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Abstract 

This paper addresses the linear least-squares estimation of a signal from measurements subject 

to stochastic sensor gain degradation and random delays during the transmission. These 

uncertainty phenomena, common in network systems, have traditionally been described by 

independent Bernoulli random variables.Wepropose a model that is more general and therefore 

has greater applicability to real-life situations. The model has two particular characteristics: firstly, 

the sensor gain degradation is represented by a white sequence of random variables with values 

in [0,1]; in addition, the absence or presence of delays in the transmission is described by a 

homogeneous three-state Markov chain, which reflects a possible correlation of delays at different 

sampling times. Furthermore, assuming that the measurement noise is one-step correlated, we 

obtain recursive prediction, filtering and fixed-point smoothing algorithms using the first and 

second-order moments of the signal and the processes present in the observation model. 

Simulation results for a scalar signal are provided to illustrate the feasibility of the proposed 

algorithms, using the estimation error variances as a measure of the quality of the estimators. 

Usuario
Rectángulo



1. Introduction

The estimation of signals perturbed by additive noise has been widely studied, and
various estimation algorithms have been proposed, most of which assume that the
measurements always contain the true signal. Unfortunately, this assumption is un-
founded in many modern systems, in which the signal measurements may be subject
to random uncertainties due to physical constraints, measurement costs or environ-
mental complexities. For example, aging or intermittent performance of the sensors
can produce fading measurements, or even missing measurements, consisting only of
noise. In addition, during data transmission via communication channels, faults may
occur due to limited communication bandwidth, congestion or defects in the channels.
These failures can produce random uncertainties in the processed measurements such
as packet losses, caused by communication failures, or delays, caused by limited speed
of information processing as occurs, for example, in chemical process. In these situa-
tions, conventional algorithms are not applicable and it is necessary to develop new
ones that take these uncertainties into account. For example, estimation algorithms
have been derived in Sun, Xie, Xiao & Soh (2008), Garćıa-Ligero, Hermoso-Carazo
& Linares-Pérez (2011) and Guo (2017), for systems with packet dropouts; in Sun

& Xiao (2013), Caballero-Águila, Hermoso-Carazo, Linares-Pérez & Nakamori (2013)
and Sun & Tian (2011), for random delays, and in Gao & Chen (2014), Hu, Wang,
Gao & Stergioulas (2012) and Pang & Sun (2015), considering missing measurements.

With respect to signal measurement failures, a specific problem that has received
considerable attention is that of missing measurements. One approach to modelling the
presence or absence of the signal in the measurements is to make use of Bernoulli ran-
dom variables (see e.g. Caballero-Águila Hermoso-Carazo, Linares-Pérez, 2017a, and
references therein). However, in many practical situations, faults in the sensor outputs
may produce deteriorated signal measures, which cannot be simply described by ran-
dom variables taking the values 0 (signal missing) or 1 (signal present in the measured
output). A proposal that is generally accepted among the scientific community to de-
scribe this gain degradation phenomenon is to use random variables distributed over
the interval [0,1], which includes the possibility of missing measurements as a special
case. In recent years, there has been increasing interest in considering the problem
of estimation in systems with sensor gain degradation, which has been addressed by
various approaches assuming knowledge of the state-space model. For example, He,
Wang & Zhou (2009) derived a robust H∞ filtering algorithm for a class of nonlinear
time-varying system with parameter uncertainties and probabilistic sensor faults; Liu,
Wang & Zhou (2014) studied the optimal filtering problem for networked time-varying
systems with stochastic gain degradations by a recursive matrix equation approach;
and Liu, Wang, He & Zhou (2016) obtained a minimum variance filtering algorithm
for a class of time-varying systems.

As commented above, there may also be failures in transmitting the measurements,
provoking random delays in data arrival, which are usually modelled by Bernoulli ran-
dom variables. Assuming that these variables are independent, previous studies have
addressed the estimation problem in two ways, either assuming that the state-space
model is completely known, or using the information provided by the covariance func-
tions of the process involved in the observation model. Under both approaches, recur-
sive filtering algorithms have been derived for the case of one-step random delays (see

e.g. Caballero-Águila, Hermoso-Carazo, Jiménez-López, Linares-Pérez & Nakamori,
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2010; Hounkpevi & Yaz, 2007) and generalised to that of measurements subject to

bounded multiple-step random delays (see e.g. Caballero-Águila, Hermoso-Carazo &
Linares-Pérez, 2017b; Li, Sun & Ma, 2014). Nevertheless, in real-world communication
systems, current delays are usually correlated with the previous ones, and a reason-
able way to model the dependence is to use homogeneous Markov chains. As in the
case of delays modelled by independent random variables, estimation algorithms from
Markovian delayed observations have also been deduced by assuming that the state-
space model is known and using covariance information. Assuming that the state-space
model is known, optimal estimation problems in networked systems with correlated
transmission delays are discussed in Han & Zhang (2009) and Han, Zhang & Fu (2013),
where the delay process is modelled by a two-state Markov chain and by a multi-state
Markov chain, respectively. In this respect, too, Song, Yu & Zhang (2009) investigated
the H∞ filtering problem in a class of network systems with random delays modelled
by a Markov chain. Also, using only covariance information and modelling the delays
by Markov chains, recursive filtering and smoothing algorithms to estimate a signal
from one-step delayed observations were proposed by Garćıa-Ligero, Hermoso-Carazo
& Linares-Pérez (2015) and the filtering problem has been recently investigated by
Garćıa-Ligero, Hermoso-Carazo & Linares-Pérez (2018), assuming that the measure-
ments can be randomly delayed by one or two sampling times.

In most estimation algorithms, it is usually assumed that the additive noises that
affect the dynamic system are white and uncorrelated. However, this hypothesis may
not be valid in many real problems, in which these noises are often correlated. This con-
sideration has aroused great interest, motivating researchers to study the estimation
problem in systems with correlated and/or cross-correlated noises. For example, when
the state-space model is known, assuming that the signal process and measurement
noises are one-step autocorrelated and two-step cross-correlated, filtering algorithms
have been derived for uncertain systems (see e.g. Feng, Wang & Zeng, 2013; Tian, Sun
& Li, 2016). This problem has been also addressed for stochastic systems with ran-

dom parameter matrices (see e.g. Caballero-Águila, Hermoso-Carazo, Linares-Pérez &
Wang, 2019; Hu, Wang & Gao, 2013; Sun, Tian & Lin, 2017). Recently, assuming that
the signal process and the observation noises are N -step auto-and cross-correlated,
the estimation problem has been investigated in Tian, Sun & Lin (2019). On the
other hand, assuming that the evolution model generating the signal process is not
available, filtering algorithms have been also derived when the measured outputs are
perturbed by correlated noises in Caballero-Águila Hermoso-Carazo & Linares-Pérez.
(2017c), considering multiple random transmission uncertainties, and in Garćıa-Ligero,
Hermoso-Carazo & Linares-Pérez (2017) for the case of multiple packet dropouts.

In view of the above considerations, our aim in the present study is to investigate the
estimation problem for systems with stochastic sensor gain degradation and correlated
measurement noise, subject to one or two-step random delays during the transmission.
Specifically, we assume that the sensor gain degradation is represented by a white
sequence of random variables with values in [0,1] reflecting partial deterioration of the
signal; this assumption clearly covers the missing measurement problem as a special
case. Furthermore, the measurement noise is correlated at consecutive sampling times.
The delays are modelled by a homogeneous discrete-time Markov chain with three
states, which provides a reasonable description of a possible correlation of delays at
different sampling times. Assuming no signal equation is available, the estimators
are derived using the first and second-order moments of the signal and the processes
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involved in the observation model. The least-squares linear prediction, filtering and
fixed-smoothing algorithms are obtained by an innovation approach which enables the
estimation algorithms to be derived straightforwardly.

Therefore, as in Garćıa-Ligero et al. (2018), we assume that the processed mea-
surements can be one or two-steps delayed, and that the delays are modelled by a
homogeneous Markov chain with three states. In addition to addressing the fixed-
point smoothing, and not just the filtering problem, the main novelty of the present
research with regard to the earlier work, is that we now consider a more general model
of measurement outputs. In this paper, the outputs are affected by gain degradations
and correlated additive noise, whereas in Garćıa-Ligero et al. (2018), the outputs were
only perturbed by additive white noise. Since the presence of degradations and the
correlation of the measurement noise can strongly influence the performance of esti-
mators, the filtering algorithm in the previous paper cannot be applied to the model
proposed in this paper. The generality of this new model extends the scope of the pro-
posed algorithms, which can be applied not only to models such as the one considered
in Garćıa-Ligero et al. (2018) but also to those with missing measurements.

The main contributions of this paper can be summarised as follows: (1) The model
considered is affected by two uncertainties; namely, sensor gain degradation and ran-
dom delays during the transmission, being the delays modelled by a three-state homo-
geneous Markov chain. This model is more general than those in which the uncertain-
ties are described by independent Bernoulli random variables and, therefore, provides
greater applicability. (2) Unlike other approaches, measurement noise is one-step cor-
related. (3) The proposed estimators, predictor, filter and fixed-point smoother, based
on covariance information, do not require knowledge of the evolution model generating
the signal, with the added advantage that they may also be applicable to the conven-
tional state-space model. (4) The proposed estimation algorithms are derived by an
innovation approach, which facilitates their derivation, since the innovation is a white
process.

The rest of this paper is organised in the following way. The next section describes
the model at hand and details the assumptions under which the estimation problem
is addressed. In Section 3, the least-squares linear estimation problem is formulated,
using an innovation approach, and the one-stage observation predictor is obtained.
The recursive prediction, filtering and fixed-point smoothing algorithms and their
error covariance matrices, which provide a measure of the estimators performance,
are then derived in Section 4. A simulation example illustrating the performance of
the proposed estimators is given in Section 5, after which some concluding remarks
and future research are made.

Notation. The notation used throughout this paper is standard. Rn×m denotes the set
of all n×m matrices. If the dimensions of vectors or matrices are not explicitly stated,
they are assumed to be compatible with algebraic operations. (C1| . . . |Cn) denotes a
matrix partitioned into submatrices C1, . . . , Cn and In is n × n identity matrix. ⊗
represents the Kronecker product, δk,s denotes the Kronecker delta function and c∧ d
and c ∨ d represent, respectively, the minimum and maximum of c and d, for any
c, d ∈ R. For any function Fk,j depending on the time instants k and j, we will write
Fk = Fk,k; analogously, Ld = Ldd will be written for any function Lde.
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2. Model description

In signal processing, it is usually assumed that the sensor gain is randomly degraded,
and, therefore, partially deteriorated measurements may be obtained. In this context,
let us consider an n-dimensional signal, xk, whose scalar measured outputs, zk, are
described by

zk = γkHkxk + vk, k ≥ 1, (1)

where, for all k ≥ 1, the random variable γk accounts for sensor gain degradation, Hk

is a known matrix and vk is the measurement noise.

Our aim is to obtain the least-squares (LS) linear predictor, filter and fixed-point
smoother of the signal. These estimators are derived by a covariance-based approach;
that is, we assume that the signal evolution model is unknown and only their first and
second-order moments are known; specifically:

Assumption 1. The signal process, {xk, k ≥ 1}, has zero mean and its autocovariance
function is expressed in a separable form as follows,

E[xkx
T
h ] = AkB

T
h , h ≤ k,

where, Ak, Bh ∈ Rn×M are known matrices.

Remark 1. Note that the required separable form on the signal autocovariance func-
tion is not very restrictive. In fact, this assumption covers situations in which the
signal evolution model is known, for both stationary and non-stationary signals. For
example, for the state-space model with stationary signals, xk = Φxk−1 + wk−1, the
covariance function can be expressed as E[xkx

T
h ] = Φk−hE[xhx

T
h ], h ≤ k, and As-

sumption 1 is satisfied taking Ak = Φk and Bh = E[xhx
T
h ](Φ−h)T . If non-stationary

signals, xk = Φkxk−1 +wk−1, are considered, the covariance function can be expressed
as E[xkx

T
h ] = Φk,hE[xhx

T
h ], h ≤ k, with Φk,h = Φk · · ·Φh+1; then, taking Ak = Φk,0

and Bh = E[xhx
T
h ](Φ−1

h,0)T , Assumption 1 is clearly satisfied. Hence the separability
hypothesis of the covariance function provides a unified approach to address different
situations based on the state-space model and it is not necessary to obtain specific
algorithms for each case. Furthermore, we highlight that, although a state-space model
can be generated from covariances, when only this kind of information is available, it is
preferable to address the estimation problem directly using covariances, thus obviating
the need for prior identification of the state-space model.

Assumption 2. The multiplicative process, {γk, k ≥ 1} , is a white sequence of scalar
variables taking values in the interval [0, 1], with known means and variances, E[γk] =
γk and V ar[γk] = σ2

k.

This assumption on the random variables γk is more precise for quantifying the
sensor gain degradation than that traditionally used where the random variables only
take the values zero and one.

Assumption 3. The measurement noise, {vk, k ≥ 1}, is a zero-mean one-step corre-
lated scalar process with E[vkvh] = Rkδk,h +Rk,k−1δk−1,h, h ≤ k.

During the transmission of the measurements to the processing centre, delays com-
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monly occur, due, for example, to congestion in the communication channel. In this
paper, the absence or presence of delays in the transmission, and their magnitude, is
modelled by random variables {θk, k ≥ 1}, that take values in S = {0, 1, 2}, describing
whether the measures arrive on time or they are delayed by one or two sampling times.
Specifically, if θk = a, a = 1, 2, this means that the k-th measurement is delayed by
a sampling periods; otherwise, if θk = 0, there is no delay in arrival. This situation is
modelled as in Garćıa-Ligero et al. (2018); that is, the received measurements, which
are denoted by yk, k ≥ 1, representing the observation process, are described as:

yk =

(k−1)∧2∑
a=0

δθk,azk−a, k ≥ 1, (2)

where the following assumption on the random variables θk modelling the delays is
taken on:

Assumption 4. {θk, k ≥ 1} is a homogeneous Markov chain taking values in S =

{0, 1, 2} , with known initial distribution π
(1)
a = P (θ1 = a), a ∈ S, and transition

probability matrix P = (pab)a,b∈S , where pab = P (θk+1 = b/θk = a), a, b ∈ S.

Finally, the following hypothesis about the signal and processes involved in the
measurement model is assumed in the derivation of the LS linear estimators.

Assumption 5. The signal, {xk, k ≥ 1} , and the processes {γk, k ≥ 1} , {vk, k ≥ 1}
and {θk, k ≥ 1} , are mutually independent.

In Garćıa-Ligero et al. (2018), the measurement outputs are only affected by an
additive white noise; in the current paper a more general model is considered, since the
measurement outputs are affected by gain degradations and, in addition, the additive
noise is correlated, a situation that arises in many practical problems. Although in
both models the processed measurements can be delayed and the delays are modelled
in the same way, by a homogeneous Markov chain, the algorithm obtained in Garćıa-
Ligero et al. (2018) cannot be applied to the model at hand since the presence of gain
degradations on measurements and the correlation of measurement noise exert a strong
influence on the performance of the estimators. Therefore, our aim is to derive new
estimation algorithms, prediction, filtering and fixed-point smoothing, for the model
(1)-(2). Furthermore, the algorithms that we propose can be applied to other models,
such as the one considered in Garćıa-Ligero et al. (2018), as well as to the model of
missing measurements.

3. Least-squares linear estimation problem by innovation approach

3.1. Innovation approach

The LS linear estimation of the signal, xk, from randomly delayed measurements up
to time L, y1, · · · , yL, is addressed using an innovation approach. This approach is
based on an orthogonalisation procedure by means of which the observation process
{yk; k ≥ 1} is transformed into an equivalent one, called innovation process; this
new process is denoted by {µk; k ≥ 1} and defined as µk = yk − ŷk/k−1, where
ŷk/k−1 is the LS linear estimator of yk from the previous observations, y1, . . . , yk−1.
Linear estimation is then performed by replacing the observation process with the
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innovation one, since both processes provide the same information. Therefore, the
LS linear estimator of a random vector uk based on the observations {y1, . . . , yL},
denoted by ûk/L, is expressed as a linear combination of the innovations {µ1, . . . , µL};
specifically:

ûk/L =

L∑
h=1

E[ukµh]Σ−1
µh
µh, k ≥ 1, (3)

where Σµh
= E[µ2

h] denotes the innovation variance.

The advantage of using this approach is that the estimator expressed as a linear
combination of innovations provides a simpler form of obtaining estimation algorithms
than that obtained when it is expressed as a linear combination of observations, since
the innovation process is white.

In accordance with expression (3), the first step to obtain the signal estimators is to
calculate an explicit formula for the innovation, µk = yk − ŷk/k−1, or, equivalently, for
the one-stage observation predictor, ŷk/k−1; this process is described in the following
section.

3.2. One-stage observation predictor

From (3), the one-stage observation predictor is given by

ŷk/k−1 =

k−1∑
h=1

Yk,hΣ−1
µh
µh, k ≥ 2; ŷ1/0 = 0, (4)

where Yk,h = E[ykµh] = E[ykyh] − E[ykŷh/h−1]. Then, in order to derive an explicit
expression of the one-stage observation predictor it is necessary to determine these
coefficients, Yk,h, 1 ≤ h ≤ k−1. The following results provide the expression required.

Lemma 3.1. Under the model assumptions, the observation process given by (2) ver-
ifies that

E[ykyh] = AkBTh + Fk,h, 1 ≤ h ≤ k − 1, (5)

where:

i) Ak =
(
γkHkAk | γk−1Hk−1Ak−1 | γk−2Hk−2Ak−2

)
(Pk ⊗ IM )T , k ≥ 1,

Bk =
(
γkHkBk | γk−1Hk−1Bk−1 | γk−2Hk−2Bk−2

)
Π(k)(P−k ⊗ IM ), k ≥ 1,

being Π(k) = diag(π
(k)
0 , π

(k)
1 , π

(k)
2 ) ⊗ IM , with π

(k)
a = P (θk = a), a ∈ S, and

γhHhCh equal to zero for Ch = Ah, Bh, h = −1, 0.

ii) Fk,h = 0, h < k − 3,
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Fk,k−3 = π
(k−3)
0 p

(3)
02 Rk−2,k−3,

Fk,k−2 = π
(k−2)
0 p

(2)
02 σ

2
k−2Hk−2Ak−2B

T
k−2H

T
k−2

+

(k−1)∧2∑
a=1

(k−3)∧(a−1)∑
b=0

π
(k−2)
b p

(2)
ba Rk−a,k−2−b,

Fk,k−1 = π
(k−1)
0 p

(1)
02 γk−2γk−1Hk−2(Bk−2A

T
k−1 −Ak−2B

T
k−1)HT

k−1(1− δk,2)

+

(k−1)∧2∑
a=1

π
(k−1)
a−1 p

(1)
a−1aσ

2
k−aHk−aAk−aB

T
k−aH

T
k−a

+

(k−1)∧2∑
a=0

(k−2)∧a∑
b=0

π
(k−1)
b p

(1)
ba Rk−a,k−1−b.

Proof. p
(k)
ab = P (θh+k = b/θh = a), h, k ≥ 1, a, b ∈ S

(
p

(1)
ab = pab

)
, denotes the

k−step transition probability from state a to state b, and so it is clear that

E[δθk,aδθh,b] = P (θk = a/θh = b)P (θh = b) = p
(k−h)
ba π

(h)
b , h < k.

Then, from the independence assumption, the properties of the process {γk, k ≥ 1}
and the separability of the signal autocovariance function, E[ykyh] is expressed as

E[ykyh] =

(k−1)∧2∑
a=0

(h−1)∧2∑
b=0

π
(h)
b p

(k−h)
ba γk−aγh−bHk−aE[xk−ax

T
h−b]H

T
k−b

+

(k−1)∧2∑
a=0

(h−1)∧2∑
b=0

π
(h)
b p

(k−h)
ba σ2

k−aHk−aAk−aB
T
k−aH

T
k−aδk−a,h−b

+

(k−1)∧2∑
a=0

(h−1)∧2∑
b=0

π
(h)
b p

(k−h)
ba E[vk−avh−b], h ≤ k − 1.

Again, using the separability assumption, the first addend of the second term of the
above expression is expressed as

AkBTh +π
(k−1)
0 p

(1)
02 γk−2γk−1Hk−2(Bk−2A

T
k−1 −Ak−2B

T
k−1)HT

k−1δk−1,h.

The second addend is reduced to the cases in which b = a− (k − h); then, a ≥ k − h,
and hence

(k−1)∧2∑
a=k−h

π
(h)
a−(k−h)p

(k−h)
a−(k−h)aσ

2
k−aHk−aAk−aB

T
k−aH

T
k−a.

Finally, taking into account the one-step correlated noise assumption, the third addend
is null except when k − a− 1 ≤ h− b ≤ k − a+ 1; that is, for h = k − 3, k − 2, k − 1.
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From above considerations, (5) for E[ykyh], 1 ≤ h ≤ k − 1, is obtained.

Lemma 3.2. Under the model assumptions, the coefficients Yk,h = E[ykµh] are given
by

Yk,h = AkJyh + Gk,h, 1 ≤ h ≤ k − 1, (6)

where

Jyh = BTh −
h−1∑
j=1

Jyj Σ−1
µj
Yh,j , h ≥ 2; Jy1 = BT1 , (7)

and

Gk,h =


0, h < k − 3,
Fk,h, h = 1 or h = k − 3,

Fk,h −
h−1∑

j=(k−3)∨1

Gk,jΣ−1
µj

(AhJyj + Gh,j), h ≥ 2, h = k − 2, k − 1.
(8)

Proof. Taking into account that µk = yk − ŷk/k−1, expression (4) for the one-step
observation predictor and (5), the coefficients, Yk,h = E[ykyh]−E[ykŷh/h−1], 1 ≤ h ≤
k − 1, are expressed as:

Yk,h =


AkBT1 + Fk,1, h = 1;

AkBTh + Fk,h −
h−1∑
j=1

Yk,jΣ−1
µj
Yh,j , 2 ≤ h ≤ k − 1.

From (7), expression (6) for the coefficients Yk,h is evident, by defining Gk,1 = Fk,1

and Gk,h = Fk,h −
h−1∑
j=1

Gk,jΣ−1
µj
Yh,j , h ≥ 2.

Finally, expression (8) for Gk,h, h ≥ 2, is obtained using (6) for Yk,h, taking into
account that Gk,h is a linear function of Fk,j , j = 1, . . . , h, and Fk,j = 0, j < k − 3,
as it was established in Lemma 3.1.

Now, substituting expression (6) of the coefficients Yk,h in (4) and defining Oyk =
k∑

h=1

JyhΣ−1
µh
µh, k ≥ 1, and Oy0 = 0, the one-stage observation predictor is given by

ŷk/k−1 = AkOyk−1 +

k−1∑
h=(k−3)∨1

Gk,hΣ−1
µh
µh, k ≥ 2; ŷ1/0 = 0. (9)

Once the expression of the one-stage observation predictor expression is determined,
we can obtain the estimation algorithms, which is purpose of the next section.
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4. Recursive prediction, filtering and fixed point smoothing algorithms

This section considers the problem of obtaining recursive algorithms for the predictors,
filter (Theorem 4.1) and fixed-point smoothers (Theorem 4.2) of the signal. Expressions
for their respective estimation error covariance matrices are also deduced, and these
will be used in Section 5 as a measure of the accuracy of the proposed estimators.

Theorem 4.1. Under the model assumptions, the predictors and filter, x̂k/L, L ≤ k,
of the signal, xk, are obtained by

x̂k/L = AkO
x
L, L ≤ k, (10)

and their prediction and filtering error covariance matrices, Σk/L = E[(xk−x̂k/L)(xk−
x̂k/L)T ], are given by

Σk/L = Ak(B
T
k − rxLATk ), L ≤ k. (11)

The innovation, µL, and its variance, ΣµL
, are obtained by

µL = yL −ALOyL−1 −
L−1∑

h=(L−3)∨1

GL,hΣ−1
µh
µh, L ≥ 2; µ1 = y1, (12)

ΣµL
=

(L−1)∧2∑
a=0

π(L)
a (σ2

L−aHL−aAL−aB
T
L−aH

T
L−a +RL−a) +ALJyL

−
L−1∑

j=(L−3)∨1

GL,jΣ−1
µj

(ALJyj + GL,j)T , L ≥ 2;

Σµ1
= A1BT1 + π

(1)
0 (σ2

1H1A1B
T
1 H

T
1 +R1).

(13)

The vectors OdL, d = x, y, and the matrices rdeL , d, e = x, y, are recursively calculated
by

OdL = OdL−1 + JdLΣ−1
µL
µL, L ≥ 1; Od0 = 0, (14)

rdeL = rdeL−1 + JdLΣ−1
µL
JeTL , L ≥ 1; rde0 = 0. (15)

with

JxL =

(L−1)∧2∑
a=0

π(L)
a γL−aB

T
L−aH

T
h−a − r

xy
L−1A

T
L −

L−1∑
j=(L−3)∨1

Jxj Σ−1
µj
GL,j , L ≥ 2;

Jx1 = π
(1)
0 γ1B

T
1 H

T
1 ,

(16)
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JyL = BTL − r
y
L−1ATL +

L−1∑
j=(L−3)∨1

Jyj Σ−1
µj
GL,j , L ≥ 2; Jy1 = BT1 . (17)

Proof. Taking into account the general expression of estimator (3), to derive the LS
linear estimators, x̂k/L, L ≤ k, it is necessary to calculate the coefficients

Xk,h = E[xkµh] = E[xkyh]− E[xkŷh/h−1], h ≤ k.

From (1)-(2), taking into account the model hypotheses and that, for h − a ≤ k,
E[xkzh−a] = γh−aAkB

T
h−aH

T
h−a, we obtain

E[xkyh] =

(h−1)∧2∑
a=0

π(h)
a γh−aAkB

T
h−aH

T
h−a, h ≤ k;

then, substituting ŷh/h−1 =

h−1∑
j=1

Yh,jΣ−1
µj
µj and ŷ1/0 = 0 in E[xkŷh/h−1], it follows

straightforwardly that the coefficients are expressed as

Xk,h = Ak

(h−1)∧2∑
a=0

π(h)
a γh−aB

T
h−aH

T
h−a −

h−1∑
j=1

Xk,jΣ−1
µj
Yh,j , h ≥ 2;

Xk,1 = Akπ
(1)
0 γ1B

T
1 H

T
1 ,

or equivalently as

Xk,h = AkJ
x
h , 1 ≤ h ≤ k, (18)

where Jxh is a function satisfying

Jxh =

(h−1)∧2∑
a=0

π(h)
a γh−aB

T
h−aH

T
h−a −

h−1∑
j=1

Jxj Σ−1
µj
Yh,j , h ≥ 2;

Jx1 = π
(1)
0 γ1B

T
1 H

T
1 .

(19)

Now, substituting (18) in x̂k/L =

L∑
h=1

Xk,hΣ−1
µh
µh, L ≤ k, and defining OxL =

L∑
h=1

JxhΠ−1
h µh, L ≥ 1, and Ox0 = 0, expression (10) is deduced.

Formula (11) for Σk/L = E[(xk − x̂k/L)(xk − x̂k/L)T ] = E[xkx
T
k ] − E[x̂k/Lx̂

T
k/L] is

derived immediately from (10) and Assumption 1, by defining rxL = E[OxLO
xT
L ].

Expression (12) for the innovation is obtained directly from (9). To prove (13) we
first apply the Orthogonal Projection Lemma to express ΣµL

= E[(yL)2]−E[yLŷL/L−1],
and both expectations are calculated as follows. From (1)-(2) and the model hypothe-

11



ses, it is clear that

E[(yL)2] = ALBTL +

(L−1)∧2∑
a=0

π(L)
a (σ2

L−aHL−aAL−aB
T
L−aH

T
L−a +RL−a), L ≥ 1,

and using (4) for the observation predictor, (6) for YL,h, and (7) for

L−1∑
h=1

JyhΣ−1
µh
YL,h,

we deduce

E[yLŷL/L−1] = AL(BTL − J
y
L) +

L−1∑
h=(L−3)∨1

GL,hΣ−1
µh

(
ALJyh + GL,h

)T
, L ≥ 2;

E[y1ŷ1/0] = 0.

Then, from both expectations, expression (13) is obtained.

The recursive relations (14) and (15) follow immediately from the definitions OdL =
L∑
h=1

JdhΣ−1
µh
µh, d = x, y, and rdeL = E[OdLO

eT
L ] =

L∑
h=1

JdhΣ−1
µh
JeTh , d, e = x, y, respectively.

Expression (16) for JxL is obtained substituting (6) into (19) for h = L and using
the definition of rxyL . By an analogous reasoning, but now using the definition of ryL,
expression (17) for JyL is derived.

In the following theorem, LS linear estimators of the signal, xk, are obtained when
the available observations are y1, . . . , yk+s, with s ≥ 1; these estimators are derived
from a recursive fixed-point smoothing algorithm.

Theorem 4.2. Under the model assumptions, the fixed-point smoothers are recursively
obtained by

x̂k/k+s = x̂k/k+s−1 + Xk,k+sΣ
−1
µk+s

µk+s, s ≥ 1, (20)

and the fixed-point smoothing error covariance matrices, Σk/k+s, satisfy

Σk/k+s = Σk/k+s−1 −Xk,k+sΣ
−1
µk+s
X Tk,k+s, s ≥ 1; (21)

their initial conditions, x̂k/k and Σk/k, are given in Theorem 4.1.

12



The coefficients Xk,k+s = E[xkµk+s] are given by

Xk,k+1 = π
(k+1)
0 γk+1BkA

T
k+1H

T
k+1 +Ak

k∧2∑
a=1

π(k+1)
a γk+1−aB

T
k+1−aH

T
k+1−a

−EkATk+1 −
k∑

h=(k−2)∨1

Xk,hΣ−1
µh
Gk+1,h,

Xk,k+s = Bk

2∑
a=0

π
(k+s)
0 γk+s−aA

T
k+s−aH

T
k+s−a − Ek,k+s−1ATk+s

−
k+s−1∑

h=(k+s−3)∨1

Xk,hΣ−1
µh
Gk+s,h, s ≥ 2,

(22)

and Ek,k+s = E[x̂k/k+sO
yT
k+s] satisfy the following recursive formula

Ek,k+s = Ek,k+s−1 + Xk,k+sΣ
−1
µk+s

JyTk+s, s ≥ 1; Ek = Akr
xy
k . (23)

Proof. Recursive relation (20) for the smoothers follows immediately from (3). More-
over, from (20) and the uncorrelation of µk+s and x̂k/k+s−1, expression (21) is imme-
diately obtained.

In order to determine relation (22) for Xk,k+s = E[xkyk+s]−E[xkŷk+s/k+s−1], s ≥ 1,
we use (1)-(2), assumptions 1, 4 and the independence of the processes involved to
obtain

E[xkyk+1] = π
(k+1)
0 γk+1BkA

T
k+1H

T
k+1+

k∧2∑
a=1

π(k+1)
a γk+1−aAkB

T
k+1−aH

T
k+1−a,

E[xkyk+s] =

2∑
a=0

π(k+s)
a γk+s−aBkA

T
k+s−aH

T
k+s−a, s ≥ 2.

Now, from (9), taking into account that E[xkO
yT
k+s] = E[x̂k/k+sO

yT
k+s] and denoting

Ek,k+s = E[x̂k/k+sO
yT
k+s], we have

E[xkŷk+s/k+s−1] = Ek,k+s−1ATk+s +

k+s−1∑
h=(k+s−3)∨1

Xk,hΣ−1
µh
Gk+s,h, s ≥ 1,

and from these two expectations, relation (22) is derived.
Finally, using (20) and (14) for x̂k/k+s and Oyk+s, respectively, and taking into

account that the innovation is a white process, the recursive relation (23) is obtained.

The initial condition is immediately derived from E[xkO
yT
k ] = E[x̂k/kO

yT
k ] = Akr

xy
k .

Remark 2. As commented above, the filtering algorithm obtained in Garćıa-Ligero
et al. (2018), where the delays are also modelled by a homogeneous Markov chain,
cannot be considered for the model at hand due to the influence of gain degradations
and because of the noise correlation assumption. The difficulties caused by these factors
mainly concern obtaining the one-stage observation predictor in the way specified in
expression (9), which provides (12) for the innovation and constitutes the starting
point in deriving the proposed algorithms.
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4.1. Computational procedure

The computational procedure of the proposed estimators is summarized as follows:

I) Previous matrices (Lemma 3.1.)

From the initial distribution π
(1)
a , a ∈ S, and transition probability matrix

P, given in Assumption 4, we obtain π
(k)
a = P (θk = a), a ∈ S and Π(k) =

diag(π
(k)
0 , π

(k)
1 , π

(k)
2 ) ⊗ IM ; these matrices together with Ak, Bk, γk and Rk, given

in assumptions 1-3, determine the matrices Ak and Bk through the expressions
established in part i) of Lemma 3.1, as well as Fk,k−1, Fk,k−2 and Fk,k−3 = Gk,k−3

in part ii). These elements only depend on the system model information, and so
they can be calculated before the observations are available to start the algorithms.

II) Prediction and filtering algorithm (Theorem 4.1.)
At any sampling time k, starting with the prior knowledge of the (k − 1)-th

iteration, which provides the scalars Gk−1,k−2 and Gk−1,k−3, the vectors Jxk−1 and
Jyk−1, the innovation variance Σµk−1

, the matrices rxk−1, ryk−1, rxyk−1, the innovation

µk−1 and the vectors Oxk−1, Oyk−1, the proposed filtering algorithm operates as
follows:

a) - Compute Gk,k−1 and Gk,k−2 by (8).
- Compute Jyk by (17). From this, the innovation variance Σµk

is provided
by (13).

- Compute Jxk by (16). From this, we obtain rxk by (15); then, the filtering
error covariance matrix, Σk/k, as well as any prediction error covariance
matrix required, Σk+1/k, Σk+2/k . . . , are obtained by (11).

- Finally, we obtain rxyk and ryk by (15), which are needed to derive Jxk+1 and
Jyk+1, respectively, in the next iteration.

b) - When the new measurement yk is available, the innovation µk is computed
by (12) and, from this, Oxk is obtained using (14). Then the filtering estima-
tors x̂k/k, as well as the required prediction estimators, x̂k+1/k, x̂k+2/k . . . ,
are computed by (10).

- Finally, in order to obtain µk+1 in the next iteration, we compute Oyk by
(14).

III) Fixed-point smoothing algorithm (Theorem 4.2.)

a) Initial conditions: For each fixed sampling point, k ≥ 1, the initial conditions
of the smoothing algorithm are the filter, x̂k/k = AkO

x
k , the filtering error co-

variance matrix, Σk/k = Ak
(
BT
k − rxkATk

)
, and Xk,k = AkJ

x
k , Ek = Akr

xy
k .

b) At the sampling time k + s, with s = 1, 2, . . . , run the filtering algorithm until
time k + s; then the proposed smoothing algorithm operates as follows:
- For each fixed k ≥ 1 and s = 1, 2, . . . , compute Xk,k+s by (22). From this,

the smoother, x̂k/k+s, and its error covariance matrix, Σk/k+s, are obtained
by (20) and (21), respectively.

- For the next step, Ek,k+s is obtained by (23).

5. Simulation results

In this section, a numerical simulation example shows the effectiveness of the predic-
tion, filtering and fixed-point smoothing proposed algorithms. To do so, a scalar signal
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is considered and the prediction, filtering and fixed-point smoothing error variances
are used to measure the estimators’ accuracy. The quality of the estimators is analysed
versus different probability distributions for the random variables modelling the sen-
sor gain degradation, different values of measurement noise correlation and different
transition probability matrices for the Markov chain modelling the delays.

As in Garćıa-Ligero et al. (2018) let us consider a zero-mean scalar signal
{xk, k ≥ 1} with covariance function

E[xkxh] = 1.025641× 0.95k−h, 1 ≤ h ≤ k,

which is clearly factorised, according to Assumption 1, as

Ak = 1.025641× 0.95k and Bh = 0.95−h.

The measurement outputs are affected, as in (1), by multiplicative and additive
processes. We start by assuming that the process {γk, k ≥ 1} is a white sequence of
scalar random variables with P (γk = 0) = 0.1, P (γk = 0.5) = 0.4 and P (γk = 1) = 0.5.
The measurement noise is defined as vk = c(νk + νk+1), where {νk, k ≥ 1} is a zero-
mean Gaussian white process with variance E[ν2

k ] = 0.5, k ≥ 1. Then, E[v2
k] = c2,

E[vkvk−1] = 0.5c2 and, consequently, the parameter c determines the autocovariance
function of the measurement noise {vk, k ≥ 1}.

Also, we assume that the available signal measurements can be delayed by one or
two sample periods during the transmission; that is, the processed observations are
modelled by (2), where, as established in Assumption 4, the delay is modelled by

a homogeneous Markov chain, {θk, k ≥ 1}, with initial distribution π
(1)
0 = 1, and

π
(1)
1 = π

(1)
2 = 0 (the first observation is not delayed) and transition probability matrix

P =

 0.99 0.003 0.007
0.01 0.98 0.01
0.11 0.02 0.87

 .

Figure 1 shows the prediction, filtering and fixed-point smoothing error variances,
Σk/k+s, s = −3,−1, 0, 1, 3, 6, 9, when c = 0.75. This figure reveals that the perfor-
mance of the estimators improves as more observations are used; that is, the error
variances of the smoothers are less than the filtering error variances, which, in turn,
are less than those of the predictors. Hence, the accuracy of the smoothers is higher
than that of the filter and predictors. Furthermore, it is noted that the values of the
fixed-point smoothing error variance decrease with increasing s, although this decrease
becomes almost negligible for s > 9.

Next, again assuming c = 0.75 and the transition matrix P, the influence of the
sensor gain degradation phenomenon is analysed considering different distributions
of probability for the random variables representing this degradation. Specifically, we
again consider a white sequence of random variables, {γk, k ≥ 1}, with values 0, 0.5,
1, and P (γk = 0) = 0.1. In this situation, the increase of P (γk = 1) means that there
is less degradation and, consequently, more information on the signal is received at the
sensor. Figure 2 shows the filtering error variances for the values P (γk = 1) =0.1, 0.3,
0.5, 0.7, 0.9; it can be seen that the filtering error variances decrease when P (γk =
1) increases. Hence, in accordance with the intuitive view, the filtering performance
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Figure 1. Prediction, Filtering and fixed-point smoothing error variances when c = 0.75

improves when there is less signal degradation.

In order to study the influence of the correlation of measurement noise, we analyse
the filtering error variances for different values of c, thus obtaining different autoco-
variance functions of measurement noise. Specifically, Figure 3 shows the performance
of the proposed filter for the values c = 0.25, 0.5, 0.75 and 1. This figure reveals that
when c decreases, so do the corresponding filtering error variances and, therefore, the
performance of the estimators improves.

We also analysed the performance of the proposed estimators when the delay is
modelled by different Markov chains. To do so, the filtering error variances were cal-
culated assuming c = 0.75, the same initial distribution (in the first observation there
is no delay) and the following transition probability matrices:

P1 =

 0.95 0.03 0.02
0.05 0.89 0.06
0.07 0.01 0.92

 , P2 =

 0.89 0.07 0.04
0.055 0.89 0.055
0.07 0.05 0.88

 .

The properties of the Markov chains lead us to conclude that the no delay pro-
babilities converge to constant values; in our case these values are 0.79, 0.55, and 0.35,
for the transition probability matrices considered, P,P1 and P2, respectively. There-
fore, as expected, Figure 4, which shows the filtering error variances for these models,
reveals that as the limit probability of no delay increases, the filtering error variances
become smaller and, consequently, the performance of the estimators improves.
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Figure 2. Filtering error variances for different values of P (γk = 1)

6. Conclusions

In this paper, we investigate the linear estimation of a signal from measurements with
stochastic sensor gain degradation and correlated noises, subject to random delays dur-
ing transmission. The sensor gain degradation is modelled by a white sequence random
variables with values in [0, 1], which is an extension of the missing measurement model.
The measurement noise is correlated at consecutive sampling times, which is a valid
assumption in many practical situations. The processed measurements can suffer de-
lays. In our approach, unlike that adopted in previous papers, these are not modelled
by independent random variables, but by a homogeneous Markov chain which model
a possible correlation of delays at different sampling times. Therefore, we propose a
general model which is of greater applicability to real situations. In this context, the
derivation of the prediction, filtering and fixed-point smoothing algorithms is only
based on the information provided by the first and second-order moments of the pro-
cesses involved in the model. The proposed estimation algorithms have the advantage
that they are applicable when the state-space model is known.

An immediate area of interest for future research is to use the current observation
model with sensor gain degradation and transmission delays modelled by Markov
chains in multisensor network systems, addressing fusion estimation problems and
comparing the performance of different fusion estimators. Another challenging topic
would be to consider bounded delays of more than two sample periods, described by
Markov chains whose state space, finite, reflects the maximum delay allowed. Finally,
an interesting extension of the current research could be to address the joint signal
and fault estimation for the systems considered in this paper, which has recently been
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Figure 3. Filtering error variances when c = 0.25, 0.5, 0.75, 1

investigated by Hu, Wang & Gao (2018) for a class of uncertain nonlinear systems
with random faults and sensor saturations.
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proach to distributed fusion filtering for networked systems with random parameter matrices
and correlated noises. Information Fusion, 45, 324–332.

Feng, J., Wang, Z. & Zeng, M. (2013). Distributed weighted robust Kalman filter fusion for
uncertain systems with autocorrelated and cross-correlated noises. Information Fusion, 14,
76–86.

Gao, S. & Chen, P. (2014). Suboptimal filtering of networked discrete-time systems with ran-
dom observation losses. Mathematical Problems in Engineering, 2014, Article ID 151836.
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