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Within a chiral quark model, we evaluate the good cross section in the Euclidean space in the vector 
- axial vector channel, proposed recently by Ma and Qiu as means to extract the so far elusive parton 
distribution functions of the pion from lattice QCD. Our results are remarkably simple at the quark model 
scale and agree well, after the necessary QCD evolution, with the most recent lattice calculations at the 
scale μ ∼ 2 GeV for various values of the lattice pion mass. Comparisons are made as functions of the 
Ioffe time variable. We also comment on the information on the lowest moments in the momentum 
fraction x, generically extractable from such analyses, as well as on the inaccessibility of the x → 1 limit 
from the present data.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Hadron structure is most directly visualized in deep inelastic 
scattering experiments with a typical momentum transfer Q �
1 GeV, where the underlying partonic properties or, more specif-
ically, the quark and gluon composition is unveiled at a given 
resolution wavelength ∼ 1/Q . Due to this fundamental nature, nu-
merous attempts have been made over the last 20 years in order 
to determine, ab initio from QCD, the parton distribution functions 
(PDFs) and their functional dependence on the momentum frac-
tion carried by the quarks or gluons, x. What is less known is that 
this problem was actually faced squarely in the physical Minkowski 
space in the so-called transverse Hamiltonian lattice approach for 
the pion [1–3]. For the more popular Euclidean space lattices sev-
eral computational schemes have been implemented. They range 
from the early few moments determinations of PDFs [4–7], to the 
more recent quasi-PDFs [8–11] and pseudo-PDFs [12–21], the lat-
tice cross sections approach [22,23], the LaMET method [24,25], or 
the Compton Feynman-Hellman approach [26]. The necessary for-
mulation in the Euclidean space, which makes the path integral 
well defined, hampers direct extractions based on suitable extrap-
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olations to the physically accessible Minkowski PDFs. For compre-
hensive overviews we refer the reader to the white paper [27] and 
the review [28]. A recent analysis of quasi distributions in the QCD 
instanton vacuum model was presented in [29].

Whereas these different setups aim to be sufficiently accu-
rate to reliably extract the PDFs at a given scale μ and compare 
them to current phenomenological parameterizations extracted 
from various experiments at fixed Q 2 values, they in fact pro-
pose to calculate different mathematical objects in QCD on the 
lattice at a given spacing a. These objects are, however, interest-
ing on their own, since theoretical hadronic models can be directly 
tested against them after the relevant probing scales are consis-
tently tuned, μ ∼ Q ∼ 1/a, to judiciously represent a similar phys-
ical situation.

This is precisely the aim of this paper, where we compare 
the lattice cross section [22,23] for the pion in the vector - ax-
ial vector channel, σV A , obtained in [30,31], to the results of the 
Nambu–Jona-Lasinio (NJL) model followed with the leading-order 
(LO) DGLAP [32–34] evolution. In general, the lattice cross sec-
tions, following the early proposal of [35], are a broad class of 
objects suited for lattice studies, with the following features de-
scribed by Ma and Qiu [22]: they are calculable in the Euclidean 
lattice QCD, have a well-defined continuum limit, and share the 
same and factorizable logarithmic collinear divergences as PDFs. 
Our comparison, made for σV A at LO as a function of the Ioffe-
time, shows a comfortable agreement within the error bars in the 
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whole domain of the lattice data. More generally, we argue that 
the lattice data for σV A can be viewed as a determination of the 
lowest even valence quark moments 〈xn〉, with satisfactory accu-
racy up to n = 4, with no strong sensitivity on the behavior in 
x → 1 region.

Our strategy follows the earlier works on the pion’s PDF [36–
38], distribution amplitude [39], generalized distribution func-
tions [40], quasi-distribution amplitude [41], quasi- or pseudo-
PDFs [42], as well as the double distribution functions [43]. No-
tably, the pion, which is the pseudo-Goldstone boson of the dy-
namically broken chiral symmetry in QCD, has many of its prop-
erties constrained by low energy theorems. However, it is most 
challenging from the point of view of lattice QCD and achiev-
ing the low physical value of the pion mass has always been a 
tough numerical issue requiring sufficiently large lattice volumes, 

such that e−mπ V
1
3 � 1. Also, the experimental extractions of its 

partonic distributions are not direct and require detailed analyses 
based on QCD factorization. For these reasons, model studies of 
sophisticated features of the pion, such as the one presented here, 
are useful in illustrating theoretical ideas and prove helpful to un-
derstand the experimental data or the lattice simulations.

2. Basic definitions and methodology

We first very briefly review the relevant definitions and estab-
lish the notation. The starting point is the so-called lattice cross-
section introduced in [30]

σ
μν
ab (ξ, p) ≡ ξ4〈π(p)|T {

Jμa (ξ) Jνb (0)
} |π(p)〉, (1)

where a, b indicate vector (V ) or axial vector (A) currents,

JμV (x) = q̄(x)γ μq(x),

JνA(x) = q̄(x)γ μγ 5q(x). (2)

The (Euclidean) coordinate ξ separates the two current insertions, 
whereas p denotes the momentum of the pion. The isospin indices 
are suppressed for brevity. One should note that actually Eq. (1)
describes a two-current correlator in the pion state, thus is a gen-
uine 4-point function.

The Lorentz decomposition of the combination σ
μν
V A (ξ, p) +

σ
μν
AV (ξ, p) is antisymmetric in μν , with invariant structures multi-

plying the tensors εμναβξα pβ and ξμpν − ξν pμ [30]. At LO con-
sidered here only the former matters, with the coefficient denoted 
as σV A(ω, ξ2, p2), where ω = p · ξ is the Ioffe time [44,45]. It has 
been shown in Ref. [23] that the following factorization relation 
holds for ξ�QCD � 1:

σV A(ω, ξ2, p2) =
1∫

0

dx

x
F (xω,ξ2, x2 p2;μ)qval(x;μ)

+O(ξ2�2
QCD), (3)

where μ is the factorization scale, the valence (non-singlet) PDF of 
the pion is

qval(x;μ) = q(x;μ) − q̄(x;μ) (4)

and F is a perturbative kernel which at LO and for ξ = 0 is equal 
to x cos(ωx), yielding Eq. (35) from [30]:

σV A(ω) =
1∫

0

1

π2
cos(ωx)qval(x;μ). (5)

We recognize here the real part of the Ioffe-time distribution (ITD) 
at ξ2 = 0. ITD is also a focal point of the pseudo-PDF studies [12–
2

15,17,20,21,46], hence one finds a link between the two methods. 
Note that qval(x; μ) is scale dependent, thus becomes a function of 
the renormalization scale μ.

The methodology of [23,30,31] is aimed at effectively inverting 
Eq. (5) or its NLO version to obtain qval(x; μ) from the lattice data 
for σV A(ω)|μ . In contrast, we proceed with Eq. (5) directly, using 
model PDF of the pion in the integrand and confronting the ob-
tained result to the lattice data for σV A(ω)|μ .

It is useful to introduce the standard Mellin moments of the 
valence PDF,

〈xn〉μ =
1∫

0

dx xnqval(x;μ). (6)

At LO, the dependence on the scale μ is deduced from the solu-
tion of the DGLAP equations, which becomes very simple for the 
moments,

〈xn〉μ = rγ
(0)

n /2β0〈xn〉μ0 , (7)

with the evolution ratio defined as

r = α(μ)

α(μ0)
. (8)

Here α(μ) = 4π
β0

/ln

(
μ2

�2
QCD

)
is the LO running coupling constant, 

�QCD = 226 MeV, β0 = 11
3 N f − 2

3 Nc (N f = 3), and γ (0)
n are the LO 

non-singlet anomalous dimensions,

γ
(0)

n = −2C F

(
−4Hn+1 + 2

(n + 1)(n + 2)
+ 3

)
(9)

with C F = 4/3, and Hn+1 = ∑n
k=1 1/k denoting the harmonic sum. 

When needed, the PDF can then be reconstructed from the mo-
ments by means of an inverse Mellin transform after analytic con-
tinuation to the complex n plane (see, e.g., Ref. [47] for details).

If we proceed by a power series expansion for small ω, we get

π2σAV (ω)|μ =
∞∑

n=0

(−ω2)n

(2n)! 〈x2n〉

=
∞∑

n=0

(−ω2)n

(2n)! 〈x2n〉μ0 rγ
(0)

n /2β0 . (10)

This simple formula allows one to determine σV A at a scale μ, 
provided we know it at a reference scale μ0. A typically used as-
signment of the lattice scale μ ∼ 1/a yields μ = 2 GeV for the 
lattice spacing a = 0.1 fm.

The data for σAV determined on the lattice and displayed later 
in Figs. 2 or 4 exhibit a sizable dependence on the Ioffe time ω, but 
simultaneously a very weak dependence on the ξ2 variable. Actu-
ally, the coefficient of the ξ2 term extracted from a fit where finite 
volume and pion mass effects are also discerned is compatible 
with zero. This result is to be expected, as these terms correspond 
to higher twist contributions which within the operator product 
expansion are connected to the gluon and quark condensates, with 
non-vanishing leading contributions starting at O(ξ4).

3. Chiral quark model results

In our analysis we use the pion PDF at the (yet to be deter-
mined) quark model scale μ0, obtained from the Nambu–Jona-
Lasinio (NJL) model [36–38] or the Spectral Quark Model [48,49], 
which (in the strict chiral limit of mπ = 0) yield

qval(x;μ0) = 1 for 0 ≤ x ≤ 1, (11)
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such that in the chiral limit we find the simple result

σV A(ω,0,0)|μ0 = 1

π2

sinω

ω
. (12)

Chiral corrections in NJL, which are small for the physical value of 
mπ and moderate for the values used on the lattice, can be readily 
evaluated from the formula

qval(x;μ0) =

∫
d2k⊥

k2⊥+M2

[k2⊥+M2−m2
π x(1−x)]2

∣∣∣∣
reg∫

d2k⊥ 1
k2⊥+M2

∣∣∣∣
reg

, (13)

where M denotes the constituent quark mass due to the dynamical 
chiral symmetry breaking, and “reg” indicates the suitably chosen 
regularization, needed to dispose of the hard momenta. We use 
here the Pauli-Villars regularization as described in [50,51].

The pion PDF extracted from the experimental or lattice data 
largely differs from Eq. (11), which reflects the disparity of the 
quark model scale, μ0, and the scale corresponding to the data, 
μ ∼ Q . To provide a sensible comparison, as already advocated in 
Ref. [36,37], one crucially needs to evolve the model results from 
the scale μ0 up to the scale μ. For the problems of interest, fo-
cusing on moderate values of x, one can use the DGLAP scheme, 
which is supposed to work best in the intermediate x region, with 
x neither too close to x → 0 nor x → 1 (we return to this point in 
the next section).

In chiral quark models, the valence quarks carry by definition 
(as the only degrees of freedom) 100% of the pion’s momentum, 
namely

〈x〉μ0 = 1. (14)

This condition can be used to determine numerically the quark 
model scale μ0, if we know the momentum fraction carried by the 
valence quarks at some other scale μ, since with the DGLAP evo-

lution (cf. Eq. (7)) 〈x〉μ = rγ
(0)
1 /2β0〈x〉μ0 . Due to the positivity of 

γ
(0)

1 = 64
9 , the evolution ratio r and 〈x〉μ also decreases with μ. 

This simply reflects the fact that some momentum is carried by 
the radiatively generated gluons. To fix μ0, we adopt the method 
used in our previous works, taking that at μ = 2 GeV the valence 
quarks carry 47 ± 2% of the total momentum of the pion, as fol-
lows from [52] (see also [53,54]). At LO the scale turns out to be 
μ0 = 313+20

−10 MeV, with the corresponding coupling α(μ0)/2π =
0.34(4), and the evolution ratio r = 0.15(2).

The result of the evolution for the PDF from the initial con-
dition at μ0 provided with Eq. (13) is shown in Fig. 1(a), where 
we compare the model valence PDF of the pion to the experimen-
tal extraction at LO from the E615 Fermilab data [55] at the scale 
μ = 4 GeV. We note that the experimental extraction of the pion 
PDF was recently carried out by [56], as well as within the xFit-
ter framework [57], showing consistency at LO. As we see from 
Fig. 1(a), the agreement of the model and the data is quite re-
markable. We note that the results of [58] obtained in light-front 
holographic QCD model are not far from ours. The NLO effects are 
below the 10% correction level [37].

The above discussion obviously suggests proceeding in a simi-
lar fashion for σV A , namely, to implement the QCD evolution on 
the quark model result and compare to the lattice results. This im-
plies extrapolation to the infinite volume limit on the lattice, but 
at a finite lattice spacing, embodying the operating resolution at 
the corresponding wavelength a ∼ 1/Q . In addition, one needs to 
adjust the pion mass in the model to the lattice values. The effect 
of such a change of mπ for qval is shown in Fig. 1(b) and, as we 
can see, is visible but moderate for the probed values of mπ .
3

Fig. 1. (a) Valence quark distribution in the NJL model evolved to the scale of 4 GeV 
corresponding to the E615 Fermilab data (points). (b) LO valence quark distribution 
in the NJL model (multiplied with x) evolved to the scale of 2 GeV corresponding 
to the lattice simulations, at various values of the pion mass, including those used 
in [31].

In Fig. 2 we plot σV A evolved to a high scale for the cases of 
different mπ . This is effectively performed by fitting the evolution 
ratio, Eq. (8), to the lattice results. As we can see, the quality of the 
fits is satisfactory. The corresponding values of r are displayed on 
Fig. 3. They are consistent within the error bars, with the lattice 
data “413L” [31] acceptably away by 2 standard deviations from 
the mean.

Our weighted fit for the different pion masses allows us to de-
termine the evolution ratio to be r = 0.15(1). Using the central 
value of μ0 = 313 MeV, determined in previous works, we infer 
the lattice scale μ = 2.0(3) GeV, which is the same as the value 
used in [31], and compatible with the lattice spacing a ∼ 1/μ ∼
0.1 fm. We note that using the NLO perturbative kernel given in 
Eq. (10) of [31], one finds that for the probed values of the sepa-
ration ξ this scale is high enough such that the NLO corrections to 
σV A are small.

4. Generic analysis

4.1. Moments content of lattice cross sections

An overall perspective on our study can be obtained from Fig. 4, 
where we present a combined fit of σV A(ω, ξ2) to all lattice data 
with NJL model results evolved to the lattice scale of 2 GeV (band). 
We also show the results of a schematic model with just two mo-
ments 〈x2〉 and 〈x4〉 treated as free parameters:

σV A(ω) = 1 − 〈x2〉ω2/2! + 〈x4〉ω4/4! . (15)

As we can see, the agreement of the schematic fit with the model 
is remarkable. It also shows that for the plotted range in the Ioffe 
time, 0 ≤ ω ≤ 5, the corrections to the schematic model from in-
cluding higher moments, 〈x6〉, 〈x8〉 etc., are negligible. One may 
note from Table 1 that taking more moments as free parameters 
in the schematic fit generates an overfitting effect, with higher 



W. Broniowski and E. Ruiz Arriola Physics Letters B 810 (2020) 135803

Fig. 2. The good lattice cross section σV A(ω, ξ2) from the NJL model evolved to the scale of the lattice data (bands), compared to four sets of the lattice data of [31] (points), 
plotted as functions of the Ioffe time ω = p · ξ . The width of the band reflects the uncertainty in the lattice data entering the fit of the evolution ratio r , which is the only 
adjustable parameter of the model.
Fig. 3. Evolution ratio obtained from fitting the NJL model results to four sets of the 
lattice data [31] (points) shown in Fig. 2. The band indicates the weighted average 
with uncertainty reflecting the errors of the data.

Fig. 4. Simultaneous fit of σV A(ω, ξ2) to all lattice data with NJL model results 
evolved to the lattice scale of 2 GeV (band), and with a schematic model with two 
moments 〈x2〉 and 〈x4〉 treated as free parameters (dashed line).

moments compatible with zero, and increasing errors on 〈x2〉 and 
〈x4〉. We note that the values from the schematic model (15) are 
4

Table 1
Lowest moment of the valence parton distribution of the pion at the scale 2 GeV, 
obtained from a simultaneous fit to all lattice samples from [31]. In the NJL model 
the only free parameter is the evolution ratio, which determines all 〈xn〉 moments. 
In models labeled “m mom”, the m lowest even moments (starting from 2) are 
treated as independent parameters, while the higher ones are set to zero.

Model 〈x2〉 〈x4〉 〈x6〉 〈x8〉
NJL 0.106(5) 0.036(2) 0.017(1) 0.010(1)
2 mom. 0.099(7) 0.022(5) – –
3 mom. 0.101(12) 0.026(25) 0.005(27) –
4 mom. 0.102(19) 0.030(77) 0.016(215) 0.018(318)

compatible within uncertainties with the results of [17] obtained 
from the Ioffe-time pseudo-PDFs.

Remarkably, the good lattice cross section method generates a 
stable result for the 〈x2〉 moment, with an error of the order of 
a few percent, and also a quite reliable estimate for the 〈x4〉 mo-
ment, with accuracy of 25%, provided higher moments are ignored 
to avoid the overfitting effect.

4.2. Aspects of the x → 1 behavior

Recent lattice calculations [59–62] have been undertaken with 
the hope to settle the long-lasting discussion of the x → 1 behav-
ior of the PDF of the pion. The advocated ∼ (1 − x)2 behavior in 
the x → 1 limit, found long ago from the QCD counting rules [63], 
is a feature not manifest in older [55] or newest [57] extractions, 
and a complete reanalysis (see, e.g., [64]) and/or new experiments 
remain yet to be done. There are, in particular, renormalization 
issues regarding elimination of scheme ambiguities [65] which im-
ply the replacement αs(Q 2) → αS(Q 2(1 − x)), innocuous for x � 1
but speeding up the evolution and ultimately hitting the infrared 
singularity at x → 1. Another more recent scenario concerns the 
inclusion of the soft-gluon resummation effects [66], which should 
provide the expected counting rules behavior. The inclusion of 
these effects in order to extract the PDFs from the Drell-Yan data 
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should also provide a visible (1 −x)2 behavior in the data (see, e.g., 
Ref. [67] for a discussion and quantitative comparison).

To shed some light on this point from the lattice perspective, 
we have tried several x → 1 power behaviors fixing the two low-
est moments analyzed above to their fitted values and ranging 
between a good description and a blatant disagreement with the 
E615 Fermilab experiment [55]. We find that in either case σAV
shows no sensitivity for ω ≤ 5, in accord with our schematic model 
analysis. Thus, the insight from the σV A lattice cross section into 
the x → 1 region would require going to much higher ω values. 
Similar remarks regarding the accessibility of the x → 1 limit ap-
ply also to other lattice determinations of the pion PDF.

5. Conclusions

In this paper we have considered a chiral quark model eval-
uation of the good cross section in the Euclidean space in the 
vector - axial vector channel for the pion. Our results, after the 
necessary QCD evolution (carried out at LO, with next-to leading 
order analysis left for future work) from the quark model scale 
to a finer lattice resolution scale a, display a comfortable agree-
ment with the lattice data in the Ioffe-time region ω ≤ 5, probed 
by the lattice simulations at different pion masses [31]. The val-
ues of the evolution ratio parameter obtained from our fits are 
perfectly compatible with our earlier estimations based on other 
observables, showing the universality of the quark model + QCD evo-
lution scheme. Our results also exhibit a weak dependence on the 
value of the pion mass, in accordance to the lattice studies.

We have also stressed that while the agreement in this partic-
ular model case is predetermined by its successful reproduction of 
the relevant lowest moments of the pion’s PDF, the current lat-
tice cross section data would need to be extended well beyond the 
ω ∼ 5 region to access the x → 1 kinematics, which poses a chal-
lenge.

An interesting future outlook, both on the lattice and theoreti-
cal model sides, would involve analysis of other probing operators 
in lattice cross sections, such as the energy-momentum tensor, 
which would provide complementary information on the odd mo-
ments of the PDF of the pion.
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