝛾 of the particles relative displacement, induced 

by this deformation. According to [22, 23], the spherical components of this displacement can be 

written down as 

 
𝑤𝛾𝑟 =

𝑑𝑝

2
𝛾(𝜌(1 − 𝐴𝐵(𝜌)) sin 𝜃 cos 𝜃 cos𝜙), 

𝑤𝛾𝜃 =
𝑑𝑝

2
𝛾 (𝜌 (𝑐𝑜𝑠2 𝜃 +

1

2
𝐵𝐵(𝜌)(𝑠𝑖𝑛

2𝜃 − 𝑐𝑜𝑠2𝜃)) cos𝜙), 

𝑤𝛾𝜙 =
𝑑𝑝

2
𝛾 (𝜌 (1 −

1

2
𝐵𝐵(𝜌) ) cos 𝜃 sin𝜙). 

(20)  

Here 𝛾 is the dimensionless shear, 𝐴𝐵(𝜌)and𝐵𝐵(𝜌)  are functions, whose numerical values are 

tabulated [23]. Explicit analytical forms of these functions are unknown. The following 

extrapolations have been suggested in [31]: 

 

𝐴𝑩(𝜌) = {
1 − 4.077(𝜌 − 2),    𝑖𝑓 2 < 𝜌 < 2.13

5𝜌−3 −
40

3
𝜌−5 + 25𝜌−6,   𝑖𝑓 𝜌 > 2.13

, 

𝐵𝐵(𝜌) =
0.406 (

16

3
) (2𝜌)−5

(
16

3
) (2𝜌)−5 + 0.406(2−5 − 𝜌−5)

 

(21)  

The change 𝛿𝑔𝛾(𝒓) of the distribution function, provoked by the macroscopic deformation 

of the composite, can be found from eq. (13):  

 𝛿𝑔𝛾(𝒓) = −𝑑𝑖𝑣 ((𝑔0(𝒓) + 𝛿𝑔𝑚(𝒓))𝒘𝛾) = 𝛿𝑔𝛾(𝒓)
(1) + 𝛿𝑔𝛾(𝒓)

(2) , 

𝛿𝑔𝛾(𝒓)
(1) = −𝑑𝑖𝑣(𝑔0(𝒓)𝒘𝛾), 

(22)  
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𝛿𝑔𝛾(𝒓)
(2) = −𝑑𝑖𝑣(𝛿𝑔𝑚(𝒓)𝒘𝛾). 

The term 𝛿𝑔𝛾(𝒓)
(1) reflects the relative rearrangement of the particles, induced only by the shear 

deformation of the composite. The term 𝛿𝑔𝛾(𝒓)
(2) corresponds to cooperative effect of the 

magnetic interaction between the particles and the composite macroscopic shear deformation.  

III. Averaged components of the particle magnetization 

The total change 𝛿𝑔(𝒓) of the pair distribution function can be presented as  

 𝛿𝑔(𝒓) = 𝛿𝑔𝑚(𝒓) + 𝛿𝑔𝛾(𝒓), (23)  

Substituting (24) into (12) and taking into account tha t∫𝑀𝑥(𝒓)𝛿𝑔𝑚(𝒓)𝑑𝒓 = 0, one can 

get: 

 < 𝑀𝑥 >=< 𝑀𝑥 >
(1)+< 𝑀𝑥 >

(2), 

< 𝑀𝑥 >
(1)=

𝜑

𝑉
∫𝑀𝑥(𝒓)𝛿𝑔𝛾

(1)(𝒓)𝑑𝒓,    

< 𝑀𝑥 >
(2)=

𝜑

𝑉
∫𝑀𝑥(𝒓)𝛿𝑔𝛾

(2)(𝒓)𝑑𝒓. 

(24)  

By using here the relations (5),(6), (21) and (23),    after simple, but cumbersome 

calculations, we come to the following relations:  

 
< 𝑀𝑥 >

(1)= −
8𝜑𝛾

15
𝐽(𝜑,𝐻0), 

𝐽(𝜑, 𝐻0) = ∫ 𝑀(𝜌,𝐻0) [
𝑑

𝑑𝜌
(𝜌3(1 − 𝐴𝐵(𝜌))𝑔0(𝜌)) − 3𝜌

2𝑔0(𝜌)(1 − 𝐵𝐵(𝜌))] 𝑑𝜌.
∞

0

 

(25)  

In order to calculate < 𝑀𝑥 >
(2) let us present 𝛿𝑔𝛾(𝒓)

(2) in the form 

 
𝛿𝑔𝛾(𝒓)

(2) = −
2

𝑑𝑝
[
1

𝜌2
𝜕

𝜕𝜌
(𝛿𝑔𝑚(𝒓)𝑤𝛾𝑟𝑔0(𝜌)𝜌

2) +
𝑔0(𝜌)

𝜌 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝛿𝑔𝑚(𝒓)𝑤𝛾𝜃 𝑠𝑖𝑛 𝜃)

+
𝑔0(𝜌)

𝜌 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜙
(𝛿𝑔𝑚(𝒓)𝑤𝛾𝜙)] , 

(26)  

which directly follows from eqs. (20) and (23). Here again 𝑤𝛾𝑟 , 𝑤𝛾𝜃, 𝑤𝛾𝜙 are spherical 

coordinates of the vector 𝒘𝛾.  
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Combining (25) and (27), one gets after transformations: 

 < 𝑀𝑥 >
(2)= 4𝑑𝑝𝛾𝜑𝛽0𝜇0𝐾(𝜑,𝐻0), 

𝐾(𝜑,𝐻0) =
−1

𝛾𝜋𝑑𝑝2𝛽0𝜇0
∫ ∫ ∫ 𝑀(𝜌,𝐻0) sin

2 𝜃 cos 𝜃 cos𝜙 [
𝜕

𝜕𝜌
(𝛿𝑔𝑚(𝒓)𝑤𝛾𝑟𝑔0(𝜌)𝜌

2)
∞

0

𝜋

0

2𝜋

0

+
𝑔0(𝜌)𝜌

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝛿𝑔𝑚(𝒓)𝑤𝛾𝜃 𝑠𝑖𝑛 𝜃) +

𝑔0(𝜌)𝜌

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜙
(𝛿𝑔𝑚(𝒓)𝑤𝛾𝜙)] 𝑑𝜌 𝑑𝜃𝑑𝜙. 

(27)  

The integrals 𝐽(𝜑, 𝐻0) and 𝐾(𝜑,𝐻0) can be calculated numerically.  

IV. Results and discussions 

Having the mean magnetization component < 𝑀𝑥 > determined, one can find the 

macroscopic shear modulus G of the composite. Taking into account  (7) and (25), we get 

 𝜎 = 𝜎𝑒𝑙 + 𝜎𝑚
(1) + 𝜎𝑚

(2), 

𝜎𝑚
(1) = 𝐺𝑚

(1)𝛾 =
1

2
𝜑𝜇0 < 𝑀𝑥 >

(1) 𝐻0, 

𝜎𝑚
(2) = 𝐺𝑚

(2)𝛾 =
1

2
𝜑𝜇0 < 𝑀𝑥 >

(2) 𝐻0. 

(28)  

Here 𝜎𝑚
(1)

 and 𝜎𝑚
(2)

  are the magnetically induced parts of the total stress 𝜎, which appear  due to 

the change of the particles mutual disposition,  as a consequence of the macroscopic shear 

deformation of the isotropic composite and because of combination of this deformation with the 

magnetically induced particles rearrangement, respectively.  Combining (7) and (28), one comes 

to the relation 

 𝐺 = 𝐺𝑒𝑙 + 𝐺𝑚 , 

𝐺𝑚 = 𝐺𝑚
(1) + 𝐺𝑚

(2). 
(29)  

Here 𝐺𝑚is magnetically induced part of the total shear modulus of the composite,   parameters 

𝐺𝑚
(1)

  and 𝐺𝑚
(2)

 are the parts of the magnetic contributions to the total shear modulus G, 

corresponding to 𝜎𝑚
(1)

 and 𝜎𝑚
(2)

  respectively.  

Taking into account (26, 28, 29)a s well as relation (17) for 𝛽0, one gets the relations 

 
𝐺𝑚

(1) = −
4

15
𝜑2𝜇0𝐽(𝜑, 𝐻0)𝐻0, 

𝐺𝑚
(2) =

4

3𝜋

𝜑2𝜇0
2

𝐺0
𝐾(𝜑, 𝐻0)𝐻0. 

(30)  
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Let us introduce the dimensionless parameters:  

 
ℎ =

𝐻0
𝑀𝑠𝑎𝑡

, 𝑗 =
𝐽(𝜑,𝐻0)

𝐻0
, 𝑘 =

𝐾(𝜑,𝐻0)

𝐻0
3 and𝐺′ =

𝐺

𝐺0
. (31)  

Note that 𝐽~𝐻0, 𝐾~𝐻0
3 when 𝐻0 → 0 . Therefore the parameters j and k  tend to some finite 

values when the field 𝐻0 tends to zero.  

By using these notifications, combining eqs.(8), (30) and (31), we come to the final 

formula for the shear modulus:  

 𝐺 = 𝑄𝐺0, 𝑄 = 𝑄𝑒𝑙 + 𝑄𝑚and 𝑄𝑒𝑙 = 1 + 2.5𝜑 + 5.2𝜑
2. 

𝑄𝑚 = −
4𝜑2

15

𝜇0𝑀𝑠𝑎𝑡
2 ℎ2

𝐺0
𝑗 +

4𝜑2

3𝜋
(
𝜇0𝑀𝑠𝑎𝑡

2 ℎ2

𝐺0
)

2

𝑘. 
(32)  

Here 𝑄 is dimensionless shear modulus of the composite, 𝑄𝑒𝑙 and 𝑄𝑚  are its elastically and 

magnetically induced parts.    

Some results of calculations of the magnetic part 𝑄𝑚   are presented in Figs.4-6. For all 

magnitudes of the dimensionless field h, presenting interest, 𝑄𝑚 is positive, i.e. the second term 

in the relation for 𝑄𝑚 dominates over the first one. 

 

Fig. 4. Dimensionless magnetically induces modulus 𝑄𝑚of the composite vs. dimensionless magnetic 

field  ℎ. Parameters of the system:𝜑 = 0.1, 𝜒0 = 15000,𝑀𝑠𝑎𝑡 = 1245
𝑘𝐴

𝑚
. 
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Fig. 5.Same as in Fig.4 for:   𝜑 = 0.1, 𝜒0 = 15000, 𝐺0 = 10
3𝑃𝑎. 

 

 

Fig. 6. Same as in Figs. 4, 5 when 𝜒0 = 15000,𝑀𝑠𝑎𝑡 = 1245
𝑘𝐴

𝑚
,𝐺0 = 10

3𝑃𝑎. 

The results show that the modulus 𝐺𝑚non monotonic, with maximum, depends on the 

applied field; when the field tends to infinity, the modulus 𝐺𝑚 asymptotically tends to some 

finite magnitude. The non monotonic character of the dependence of 𝐺𝑚 on 𝐻0 is explained by 

the non monotonic dependence of the component 𝑀𝑥 on the field, illustrated in Fig. 2. 

Conclusion 

We present results of theoretical modeling of effect of applied magnetic field on elastic 

shear modulus of magnetic gel with homogeneous and chaotic spatial distribution of 

magnetizable non Brownian spherical particles in an elastic medium. Analysis shows that the 
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magnetorheological effect appears because of combination of mutual magnetization of the 

particles and the change the function of their mutual spatial disposition as a consequence of the 

macroscopic deformation of the composite. In order to avoid intuitive and heuristic theoretical 

construction with uncontrolledadequacy, the elastic and magnetic interparticle interactions are 

taken into account in the frames of mathematically regular approximation of the pair interaction.  

Our results demonstrate that for strengths of the field, in the range of the ones, used in 

experiments, magnetic field enhances macroscopic modulus of the composite. The modulus non 

monotonic, with maximum, depends on the field strength and tends to a certain finite magnitude 

when the field tends to infinity.   

It should be noted that in real experiments, because of features of the composites synthesis, 

the particles can form various agglomerates, which can mask the effects, predicted by the ideal 

model. Effect of these agglomerates on the magnetomechanic phenomena in the composites, 

requires separate study for each concrete situation.  
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