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Abstract: This paper investigates the distributed fusion estimation of a signal for a class of multi-sensor
systems with random uncertainties both in the sensor outputs and during the transmission connections.
The measured outputs are assumed to be affected by multiplicative noises, which degrade the signal,
and delays may occur during transmission. These uncertainties are commonly described by means of
independent Bernoulli random variables. In the present paper, the model is generalised in two directions:
(i) at each sensor, the degradation in the measurements is modelled by sequences of random variables
with arbitrary distribution over the interval [0, 1]; (ii) transmission delays are described using three-state
homogeneous Markov chains (Markovian delays), thus modelling dependence at different sampling
times. Assuming that the measurement noises are correlated and cross-correlated at both simultaneous
and consecutive sampling times, and that the evolution of the signal process is unknown, we address the
problem of signal estimation in terms of covariances, using the following distributed fusion method. First,
the local filtering and fixed-point smoothing algorithms are obtained by an innovation approach. Then,
the corresponding distributed fusion estimators are obtained as a matrix-weighted linear combination
of the local ones, using the mean squared error as the criterion of optimality. Finally, the efficiency of
the algorithms obtained, measured by estimation error covariance matrices, is shown by a numerical
simulation example.

Keywords: distributed fusion estimation; sensor networks; gain degradation; Markovian delays;
correlated noises

1. Introduction

Sensor network systems are of great research interest because of their potential application in a wide
range of fields, including target tracking, integrated navigation, military surveillance, mobile robotics and
traffic control. In a multi-sensor environment, the information provided by each sensor is transmitted to
a processing centre where it is combined or fused by different methods according to how the question
of fusion estimation is addressed. The information provided by multiple sensors is normally processed
by one of the following methods: either it is centralised, with the sensor outputs being sent to a central
processor to be fused, or it is distributed, by a process in which the local estimators are derived and then
sent to the processing centre. Centralised fusion estimation provides optimal estimators when all the
sensors are faultless, but has the disadvantage that its application imposes high computational costs and a
heavy communication burden, especially when a large number of sensors must be considered. Distributed
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fusion estimation, on the other hand, does not generally provide optimal estimators, but reduces the
computational load and is usually more suitable for large-scale sensor networks with random transmission
failures, because of its parallel structure. Due to these advantages, the use of distributed fusion estimation
in multiple-sensor systems has attracted considerable interest in recent years, with various approaches
being taken; for detailed information, see [1–7] and the references therein.

In a multi-sensor environment, failures may occur both in signal measurements and during the
transmission of measured outputs. In the first of these respects, problems such as aging, temporary
failure or high levels of background noise may provoke, for example, missing measurements or stochastic
sensor gain degradation. The missing measurement phenomenon has received considerable attention,
and many studies have been conducted to determine specific distributed estimation algorithms, using
different approaches (see [8–10]). Usually, a common way to model missing measurements is to consider
variables with Bernoulli distribution whose values zero and one represent that the signal is completely
absent or completely present in the measurement. However, such an assumption is restrictive in some
practical situations since the communications in networked systems are not always perfect and there
may be measurement fades/degrades; in such cases, the received measurement may contain only partial
information about the signal. The signal estimation problem in case of sensor gain degradation in a
multi-sensor environment has not been so extensively investigated, even though the phenomenon of sensor
gain degradation (sensor fading measurement) occurs frequently in engineering practice, for example,
in thermal sensors for vehicles or in platform-mounted sonar arrays receiving acoustic signals from the
ocean. As in the case of missing measurements, conventional estimation algorithms are not applicable
to the phenomenon of sensor gain degradation, and studies have been undertaken to obtain estimation
algorithms in this situation. For example, Liu et al. [11] studied the optimal filtering problem for
networked time-varying systems with stochastic gain degradation, using a recursive matrix equation
approach, Liu et al. [12] obtained a minimum variance filtering algorithm for a class of time-varying
systems and Liu et al. [13] designed filters distributed over a wireless sensor network located within a
given sporadic communication topology.

Furthermore, the measured outputs may be transmitted to the processing centre via communication
networks through imperfect channels or be affected by network congestion, and either of these problems
can produce random uncertainties in the processed measurements, such as random delays. The possible
influence of random delays on the performance of the estimators makes it necessary to develop new
estimation algorithms that take account of this problem. For random delays modelled by independent
Bernoulli random variables, which is a common assumption, various distributed fusion estimation
algorithms have been derived (see, for example, [14–18]). Nevertheless, in real-world communication
systems, current delays are usually correlated with previous ones. In this context, assuming that the
random delays are modelled by Bernoulli random variables correlated at consecutive sampling times,
distributed estimation algorithms were developed by [19,20]. A more general approach, in which the
correlation is considered at different times, is to model the delays by means of Markov chains. Under this
hypothesis, the estimation problem has been addressed considering a single sensor (see [21–24]), but to
the best of our knowledge, it has not been extensively investigated in a multi-sensor environment.
Relevant papers in this context include Ge et al. [25], who investigated the distributed estimation
problem for continuous-time linear systems over sensor networks with heterogeneous Markovian coupling
intercommunication delays, and García-Ligero et al. [26], who proposed fusion filtering and smoothing
algorithms to estimate a signal from one-step delayed measurements with random delays modelled by
Markov chains. Also, when the network connectivity is given by topology, relevant works on the consensus
problem of linear continuous-time multi-agent systems, as [27,28], have considered continuous-time
homogeneous Markov processes with finite state space to describe the communication topology among
agents, corresponding each communication graph to a state of the Markov process.
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In some conventional algorithms in network systems, the additive noises are assumed white and
uncorrelated between the different sensors. However, in many practical applications of multisensor
systems, a more realistic scenario is to consider that the noises at different sensors are cross-correlated.
For example, in wireless communication, speech enhancement systems or global navigation satellite
systems, the noises are usually correlated and cross-correlated. For this reason, research into sensor
network systems under the assumption of correlated and/or cross-correlated noises is a promising field of
activity, and numerous papers incorporating this assumption are now appearing (see, for example, [29–33]).

In this paper, our aim is to investigate the distributed fusion estimation problem in networked
systems subject to stochastic sensor gain degradation and to random transmission delays of one or two
steps. At each sensor, the deterioration of the measured output is modelled by sequences of arbitrary
variables, with values in the range [0, 1], corresponding to a possible partial or total loss of the signal.
In addition, the measurement noises are assumed to be correlated and cross-correlated at the same and at
consecutive sampling times. The delays that can occur during the transmission of the measurements from
each sensor to the local processing centre are described by different homogeneous Markov chains. In this
context, we can derive least-squares distributed linear filter and fixed-point smoothers, without requiring
full knowledge of the signal evolution model, only the first and second-order moments of the processes
involved in the multi-sensor system are needed. In this process, we first use an innovation approach to
derive algorithms for local estimators, including filter and fixed-point smoothers. This method simplifies
the derivation because the innovation is a white process. The distributed fusion filter and the fixed-point
smoothers are then obtained as the matrix-weighted linear combinations of the corresponding local
estimators using the mean squared error as the optimality criterion.

The rest of this paper is structured as follows. In Section 2, we present the model considered
and detail the assumptions according to which the distributed fusion estimation problem is addressed.
In Section 3, distributed filtering and fixed-point smoothing estimators, together with their estimation
error covariance matrices, are derived. Using an innovation approach, local least-squares linear filtering
and smoothing algorithms are obtained for each sensor, and the cross-correlation matrices between any
two local estimators are then calculated in order to derive the distributed fusion estimators. Section 4
provides a simulation example to illustrate the applicability of the proposed algorithms and analyses the
performance of the estimators. Finally, we summarise the main conclusions drawn.

Notation. The usual notation is used in this paper. Thus, Rn×m denotes the set of all n × m
matrices. (C1| . . . |Cn) denotes a matrix partitioned into submatrices C1, . . . , Cn, diag(Ai)i∈I stands for a
block-diagonal matrix whose blocks are the sub-matrices Ai, with i varying in the set of indices I, and
In is n × n identity matrix. If the dimensions of vectors or matrices are not explicitly stated, they are
assumed to be compatible with algebraic operations. The Kronecker product is denoted by the symbol
⊗, the minimum and maximum values of two real numbers are represented, respectively, by c ∧ d and
c ∨ d, c, d ∈ R, and the Kronecker delta function is denoted as δk,s. For simplicity, Fk = Fk,k is used for
any function Fk,s depending on the time instants k and s; analogously, if L(ij) is a function depending on
sensors i and j, we is written as L(i) = L(ii).

2. Problem Statement and Model Description

In this study, our aim is to investigate the least-squares (LS) linear estimation of a discrete-time
random signal in a multi-sensor environment, using the distributed fusion method. At each sensor,
problems such as aging, temporary failure or excessive background noise may deteriorate the signal
measurement, causing a partial loss of information at the measured outputs. In addition, the measurement
noises are assumed to be correlated and one-step cross-correlated both in a single sensor and between
different sensors.
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In order to perform the signal estimation, each sensor transmits its outputs to a local processor via
communication channels; during this transmission, faults may occur due to limited communication
bandwidth, congestion or defects in the channels, which can produce random delays in the
processed measurements.

In this context, the LS distributed linear filter and fixed-point smoother of the signal are derived by a
covariance-based approach; that is, we assume that the signal evolution model is unknown and that only
the first and second order moments are known. Specifically:

Assumption 1. The nx-dimensional signal process, {xk, k ≥ 1}, has a zero mean and its autocovariance function
is expressed in a separable form as follows,

E
[

xkxT
h

]
= AkBT

h , h ≤ k,

where Ak, Bh ∈ Rnx×M are known matrices.

Consider m sensors and assume that, at each one, the sensor gain is randomly degraded and, therefore,
partially deteriorated measured outputs may be obtained. Under this assumption, the measured outputs,
z(i)k ∈ Rnz , are described by

z(i)k = γ
(i)
k H(i)

k xk + v(i)k , k ≥ 1, i = 1, . . . , m, (1)

where, for i = 1, . . . , m, the random variables γ
(i)
k quantify the sensor gain degradation, H(i)

k are

known matrices and v(i)k are measurement noises. The following assumptions are made concerning
the measurement model (1):

Assumption 2. The multiplicative noises
{

γ
(i)
k , k ≥ 1

}
, i = 1, . . . , m, are independent sequences of independent

random variables taking values in [0, 1], with known means and variances, E
[
γ
(i)
k

]
= γ

(i)
k and Var

[
γ
(i)
k

]
=

σ
2(i)
k , k ≥ 1.

Note that modelling the sensor gain degradation by arbitrary random variables taking values in
the interval [0, 1] describes not only partially degraded signals but also conventional missing signals (by
considering only the values 0 and 1 for γ

(i)
k ), see, for example, Caballero-Águila et al. [20]. Therefore,

the current model generalises the missing measurement model.

Assumption 3. The measurement noises
{

v(i)k , k ≥ 1
}

, i = 1, . . . , m, have zero-mean and second-order moments

given by E
[
v(i)k v(j)T

h

]
= R(ij)

k δk,h + R(ij)
k,k−1δk−1,h, h ≤ k.

Note that this assumption is weaker and more realistic than the usual hypothesis of independent
white measurement noises and reflects to conditions which occur in many real-life situations; for
example, in wireless communication, speech enhancement systems or global navigation satellite systems,
the measurement noises are usually correlated and cross-correlated.

As commented above, during the transmission of measurements from each sensor to its processing
centre, random delays frequently occur. In this paper, the absence or presence of transmissions delays,
and their magnitudes, at each sensor are modelled by random variables

{
θ
(i)
k , k ≥ 1

}
, that take values
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in E = {0, 1, 2}, describing whether the measures arrive on time or are delayed by one or two sampling
times. Specifically, if θ

(i)
k = a, a = 1, 2, this means that the k-th measurement of the i-th sensor is delayed

by a sampling periods; otherwise, if θ
(i)
k = 0, there is no delay in the arrival.

Then, the measurements received, which are denoted by y(i)k , k ≥ 1, are described as in
García-Ligero et al. [24]:

y(i)k =
(k−1)∧2

∑
a=0

δ
θ
(i)
k , a

z(i)k−a, k ≥ 1, i = 1, . . . , m. (2)

Assumption 4.
{

θ
(i)
k , k ≥ 1

}
, i = 1, . . . , m, are independent homogeneous Markov chains with the same state

space, E = {0, 1, 2}, known initial distributions π
(i)
1,a = P(θ(i)1 = a), a ∈ E , and transition probability matrices

P(i)
1 =

(
p(i)1,[a,b]

)
a,b∈E

, where p(i)1,[a,b] = P(θ(i)h+1 = b/θ
(i)
h = a), h ≥ 1, a, b ∈ E .

Finally, the following hypothesis about the signal and processes involved in the measurement model
is assumed in the derivation of the LS linear estimators.

Assumption 5. For each i = 1, . . . , m, {xk, k ≥ 1},
{

γ
(i)
k , k ≥ 1

}
,
{

v(i)k , k ≥ 1
}

and
{

θ
(i)
k , k ≥ 1

}
,

are mutually independent.

3. Distribution Fusion Estimation Problem

In this section, we address the LS linear estimation of a signal in a multi-sensor environment, using
the distributed fusion method. This method involves first determining, in each local processor, LS
linear estimators based on the delayed measurements received from the sensor itself. Then, all the local
estimators are transmitted, over perfect connections, to a fusion centre from which the distributed estimator
is obtained.

3.1. Local Filter and Fixed-Smoothing Algorithms

The fusion method is applied as follows; for each i = 1, . . . , m, we determine the local filters and
fixed-point smoothers for the model described by (1) and (2) using an innovation approach. As it is known,
the whiteness of the innovation process simplifies the derivation of the estimation algorithms, as well
as the algorithms themselves, thus providing computational advantages. The innovation treatment is
based on the equivalence existing between the observation process {y(i)k ; k ≥ 1} and the innovations

{µ(i)
k ; k ≥ 1}, which are defined as µ

(i)
k = y(i)k − ŷ(i)k/k−1, where ŷ(i)k/k−1 is the LS linear estimator of y(i)k from

the previous observations, y(i)1 , . . . , y(i)k−1. Since both processes provide the same information, the LS linear

estimator of a random vector u(i)
k based on the observations

{
y(i)1 , . . . , y(i)L

}
, denoted by û(i)

k/L, is expressed

as a linear combination of the innovations
{

µ
(i)
1 , . . . , µ

(i)
L

}
; specifically:

û(i)
k/L =

L

∑
h=1

E
[
u(i)

k µ
(i)T
h

]
Σ

(i)−1
µh

µ
(i)
h , k, L ≥ 1,

where Σ(i)
µh = E

[
µ
(i)
h µ

(i)T
h

]
denotes the innovation covariance matrices.

The observation model in each individual sensor is, for vectorial observations, the same as was
considered in García-Ligero et al. [24]. Therefore, the derivation of the local estimation algorithms
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is analogous to that performed in the paper cited and the proofs of the local LS linear filtering and
fixed-smoothing algorithms can be omitted.

In order to simplify the expressions of the algorithms, the following notations are used:

• A(i)
k =

(
γ
(i)
k H(i)

k Ak | γ
(i)
k−1H(i)

k−1 Ak−1 | γ
(i)
k−2H(i)

k−2 Ak−2

) (
P(i)

k ⊗ IM

)T
, k ≥ 1,

• B(i)k =
(

γ
(i)
k H(i)

k Bk | γ
(i)
k−1H(i)

k−1Bk−1 | γ
(i)
k−2H(i)

k−2Bk−2

)
P(i)

k

(
P(i)−1

k ⊗ IM

)
, k ≥ 1,

where γ
(i)
k′ H(i)

k′ Ck′ = 0 for k′ = −1, 0, and Ck′ = Ak′ , Bk′ ,

• P(i)
k =

(
p(i)k,[a,b]

)
a,b∈E

with p(i)k,[a,b] = P
(

θ
(i)
h+k = b/θ

(i)
h = a

)
, k, h ≥ 1; a, b ∈ E ,

• P(i)
k = diag

(
π
(i)
k,a IM

)
a∈E

, where π
(i)
k,a = P(θ(i)k = a), a ∈ E , k ≥ 1,

• H(i)
Dk

=
(k−1)∧2

∑
a=0

π
(i)
k,aγ

(i)
k−aH(i)

k−aDk−a, k ≥ 1, D = A, B.

3.1.1. Local LS Linear Filtering Algorithm

Under the model assumptions, for i = 1, . . . , m, the local filters, x̂(i)k/k, and their error covariance matrices,

Σ(i)
k/k = E[(xk − x̂(i)k/k)(xk − x̂(i)k/k)

T ], are obtained as

x̂(i)k/k = AkOx(i)
k , k ≥ 1, (3)

Σ(i)
k/k = Ak(BT

k − rx(i)
k AT

k ), k ≥ 1. (4)

The vectors Od(i)
k , d = x, y, are recursively calculated as

Od(i)
k = Od(i)

k−1 + Jd(i)
k Π(i)−1

k µ
(i)
k , k ≥ 1; Od(i)

0 = 0, (5)

where the matrices Jd(i)
k = E

[
Od(i)

k µ
(i)T
k

]
, d = x, y, satisfy

Jx(i)
k = H(i)T

Bk
− rxy(i)

k−1 A
(i)T
k − (1− δk,1)

k−1

∑
s=(k−3)∨1

Jx(i)
s Π(i)−1

s G(i)Tk,s , k ≥ 1,

and

Jy(i)
k = B(i)Tk − ry(i)

k−1A
(i)T
k − (1− δk,1)

k−1

∑
s=(k−3)∨1

Jy(i)
s Π(i)−1

s G(i)Tk,s , k ≥ 1.

The matrices rde(i)
k = E[Od(i)

k Oe(i)T
k ], d, e = x, y, are obtained by

rde(i)
k = rde(i)

k−1 + Jd(i)
k Π(i)−1

k Je(i)T
k , k ≥ 1; rde(i)

0 = 0.

The innovations µ
(i)
k = y(i)k − ŷ(i)k/k−1 and their covariance matrices Π(i)

k = E[µ(i)
k µ

(i)T
k ] are given by

µ
(i)
k = y(i)k −A

(i)
k Oy(i)

k−1 − (1− δk,1)
k−1

∑
s=(k−3)∨1

G(i)k,s Π(i)−1
s µ

(i)
s , k ≥ 1, (6)
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Π(i)
k =

(k−1)∧2

∑
a=0

π
(i)
k,a(σ

2(i)
k−a H(i)

k−a Ak−aBT
k−a H(i)T

k−a + R(i)
k−a) +A

(i)
k Jy(i)

k

−(1− δk,1)
k−1

∑
s=(k−3)∨1

G(i)k,s Π(i)−1
s (A(i)

k Jy(i)
s + G(i)k,s )

T , k ≥ 1,

where

G(i)k,k−1 = F (i)
k,k−1 − (1− δk,2)

k−2

∑
s=(k−3)∨1

G(i)k,s Π(i)−1
s (A(i)

k−1 Jy(i)
s + G(i)k−1,s)

T , k ≥ 2,

G(i)k,k−2 = F (i)
k,k−2 − (1− δk,3)G

(i)
k,k−3Π(i)−1

k−3 (A(i)
k−2 Jy(i)

k−3 + G
(i)
k−2,k−3)

T , k ≥ 3,

G(i)k,k−3 = F (i)
k,k−3, k ≥ 4,

and

F (i)
k,k−1 = (1− δk,2)π

(i)
k−1,0 p(i)1,[0,2]γ

(i)
k−2γ

(i)
k−1H(i)

k−2(Bk−2 AT
k−1 − Ak−2BT

k−1)H(i)T
k−1

+
(k−1)∧2

∑
a=1

π
(i)
k−1,a−1 p(i)1,[(a−1),a]σ

2(i)
k−a H(i)

k−a Ak−aBT
k−a H(i)T

k−a

+
(k−1)∧2

∑
a=0

(k−2)∧a

∑
b=0

π
(i)
k−1,b p(i)1,[b,a]R

(i)
k−a,k−1−b, k ≥ 2,

F (i)
k,k−2 = π

(i)
k−2,0 p(i)2,[0,2]σ

2(i)
k−2H(i)

k−2 Ak−2BT
k−2H(i)T

k−2 +
2

∑
a=1

(k−3)∧(a−1)

∑
b=0

π
(i)
k−2,b p(i)2,[b,a]R

(i)
k−a,k−2−b, k ≥ 3,

F (i)
k,k−3 = π

(i)
k−3,0 p(i)3,[0,2]R

(i)
k−2,k−3, k ≥ 4. �

Next, for i = 1, . . . , m, a recursive fixed-point smoothing algorithm of the signal xk based on
y(i)1 , . . . , y(i)S , S = k + 1, k + 2, . . . , is provided.

3.1.2. Local LS Linear Fixed-Smoothing Algorithm

Under the model assumptions, for i = 1, . . . , m, the local fixed-point smoothers, x̂(i)k/S, and their error covariance

matrices, Σ(i)
k/S are calculated as follows:

x̂(i)k/S = x̂(i)k/S−1 +X
(i)
k,S Π(i)−1

S µ
(i)
S , S > k ≥ 1, (7)

Σ(i)
k/S = Σ(i)

k/S−1 −X
(i)
k,S Π(i)−1

S X (i)T
k,S , S > k ≥ 1,

with initial conditions x̂(i)k/k and Σ(i)
k/k given by (3) and (4), respectively.

The coefficients X (i)
k,S = E

[
xkµ

(i)T
S

]
are obtained as

X (i)
k,S = BkH

(i)T
AS
− Ey(i)

k,S−1A
(i)T
S −

S−1

∑
h=(S−3)∨1

X (i)
k,h Π(i)−1

h G(i)TS,h

+(1− δk,1)δk+1,Sπ
(i)
k+1,2γ

(i)
k−1(AkBT

k−1 − Bk AT
k−1)H(i)T

k−1 , S > k ≥ 1;

X (i)
k,h = Ak Jx(i)

h , h = k− 2, k− 1, k,
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where the matrices Ey(i)
k,S = E

[
x̂(i)k/SOy(i)T

S

]
satisfy the following recursive expression

Ey(i)
k,S = Ey(i)

k,S−1 +X
(i)
k,S Π(i)−1

S Jy(i)T
S , S > k ≥ 1; Ey(i)

k = Akrxy(i)
k , k ≥ 1. �

3.2. Distributed Ls Linear Algorithms

In this subsection, distributed filter and fixed-point smoothers, x̂D
k/S, S ≥ k, are derived as the

matrix-weighted linear combinations of the corresponding local estimators, x̂(i)k/S, i = 1, . . . , m, minimising

the mean squared error; that is, x̂D
k/S = Fk/SX̂k/S =

m

∑
i=1

F(i)
k/S x̂(i)k/S, where X̂k/S = (x̂(1)Tk/S , . . . , x̂(m)T

k/S )T and

Fk/S = (F(1)
k/S, . . . , F(m)

k/S ) minimises E
[
(xk − Fk/SX̂k/S)

T(xk − Fk/SX̂k/S)
]

.

The solution to this problem, as shown by García-Ligero et al. [26], is given by

Fopt
k/S = E

[
xkX̂T

k/S

](
E[X̂k/SX̂T

k/S]
)−1

, S ≥ k; k ≥ 1,

and, then, the optimal distributed estimator of xk is

x̂D
k/S = E

[
xkX̂T

k/S

](
E[X̂k/SX̂T

k/S]
)−1

X̂k/S, S ≥ k; k ≥ 1. (8)

Theorem 1. Let x̂(i)k/S, i = 1, . . . , m, be the local estimators given by (3) and (7); then the optimal distributed fusion
estimators x̂D

k/S, filters and fixed-point smoothers, are given by

x̂D
k/S =

(
K(1)

k/S, . . . , K(m)
k/S

)(
K(ij)

k/S

)−1
X̂k/S, S ≥ k; k ≥ 1, (9)

where K(ij)
k/S = E

[
x̂(i)k/S x̂(j)T

k/S

]
, i, j = 1, . . . , m.

The estimation error covariance matrices, ΣD
k/S = E

[
(xk − x̂D

k/S)(xk − x̂D
k/S)

T
]
, are given by

ΣD
k/S = AkBT

S −
(

K(1)
k/S, . . . , K(m)

k/S

)(
K(ij)

k/S

)−1(
K(1)

k/S, . . . , K(m)
k/S

)T
, S ≥ k; k ≥ 1. (10)

Proof. By the Orthogonal Projection Lemma (OPL), E
[

xk x̂(i)Tk/S

]
= K(i)

k/S and, consequently, E
[

xkX̂T
k/S

]
=

(K(1)
k/S, . . . , K(m)

k/S). Then, since E
[

X̂k/SX̂T
k/S

]
=
(

K(ij)
k/S

)
i,j=1,...,m

, expression (9) for the distributed estimator

is derived from (8). The estimation error covariance matrix (10) is immediately obtained from Assumption
1 and (9).

Note that expressions (9) and (10) require the knowledge of the cross-correlation matrices between any
two local estimators, K(ij)

k/S, i, j = 1, . . . , m. Algorithms to obtain these matrices are provided in Theorems 2
and 3 for the filters and smoothers, respectively.

Theorem 2. For any i, j = 1 . . . , m, the cross-correlation matrices between any two local filters, K(ij)
k/k =

E
[

x̂(i)k/k x̂(j)T
k/k

]
, k ≥ 1, are obtained by

K(ij)
k/k = Akrx(ij)

k AT
k , k ≥ 1. (11)
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The covariance matrices rde(ij)
k = E

[
Od(i)

k Oe(j)T
k

]
, d, e = x, y, verify the following recursive relation:

rde(ij)
k = rde(ij)

k−1 + (1− δk,1)Jd(ij)
k−1,kΠ(j)−1

k Je(j)T
k + Jd(i)

k Π(i)−1
k Je(ji)T

k , k ≥ 1; rde(ij)
0 = 0, (12)

where Jd(ij)
k−1,k = E

[
Od(i)

k−1µ
(j)T
k

]
, d = x, y, are given by

Jd(ij)
k−1,k = Dd(ji)T

k,k−1 − rdy(ij)
k−1 A

(j)T
k −

k−1

∑
h=(k−3)∨1

Jd(ij)
k−1,hΠ(j)−1

h G(j)T
k,h , k ≥ 2. (13)

The matrices Jd(ij)
k,k′ = E

[
Od(i)

k µ
(j)T
k′

]
, d = x, y, in the sum of (13) are calculated by

Jd(ij)
k,k′ = (1− δk,1)Jd(ij)

k−1,k′ + Jd(i)
k Π(i)−1

k Π(ij)
k,k′ , k′ = k− 2, k− 1, k; k′ ≥ 1. (14)

The matrices Dd(ij)
k,k−1 = E

[
y(i)k Od(j)T

k−1

]
, d = x, y, in expression (13) are obtained as follows

Dd(ij)
k,k−1 = H(i)

Ak
rxd(j)

k−2 + (1− δk,2)
2

∑
a=1

π
(i)
k,aVd(ij)

k−a,k−2 + Y
(ij)
k,k−1Π(j)−1

k−1 Jd(j)T
k−1 , k ≥ 2. (15)

The matrices Vd(ij)
k,k′ = E

[
v(i)k Od(j)T

k′

]
, d = x, y, in the sum of (15) are given by

Vd(ij)
k,k′ =

k′

∑
h=(k−1)∨1

V (ij)k,h Π(j)−1
h Jd(j)T

h , k′ = k− 1, k; k′ ≥ 1, (16)

where V (ij)k,k′ = E
[
v(i)k µ

(j)T
k′

]
, k′ = k− 1, k, k + 1, k + 2; k′ ≥ 1, are calculated as

V (ij)k,k′ =
(k′−k+1)∧(k′−1)∧2

∑
a=(k′−k−1)∨0

π
(j)
k′ ,aR(ij)

k,k′−a − (1− δk−1,k′)
k′−1

∑
h=(k−1)∨1

V (ij)k,h Π(j)−1
h Y (j)T

k′ ,h . (17)

The innovation cross-covariance matrices Π(ij)
k,k′ = E

[
µ
(i)
k µ

(j)T
k′

]
in expression (14) satisfy

Π(ij)
k,k′ = Y

(ij)
k,k′ − (1− δk,1)

(
A(i)

k Jy(ij)
k−1,k′ +

k−1

∑
h=(k−3)∨1

G(i)k,hΠ(i)−1
h Π(ij)

h,k′

)
, k′ = k− 3, k− 2, k− 1, k; k′ ≥ 1, (18)

where the coefficients Y (ij)
k,k′ = E

[
y(i)k µ

(j)T
k′

]
are given by

Y (ij)
k,k′ =

(k−1)∧2

∑
a=0

π
(i)
k,a

(
γ
(i)
k−a H(i)

k−aX
(j)
k−a,k′ + V

(ij)
k−a,k′

)
, k′ = k− 3, k− 2, k− 1, k; k′ ≥ 1. (19)

Proof. See Appendix A.
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Theorem 3. For any i, j = 1 . . . , m, the cross-correlation matrices between any two local smoothers, K(ij)
k/S =

E
[

x̂(i)k/S x̂(j)T
k/S

]
, are obtained by

K(ij)
k/S = K(ij)

k/S−1 + Φ(ij)
k,S Π(j)−1

S X (j)T
k,S +X (i)

k,S Π(i)−1
S Φ(ji)T

k,S +X (i)
k,S Π(i)−1

S Π(ij)
S Π(j)−1

S X (j)T
k,S , S ≥ k + 1, (20)

with the initial condition K(ij)
k/k given in Theorem 2.

The matrices Φ(i)
k,S = E

[
x̂(i)k/S−1µ

(i)T
S

]
= 0 and, for i 6= j, Φ(ij)

k,S = E
[

x̂(i)k/S−1µ
(j)T
S

]
are obtained as follows:

Φ(ij)
k,S = Ex(i)

k,S−2H
(j)T
AS
− Ey(ij)

k,S−2A
(j)T
S +

2

∑
a=1

π
(j)
S,aX

(i)
k,S−2Π(i)−1

S−2 V
(ji)T
S−a,S−2

+(1− δS,3)π
(j)
S,2X

(i)
k,S−3Π(i)−1

S−3 V
(ji)T
S−2,S−3 −Φ(ij)

k,S−1Π(j)−1
S−1 Y

(j)T
S,S−1

−
S−2

∑
h=(S−3)∨1

(
Φ(ij)

k,h +
S−2

∑
h′=h
X (i)

k,h′Π
(i)−1
h′ Π(ij)

h′ ,h

)
Π(j)−1

h G(j)T
S,h +X (i)

k,S−1Π(i)−1
S−1 Π(ij)

S−1,S, S ≥ k + 2,

Φ(ij)
k,S = Ak Jx(ij)

S−1,S, S = k− 1, k, k + 1.

(21)

The matrices Ex(i)
k,S = E

[
x̂(i)k/SOx(i)T

S

]
and Ey(ij)

k,S = E
[

x̂(i)k/SOy(j)T
S

]
are recursively obtained by

Ex(i)
k,S = Ex(i)

k,S−1 +X
(i)
k,S Π(i)−1

S Jx(i)T
S , S ≥ k + 1; Ex(i)

k = Akrx(i)
k , k ≥ 1, (22)

Ey(ij)
k,S = Ey(ij)

k,S−1 + Φ(ij)
k,S Π(j)−1

S Jy(j)T
S +X (i)

k,S Π(i)−1
S Jy(ji)T

S , S ≥ k + 1; Ey(ij)
k = Akrxy(ij)

k , k ≥ 1. (23)

Proof. See Appendix B.

4. Simulation Study

In this section, a simulation example illustrates the applicability of the proposed algorithms, showing
that estimator accuracy is influenced by the specific characteristics of the model (1)–(2), and in particular
by sensor gain degradation and transmission delays.

Let us consider the same signal process as in [24]; specifically, a zero-mean scalar process, {xk, k ≥ 1} ,
with covariance function E[xkxh] = 1.025641× 0.95k−h, 1 ≤ h ≤ k; hence, Assumption 1 is satisfied taking,
for example, Ak = 1.025641× 0.95k and Bh = 0.95−h.

Assume that this signal is measured by two sensors which provide the measured outputs described by
model (1) with H(1)

k = H(2)
k = 1, ∀k ≥ 1. The multiplicative noises

{
γ
(i)
k , k ≥ 1

}
, i = 1, 2, which quantify

the sensor’s gain degradation, are independent white sequences with different time-invariant probability
distributions. Specifically:

• P
(

γ
(1)
k = 0

)
= 0.1, P

(
γ
(1)
k = 0.5

)
= 0.2, P

(
γ
(1)
k = 1

)
= 0.7,

• γ
(2)
k is uniformly distributed over [0.2, 0.8].

The measurement additive noises are defined as v(i)k = c(i)(νk + νk+1), i = 1, 2, where c(1) = 0.5,
c(2) = 0.7 and {νk, k ≥ 1} is a zero-mean Gaussian white process with constant variance equal to 0.5;
hence, R(ij)

k = c(i)c(j) and R(ij)
k,k−1 = 0.5c(i)c(j).

Assume furthermore that during the transmission of the measurements, random delays occur and that
the information received can be expressed by model (2) where

{
θ
(i)
k , k ≥ 1

}
, i = 1, 2, are homogeneous
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Markov chains with the same initial distribution, π
(i)
0 = 1 and π

(i)
1 = π

(i)
2 = 0 (the first observation is not

delayed), and with the following transition probability matrices:

P(1)
1 =

 0.99 0.005 0.005
0.09 0.85 0.06

0.075 0.055 0.87

 , P(2)
1 =

 0.99 0.003 0.007
0.01 0.98 0.01
0.11 0.02 0.87

 .

The effectiveness of the proposed distributed filtering and fixed-point smoothing estimators was
compared by performing 100 iterations of the respective algorithms. The accuracy obtained in each
case was determined by calculating the estimation error variances. Figure 1 presents the local filtering
error variances, Σ(i)

k/k, i = 1, 2, and the distributed filtering and fixed-point smoothing error variances,
ΣD

k/k+S, S = 0, 1, 3, 5, and shows, on the one hand, that the distributed filtering error variances are lower
than those of every local filter and, on the other, that the error variances corresponding to the distributed
smoothers are smaller than those of the distributed filter. We conclude, therefore, that the smoothers are
more accurate than the filter. Moreover, the distributed smoothing error variances at each fixed-point k
decrease as the number of available measurements, k + S, increases, although the difference is almost
insignificant for S > 5.

10 20 30 40 50 60 70 80 90 100

Time k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Local filtering error variances, 
k/k

(1)

Local filtering error variances, 
k/k

(2)

Distributed filtering error variances, 
k/k

D

Distributed smoothing error variances, 
k/k+1

D

Distributed smoothing error variances, 
k/k+3

D

Distributed smoothing error variances, 
k/k+5

D

Figure 1. Local filtering, distributed filtering and fixed-point smoothing error variances.

To determine the influence of estimator performance on sensor gain degradation, we calculated
the distributed filtering error variances for different probability distributions of the random variables

modelling the degradation. To do this, we set P
(

γ
(1)
k = 0

)
= 0.1 and varied the probabilities of the

values 0.5 and 1. Figure 2 shows that the filtering error variances decrease as P
(

γ
(1)
k = 1

)
increases, thus

confirming, as expected, that the distributed filtering performance improves when there is less signal
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degradation. An analogous study was conducted of the distributed smoothing error variances, from which
similar conclusions were drawn.

Next, we considered the use of various homogeneous Markov chains to model random delays in
order to determine their influence on the accuracy of the proposed estimators. Concretely, we calculated
the distributed filtering error variances, assuming that random delays can be appropriately modelled by
homogeneous Markov chains with the same initial distribution and the following transition probability
matrices: P(1)

1 , P(2)
1 ,

P(1)
1 =

 0.99 0.002 0.008
0.001 0.98 0.019
0.08 0.04 0.88

 , P(2)
1 =

 0.99 0.001 0.009
0.001 0.98 0.019
0.062 0.058 0.88

 ,

P∗(1)1 =

 0.95 0.03 0.02
0.05 0.89 0.06
0.07 0.01 0.92

 , P∗(2)1 =

 0.89 0.07 0.04
0.055 0.89 0.055
0.08 0.04 0.88

 .

The properties of the Markov chains lead us to conclude that the probabilities of no delay converge

to the following constant values: 0.89, 0.77, 0.68, 0.60, 0.55 and 0.38 for P(1)
1 , P(2)

1 , P(1)
1 , P(2)

1 , P∗(1)1 and

P∗(2)1 , respectively. Figure 3 shows the distributed filtering error variances for the different Markov
chains considered. As expected, the performance of the distributed filtering estimators improved as the
probabilities of no delay converged to higher values. Similar results were obtained for the smoothing error
variances and, therefore, the same conclusions can be drawn for the distributed smoothers.

10 20 30 40 50 60 70 80 90 100

Time k

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Distributed filtering error variances for P(
(1)

k
=1)=0.1

Distributed filtering error variances for P(
(1)

k
=1)=0.3

Distributed filtering error variances for P(
(1)

k
=1)=0.5

Distributed filtering error variances for P(
(1)

k
=1)=0.7

Distributed filtering error variances for P(
(1)

k
=1)=0.9

Figure 2. Distributed filtering error variances for different values of P
(

γ
(1)
k = 1

)
.
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10 20 30 40 50 60 70 80 90 100

Time k

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Distributed filtering error variances for P
(1)

1
 and P

1

(2)

Distributed filtering error variances for P
1

(1)
 and P

1

(2)

Distributed filtering error variances for P
1

*(1)
 and P

1

*(2)

Figure 3. Distributed filtering error variances for different transition probability matrices.

Finally, in order to show the performance of the proposed distributed filter, we conduct a comparative
analysis between the proposed filter and (a) the distributed filter obtained in the model without gain
degradation and independent white measurement noises, and (b) the distributed filter obtained when
the delays during transmission are considered independent. To analyze the feasibility of the different
distributed filters, the mean squared errors at each time instant k (MSEk) of the different filters are
calculated for 1000 independent simulations. Figure 4 shows that the MSEk for the proposed filter are
less than for the other filters, which is due to the fact that these filters do not take into account all the
hypotheses inherent to the model under study.
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10 20 30 40 50 60 70 80 90 100
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4
MSE

k
 (a)

MSE
k
 (b)

MSE
k
 (c)

Figure 4. MSEk for distributed filter (a) for systems without gain degradation and independent white
measurement noises, (b) for systems with independent delays and (c) for systems at hand.

5. Conclusions

This paper describes how LS distributed fusion linear filter and fixed-point smoothers were derived for
a class of discrete-time multi-sensors systems affected by stochastic sensor gain degradations, correlated
measurement noises and one or two-step random transmission delays. The gain degradation in the
different sensors is represented by independent white sequences of random variables with values in [0,
1], thus including the conventional missing signal phenomenon. The measurement noises are assumed
to be correlated and cross-correlated at the same and at consecutive sampling times. The absence or
presence of delays in the transmissions, due to the unreliability of the network, is described by different
homogeneous discrete-time Markov chains. We address the distributed fusion estimation problem for
networked systems with these characteristics, assuming that only the first and second-order moments
of the processes involved in the observation model are available. Distributed filtering and fixed-point
smoothing estimators are obtained as the LS matrix-weighted linear combination of the local ones. The
filtering and fixed-point smoothing error variances, which are calculated offline, are used to measure
accuracy of the proposed distributed estimators.

As indicated, in this paper we consider transmission delays described by different homogeneous
discrete-time Markov chains. In Shang [34] two types of time delays are simultaneously considered;
namely, signal transmission delays and signal processing delays. Hence, a challenging further research
topic is to address the distributed estimation fusion problems considering these different types of delays.
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Appendix A. Proof of Theorem 2

The proof is performed in the following four steps.

• Derivation of (11) and (12).

Clearly, (11) is obtained from (3) for x̂(i)k/k and rde(ij)
k = E

[
Od(i)

k Oe(j)T
k

]
. Expression (12) for rde(ij)

k is

derived by using (5) for Od(i)
k and Oe(j)

k together with Jd(ij)
k = E[Od(i)

k µ
(j)T
k ] and Jd(ij)

k−1,k = E[Od(i)
k−1µ

(j)T
k ].

• Derivation of (13) and (14).

Expression (13) for Jd(ij)
k−1,k = E

[
Od(i)

k−1µ
(j)T
k

]
is obtained by using (6) for the innovation, rdy(ij)

k =

E
[
Od(i)

k Oy(j)T
k

]
, and denoting Jd(ij)

k,k′ = E
[
Od(i)

k µ
jT
k′

]
and Dd(ij)

k,k−1 = E
[
y(i)k Od(j)T

k−1

]
.

Expression (14) for Jd(ij)
k,k′ = E

[
Od(i)

k µ
(j)T
k′

]
is derived by using (5) for Od(i)

k , taking into account that

Jd(ij)
k−1,k = E

[
Od(i)

k−1µ
(j)T
k

]
and that Π(ij)

k,k′ = E
[
µ
(i)
k µ

(j)T
k′

]
.

• Derivation of (15)–(17).

To derive (15) for Dd(ij)
k,k−1 = E

[
y(i)k Od(j)T

k−1

]
, we first use (5) for Od(j)

k−1, and by denoting Y (ij)
k,k−1 =

E
[
y(i)k µ

(j)T

k−1

]
, we obtain

Dd(i)
k,k−1 = (1− δk,2)E

[
y(i)k Od(j)T

k−2

]
+ Y (ij)

k,k−1Π(j)−1
k−1 Jd(j)T

k−1 , k ≥ 2.

Now, from (2) for y(i)k and the model hypotheses, we have

E
[
y(i)k Od(j)T

k−2

]
=

2

∑
a=0

π
(i)
k,aγ

(i)
k−a H(i)

k−a E
[

xk−aOd(j)T
k−2

]
+

2

∑
a=0

π
(i)
k,a E

[
v(i)k−aOd(j)T

k−2

]
.

Taking into account that x̂(j)
k−a/k−2 = Ak−aOd(j)

k−2, 0 ≤ a ≤ 2 (this expression for the signal predictor
is obtained by a reasoning analogous to that carried out in García-Ligero et al. [24]), from the OPL

we obtain E
[

xk−aOd(j)T
k−2

]
= E

[
x̂(j)

k−a/k−2Od(j)T
k−2

]
= Ak−ard(j)

k−2. Then, as v(i)k is uncorrelated with Od(j)
k−2,

denoting Vd(ij)
k,k′ = E

[
v(i)k Od(j)T

k′

]
, we have

E
[
y(i)k Od(j)T

k−2

]
=

2

∑
a=0

π
(i)
k,aγ

(i)
k−a H(i)

k−a Ak−arxd(j)
k−2 +

2

∑
a=1

π
(i)
k,aVd(ij)

k−a,k−2, k ≥ 3,

and thus expression (15) is obtained.

From (5) for Od(i)
k and denoting V (ij)k,k′ = E

[
v(i)k µ

(j)T
k′

]
, it is clear that

Vd(ij)
k,1 = V (ij)k,1 Π(j)−1

1 Jd(j)T
1 , k = 1, 2,

Vd(ij)
k,k′ = δk,k′ E

[
v(i)k Od(j)T

k′−1

]
+ V (ij)k,k′Π

(j)−1
k′ Jd(j)T

k′ , k′ = k− 1, k; k′ ≥ 2.

Then, again using (5) for Od(j)
k′−1 and since E

[
v(i)k Od(j)T

k−2

]
= 0, expression (16) is proven.
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In order to obtain (17) for V (ij)k,k′ = E
[
v(i)k µ

(j)T
k′

]
, first, we use (6) for the innovation, which leads us to

V (ij)k,k−1 = π
(j)
k−1,0R(ij)

k,k−1, k ≥ 2,

V (ij)k,k′ = E
[
v(i)k y(j)T

k′

]
− E

[
v(i)k Oy(j)T

k′−1

]
A(j)T

k′ −
k′−1

∑
h=(k−1)∨1

V (ij)k,h Π(j)−1
h G(j)T

k′ ,h , k′ = k, k + 1, k + 2; k ≥ 1.

(A1)

Next, we compute the two expectations in (A1):

∗ From (2) for y(j)
k′ and from assumptions 3 and 4, we obtain

E
[
v(i)k y(j)T

k′

]
=

(k′−k+1)∧(k‘−1)∧2

∑
a=(k′−k−1)∨0

π
(j)
k′ ,aR(ij)

k,k′−a, k′ = k, k + 1, k + 2; k ≥ 1. (A2)

∗ Using (5) for Oy(j)
k′−1 and again taking into account the independence of vk and Oy(j)

k−2, we have

E
[
v(i)k Oy(j)T

k′−1

]
=

k′−1

∑
h=(k−1)∨1

V (ij)k,h Π(j)−1
h Jy(j)T

h , k′ = k, k + 1, k + 2; k ≥ 1. (A3)

Expression (17) is then proven by substituting (A2) and (A3) in (A1).

• Derivation (18) and (19).

From expression (6) for the innovation and denoting Y (ij)
k,k′ = E

[
y(i)k µ

(j)T
k′

]
, it is clear that

Π(ij)
k,k′ = E

[
(y(i)k − ŷ(j)

k/k−1)µ
(j)T
k′

]
= Y (ij)

k,k′ − (1− δk,1)A
(i)
k E[Oy(i)

k−1µ
(j)T
k′ ]

−(1− δk,1)
k−1

∑
h=(k−3)∨1

G(i)k,hΠ(i)−1
h E

[
µ
(i)
h µ

(j)T
k′

]
.

Then, taking into account that Jy(ij)
k,k′ = E[Oy(i)

k µ
(j)T
k′ ] and Π(ij)

k,k′ = E[µ(i)
k µ

(j)T
k′ ], we obtain (18).

Now, using (2) for y(i)k , the model assumptions and the fact that X (j)
k,k′ = E

[
xkµ

(j)T
k′

]
, it is clear that

Y (ij)
k,k′ = E

[
y(i)k µ

(j)T
k′

]
=

(k−1)∧2

∑
a=0

π
(i)
k,a

(
γ
(i)
k−a H(i)

k−aX
(j)
k−a,k′ + V

(ij)
k−a,k′

)
, k, k′ ≥ 1.

Then, taking into account that V (ij)k,k′ = 0, k′ = k− 3, k− 2, (19) is obtained.

�

Appendix B. Proof of Theorem 3

Expression (20) for K(ij)
k/S, S ≥ k + 1, is readily obtained from (7) and Φ(ij)

k,S = E
[

x̂(i)k/S−1µ
(j)T
S

]
.

For i = j, from the OPL, it is clear that Φ(i)
k,S = 0, S ≥ k. Next, we derived expression (21) for Φ(ij)

k,S .

For S = k − 1, k, k + 1, expression (21) of Φ(ij)
k,S , is clear from (3) taking into account that Jx(ij)

S−1,S =

E
[
Ox(ij)

S−1 µ
(j)T
S
]
.
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In order to calculate Φ(ij)
k,S for S ≥ k + 2, we use (7) for x̂(i)k/S−1, and from µ

(j)
S = y(j)

S − ŷ(j)
S/S−1, we obtain

Φ(ij)
k,S = E

[
x̂(i)k/S−2y(j)T

S

]
− E

[
x̂(i)k/S−2ŷ(j)T

S/S−1

]
+X (i)

k,S−1Π(i)−1
S−1 Π(ij)

S−1,S. (A4)

∗ To determine the first expectation in (A4), we use (2) for y(j)
S and taking into account that by the OPL

E
[

x̂(i)k/S−2xT
S−a

]
= E

[
x̂(i)k/S−2 x̂(i)TS−a/S−2

]
, we obtain

E
[

x̂(i)k/S−2y(j)T
S

]
=

2

∑
a=0

π
(j)
S,aγ

(j)
S−a E

[
x̂(i)k/S−2 x̂(i)TS−a/S−2

]
H(j)T

S−a +
2

∑
a=1

π
(j)
S,a E

[
x̂(i)k/S−2v(j)T

S−a

]
.

Now, expressing x̂(i)S−a/S−2 = AS−aOx(i)
k−2 in the first sum and using (7) for x̂(i)k/S−2 in the second one,

we have

E
[

x̂(i)k/S−2y(j)T
S

]
= Ex(i)

k,S−2H
(j)T
AS

+ π
(j)
S,2 E

[
x̂(i)k/S−3v(j)T

S−2

]
+

2

∑
a=1

π
(j)
S,aX

(i)
k,S−2Π(i)−1

S−2 V
(ji)T
S−a,S−2,

and, again, from (7) for x̂(i)k/S−3,

E
[

x̂(i)k/S−2y(j)T
S

]
= Ex(i)

k,S−2H
(j)T
AS

+ (1− δS,3)π
(j)
S,2X

(i)
k,S−3Π(i)−1

S−3 V
(ji)T
S−2,S−3

+
2

∑
a=1

π
(j)
S,aX

(i)
k,S−2Π(i)−1

S−2 V
(ji)T
S−a,S−2.

(A5)

∗ To compute the second expectation in (A4), first, from (6), we write the observation predictor as

ŷ(j)T
S/S−1 = A(j)

S Oy(j)
S−1 − (1− δS,1)

S−1

∑
h=(S−3)∨1

G(j)
S,hΠ(j)−1

h µ
(j)
h ;

then, expression (5) for Oy(j)
S−1, together with Y (j)

S,S−1 = A(j)
S Jy(j)T

S−1 and Ey(ij)
k,S = E

[
x̂(i)k/SOy(j)T

S

]
, leads us

to

E
[

x̂(i)k/S−2ŷ(j)T
S/S−1

]
= Ey(ij)

k,S−2A
(j)T
S + Φ(ij)

k,S−1Π(j)−1
S−1 Y

(j)T
S,S−1+

S−2

∑
h=(S−3)∨1

E
[

x̂(i)k/S−2µ
(j)T
h

]
Π(j)−1

h G(j)T
S,h .

Again using expression (7) of the local smoother, after some manipulation, we obtain

E
[

x̂(i)k/S−2ŷ(j)T
S/S−1

]
= Ey(ij)

k,S−2A
(j)T
S + Φ(ij)

k,S−1Π(j)−1
S−1 Y

(j)T
S,S−1

+
S−2

∑
h=(S−3)∨1

(
Φ(ij)

k,h +
S−2

∑
h′=h
X (i)

k,h′Π
(i)−1
h′ Π(ij)

h′ ,h

)
Π(j)−1

h G(j)T
S,h .

(A6)

Substituting (A5) and (A6) in (A4), expression (21) for Φ(ij)
k,S , S ≥ k + 2, i 6= j is proven.

Finally, expressions (22) and (23) of Ex(i)
k,S and Ey(ij)

k,S , S > k, are straightforwardly derived using (7)

for x̂(i)k/S and (5) for Ox(i)
S and Oy(j)

S , respectively. The initial conditions of both expressions are directly

obtained from (3) and rde(ij)
k = E

[
Od(i)

k Oe(j)T
k

]
. �
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