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Abstract: Real-time and continuous monitoring through smart sensors is considered to be the
evolution of traditional track testing, enabling the earlier detection of the main failure modes that
degrade railway tracks. Through carrying out preventive maintenance operations, infrastructure
resources may be optimized, leading to smarter and more sustainable infrastructure. For this reason,
under the larger goal of creating a synergy with various types of sensors for railway tracks, this article
presents a critical review on the different, currently available sensors for smart and continuous
monitoring. Specifically, the most appropriate monitoring technologies for each of the main railway
track failure modes have been assessed and identified, thus deriving the advantages and capacities of
each solution. Furthermore, this review presents some of the main experiences carried out to date
in literature by using sensor technologies, such as strain gauges, piezoelectric sensors, fiber-optics,
geophones and accelerometers. These technologies have proven to offer appropriate characteristics
and accuracy for the continuous monitoring of a railway track’s structural state, being capable of
measuring different parameters, such as deflections, deformations, stresses or accelerations that
would permit the technical tracking of various forms of degradation.

Keywords: real-time monitoring; rail track sensor; smart infrastructure; structural health monitoring;
review

1. Introduction

The transport of both people and goods plays a fundamental role in the advancement of society and
the economy. In recent years, mobility has greatly increased with an increased use of infrastructures,
which in turn requires greater investments to conserve their functionality and safety [1]. This is
accentuated by the fact that train circulation speed and capacity is increasing too, with the aim to reduce
travel time and increase railway efficiency [2]. For this reason, to guarantee good track operability it is
necessary to optimize the time, resources and costs for maintenance activities (which are increasing in
frequency due to increased use).

In this sense, predictive maintenance is a management tool increasing in demand, due its high
potential. For this purpose, continuous rail track monitoring plays a fundamental role for efficiently
and reliably tracking the condition of the infrastructure. The use of smart and cutting-edge sensors and
technologies to monitor the railroad would permit its continuous tracking, and enable the anticipation
of future possible pathologies, turning current corrective maintenance into predictive maintenance,
thus minimizing associated maintenance costs [3]. Through this, any premature degradation would
also be avoided and, therewith, a decrease in the possible costs associated to the renewal of some
components of the infrastructure, obtaining a more sustainable solution.
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The first monitoring systems date from 1872, when William Robinson invented the first track
circuit used in a railway, which is still used nowadays. This system detects the presence of, or lack
of, trains on the railway through the electric connections created between the wheels and rails [4].
Since then, sensor technology has evolved very quickly, further increasing in recent years. As a result,
track deflection and change in railway stiffness, as well as other railway pathologies that could appear,
in railroads can be monitored in different ways, from more simple systems (such as the traditional
hydraulic jack-loading method, load cells or deflectometers) to the more sophisticated auscultator
train [5]. However, this last solution, despite obtaining good results, is very expensive (one of them can
cost more than EUR 45 million), and for this reason, its use is very limited. On the other hand, the use
of traditional monitoring systems is limited to the punctual test in a specific area, and does not provide
continuous monitoring. Therefore, the development and study of innovative technological solutions
for real-time and continuous monitoring has great potential to improve the predictive maintenance
possibilities of railways.

The high rate of development of sensor technologies in recent years has made sensors which
are smaller, more accurate and cheaper. This increase in technical and economic viability has
increased the interest of these devices in various fields such as environmental monitoring [6], bridge
monitoring [7] or even testing lineal infrastructures [8]. Through their use, railway transportation could
continue to be considered a reference for a modern, intelligent and efficient transportation, making it
more competitive, and at the same time decreasing associated maintenance costs, via implementing
continuous predictive maintenance.

Therefore, to achieve a smart monitoring system able to detect and predict the main modes of
railway track failure, such as permanent deformations, change in the structural section, component
fatigue failures and vibration or noise, it is necessary to determine the technology available in the
market, its capacity and functionality, as well as, any case studies in which it has been used. Thus,
this paper assesses the characteristics of the main types of smart sensors which have the potential to be
used for the continuous monitoring of railway tracks, via studying their possible implementation in
tracks per the main failure modes and providing understanding on the key parameters to measure in
each mode.

For this purpose, the methodology followed consisted of, firstly, identifying and studying the
main modes of railroad failure through the literature review of scientific indexed journals as well as
technical reports. This revealed the principal factors that can accelerate track failure, and how they
are commonly detected via conventional testing. Following on, the smart sensors with the highest
potential for track monitoring were analyzed and compared using the current information available in
scientific articles (collecting case studies from the last 5 years) as well as consulting technical guides
from manufacturers. Finally, a discussion section provides an analysis of the information reviewed,
assessing the suitability and potentiality of each sensor for the continuous monitoring of railway tracks
per the main modes of railroad failures and the principal current demands.

2. The Main Modes of Track Failure and Their Traditional Monitoring

There are various different failure modes associated with railroads, which decrease the original
quality of the tracks due to the degradation of the infrastructure. This depends on several factors such
as railroad use, the environment or the possible failure of individual components that could occur
during its service life. Despite there being other types of failure whereby the railroad could be rendered
inoperable, this paper is focused on those to be carried out during the youth stage in ballasted tracks,
given that this track typology is the most commonly used and where a higher level of monitorization
is required. The most significant failures are explained in the following sections.

2.1. Permanent Deformation and Rail Track Settlement

Among the most typical failures in lineal infrastructures is related to the permanent deformations,
which are more problematic than those with differential magnitudes due to changes in the resistant
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capacity of the bearing courses. With the continuous loading from thousands of trains, all these
deformations are accumulated, giving way to differential rail track settlement. This problem is
accentuated in the transition between two track areas with different stiffnesses, such as the transition
from an embankment to a bridge or tunnel, or from transitioning between diverse geological areas.
Transition zones could be considered as the most problematic areas for rail track settlement, where the
rearrangements of the ballast would result in “hanging” sleepers, increasing the impact generated
by the passing trains and thus, accentuating this problem increasingly over time. This failure mode
could be considered as a vicious circle, where an increase in “hanging” sleeper problems generates a
higher dynamic impact in the infrastructure from passing trains, and therewith, an increase in the rail
track settlements.

Thus, this problem has traditionally been assessed by measuring the evolution of the track
settlement in different sections along transition zones, as well as the height oscillations of the sleepers
(referring back to the effect of “hanging” sleepers). Additionally, considering registering the acceleration,
it is also possible to obtain the track deflections. For this purpose, the use of instrumentation such
as Linear Variable Differential Transformers (LVDTs), high definition cameras and deflectometers is
common [9–12]. For example, Mishra et al. [13] used a series of LVDTs to monitor a problematic
section in a transition zone south of Philadelphia, USA. For this purpose, five LVDTs were used to
collect the different settlements that were generated in each of the layers (Figure 1). Another example
is Bowness et al. [14] who used remote video monitoring to assess track displacements. A webcam
(with a higher resolution than conventional cameras) was attached to a telescope, which located all
of the train structure layers, far away enough to avoid any possible impacts due to the deflection
and vibration of the rail track. Particle image velocimetry was used to analyze the images taken
during train circulation, with a resolution of 0.04 mm from a distance of 15 m. However, in both cases,
in spite of these devices obtaining good results, they are both expensive to install, time consuming for
data interpretation, and susceptible to being easily manipulated or even stolen.

Figure 1. Schematic of track substructure used by Mishra et al. [13].

2.2. Component Fatigue Failure

Another factor that could significantly affect rail track operability is the fatigue failure of individual
components. With increasing load capacities (freight trains) and speeds (passenger trains), the rail
could suffer located defects due to the dynamic impacts received, where any irregular wheel-rail
contact and slips between the wheels and rail would promote extra short-wave vibrations, as well as
an increase in stresses. The railroad fasteners are also subjected to fatigue efforts due to cyclic elastic
movements, further increasing with force-wave transmission and any noise from wheel-rail contact.
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In the sleepers, also affected by the passing train, different defects could appear depending on the
material with which they are manufactured. In timber sleepers, bio-deteriorations and the climate
affect them considerably [15,16]. On the other hand, concrete sleepers are mainly affected by wheel–rail
impacts as well as rail–seat deterioration caused by frictional forces present between the pads and the
sleepers, further increasing with the presence of any fine particles and/or water [17,18].

Regarding the ballast layer, its degradation can be associated with the abrasion between the
corners of the aggregates or its crushing due to traffic overloads, along with ballast fouling, due to
any fine particles that considerably affect water drainage, negatively influencing rail track stiffness
regularity [19]. Aggregate degradation could be caused by climatic factors and freeze-thaw cycles [20],
but mainly from the breaking of aggregates due to the passing traffic [21]. The variation in stiffness
along the railway track induces a dynamic load between wheel–rail contact and sleeper–ballast, further
increasing the fatigue problems in the rest of components [22], while also varying the bearing capacity
of the track. Additionally, high overloading in the sleepers and ballast increases the settlement that
could appear in the railroad structure.

Therefore, to minimize the degradation of the various components, it is essential to control and
monitor the forces transmitted by the train to the track, as well as evaluate the evolution of the bearing
capacity of the track and its deformations. To date, corrective maintenance has been mainly carried
out for these components, detected through a visual exam carried out by a specialist or in some cases,
with the aid of auscultators trains. However, with the applications of new technology systems is could
be possible to detect this type of failure sooner—for example, through the use of axle-box acceleration
analysis [23] or analyzing the displacement, accelerations and velocities via the electromagnetic waves
in rails and sleepers [19].

2.3. Vibration and Noise

Among the more direct results of rail track settlements and fatigue failures are the deformations
and irregularities along the track, which increase vibrations and noise levels. This problem is especially
relevant in urbanized areas. According to Connolly et al. [24], there are two main track imperfections
that contribute to track vibrations: (a) repeated loading at high frequencies, which can deform the
wheels causing the loss of its initial geometry [25], and (b) the appearance of irregularities in the
rail due to impacts or deformations associated with problems such as stiffness changes, settlements,
welding, transition zones or excessive wear [26]. There are numerous mechanisms that influence rail
track vibrations, which have a certain frequency whose ranges can be observed in Figure 2.

Figure 2. Typical frequency range excitation [24].
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Furthermore, it is important to note during the monitoring of the track that throughout the
noise (or vibration) spectrum, it is possible to predict the rail-sleeper-force [27], and therefore, it is
possible to identify specific track failure types, and thus, the corresponding preventive maintenance
operation. For this reason, a good knowledge of the vibrations (amplitudes and frequencies) makes it
possible to identify specific problems on the rail track system, as well as quantify them. Traditionally,
these vibrations are recorded with the help of accelerometers implanted in the auscultator trains.

2.4. Change in the Structural Section Influence of Stiffness

As mentioned above, the changes in the rail track’s stiffness play a crucial role in the proper
performance of the railroad. Given both the current and anticipated future trends for traffic (faster and
higher loaded trains), a more rapid degradation of components is to be expected, particularly in the case
of the ballast since this can be considered the weakest component in ballasted tracks (the most common
track type). These facts cause stiffness variation in the rail track section, further accentuating its effect.
A higher stiffness gives place to higher overloads in the rail track, causing corrugation and increasing
the vibrations [28]. Meanwhile, a low stiffness directly influences the increase in ballast settlement and
the fatigue of components [29]. This also increases the necessary power for the locomotives to cross
the track, and thus, the level of vibration and noise. Nielsen showed that vertical stiffness variations
induce differential track settlements, resulting in the accelerated deterioration of the railway track [30].
In addition, track stiffness considerably influences track geometry deterioration, rail fatigue and the
deterioration of other components of the railway [31].

Figure 3 shows an example of how a difference between the stiffness that there is in the railway
track and its optimum could cause a high vertical track geometry deterioration.

Figure 3. Illustrative display of optimum track stiffness [31].

For this reason, it is necessary to guarantee good stiffness regularity throughout the railway track,
and hence, incorporate real-time continuous monitorization. Traditionally, the rail track stiffness is
measured with a rail car system that applies a load and measures the track deformation. The China
Academy of Railway Sciences (CARS) was among the first to develop a vehicle for the continuous
measurement of the static stiffness. Since then, these type of devices have been developed in different
countries, such as TU Delft’s High Speed Deflectograph (HSD) in the Netherlands [32], Track Loading
Vehicle (TLV) in the USA [33], Rolling Stiffness Measurement Vehicle (RSMV) in Sweden, Szybka Kolej
Miejska w Trójmieście (SKMT) device developed by the Czech Technical University of Prague and the
Commercial Railway Research Ltd. (KZV) in Czech Republic or Schweizerische Budesbahnen (SBB) in
Switzerland [34]. However, all of these methods require track closure while the measurements are
taken, and thus further increase the associated maintenance cost [35]. In addition, a limitation of these
systems is that they do not provide the stiffness variation along the whole railway line.
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Nowadays, there are other techniques to measure track stiffness, from the traditional hydraulic
jack-loading methods, by applying a certain amount of load on the rail and measuring the displacement
with a displacement meter [35], to the more sophisticated methods, using fiber optics [36–38], which
still need to be developed in greater depth.

3. Monitoring Elements

Having covered the traditional failure modes and their traditional monitoring methods, this section
will review the currently available sensor solutions. Within the different technologies available,
this paper analyzes those that would allow the real-time and continuous monitoring of the rail track
condition, instead of how it is currently conducted in a periodic manner.

3.1. Strain Gauges

3.1.1. Main Characteristics

Strain gauges are a type of sensor able to measure micro-deformations through its piezo-resistive
properties. Piezo resistive properties provide a material with the capability to change electrical
resistance when a certain load or pressure is applied to its surface, deforming it in the mechanical-axis
directions. Thus, in the case of the strain gauges, as the length of the material increases, its resistivity
decreases due to the reduction in the cross-section [39]. It is necessary to determine the elastic modulus
of the gauge, due to the fact that it is not possible to use it outside of its elastic limits.

Typically, the strain gauge is manufactured with a metallic foil pattern which is formed by
photoengraving a film that has previously been mounted onto a flexible resin plastic base [40].
The dimensions of metallic gauges can vary between 0.4 and 150 mm, and its resistance between 120
and 350 Ω. Specialized gauges are also available with a resistance of 1000 Ω, specially designed to
be used with polymer materials [41]. Gauges are able to register micro-deformations around 0.005.
Normally, these devices require a voltage of 2 to 20 V, and through measuring their change in electrical
properties the deformation in the material can be calculated.

In the market, it is possible to find a multitude of strain gauge types, from gauges designed
to be glued over a surface (i.e., on a rail or a sleeper), to gauges to be embedded into a material
(i.e., in concrete or bituminous mixtures). With little changes in resistance it is possible to detect
applied loads, but readings are highly susceptible to temperature changes; thus, the Wheatstone
bridge (Figure 4) is typically adopted for its assembly. This arrangement is formed by 4 resistors,
which increase the sensitivity of the sensor, while compensating the undesired effect of its temperature
sensitivity [42].

Figure 4. Example of Wheatstone bridge, where medidor refers to the strain gauge [42].

Strain gauge sensors were initially considered as a good way to detect dynamic loads and train
speeds, by determining the deformation of a rail due to a passing train, which could also monitor the
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bearing capacity of the track and the deformation of its components. Nonetheless, it must be considered
that they present certain disadvantages that are necessary to take into account such as its fragility,
susceptibility to electromagnetic interference, excessive size and high sensitivity to temperature [12].

3.1.2. Case Studies

Most application of gauges are based on the hypothesis that the forces identified in rails could
be considered as an indicator of the vehicle type on the rail. It is possible to characterize the forces
through the deformations that occur from passing trains, via determining the strain measured and
the properties of the material (i.e., Young’s modulus E and Poisson ratio). Gauge positions play a
fundamental role in data collection. An example of sensor setup is shown in Figure 5, where a sensor
with four gauges, oriented at 45◦ (a, b, c, d), is positioned in the neutral axis of the rail’s web to
determine the vertical loading, P. Additionally, it is possible to measure the lateral shear force using
two gauges (e and f) arranged with a vertical layout.

Figure 5. Gauges distribution to obtain forces P and Q [12].

Following this described layout, Askarinejad et al. [43] used strain gauges to detect the dynamic
loads imposed by a train passing over insulated rail joints. Furthermore, Palo et al. [44] used
strain distribution monitoring at the wheel/rail interference for decision-making support. However,
these studies found that it was difficult to measure the forces because the data measuring period
was not long enough, so that during the experiment there was not a linear wear pattern, and the
trains which passed were different in nature causing different lateral forces. Other authors [45] used
strain gauges to develop a new creep measurement technique by measuring internal rail stresses,
considering the variation of rail temperature and the influence of straight and curved rails. Furthermore,
the Multi-Purpose Q and Y load detector (MPQY) system developed by Delprete et al. [46] allowed the
simultaneous measurement of the vertical forces (due to train weight), the lateral forces (primarily
caused by dynamic and cinematic effects) and also, the longitudinal forces (generated by traction or
braking actions) using strain gauges glued in an intermediate device, shown in Figure 6.
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Figure 6. Multi-Purpose Q and Y load detector (MPQY) systems schema [46].

Conversely, INNOtec Systems GmbH, in Germany, developed the MONY system. This system
uses pads equipped with force gauges in the middle, as is displayed in Figure 7. The MONY system
can measure dynamic loads by obtaining a good relation between the tread state, the rail-sleeper-force
and the radiated noise [27].

Figure 7. MONI® measurement system [27].

Finally, there are also specific gauges (H-gauges) designed to be embedded in asphalt mixtures
for bituminous sub-ballast. These H-gauges were used by Khairallah et al. [47] in order to determine
the deformation that appeared in a bituminous layer located in an experimental section in the line
Bretagne-Pays de la Loire, France. This is a high-speed line in which two different substructures
were studied: bituminous and granular sublayers. This type of gauge has two anchors that register
the movement in a single axis between two points in the asphalt mixture, as is showed in Figure 8.
Additionally, this type of gauge is prepared to support the typical temperature and compaction loads
of the asphalt mixture installation (reaching up to 160 ◦C).

Figure 8. Schematics of a H-gauge [48].
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3.2. Piezoelectric Sensors

3.2.1. Main Characteristics

The piezoelectric phenomenon, occurring in certain materials, consists of the capacity to generate
an electric current as a result of a mechanical load or vibration. This can occur in certain naturally
occurring materials such as quartz, Rochelle salt, tourmaline or topaz. Alternatively, these materials can
also be synthetically produced. Among them, there is Lead Zirconate titanate (PZT), Polyvinylidene
Fluoride Polymer (PVDF), Barium titanate and Zinc oxide. All of them have the capacity to generate a
certain voltage when a compression load or vibration is applied. Furthermore, these types of materials,
when in sensors, have a high accuracy due to their natural frequency being very high and having a
good linearity in a wide range.

Piezoelectric sensors are available on the market in a wide range of types, ranging from smaller
ones with a 20 mm diameter, all the way to large sheets with varying geometries. A piezoelectric sensor
has the capacity to generate voltages in the range of a few milli-volts to tens of volts, depending on its
construction. A disadvantage of their use is that it cannot be used to take a static reading, since they
are activated by the variation of the compression load.

These sensors have many different uses in different fields, such as for hydraulic pressure
measurement or in load cells. Meanwhile, in railway tracks, they could be used to monitor the stresses
transmitted by the traffic to the rail structure, and therefore, identify any failure modes depending on
the magnitude of the amplitude and frequency recorded for the track oscillations. Nonetheless, to date,
in the railway field, few experiences have been reported, which shows that there is potential to further
deepen this research field.

3.2.2. Case Studies

Zhan et al. [49] developed a monitoring rail pad to detect damage caused by train wheels, which
functions by measuring the vertical forces that act on the rail pads. To achieve this, they made a rail
pad with a thin PVDF-based (polyvinylidene fluoride) multilayer sensing device under the rail pads.
This type of material presents certain advantages as it has a large frequency bandwidth, a linear output
over a wide dynamic range, is lightweight, flexible, available in large sheet, and is also relatively low
in cost (around EUR 25 for each pad sensor). The calibration of this sensor was carried out by applying
series of loads from 10 to 80 kN, obtaining a maximum voltage of 6 V. This device is shown in Figure 9.

Figure 9. Signal conditioner, rail pad sensor and rail pad [49].

3.3. Fiber-Optic Sensor

3.3.1. Main Characteristics

Fiber optic sensors are based on the detection of variations of light-wave propagation in optical
fibers, which are characterized by being able to span long distances and offer a long-term solution [38].
For measuring strain, fiber optic systems could be divided in two main categories (Table 1): fiber Bragg
grating (FBG) sensors, where an optical interrogator is used to analyze an array of optical sensors
inscribed into a fiber; a distributed optical fiber sensor (Brillion and Rayleigh scattering), where the
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optical fiber is used as a continuous sensor by itself [37]. Despite fiber Bragg gratins (FBG) having
numerous advantages, thanks to their versatility, wide dynamic range and high measurement accuracy,
it is only implementable in lengths of less than 1 km. Although FBG cannot provide a continuous map
of temperature or strain, within them, around 100 sensors can be found, which could be implemented
with a spatial resolution of 2 mm [50]. However, the distributed sensors do not present this problem,
allowing it to be provided [51]. Meanwhile, the distributed optical fiber sensor has the potential to
span various kilometers using low cost telecommunication fibers [52]. In railway monitoring case
studies, it is possible to find the latter fiber optic type (i.e., based on Brillouin and Rayleigh scattering)
having been used.

Table 1. Comparison of various fiber optic sensing techniques applied to railway.

Sensor Type Characteristics [38] Advantages Disadvantages

Fiber Bragg

• Type:
Discrete/Quasi-distributed

• Sensing Range: around
100 channels

• Spatial Range: 2 mm
• Measurement parameters:

strain, stress
and displacement

• Versatility
• Wide dynamic range
• High measurement

accuracy

• Not continuous
• Areas of implementation are limited

(<1 km)
• Thermal sensitivity
• Expensive

Brillouin scattering

• Type: Distributed
• Sensing Range:

100–150 km
• Spatial Range: 0.5–5 mm
• Measurement parameters:

strain, stress
and displacement

• Provide a continuous
map of physical
parameters such as
temperature or strain

• Capacity to measure
some kilometers

• Require access to both ends of the fiber
• Half sensor ranges
• Lower strain sensitivity than

Rayleigh-based distributed
• Thermal sensitivity
• Expensive

Rayleigh scattering-OTDR

• Type: Distributed
• Sensing Range: 10–50 km
• Spatial Range: 5–10 m
• Measurement parameters:

strain, temperature
and vibration

• Provide a continuous
map of physical
parameters such as
temperature or strain

• Capacity to measure
some kilometers

• Bandwidth 60 times
stronger than Brillouin

• Expensive

Rayleigh scattering-OFDR

• Type: Distributed
• Sensing Range: 50–70 m
• Spatial Range: around

1 mm
• Measurement parameters:

strain and temperature

Sensors based on Brillouin scattering have the capability to provide information, such as axle
counts, axle distance and train speeds, while also allowing for dynamic load estimations that could be
used to understand the evolution of track degradation for preventive maintenance measures. However,
this system requires access to both ends of the fiber, reducing the sensing range by half. Furthermore,
this type of sensor has a lower strain sensitivity than Rayleigh-based fibers [53].

With this last scattering mode, it is possible to measure within a sensing range of 100 to 150 km [54]
and a spatial resolution of 0.5 to 5 mm [55]. Moreover, in a Rayleigh-based distributed system,
the acquisition bandwidth is 60 times stronger than the Brillouin scattering [56]. Within this typology,
two different measurement technologies are available. The Optical Time Domain Reflectometer (OTDR)
allows the measurement of the optical fiber length and characterization of the different anomalies
or possible changes that appear along the fiber, such as strain, temperature and vibration changes.
With OTDR, is possible to measure a sensing range between 10 and 50 km [57] using a spatial resolution
of 5 to 10 m [58]. On other hand, the Optical Frequency Domain Reflectometer (OFDR) allows strain
and temperature to be obtained with a sensing range much lower than OTDR (50–70 m) [59] with a
spatial resolution around 1 mm [60].

In general, fiber optic sensors present certain advantages such as high temperature capacity,
multiplexing and no sensitivity to electromagnetic interferences [12].
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3.3.2. Case Studies

The first time that FBG was used in railway monitoring was in 2004, when this technology was
used for axle counting and derailment detection [61]. From then on, this technology was developed in
other areas of the railway, such as train wheel condition monitoring [62–64], train vibration and weight
measurements [62–65] and the structural analysis of the railway track [5,66–68].

Sensorline developed a combination of several FBG sensors embedded into an elastic pad during
the production process, allowing strain measurements to be obtained inside an elastic pad during the
passage of trains as a base for material optimization [36], as shown in Figure 10. This sensor is used for
counting train axles or recording dynamic loads, as well as for obtaining a better understanding of the
strain variations in a pad to improve its replacement interval.

Figure 10. Schema and prototype of the rail-strain-pad [36].

Yoon et al. [69] developed another system based on the Brillouin correlation domain analysis to
measure the longitudinal strain of a rail in real time, whose implementation is shown in Figure 11.
On the other hand, Minardo et al. [53] used a Brillouin distributed sensor to obtain useful information,
such as train identification, axle count, travel speed and dynamic load magnitude. This solution was
implemented on the Italian regional line San Severo-Peschici, Italy, operated by Ferrovie del Gargano.

Figure 11. Schema of system developed by Yoon et al. [70].

Wheeler et al. [70] used a 7.5 m long rail section with an optical fiber to measure the strain during
the passage of a freight train. However, despite Rayleigh backscatter fiber optic sensing allowing the
measurement of dynamic strains, this measurement should be carried out at low speeds (8–11 km/h)
due to this technology being highly sensitive to vibrations, hence limiting its use.
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3.4. Geophone

3.4.1. Main Characteristics

Geophones are small seismic sensors that produce an output voltage proportional to its wave
velocity when it vibrates [14]. The dynamic deflections and component movements are calculated
by filtering and processing the velocities measured. Geophones have the capacity to only monitor
frequencies higher than their natural frequency, up to a maximum known as spurious frequency.
Commonly, the natural frequency of these devices is an order of 10 Hz, and the spurious frequency
an order of 250 Hz [41], although it is possible to find geophones on the market with lower natural
frequencies. For example, for LF 24 (among the most commonly used), the required voltage can vary
between ±11 and ±25 V DC with a current from ±2 to ±6 mA. Additionally, the sensitivity of the
geophones can range from 10 to 200 V/m/s. These devices present certain advantages such as their
ability to measure large displacements (in millimeters) and being easily powered [35].

3.4.2. Case Studies

LF 24 (Low frequency velocity sensor) geophones were used by Bowness et al. [14] to measure peak
to peak displacements (within 0.07 mm) for frequencies as low as 1 Hz in the sleepers. Milne et al. [71]
used the same type of geophone to carry out a comparative study between LF 24 and Micro Electrical
Mechanical System accelerometers, which showed little variations in their results. Figure 12 shows
the accelerometer and the geophone setup over a sleeper, which are used to register the accelerations
produced by the passing trains.

Figure 12. Accelerometer and geophone glued to the sleeper [72].

Crespo-Chacon et al. [72] obtained reliable readings for the vertical velocities and displacements
of vibrating rails on the high-speed line that connects Madrid with Valladolid, Spain, through the use
of 2 Hz geophones. To obtain reliable measurements when the train speeds were lower than 100 km/h,
different corrections (phase and amplitude) were applied.

3.5. Accelerometer

3.5.1. Main Characteristics

Accelerometers, depending on their structure and operation, can be divided in two main types:
piezo-resistive and capacitive based accelerometers [73]. In the piezo-resistive accelerometers, vibrations
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are detected and transformed into a voltage by a piezoelectric cantilever, a membrane or a thin film [74].
In contrast, capacitive sensors record acceleration changes between a slightly separated proof mass
and a conductive electrode [73]. The typical operation frequency can be from 2 to 10 kHz, measuring
accelerations that can vary between ±1 and ±250 g. Accelerometers are usually a low potency device,
using an electrical current of the order of a micro-amp or a milli-amp, and a voltage of the order of 5 V
or less.

In recent years, micro-electrical mechanical systems (MEMS) are also being developed. These are
small-size, low-cost sensors used to measure accelerations. Typically, the sensors are embedded in a
semiconducting chip. The cost of this type of accelerometer (considering the price of the cheapest,
commercially available, conventional accelerometer (together with the signal conditioning unit)) can
be around 1% to 10% [74] of a more sophisticated sensor, such as a geophone [71]. This type of
accelerometer presents several advantages, as they are cheaper, capable of withstanding shock, have a
good frequency response, need a low power input and produce little signal noise [41].

3.5.2. Case Studies

Khairallah et al. [47] used accelerometers to measure the vertical dynamic behavior of a railway
track. To achieve this, accelerometers were placed under a sleeper and at the top of a bituminous
sub-ballast layer with the aim to compare the differences in levels acceleration between a conventional
section and a section with a bituminous sub-ballast layer.

Milne et al. [71] demonstrated how MEMS can be used to successfully obtain displacements from
acceleration data measurements, through a double filter-integration. The accelerometers tested were
the ADXL335 and ADXL326, whose results were compared with those obtained with a geophone
(a relatively more expensive sensor, as stated previously). Given that railway track deformations occur
at low frequencies, high frequencies are less important for track monitoring, and thus can be filtered
out with a low pass filter [14]. Both the accelerometers and the geophone were glued to the same
sleeper as shown in Figure 12. Although this sensor type could output a noisier signal, it was found to
be of sufficient quality to be used to obtain track displacements and quantify trends in track behavior.

From the results of the case studies considered, if accelerometers and geophones are compared,
it is possible to see that in spite of the geophones having a higher precision than the accelerometers,
they are more expensive. Furthermore, accelerometers have a sufficient resolution to be used in railway
tracks to measure accelerations and displacements, and they are less frequency-limited, compared to
the geophones, which cannot operate below their natural frequency. Table 2 summarizes the main
similarities and differences between these types of sensors.

Table 2. Comparison between geophones and accelerometers.

Characteristics Geophone Accelerometers

Acceleration and displacement measurement X X
Relatively low cost X

High frequency range operation X
High signal noise X

High measurement precision X

4. Discussion

According to the aforementioned results, there are many sensors that offer the capability to be
embedded in railway infrastructure, and that through their use it is possible to continually monitor
the development of rail track failures. For this purpose, it is necessary to clarify which sensors are
applicable to which failure type.

Assessing the data in Figure 13, in agreement with the case studies analyzed in the literature
available, it is seen that permanent deformations have been traditionally evaluated through the direct
measurement of the evolution of permanent or plastic deformations of the track bed under the passage
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of trains [29]. However, it must be noted that most of the previous research focused on temporally and
geographically specific case studies, and therefore, would require devices with the ability to control such
parameters through time and along the railway [13,22]. Similarly, this also happens when monitoring
the transmission of vibrations, finding punctual investigations into specific problems related to this
issue, using specialized instrumentation for punctual studies mainly measuring vibrations along the
ground [68,69].

Figure 13. Variables to consider to monitor the main rail track failure modes.

On the other hand, results show that the changes in the structural response of the track (such as
changes in track stiffness, also influencing the previously cited failure modes) could be monitored
through the measurement of different parameters, highlighting the variations in component oscillations
(such as sleeper movements) or global track deflections over the rail [24], as well as measuring the
variations in the dynamic loads generated from wheel–rail interaction or impacts between the sleeper
and ballast. Nonetheless, despite all these possibilities, traditional monitoring of these issues has
focused on complex solutions, mainly applying loads over the rail and measuring track deflections
with special vehicles [32–35]. Therefore, it could be interesting to design and implement smart sensors,
with the capability to measure these properties continuously in real-time, to monitor the loads applied
by traffic and quantify track deflections or oscillations and to avoid train line closures for structural
health assessment.

In the same way, devices with the capacity to measure elastic and permanent micro-deformations
in materials would monitor the evolution of the performance of components, which would also assist
in monitoring the global track response. For the characterization of the life of the components, it would
also be necessary to measure traffic conditions (load magnitude and frequency) that could modify
the fatigue resistance of such components [28–31]. Furthermore, in previous years, the monitoring of
material structure and state through the measurement of wave propagation into the components is
gaining importance, requiring small and tailored devices to be included into the materials.

Therefore, it is seen that there are many sensor types available for continuous monitoring.
However, not all sensors have the capability of measuring elastic and permanent micro-deformations.
In this study, strain gauges, piezoelectric sensors, optical fibers, geophones and accelerometers have
been considered since they were found to have been previously used for railway monitoring in the
literature review. The placement of these sensors will depend on the variable that needs to be measured.
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Figure 14 represents the placement options for the different sensors usable for continuous monitoring,
while Figure 15 relates the main variables that could be measured with each sensor to their relative
cost per lineal meter of infrastructure.

Figure 14. Sensor placements in the case studies reviewed.

Figure 15. Difference in terms of cost per lineal meter and the main variables measured by each sensor.

While strain gauges have been widely used in rails, pads and bearing courses to measure
elastic and plastic micro-deformations at a reasonable cost (in comparison with the other sensors),
its application in sleepers could also be a viable way to measure the performance of this component
and the evolution of its fatigue life. Nonetheless, it must be considered that this application has not
been studied to date, and therefore, further study will be required [27,43–47]. Additionally, although
these micro-deformations are normally correlated with fatigue failure, a strain gauge would also be
able to identify other failures in an indirect way, such as traffic loads [43], by correlating the strain
measured with the stress applied by using the Young‘s modulus and Poisson ratio of the material.
Furthermore, as it happens with all sensors, traffic conditions could be measured by considering the
number of oscillations generated by the sensor (axel counting) or the time between two consecutive
sensor readings along the railroad (train speed). Nonetheless, it must be kept in mind that strain
gauges are affected by electromagnetic interferences when measuring the deformations, as opposed to
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the fiber-optic sensor, which reflects that this technology could be an interesting alternative to strain
gauges [12,75].

Regarding piezolectric sensors, although they have demonstrated the potential to measure
dynamic loads with a good linearity and a large bandwidth at a low price, there are not many case
studies demonstrating their use [46]. However, this sensor could be a suitable solution for measuring
different parameters, such as the loads transmitted by the trains and the vibrations of the railroad
materials [49]. This could allow the monitoring of the number of trains that pass and their weight,
as well as track performance such as bearing capacity or changes in track stiffness through determining
if the components vibrate more in one section of the track than in other areas. Furthermore, as has been
conducted in other fields, piezoelectrics could be studied for their application to detect fatigue failures
of materials due to sudden changes in electric pulses generated. For all these purposes, it would be
necessary to develop this technology, adapting it to the place where it going to be and also, encapsuling
it when necessary to guarantee its operability. Therefore, despite the fact that further studies are still
required before its wide application, these sensors show great potential due to their versatility and
low cost.

In the same way, it is seen that the optical fiber sensor can be considered rather versatile, although
its price is commonly higher than piezoelectrics. Nonetheless, due to such versatility, combined
with the high development of this technology in the last years, this type of sensor has started to be
used for railway monitoring, showing a great potential for its implementation in different parts of
the section (Figure 14). Nowadays, there are studies that implement this technology in rails, pads,
sleepers and also in bearing courses [34]. Furthermore, it presents certain advantages as it is immune
to electromagnetic interference (which is present in railway lines and cannot be eliminated [75]), and it
is the only sensor (studied in this review) that could measure temperature changes, being an important
variable for understanding the longitudinal changes in the rails caused by dilation [47].

With this technology (optical fiber), it is possible to identify changes in the rail track stiffness,
by identifying the change in dynamic stresses and elastic micro-deformations (Figure 13). Some of the
fatigue failure modes in railroad components (such as sleeper cracking or variations in the regularity of
rails) could be studied through the transmission of vibrations into materials. Additionally, in addition
to identifying the deformations of components, optical fibers can be used for other applications
such as axle counting, vibration measurement and wheel condition monitoring [61–70]. However,
although there are studies that use this technology, there is a need for further development to make it
economically more competitive.

Finally, geophones and accelerometers can both be used to measure component oscillations.
From these readings, it would then be possible to identify track displacements through mathematical
analysis (e.g., the double integration of the signal). If both are compared, in spite of geophones having a
higher accuracy than accelerometers, the latter are more economic and precise enough for this use [49].
Through their use, it is also possible to identify changes in the rail track stiffness, due to an increase
in vibrations in the readings. Additionally, through the knowledge of the vibration amplitudes of
the railway’s component oscillations, and their frequencies, it is possible to identify certain fatigue
problems related with the train’s wheels, and the infrastructure’s rails and sleepers [24]. On the other
hand, although both sensors register vibrations, only the geophones have the capacity to register
vibrations of the materials (similar to the piezoelectric and optical fiber sensors).

5. Conclusions

Predictive maintenance operations carried out with novel monitoring systems would provide a
more in-depth, real-time and up-to-date knowledge of the railway track condition. In turn, this would
decrease maintenance costs as interventions would only be carried out when they are really needed.
In this way, it would be possible to achieve smarter, more efficient and more sustainable infrastructure
by reducing the resources necessary for its maintenance. In this line, through the assessment of the main
technologies available for railway track monitoring, it is possible to extract the following conclusions:
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• The monitoring of the different main modes of failure of ballasted railway tracks can be carried
out through advanced but simple sensors able to measure diverse parameters such as component
deformations and vibrations, track oscillations and dynamic forces applied by traffic.

• In this sense, optical fiber sensors were demonstrated to be among the most versatile sensors since
they can track diverse properties, such as deformations, stress levels, vibrations and temperature
with a single sensor. Nonetheless, it must be considered that due to the high price of these sensors,
in comparison with other alternatives, they would require further research and development to
enable their widespread application.

• To cover this disadvantage, a strain gauge could be used as a simple device to track the
micro-deformations in components. However, its use presents certain disadvantages, such as
its fragility, while also being susceptible to electromagnetic interference and having a high
dependence on temperature.

• On the other hand, it has also been seen that the state of the track could be monitored through
measuring the transmission of stresses and vibrations, where various experiences demonstrated
that piezoelectrics and accelerometers present a good potential for this application.

• This is especially highlighted in the case of piezoelectrics because of their diverse advantages,
such as their high linearity and their low cost, while allowing for a clear recording of the dynamic
loads (intensity and frequency).

• On the other hand, while piezoelectrics could be more appropriate for monitoring traffic loads,
accelerometers are considered to be a promising technology to measure vibrations and deflections
(to calculate stiffness changes, differential settlement, hanging sleepers, etc.) because of their high
accuracy and lower prices compared to other devices, such as geophones.

• Therefore, it can be concluded that piezoelectric, accelerometer or fiber optic sensors are the
most ideal for being embedded into a railway track’s substructure (e.g., elastic elements, sleeper,
bituminous sub ballast), while avoiding certain problems, such as stealing or vandalism.

Therefore, based on this study, it can be understood that there are currently various technologies
available with the characteristics necessary for the continuous monitoring of a railway track’s structural
state. These sensors are capable of measuring different parameters, such as deflections, deformations,
stresses or accelerations that would permit the tracking of various forms of degradation, such as
railroad settlement, component fatigue, undesired vibrations or changes in the structural section.
However, to continue advancing in this research line, it is essential to develop new systems, which are
economically and technically viable, that could be used to support maintenance activities.
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