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ABSTRACT
In this paper we present a low-cost approach to mapping vegetation cover by means of high- 
resolution close-range terrestrial photogrammetry. A total of 249 clusters of nine 1 m2 plots each, 
arranged in a 3 × 3 grid, were set up on 18 summits in Mediterranean mountain regions and in the 
Alps to capture images for photogrammetric processing and in-situ vegetation cover estimates. 
This was done with a hand-held pole-mounted digital single-lens reflex (DSLR) camera. Low- 
growing vegetation was automatically segmented using high-resolution point clouds. For classify
ing vegetation we used a two-step semi-supervised Random Forest approach. First, we applied an 
expert-based rule set using the Excess Green index (ExG) to predefine non-vegetation and 
vegetation points. Second, we applied a Random Forest classifier to further enhance the classifica
tion of vegetation points using selected topographic parameters (elevation, slope, aspect, rough
ness, potential solar irradiation) and additional vegetation indices (Excess Green Minus Excess Red 
(ExGR) and the vegetation index VEG). For ground cover estimation the photogrammetric point 
clouds were meshed using Screened Poisson Reconstruction. The relative influence of the topo
graphic parameters on the vegetation cover was determined with linear mixed-effects models 
(LMMs). Analysis of the LMMs revealed a high impact of elevation, aspect, solar irradiation, and 
standard deviation of slope. The presented approach goes beyond vegetation cover values based 
on conventional orthoimages and in-situ vegetation cover estimates from field surveys in that it is 
able to differentiate complete 3D surface areas, including overhangs, and can distinguish between 
vegetation-covered and other surfaces in an automated manner. The results of the Random Forest 
classification confirmed it as suitable for vegetation classification, but the relative feature impor
tance values indicate that the classifier did not leverage the potential of the included topographic 
parameters. In contrast, our application of LMMs utilized the topographic parameters and was able 
to reveal dependencies in the two biomes, such as elevation and aspect, which were able to 
explain between 87% and 92.5% of variance.
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1. Introduction

In the absence of shading by shrubs and trees, habitat 
conditions at high elevations are heavily influenced 
by topography, which affects the increasing incident 
solar radiation on bright days, and by wind exposure 
(Winkler et al. 2016). On the micro-scale, the rugged 
alpine terrain varies greatly in temperature, especially 

over very short distances, and in hydrological condi
tions (Körner 2003). A precise mapping of topography 
in conjunction with vegetation cover may help to 
better understand the importance of the pattern of 
habitats, their effect on the thermal regimes experi
enced by plant species at high elevations, and may 
complement the research of botany experts to better 
characterize vegetation locations (Zellweger et al. 
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2019). Also, a more detailed knowledge of the influ
ence of micro-topography on micro-habitats may 
help in improving species distribution models.

A standard manual field sampling procedure to 
quantitatively assess vegetation cover at plot level is 
visual cover estimation, followed by pointing with 
a grid frame, e.g. for species frequency studies. 
Vegetation cover is assessed by perpendicularly low
ering a sampling pin at regularly distributed grid 
points and counting intersections with vegetation 
(Friedmann et al. 2011; Pauli et al. 2015). When map
ping vegetation in remotely sensed imagery, spatial 
resolution is a key criterion for mapping in spatially 
heterogeneous landscapes in addition to topographic 
data (Räsänen and Virtanen 2019). The image resolu
tion of airborne and satellite-based imagery makes 
them suitable for regional studies, but has only been 
used in few cases for alpine mountain-top vegetation 
(Mohapatra et al. 2019; Wakulińska and 
Marcinkowska-Ochtyra 2020; Zhang, Yao, and Suo 
2020). Recent vegetation mapping approaches using 
remotely sensed imagery by unmanned aerial vehicle 
(UAV) combined with object-based image analysis 
have been successful (Lucieer et al. 2014; Wallace 
et al. 2019).

Manual field mapping techniques allow sam
pling dedicated ecologically relevant variables in 
addition to vegetation cover, but are labor inten
sive, time consuming, and require expert knowl
edge in the field. Aerial and satellite remote- 
sensing approaches can reach centimeter spatial 
resolution, but such imagery is expensive and 
may not be available for a certain time period 
and region (e.g. due to cloud cover). Conducting 
UAV surveys in mountain terrain requires a trained 
and licensed pilot. UAV surveys may be limited in 
high mountain regions because of low air pressure, 
fast changing and extreme weather conditions, and 
the need for power supply in larger survey cam
paigns. In contrast, cameras for terrestrial photo
grammetry are lightweight and can be used by 
trained nonprofessionals. Terrestrial photographs 
for photogrammetry can reach very high spatial 
resolution in the order of sub-centimeter and milli
meters. The view angle can also be a lot shallower 
than from airborne products which view the sur
face predominantly from above. This makes terres
trial photogrammetry a promising approach for 
mapping vegetation cover and topography at plot 

level in mountainous terrain (Eltner et al. 2016; 
Kaufmann 2012; Carrivick, Smith, and Quincey 
2016).

The majority of studies mapping vegetation in 
remotely sensed imagery does not incorporate struc
tural 3D information, which is originally available from 
the photogrammetric processing pipeline. Rugged 
terrain in particular, where much of the surface area 
is close to vertical or below overhangs, cannot be 
mapped using 2D raster approaches (Smith, 
Carrivick, and Quincey 2015). 3D-mapping 
approaches, such as laser scanning and photogram
metry, i.e. SfM-generated point clouds using vertical 
and oblique images, allow for detailed analyses that 
include mapping overhangs and 3D canopy struc
tures (e.g. Rieke-Zapp, Rosenbauer, and Schlunegger 
2009; Smith, Carrivick, and Quincey 2016). 
A comparison with terrestrial laser scanning (TLS)- 
mapped sites with dense vegetation cover demon
strates that SfM is able to represent the vegetation 
canopy in higher detail because the penetration of 
the laser beam into the canopy generates an under
estimation of the height of the vegetation (Westoby 
et al. 2012). Vegetation extraction from topographic 
LiDAR point clouds is widely used and well estab
lished, although airborne LiDAR in a vegetation con
text is mainly concerned with forest cover and not 
mountain vegetation in particular (e.g. Kraus and 
Pfeifer 1998; Wehr and Lohr 1999; Luzum, Slatton, 
and Shrestha 2004; Silván-Cárdenas and Wang 2006). 
However, no color information is stored in the topo
graphic LiDAR point attributes. Only recent technolo
gical advances merge imagery with point cloud data 
to produce colored point clouds (e.g. Lee, Lee, and 
Park 2017; Piewak et al. 2018). In contrast, photogram
metric point clouds come with built-in color informa
tion. Many workflows filter low vegetation out to 
improve terrain extraction (e.g. Wagner et al. 2004; 
Francesco Pirotti, Guarnieri, and Vettore 2013; 
Gruszczyński, Matwij, and Paweł 2017). Nevertheless, 
there are a few studies with an ecological focus that 
use 3D-mapping approaches such as SfM for charac
terizing micro-topography in detailed vegetation ana
lysis (Lucieer et al. 2014; Niederheiser et al. 2018).

This study focuses (i) on vegetation detection in 3D 
photogrammetric point clouds, (ii) on the quantifica
tion of vegetation and non-vegetation cover, and (iii) 
on comparing three different methods of quantifying 
vegetated area in sample plots in alpine terrain. We 
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aim to evaluate how useful automatically derived 
topographic parameters from photogrammetric 
point clouds are for the assessment of vegetated 
areas and how they may support vegetation location 
interpretation by experts. We compared three differ
ent sampling methods and analyzed the derived 
vegetation cover in reference to local topographic 
parameters: automatically derived local green vegeta
tion cover from photogrammetric point clouds, 
manually digitized vegetation cover based on orthoi
mages, and visual in-situ estimates.

2. Method and dataset

Based on photogrammetric point clouds attributed 
with RGB-color information and topographic para
meters, we computed relative vegetation cover for 
each plot (in % of the total surface area including 
overhangs), where vegetation includes vascular plants, 
lichens and bryophytes. We describe the computation 
and attribution of the point clouds in sections 2.1 
through 2.4 (cf. Niederheiser et al. 2018). From the 
attributed 3D point cloud, we extracted the vegetation 
points (Sect. 2.5). 3D vegetation surface area values 
were calculated after meshing. Digital surface meshing 
generates triangular faces based on the 3D points of 
the point cloud as vertices, where three neighboring 
vertices define one triangle of the mesh (Sect. 2.6). We 
compared those results derived from photogrammetry 
with in-situ estimates (according to Pauli et al. 2015) 
and manually digitized values from orthoimages (Sect. 
2.7). Finally, we investigated the influence of 

topographic parameters on vegetation cover with the 
help of linear mixed models (Sect. 2.8).

2.1. Study regions

Six study regions were selected, three in the temperate 
(European Alps) and three in the Mediterranean biome 
(Figure 1, Table 1). The study regions are part of the 
network of the Global Observation Research Initiative 
in Alpine Environments (GLORIA, www.gloria.ac.at), 
which has been monitoring vegetation changes on 
mountain summits since 2001 using a standardized 
method (Pauli et al. 2015). Each GLORIA study region 
consists of (usually) four summits across an elevation 
gradient from the tree line ecotone upwards. For this 
study, we surveyed the three highest summits and 
excluded the tree line ecotone because of abundant 
vegetation. The study sites selected in the two biomes 
and several elevations provides a diverse dataset with 
a large variety of location properties, including vegeta
tion cover distributions (Supplementary Figure 3a, 4a, 
5a, 6a for GLORIA reference data) and general topo
graphies. On each summit, 16 clusters were installed in 
the four cardinal directions (North, East, South, and 
West) at 5 m, 25 m, 45 m, and 65 m below the highest 
summit point (HSP) (Supplementary Figure 1). Each 
3 × 3 m cluster included nine 1 m2 plots, with the 
four corner plots described and inventoried in detail. 
The vegetation cover in the clusters at 5 m below the 
HSP has been monitored every seven years since 2001, 
the other 12 clusters were newly installed for the cur
rent investigation.

Figure 1. Study regions in the temperate (Alps) and Mediterranean biome (Niederheiser et al. 2018, base map Bing Maps).
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2.2. Photogrammetric field setup and image 
acquisition

Photogrammetric acquisitions of the 249 clusters 
were set up in a standardized manner to facilitate 
comparable image acquisitions, automated proces
sing, and repeatability (Supplementary Figure 2). 
Five Global Positioning System (GPS) loggers were 
placed in and around the clusters to generate GPS 
point clouds of which the median was used to derive 
an approximate absolute location of each cluster. 
A wooden target cube was placed at the center of 
each cluster for scaling and orientation of the photo
grammetric point cloud. During the image acquisi
tion, the camera was mounted on a 1.5 m long pole. 
For capturing nadir images, the camera was held 
approximately 2.5 m above the ground and moved 
across the plot in overlapping parallel strips, resulting 
in overlaps greater than 75%. Oblique images were 
captured by walking around the cluster and taking 
images from approximately 1.8 m and 2.4 m above 
the ground. The combinations of nadir and oblique 
images resulted in a dome-like structure of camera 
positions that minimized occlusions through over
hangs and alongside-faces of rocks and boulders. 
Acquisition time per cluster including setup was less 
than one hour, even in rough terrain. Lens settings 
were fixed to the largest field of view (i.e. 18 mm to 
24 mm) and autofocus as well as image stabilization 
was turned off to reduce the degrees of freedom 
during lens calibration. Further details on the acquisi
tion process and hardware used can be found in 
Niederheiser et al. (2018).

2.3. Photogrammetric processing

Photogrammetric processing was done using the 
open-source software MicMac (IGN 2016) executed 
on the High-Performance Computing infrastructure 
(HPC) at the University of Innsbruck. The 

photogrammetric processing chain resembled 
a standard photogrammetric workflow as can be 
found in the literature (e.g. Luhmann et al. 2013). 
First, all images of each location were screened to 
exclude blurred images and images that did not 
show enough of each plot’s surface. Then, homolo
gous tie-points were searched in each contrast- 
enhanced image, the tie-points were homogenized 
and image-matching between all images was per
formed by applying the Scale-Invariant Feature 
Transform algorithm (SIFT++) as implemented in the 
MicMac tool Tapioca (Pierrot-Deseilligny 2016). After 
the image matching, a self-calibration (MicMac tool 
Tapas) was conducted and a sparse point cloud 
reconstruction was performed. For the self- 
calibration we used a subset of acquired nadir images. 
Scaling and orientation were done manually, based 
on the wooden cube at the center of each cluster. The 
median GPS point of each location was used for abso
lute georeferencing of each plot. Dense-matching 
was performed last in the photogrammetric proces
sing pipeline. Finally, the point clouds were manually 
cropped to the actual dimension of the cluster (3x3 m) 
using their corner points.

2.4. Topographic parameter derivation

All point cloud parameters were derived by auto
mated processing. Topographic parameters were 
derived using SAGA GIS (System for Automated 
Geoscientific Analyses Geographic Information 
System, Conrad et al. 2015) and the proprietary LiS 
Toolbox (Laserdata GmbH 2015; Rieg et al. 2014). The 
final output of the photogrammetric workflow at sub- 
millimeter resolutions was downsampled to centi
meter resolution to facilitate reasonable computation 
times for the database as a whole. Many plots 
included patches of higher growing vegetation (i.e. 
higher than a few decimeters), such as tall grasses, 
protruding flowers, and inflorescences. This presents 

Table 1. Study regions, corresponding biome and elevations of the selected mountain peaks.
Region name Code Biome Mountain peak elevations [m a.s.l.]

North-Eastern Alps/Hochschwab (Austria) AT-HSW Temperate (Alps) 2065, 2214, 2255
Western Alps/Valais (Switzerland) CH-VAL Temperate (Alps) 2550, 2989, 3212
Southern Alps/Dolomites (Italy) IT-ADO Temperate (Alps) 2463, 2757, 2893
Sierra Nevada (Spain) ES-SNE Mediterranean 2968, 3150, 3327
Crete/Lefka Ori (Greece) GR-LEO Mediterranean 1965, 2160, 2339
Central Apennines/Majella (Italy) IT-CAM Mediterranean 2511, 2635, 2737
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a special challenge as higher plant parts are prone to 
moving in the wind, which makes it difficult to recon
struct photogrammetrically with our setup. Instead of 
linear point cloud structures that would resemble 
blades of grass or stalks, disconnected artifacts of 
floating points were reconstructed. Some of these 
floating points actually produced quite large floating 
patches which we removed by a connected compo
nent analysis approach. In this approach we identified 
the largest connected components that we assumed 
resembled the ground segment. Smaller components 
that floated above the ground were discarded.

In line with the GLORIA field manual, the photo
grammetric point clouds were also divided in nine 
1 × 1 m plots. In GLORIA surveys these plots are 
sampled with an orthogonal view against the average 
terrain slope on the plots instead of a birds-eye view 
(Pauli et al. 2015). To achieve a corresponding seg
mentation, the point clouds were leveled horizontally, 
segmented by regularly dividing the outer edges, and 
finally reoriented into their original position.

We calculated per-point topographic indices, such 
as slope, aspect, roughness (SDRES, SDSlope, e3), and 
topographic variability (omnivariance, λ0) based on 
a spherical 0.05 m radius neighborhood, which we 
subsequently used for the vegetation segmentation. 
SDRES is the standard deviation of the residual dis
tance of 3D points to a fitted plane, SDSlope is the 
standard deviation of the slope values of the included 
3D points, and e3 is the third eigenvector of a fitted 
plane in the neighborhood of a 3D point. In addition, 
single plane fittings for the complete 9 m2 cluster 
areas and for the individual 1 m2 plots were applied 
to classify the plots and corner areas to derive the 
same parameters as for the single points. We also 
computed the solar irradiation potential per point 
(for details, see Niederheiser et al. 2018).

2.5. Vegetation segmentation

The RGB color information of each 3D point was used 
to calculate three vegetation indices – Excess Green 
(ExG, Eq. (1)) (Woebbecke et al. 1995), Excess Green 
Minus Excess Red (ExGR, Eq. (2)) (Camargo Neto 2004), 
and Vegetation Index (VEG, Eq. (3)) (Hague, Tillett, and 
Wheeler 2006): 

ExG ¼
2G

Rþ Gþ B
�

R
Rþ Gþ B

�
B

Rþ Gþ B
(1) 

ExGR ¼ ExG � ExR ¼ ExG � 1:4 � R � G (2) 

VEG ¼
G

RaB1� a witha ¼ 2=3 (3) 

For the vegetation segmentation, a two-step 
supervised Random Forest (RF) classification was 
applied (Figure 2). Here we used the RF algorithm as 
implemented in the Python module Scikit-learn 
(Breiman 2001; Pedregosa et al. 2011).

RF has proved to be operationally applicable for 
remote-sensing classification tasks. RF provides infor
mation about the relevance of input features in the 
classification process (Breiman 2001), i.e., explaining 
which features are used and how much an input 
feature contributes to the derived model, while cur
rently popular Deep Learning (DL) algorithms “offer 
little to no explanation/visibility into why specific fea
tures are selected over others” (Chakraborty et al. 
2017) and are difficult for users to interpret. 
Chakraborty et al. (2017) have shown that the inter
pretability of a deep learning model is not a trivial task 

Figure 2. Random forest computation workflow.
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and many different approaches exist. Recent publica
tions also suggest that the quality of resulting DL 
classifications depends heavily on its parameteriza
tion. DL classifications outperform RF if large amounts 
of training data are available (Belgiu et al. 2016; Pirotti 
and Tonion 2019; Al-Najjar et al. 2019).

A conservative threshold of the ExG index was used 
in training to sample vegetation points based on 
empiric observations. Points with an ExG value >0.15 
were classified as vegetation, points with an ExG value 
<0 as non-vegetation. These selected points were 
used to train a RF classifier (Breiman 2001). Included 
in the training were the three vegetation indices ExG, 
ExGR, and VEG, as well as the three roughness indica
tors SDRES, SDSlope, e3 and the topographic variability 
parameter λ0.

We trained the RF classifier individually for each 
cluster. The combined relative number of points 
included in the training set of vegetation and non- 
vegetation ranged from just 15.35% to 86.04% by 
region (Figure 3). For each plot we grew 50 individual 
decision trees along the entropy criterion to minimize 
in-class uncertainties. We defined a maximum depth 
for each tree of five splits and set the maximum 
number of features considered for the best split at 
each node to the square root of the total number of 
features. Bootstrapping was used to build the deci
sion trees. 37% of the data were left out during each 
bootstrap to be used for a generalized out-of-bag 
accuracy assessment (Breiman 1996). This accuracy 
assessment is a measure of how accurately the left- 
out data can be predicted based on each sub-sample 

Figure 3. Relative sample sizes (i.e. number of points) per region and biome in [%] describing the proportion of points per plot 
included in the training sets (X% of 100%). Total (red) describes the whole training sample. Within the sample we distinguish 
vegetation points (green) and non-vegetation points (blue). Cumulative statistics per region (one value per plot) are shown. The thick 
lines are the median per region, the upper and lower box edges the 1st and 3rd quantile. The whiskers point to the minimum and 
maximum values, outliers are plotted as single points.
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used for training. The points with an ExG value 
between 0 and 0.15 were classified using the indivi
dual RF classifiers.

2.6. 3D surface area of vegetation

In order to derive the 3D surface area of each cluster, 
we reconstructed the surfaces on the basis of the 
photogrammetric point clouds (Figure 4). Watertight 
mesh surfaces were reconstructed with the Screened 
Poisson Surface Reconstruction method, taking the 
points of the oriented point clouds as interpolation 
constraints (Kazhdan, Bolitho, and Hoppe 2006; 
Kazhdan and Hoppe 2013). This meant that the ver
tices of the reconstructed meshes were not the origi
nal points from the dense point cloud. Rather, the 
mesh reconstruction minimized the Root Mean 

Square Error (RMSE) between the new surface and 
the original points. A density threshold trimmed the 
resulting surface meshes to the plot dimensions.

Then we assigned the vegetation classification of 
the point clouds to the mesh vertices by their nearest 
neighbors. If the majority of each triangle’s vertices 
was classified as vegetation, then the triangular area 
was also defined as vegetated, otherwise it was 
defined as non-vegetated (Figure 5). Area values for 
each triangle of the mesh were calculated by simple 
trigonometry. They were in the order of mm2 for each 
triangle.

2.7. Comparing photogrammetrically derived, 
manually digitized, and in-situ estimated 
vegetation cover

Using Linear Mixed-Effects Models (LMMs, “lmer” func
tion of the R-Package ‘lme4ʹ, Oberg and Mahoney 
2007; Zuur et al. 2009), we compared the photogram
metrically derived 3D area estimates from the 3D 
meshes with in-situ vegetation cover estimates and 
with manually digitized estimates based on orthoi
mages. As the automated vegetation cover delineation 
relied strongly on the greenness of the single photo
grammetric points, we compared it to aggregated 
covers of vascular plants, lichens, and bryophytes that 
are represented by green reflectance in the images. 
Comparisons were done for each biome separately and 
overall. Vegetation cover derived with one method 
was regressed against the cover as estimated by 
another method (fixed effect). We used plots nested 
in summits nested in regions as random intercept term 
(Oberg and Mahoney 2007; Zuur et al. 2009).

In-situ surface cover types (i.e. vascular plants, 
bryophytes, lichens, litter, scree, rock, open soil) 
were estimated visually in the four corner plots of 
each cluster, following Pauli et al. (2015). Surface 
cover types were manually digitized by drawing poly
gons on orthoimages of 207 3 × 3 m clusters using the 
GIS software ArcGIS 10.3 (ESRI 2015). These orthoi
mages were derived from the same input images 
used for the photogrammetric point clouds. After 
rectifying the orthoimages and fitting them to 
3 × 3 m grids, the areas of the surface cover types in 
each 1 m2 corner quadrat of each cluster were digi
tally polygonized in ArcMap (ESRI 2015, Figure 6). 
Areas smaller than 9 cm2 were not delimited. For 
details, see Hofbauer (2018) and Klingraber (2018).

Figure 4. Workflow of surface area computation. RGB point 
clouds are meshed using Screened Poisson Reconstruction and 
the vegetation classes of the points are interpolated onto the 
mesh vertices using nearest neighbors. The faces of the meshes 
are classified by the majority of the classifications of the vertices.
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2.8. Assessing the effect of topographic parameters 
on vegetation cover

The effect of the topographic parameters of potential 
direct solar irradiation [kWh/m2], SDSlope [°], λ0, aspect 
[°], slope [°], and elevation [m a.s.l.] on vegetation 
cover was assessed with regression models. The para
meters were centered and scaled because of their 
very different original numeric scales. Centering is 
performed by subtracting the mean values of each 
parameter and scaling is done by dividing each 

parameter by its standard deviation. Collinearity of 
parameters was tested with the corvif function (R 
Core Team 2018; Zuur et al. 2009). The parameters 
of potential diffuse solar irradiation, e3, and SDRES, 
which returned collinearity values >2, were removed 
from the model (Zuur et al. 2009). Owing to the spatial 
structure of the dataset, we used LMMs with the 
topographic parameters as fixed effects and clusters 
nested in summits nested in regions nested in biomes 
as random intercept term.

Figure 5. Sample mesh with six vertices and four faces. Faces are classified according to the majority of their vertices, scale is in the 
order of mm2.

Figure 6. Orthoimage of a 1 × 1 m plot with surface types polygonized in the four corner plots (after Klingraber 2018).

8 R. NIEDERHEISER ET AL.



To assess the impact of the individual features used 
in the LMMs, we applied a stepwise exclusion of single 
factors and compared the Akaike Information Criteria 
(AIC) of the reduced models to the AIC of the full 
model (AIC difference, Zuur et al. 2009). The AIC mea
sures fit and complexity of a model. A lower AIC 
indicates a better fit of the model. The larger the 
difference between the AICs of two models, the 
greater the impact of a missing factor in the reduced 
model. Here the AIC difference (AIC diff.) is the AIC of 
the full model, subtracted from the AIC of a reduced 
model. A positive value indicates a worse fit of the 
reduced model than the full model if the respective 
factor was removed. For this comparison, the models 
were fitted by maximum likelihood estimation. In 
addition, we compared the relative likelihoods (Rel. 
likelihood) of the reduced models in relation to the 
full model ((4), Burnham, Anderson, and Huyvaert 
2011). A low relative likelihood indicates a poorer fit 
of the reduced model than the full model. 

e�
1
2� AICofreduced model � AICoffull modelð Þ (4) 

Marginal and conditional R2 for LMMs were calculated 
following Nakagawa and Schielzeth (2013). The mar
ginal R2 describes how well the model fits the data 
based on the association with the fixed effects – it 
describes the proportion of variance explained by the 
fixed effects. The conditional R2 describes how well 
the model fits the data based on the association with 
the fixed effects plus the random effects. The differ
ence between marginal and conditional R2 reflects 
the variability in the random effects (Nakagawa and 
Schielzeth 2013).

3. Results

First, we describe the results of the RF classification 
(Sect. 3.1). Second, we present a summary of the 
topographic dependencies of the vegetation cover 
modeled by LMMs (Sect. 3.2). Third, we compare the 
vegetation cover values based on the photogram
metric models with in-situ estimates and manually 
digitized results (Sect. 3.3).

3.1. Random forest vegetation classification results

Feature importance for all included features in the RF 
classification is directly included in the results of the 
RF algorithm. The most important features for the 

vegetation cover classification were the RGB-based 
indices ExG, VEG, and ExGR (Figure 7(a)). This was 
true for both biomes. The roughness features were 
less important. The topographic parameters did not 
characterize vegetation points very well and thus did 
not seem to have a strong effect on the vegetation 
cover delineation (Figure 7(a, b)). This conclusion is 
supported by the fact that a RF classification based on 
roughness values alone did not yield satisfactory 
results. Using all mentioned indices in conjunction 
(ExG, VEG, ExGR, SDRES, SDSlope, e3, λ0), the global 
mean out-of-bag error and the mean out-of-bag 
error for the temperate and the Mediterranean 
biome were around zero. Because RFs do not overfit 
(Breiman 2001; Belgiu and Drăguţ 2016), the low out- 
of-bag errors suggest very good fits of the models. 
However, the errors do not allow for differentiating 
performance between the temperate and the 
Mediterranean biome.

3.2. Topographic factors associated with 
vegetation cover

Overall, the most important topographic factors, 
based on LMMs, for modeling plot-wise vegetation 
cover were SDSlope, elevation, aspect, and mean 
potential direct solar irradiation (see Table 2). In the 
temperate biome (Alps), the most important factors 
were elevation, mean potential direct solar irradiation, 
λ0, and aspect. In the Mediterranean biome, the most 
important factors were SDSlope, aspect and mean 
potential direct solar irradiation. The fixed effects 
explained between 19.6% and 37.3% of the total var
iance of the models (marginal R2, Table 2). Between 
87% and 92.5% of the variance of the models can be 
explained by the combined fixed and random factors 
(conditional R2, Table 2).

3.3. Comparison between in-situ estimates, 
manually digitized, and photogrammetrically 
derived values of vegetation cover

We used mixed-effect models to determine how 
well the vegetation cover estimates of the dif
ferent methods match. The vegetation cover 
values estimated with the different methods 
were significantly positively correlated (LMMs, 
Figure 8, Table 3). Marginal R2 ranged between 
60.5% and 88.5% and conditional R2 between 
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87.2 and 93.5%. The strongest correlation was 
found between in-situ estimates and manually 
digitized GIS results when considering fixed 
effects only (marginal R2 > 0.86), and was high
est between manually digitized GIS results and 
photogrammetrically derived vegetation cover 
when considering fixed and random effects 
together (conditional R2 > 0.91). Correlation 
between manually digitized results and photo
grammetrically derived vegetation cover 
ranked second (marginal R2 < 0.77) and correla
tion between in-situ estimates and photogram
metrically derived vegetation cover ranked third 
(marginal R2 < 0.67). Correlations with photo
grammetrically derived vegetation cover values 
in the Mediterranean biome were generally 
stronger than in the temperate biome (condi
tional R2 > 0.89). Correlations between in-situ 
estimates and manually GIS digitized values 
were stronger in the temperate biome than in 
the Mediterranean biome (conditional 
R2 = 0.91). On average, photogrammetrically 
derived cover values were lower than both in- 
situ estimates (Figure 8(a)) and values derived 

from manual digitizing (Figure 8(c)), except in 
cases of very low vegetation cover, where the 
photogrammetrically derived values overesti
mate vegetation cover, especially in the 
Mediterranean biome. In-situ cover estimates 
were higher than cover values derived from 
manual digitizing with vegetation cover <30%, 
and lower at higher vegetation covers (Figure 
8(b)).

4. Discussion

4.1. Random forest classification

RF classification was applied for the classification of 
vegetation points. The low feature importance values 
of the topographic features suggest that they do not 
add relevant additional information for vegetation 
cover description by the classifier. Rather, the perfor
mance of the classifiers relied predominantly on the 
green color of vegetation, which was largely influ
enced by the time of year (i.e. the vegetation period) 
and shadowing effects. If vegetation was not green, it 
was not recognized in the training stage, which 

Figure 7. (a) Feature importance, (b) Feature importance of topographic indices only. ExG = Excess Green, ExGR = Excess Green Minus 
Excess Red, VEG = Vegetation Index, SDSlope = Standard deviation of slope, SDRES = Standard deviation of the residual distance of 3D 
points to a fitted plane, e3 = 3rd eigenvector, λ0 = Omnivariance. Cumulative statistics per biome (one value per plot) are shown. The 
thick lines are the median per feature, the upper and lower box edges the 1st and 3rd quantile. The whiskers point to the minimum and 
maximum values, outliers are plotted as single points.
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applied a threshold of the ExG index above which 
points very likely belonged to vegetation. This was 
especially important for the arid Mediterranean 
regions and could be mitigated by manually classify
ing a number of vegetated areas in a subset of plots. 
However, this would have counteracted the benefits 
of the automated approach, which was to minimize 
subjective user input and to speed up the training 
process. The feature importance of the vegetation 
indices used for the RF classification varied depending 
on the type of green vegetation (i.e. onsite visits 
revealed that patches of grass or moss have 
a different texture and topographic micro-scale var
iance than, for example, lichens on rocks). Lichens on 
rocks and rock surfaces basically have the same topo
graphic properties. Thus, the color-based vegetation 
indices could have had a significant feature impor
tance (Figure 7(a, b)). In general, the RF classification 
results revealed very low out-of-bag error. Overfitting 
could be ruled out because of the large number of 
random iterations and because RFs always converge 
(Breiman 2001; Belgiu and Lucian 2016). The low 
errors confirm RF as very suitable for vegetation clas
sification, which is in line with numerous studies in 

which RFs outperform other classifiers for this task 
(e.g. Feng, Liu, and Gong 2015; Pádua et al. 2019).

4.2. Photogrammetrically derived vegetation cover 
and topographic dependency in biomes by linear 
mixed model analysis

Topographic parameters were an asset when it came 
to explaining the distinct variation in vegetation cover 
found between biomes, regions, summits, elevation, 
and aspects (see Supplementary Figure 3b, 4b, 5b, 
6b). Confirming Winkler et al. (2016), relative vegeta
tion cover was less in the Mediterranean biome than 
in the temperate biome (Alps). In addition, relative 
vegetation cover decreased with increasing elevation 
and was higher on eastern and southern aspects than 
on northern and western ones. However, general 
statements should be made with caution as the 
effects varied between the biomes and regions.

Vegetation cover in the Mediterranean mountains 
was independent of elevation (LMMs, Table 2) for 
several reasons: First, vegetation cover in our clusters 
is generally low in the Mediterranean biome because 
of limited availability of water. Second, roughness 

Figure 8. Correlations between the different vegetation cover estimation methods: (a) in-situ estimates vs photogrammetrically 
derived; (b) in-situ estimates vs manually digitized; (c) manually digitized vs photogrammetrically derived. The 1:1 line is shown in 
black dashes.

Table 3. Correlations of photogrammetrically derived in-situ estimates, and manually digitized vegetation cover values for the 
temperate and Mediterranean biomes separately, as well as overall. Shown are the fixed effects (marginal R2) and combined fixed and 
random effects (conditional R2) of linear mixed-effect models (LMMs), computed using the function “lmer” in the R-package ‘lme4ʹ 
(Bates et al. 2015). P-values were computed via Wald-statistics approximation (Lüdecke 2018); CI = confidence interval.

Biome Comparison Coefficient CI p-Value N Marginal R2 Conditional R2

Overall 3D photogrammetric – manually digitized 1.19 1.14–1.23 <0.001 779 0.756 0.929
3D photogrammetric – in situ estimated 1.04 0.99–1.09 <0.001 779 0.661 0.882

manually digitized – in situ estimated 0.84 0.81–0.87 <0.001 779 0.885 0.914
Temperate 3D photogrammetric – manually digitized 1.17 1.10–1.24 <0.001 320 0.763 0.919

3D photogrammetric – in situ estimated 0.96 0.88–1.05 <0.001 320 0.605 0.872
manually digitized – in situ estimated 0.81 0.77–0.86 <0.001 320 0.866 0.913

Mediterranean 3D photogrammetric – manually digitized 1.21 1.15–1.26 <0.001 459 0.723 0.935
3D photogrammetric – in situ estimated 1.13 1.06–1.20 <0.001 459 0.669 0.891

manually digitized – in situ estimated 0.87 0.82–0.91 <0.001 459 0.868 0.894
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seemed to be important for vegetation cover classifi
cation (SDSlope, Table 2). This contrasts with the tem
perate biome, where elevation dominated over 
roughness (λ0, Table 2). The temperate biome, espe
cially, included summits of great variety, from very 
green and grassy to bare, rough, and blocky, which 
largely follows the elevation gradient from the lower 
alpine upwards.

About a third of the variation in vegetation cover 
could be explained by the topographic parameters 
(Table 2). This suggests that there might be additional 
auxiliary variables (e.g. from climate data, such as tem
perature or precipitation), which could help to further 
differentiate location properties of different biomes. 
Especially the arid regions in the Sierra Nevada and 
on Crete are influenced by a dry summer season, 
whereas in the Alps the precipitation maximum occurs 
in summer (Peel, Finlayson, and McMahon 2007). 
Precipitation data should be included in future 
research, although reliable data from high elevations 
are scarce and are difficult to measure reliably in moun
tain areas (Félix and Konzelmann 2016). Also, the effect 
of snow cover duration plays an important role for 
alpine vegetation and is bound to change in 
a warming climate (Liberati et al. 2019). Here we only 
used the potential solar irradiation for a vegetation 
period from June to September as an approximation 
for all regions. A more region-specific irradiation model 
could improve the explained variation in our model. 
The large proportion of explained variation by the 
random effects supports the argument that overlying 
regional patterns greatly influence the observed vege
tation cover.

4.3. Comparison of the results between the 
different sampling methods for vegetation cover

The photogrammetrically derived vegetation cover 
values tended to underestimate cover with abundant 
vegetation and to overestimate sparse vegetation 
cover when compared to the in-situ estimates and 
manually digitized values (Figure 8). Differences of 
25% and greater were observed in 9.6% of the cases 
for the photogrammetric vs. in-situ comparison, in 
11.1% of the cases for the manually digitized vs. auto
mated photogrammetric 3D point cloud approach, 
and in 2.9% for the in-situ vs. manually digitized 

approach. Most of these outliers were encountered 
for the Swiss and Austrian regions (CH-VAL and AT- 
HSW), with over half of the cases found in these 
regions. These were also the two generally greenest 
regions, with the most abundant vegetation in the 
form of grasses, sedges, and dwarf shrubs, which 
made the photogrammetric reconstruction difficult. 
The difference between marginal and conditional R2 
was greatest for the photogrammetric dataset vs. in- 
situ estimates, second for the manual GIS digitization 
vs. the automated photogrammetric approach, and 
least for the in-situ estimates vs. the manual digitiza
tion. Nevertheless, the high correlations (p-values < 
0.001) between the photogrammetric and the other 
two datasets, the in-situ estimates and the manually 
digitized values, confirm that the photogrammetric 
method is an independent alternative and 
a repeatable tool for estimating vegetation cover 
based on photographs (Table 3).

The in-situ estimates and the manually digitized 
results largely depend on the manual operator, even 
though the standardized GLORIA Field Manual (Pauli 
et al. 2015) seeks to minimize these effects by multi
ple surveys of the same plot by different researchers 
at the same time. An observer error study quantified 
differences in in-situ plant species cover estimates 
between observers in three regions in the Alps and 
Carpathians (including one of our study regions, AT- 
HSW; Futschik et al. 2020). However, that study inves
tigated disagreement in cover estimates of each plant 
species, while we took all vascular plants together 
here. Even so, we suppose that their results can be 
transferred to our study. Mean percentage difference 
of plant species cover estimates from the consensus 
estimate (i.e., the mean across all observers) of 28 
observers ranged from ca. 9–18% and was signifi
cantly and consistently far smaller than changes in 
cover over time. The greatest source of disagreement 
by far among observers was the amount of cover of 
a given species with the percentage error decreasing 
with increasing species cover, followed by observer 
identity (Futschik et al. 2020). In contrast, for manual 
digitizing, the resolution and quality of the orthopho
tos may be more important than either cover or 
researcher, because these features are essential to 
reliably distinguishing vascular plants from lichens 
or bryophytes.
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5. Conclusion

The results of the RF classification confirm RFs as 
a suitable tool for vegetation classification. The tech
nique worked for our application and the low out-of- 
bag errors suggest very good results. However, the 
heavy dependency on the greenness of vegetation 
turned out to be problematic in the arid climate in 
some of our research areas where vegetation was 
often already dry. The applied training approach of 
using an ExG threshold focused on the greenness, but 
the idea was to include the underlying topography in 
the RF classifier to catch non-green vegetation in 
a second step. The relative values of feature impor
tance indicate that the potential of the inclusion of 
topographic parameters was not utilized by the clas
sifier. Further research needs to be done on the micro- 
topographic effects included in the RF vegetation 
segmentation. The different micro-topographies, i.e. 
surface and canopy structure of grass, forb, dwarf 
shrub, moss, and lichens, would be useful to distin
guish between the vegetation types in the point 
cloud for botanical and ecological interpretation. 
Moreover, RGB information has its own limitations as 
it is sensible to variations in lighting conditions and 
shadows, which play an important role for the inter
pretation and derivations of vegetation indices. 
A change of the color space from RGB to HSI (Hue 
Saturation Intensity) for shadow segmentation could 
help to mitigate such effects and facilitate shadow 
segmentation (e.g. Laliberte, Rango, and Fredrickson 
2006; Tsai 2006). It may also be favorable to capture 
the images under diffuse lighting conditions to miti
gate saturation effects on light surfaces caused by 
strong direct solar irradiation. However, this is not 
feasible in large acquisition campaigns as conducted 
in this project (Niederheiser et al. 2018). A near- 
infrared channel for vegetation discovery in images 
or even hyperspectral imaging techniques could 
improve detection results and be incorporated into 
the photogrammetric workflow. Specialized cameras 
using CIR (Color Infrared) or V/NIR (Visible/Near 
Infrared) to provide spectral information with greater 
discriminatory power for vegetation are becoming 
readily available and affordable.

Our application of LMMs utilized the topographic 
parameters and was able to reveal dependencies in 
the two biomes, such as elevation and aspects. The 
LMMs were able to explain between 87% and 92.5% 

of variance. However, the large difference between 
marginal R2 and conditional R2 suggests that further 
parameters might exist that could aid the character
ization of both biomes.

The comparison of all three surveying methods 
showed that the in-situ approach requires the most 
botanical knowledge and thus needs to be done by 
botany experts. It represents the most detailed refer
ence for botanical and ecological analysis and fully 
relies on the expert’s knowledge in the field yielding 
the most detailed botanical insight. But in-situ esti
mates are only taken once and cannot be repeated at 
a later time under the exact same circumstances (e.g. 
weather, method, trampling, etc.). In contrast, the 
image acquisition for photogrammetry and orthoi
mages can be done by trained non-experts who are 
handy with camera equipment and photogrammetric 
software. Images captured for the photogrammetric 
method and manual digitization can be analyzed 
multiple times with different approaches, taking 
advantage of improved and updated algorithms. 
Automation makes data processing and classification 
repeatable. Combining new and historic images can 
result in time-series analysis, i.e. change detection. For 
upscaling, more sophisticated knowledge about 
workflow automation is needed. The same is true for 
orthoimage generation. The vegetation classification 
and cover derivation are purely a computer vision 
problem.

Currently the presented automated workflow can 
reliably distinguish between vegetation and non- 
vegetation by relying on greenness. The differentia
tion of plant species requires deeper interpretation, as 
is possible by in-situ estimates and by manual digiti
zation for easily distinguishable species and with suf
ficient image resolution. The main advantage of the 
photogrammetric method is the direct spatial link to 
topographic parameters, which also provide a general 
picture of vegetation cover. It can be applied on 
multiple plots or area-wide and is transferable to 
other locations. The orthoimages are also a result of 
the photogrammetric workflow, which can be used 
for visual image interpretation and detailed plant 
species definition.

From a technical, i.e. mapping method, perspec
tive, it would be interesting to see how well hand- 
held topographic LiDAR devices perform for micro- 
topography mapping purposes (Kersten, Lindstaedt, 
and Starosta 2018). Hand-held devices are usually 
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lightweight enough to carry to mountain summits. 
Future work should focus on upscaling the approach 
for mapping whole summits, e.g. using Unmanned 
Aerial Vehicles (UAV). If wind conditions allow UAV 
flights, this would also be an alternative survey con
cept since they cost less than a professional DSLR 
(Digital Single-Lens Reflex) camera. However, you can
not control the UVA camera’s lens parameters, as the 
camera typically is fully automatic, but camera resolu
tions are very high (4 K), and photogrammetric soft
ware has become very easy to use and can handle 
distortions much better (e.g. O’Connor, Smith, and 
James 2017).
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