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ABSTRACT Mobile communications are growing and the number of users is constantly increasing at an 
accelerated rate, as well as the demand for the services they request. In the last few years, many efforts have 
focused on the design and deployment of the new fifth generation (5G) cellular networks. However, novel 
highly demanding applications, which are already emerging, need to go beyond 5G in order to meet the 
requirements in terms of network performance. But, at the same time, as the Earth does not allow us to 
increase the carbon footprint anymore, the energy consumption of the communication networks has to be 
critically taken into consideration. A multi-objective approach for addressing all these issues is therefore 
required. This work develops a cellular network framework that allows the evaluation of different system 
parameters over dynamic traffic patterns, as well as optimizing the different conflicting objectives 
simultaneously. The novelty relies on that the optimization process integrates key performance indicators 
from different layers of the network, namely the radio and the network layers, aiming at reaching solutions 
that account for the power consumption of the base stations, the total capacity provided to mobile users and 
also the signaling cost generated by handovers. Moreover, new metrics are needed to evaluate different 
solutions. Starting from the well-known energy efficiency merit factor (bits/Joule), three new merit factors 
are proposed to classify the network performance since they take into account several network parameters 
at the same time. These indicators show us the ideal working point that can be used to plan the point of 
operation of the network. These operation points are a medium-high power and capacity load and a low 
signaling load.  

INDEX TERMS 5G networks, optimization, heterogeneous networks, energy efficiency 

I. INTRODUCTION 
In 2019, the monthly mobile traffic reached 38 Exabytes, 
while this figure is estimated to be 160 Exabytes by 2025, 
at a 30 percent compound annual growth rate. On the other 
hand, the number of devices connected to the Internet will 
triple the world population by 2022, when there will be 3.6 
devices per user compared to 2.4 devices per user in 2017 
[1], [2]. This growth is due to the emergence of new 
applications on the Internet, such online video games, 
vehicular communications, tactile Internet, remote surgery, 
virtual reality (VR) and augmented reality (AR), which do 
not only require large bandwidths, but also challenging 
requirements such as a massive number of connections and 
ultra-low and reliable latency [3]-[5]. In order to meet these 

requirements, both public and private initiatives started to 
develop the new generation of mobile networks, the fifth or 
5G, almost a decade ago. The design principles of this new 
technology were aimed at reaching 100x data rates, end-to-
end delay below 1ms, 99.999% reliability, etc. Among 
them, given the current carbon footprint of the ICT industry 
[6], [7], these challenging operating requirements have to 
be achieved by saving 90% of the energy consumption. 
Three main target scenarios have been standardized in the 
Release 15 of the 3GPP consortium [8], namely, enhanced 
mobile broadband (eMBB), for providing the users with 
higher data rates than LTE, massive machine-type 
communications (mMTCs), for enabling a massive number 
of device connections, and, finally, ultra-reliable low-latency 
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communications (uRLLC), aimed at low latency 
transmissions for small amounts of data with ultra-high 
reliability. Despite these predefined 5G scenarios, 
applications such as the tactile Internet does have 
requirements that go beyond 5G, as they need both extreme 
high data rates and ultra-reliable low latency. Therefore, the 
next generation networks (6G) will necessarily encompass 
new scenarios that combine the features of eMBB and 
uRLLC in order to provide services to the newly envisioned 
applications [9], [10].  

Our working hypothesis is that a multi-layer optimization 
will be required to satisfy these demands, as it is proposed 
here. Indeed, this work targets these latter scenarios using a 
novel approach that jointly optimizes not only several 
performance criteria from both the radio and the network 
layer, but also considering energy efficiency issues [11]. 
From the radio interface, we have considered the capacity the 
network provides to the users, and the power consumption of 
the base stations (BSs).  And, from the network layer, the 
number of bits used for signaling when a handover occurs 
due to the user mobility, as it is strongly correlated to the 
latency [12] required for uRLLC scenarios. To the best of our 
knowledge, these optimization objectives, which accounts for 
two complementary planes of the network, are yet rarely 
considered together. An accurate modeling of a 
heterogeneous network has been used, taking into 
consideration 5G enabling technologies [13] such as 
mmWave [14], massive MIMO [15], [16] and network 
densification [17].  

The optimization of different layers of the network and 
energy at the same time is seldom reported in the literature. 
Several previous works related to the physical layer are, for 
example, the work of Zhang et al. [18]. They have proposed 
a joint power allocation, mode selection, and channel 
assignment scheme for optimizing energy efficiency in D2D 
(Device-to-Device) communications. Liu et al. [19] have 
performed two-dimensional optimization on traffic data rate 
and green energy generation on HetNets. Fletscher et al. [20], 
[21] have proposed several methods to optimize user 
allocation and energy efficiency simultaneously. 
B. Rengarajan et al. [22] and M. Di Renzo et al. [23] propose 
novelty models for the optimization of energy efficiency at 
the physical layer. On the other hand, works related to the 
network layer are, for example, the work of  Keshavarzian et 
al. [24]. They have introduced several algorithms to 
minimize the energy consumption taking into account the 
mobility-aware capability. P. Muñoz et al. [25] optimize load 
balancing and handover costs in the network layer. Also, 
X. Xu et al. [26] address the handover problem in ultra-dense 
heterogeneous networks, focusing on a single-layer 
optimization where they can decrease the delay in the 
network. Since the problem is addressed from a single-layer 
perspective, the authors obtain slightly lower data rates than 
their reference model. 

 

In this paper, several multi-objective optimization 
problems have been formulated, tackling separately all 
pairwise combination of the capacity, signaling and power 
consumption objectives, plus a three-objective approach that 
considers them all simultaneously. The problems have been 
addressed by using Pareto-based multi-objective 
metaheuristics that compute a set of trade-off solutions to the 
problem, thus providing the decision maker (the network 
designer) with compromise network configurations. 

The structure of this paper is as follows. Section II 
presents the configuration of the system, detailing the 
different models used to compute the parameters and 
association strategies for assigning users to the base 
stations. In Section III, the optimization and network 
configuration are shown. Section IV analyzes the results 
obtained in the optimization. Finally, Section V provides 
the reader with the main conclusions drawn in this work 
and the future lines that remain open for future research. 
 
II. SYSTEM MODEL 
This section first describes the modeling of the target 
scenario, including both the base stations and the users of the 
network. Then, it details the formulation of the problem 
objectives, such as, capacity, power consumption, and 
signaling overhead. An availability indicator is also used to 
measure the demand satisfaction of the users in a given 
amount of time. Finally, the UE-BS association policy is 
included. The inputs and outputs of all models are combined 
to generate a comprehensive model based on the physical and 
network layers. This comprehensive model allows the 
realization of a multilayer optimization in Sections III and 
IV. 

A. CONFIGURATION 
The scenario comprises a working area of dimensions 
500×500 mଶ, where the BSs are distributed according to a 
uniform random distribution that is independent on each of 
the axes. These BSs are characterized into three possible 
cell types according to their size and operating frequency 
(macro, micro or femto). Their specifications are shown in 
Table I. UEs are also randomly distributed around the 
terrain, but they move using a Random Waypoint Model 
(RWP), where their location, velocity and acceleration 
change over time. A graphical example of cell types and 
UEs movements in a scenario is illustrated in Fig. 1. 
According to the MIMO framework used, UEs may be 
equipped with two, three and four antennas, modelling low, 
medium and high demanding users, respectively. 

As a traffic model between the UE and the BS, we 
assume that the session arrival follows a Poisson process 
with mean rate λ = 0.2. We also assume that the duration of 
a typical session is exponentially distributed with mean 
μ = 10s. In this scenario, BSs are connected to an access 
network where the routers offer IPv6 connectivity between 
mobile users and the rest of the deployed network. 
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TABLE I 
SPECIFICATIONS OF THE BASE STATIONS 

 Macrocell Microcell Femtocell 

Frequency (GHz) 2 5 28 
Bandwidth (MHz) 10 25 140 
Max Power (dBm) 46 25 20 

Height (m) 25 10 6 
BSs antennas 5 20 100 

 

B. CAPACITY MODEL 
First of all, the calculation of the power received (𝑃ோ௑) by 
each user at each time t must be performed. 
 

𝑃ோ௑[dBm] =  𝑃்௑[𝑑𝐵𝑚] + 𝐺[𝑑𝐵] + 𝐿௉஺்ு ௅ைௌௌ[𝑑𝐵]  (1) 
 
where 𝑃ோ௑ and 𝑃்௑ are the received and transmitted power, 
respectively, 𝐺 is the sum of the gains of the transmitting and 
receiving antennas, and 𝐿௉஺்ு ௅ைௌௌ are the signal losses due 
to the transmission path that depend on the region where the 
signal is transmitted, as shown in Figure 1. 𝐿௉஺்ு ௅ைௌௌ is 
computed as: 
 
𝐿௉஺்ு ௅ைௌௌ[𝑑𝐵] =  𝐿ௌ௉஺஼ா[𝑑𝐵] +  𝐿ௌு஺஽ைௐ ி஺஽ூேீ[𝑑𝐵]  (2) 
 
where 𝐿ௌ௉஺஼ா  are the signal losses due to the distance 
between UE and BS, decaying following an attenuation 
exponent n. 𝐿ௌு஺஽ைௐ ி஺஽ூேீ  is the variation in 𝐿௉஺்ு ௅ைௌௌ 
due to multiple variables such as multipath propagation, the 
distribution of which follows a log-normal distribution. This 
distribution is given by an expected value μ and standard 
deviation σ that depend on the transmission models depicted 
below. Mathematically, 𝐿ௌ௉஺஼ா  can be seen as 
 

𝐿ௌ௉஺஼ா[𝑑𝐵] = 20𝑙𝑜𝑔ଵ଴ ቀ
ସగௗబ

ఒ
ቁ + 𝑛10𝑙𝑜𝑔ଵ଴ ቀ

ௗ

ௗబ
ቁ       (3) 

 
where the first term computes the signal losses in free space 
until reference distance 𝑑଴ for a specific wavelength 𝜆, and 
the second term considers how the signal decays at a distance 
𝑑 depending on the region with an attenuation exponent 𝑛. 

Three transmission models are used in the experiment, 
UMi (Urban Microcells), UMa (Urban Macrocells) and 
RMa (Rural Macrocells) [27]-[29]. Fig. 1 shows how the 
terrain is divided according to different transmission 
models randomly. Each transmission model has also two 
possible cases, LOS (Line-Of-Sight) and NLOS (Non-Line-
Of-Sight). They are assigned randomly to each region, 
making NLOS to appear more frequently in urban models, 
whereas LOS does in rural scenarios. The combination of 
models and cases results in six scenarios characterized by 
the attenuation exponent n, the expected value μ and the 
standard deviation σ. 

 
 
 

FIGURE 1. UEs and BSs in different propagation scenarios. Purple “UMA 
LOS”, Blue “UMA NLOS” Green “UMi LOS”, Red “UMi NLOS” Brown 
“RMa LOS” and Yellow “RMa NLOS”. 

 
Finally, the signal to interference plus noise ratio (SINR) 

has been calculated as follows. 
 

𝑆𝐼𝑁𝑅௞ =
௉ೝೣ,ೕ,ೖ(௠ௐ)

(∑ ௉ೝೣ,೙,ೖ(௠ௐ))ା ௉ಿబ(௠ௐ) ಾ
೙సభ
೙ಯೕ

              (4) 

 
where 𝑃௥௫,௝,௞ is the power received by user k from 𝐵𝑆௝  

and ∑ 𝑃௥௫,௡,௞ ெ
௡ୀଵ
௡ஷ௝

 is the total power received by user k from 

all the base stations M that work at the same frequency 
excepting 𝐵𝑆௝ , i.e., the interference. Finally,  𝑃ேబ

 is the 
noise power given by: 

 
𝑃ேబ

[𝑑𝐵𝑚] = −174 + 10 logଵ଴(𝐵𝑊௝(𝑀𝐻𝑧))       (5) 

 
where 𝐵𝑊௝ is the bandwidth available by the 𝐵𝑆௝  in MHz. 

Once the SINR is obtained, the capacity of the channel 
can be calculated. The main aim when using MIMO is to 
improve the spectral efficiency by increasing the number of 
transmitters and receivers, resulting in better transmission 
conditions compared to a SISO system. This MIMO model 
is commonly used for studies of different nature, such as 
channel estimation [30], radiation pattern studies [31], or 
MIMO channel efficiency evaluations [32]. The capacity is 
computed for each time instant t due to the UEs movement. 
Eq. (6) is used for MIMO systems [30]-[33]. 
 

𝐶௞,௝,௧ ቀ
𝑏𝑖𝑡𝑠

𝑠
ቁ =  

஻ௐೕ,೟

ேೕ,೟
logଶ ቚ 𝐼௝ +  

ௌூேோೖ,೟

ே௢.ோ௫ೖ
∗ 𝐻 ∗ 𝐻ு  ቚ       (6) 

 
where 𝐵𝑊௝,௧/𝑁௝,௧ is the total bandwidth available to the 
user, and the logଶ calculates the spectral efficiency in 
bits/s/Hz, where 𝐼௝ is an identity matrix whose dimension is 
the number of transmitter antennas by 𝐵𝑆௝   and H is the 
channel matrix, which is generated randomly by using a 
complex normal distribution. The channel matrix 
dimensions are given by the number of antennas from users 
(rows) and base stations (columns). 
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C. POWER CONSUMPTION MODEL 
One of the objectives of the optimization problem is the 
reduction of energy cost. Therefore, energy efficiency (EE) 
is an important parameter to define [34]. This indicator 
becomes fundamental in the deployment of new mobile 
generations due to the requirements of 90% reduction of 
power consumption. Nowadays, energy efficiency is a 
parameter to be taken into account in any new deployment 
[35], [36]. We have considered an EE indicator that shows 
the performance in bits per Joule, that is, the number of bits 
of information that can be reliably transmitted through the 
communication channel per energy unit. It can be defined as: 
 

𝐸𝐸 ቀ
௕௜௧௦

௃௢௨௟௘
ቁ =

஽௔௧௔ ோ௔௧௘ (௕௜௧௦/௦)

௉௢௪௘௥ ஼௢௡௦௨௠௣௧௜௢௡ (ௐ)
              (7) 

 
One of the main motivations for including EE issue is the 

fact that the theoretical limits of both the transmission data 
rates and the minimum latency are known: the Shannon 
limit and the speed of light, respectively. However, there is 
no known limit of the maximum energy efficiency that can 
be obtained in a network. In addition, Section IV will show 
how energy efficiency is a major distinguishing criterion to 
characterize the results. 

Regarding the power consumption model, it takes into 
account both the consumption between UE and BS and the 
consumption between BS and the router in the access 
network. The power consumption of a BS, denoted as 𝑃௕௖, 
can be expressed in the Aggregated Power Consumption 
Model [37] as: 
 

𝑃௕௖ =  𝛼𝑃 +  𝛽 +  𝛿𝑆 +  𝜌                         (8) 
 
where P represents the transmitted or radiated power of each 
BS and S is the data rate. The coefficient 𝛼 denotes the power 
transmission efficiency due to an RF amplifier and supply 
losses, β represents the power dissipated due to signal 
processing, and δ is a constant denoting dynamic power 
consumption per data unit. These terms differ for different 
BS types defining a differential consumption model [38]. 

Detailing this model further, it can be seen that the power 
consumption can be therefore divided into three types. On 
the one hand, 𝛼𝑃, the power consumption proportional to the 
transmission that depends directly on the power transmitted 
by the BS. On the other hand, 𝛿𝑆, the power consumption 
proportional to the capacity that depends exclusively on the 
demand required by the user since it is directly linked to the 
data traffic. Finally, 𝛽 and 𝜌 represent fixed consumption 
terms. 

Taking all this into consideration, the total power 
consumption in the system can be calculated as follows: 
 

𝑃்௢௧௔௟ = ∑ 𝑀௜𝑃௕௖ + 𝑃஻௔௖௞௛௔௨௟  ஻ௌ
௜ୀଵ                 (9) 

 
 

where the first term is the sum of the powers of all base 
stations multiplied by the number of transmitting antennas 
corresponding to each base station, and 𝑃஻௔௖௞௛௔௨௟  
represents the energy consumed by the backhaul. This latter 
has to be included to sum up the power consumption 
required to carry the signaling information from one region 
to another through the access network. 

D. SIGNALING MODEL 
To achieve an efficient service provisioning and a better 
usage of the network resources, 5G networks require to 
address issues not only in the radio and data link 
environment, but also in the layer 3 management protocols. 
Mobility management mechanisms allow reachability and 
maintain ongoing communication during roaming of mobile 
users in different networks. One of the key aspects in the 
performance of these protocols is related to the signaling, 
especially in densified networks, where high-speed mobile 
nodes experience frequent handovers with a high signaling 
load due to the short cell radius [39], [40].  

Thus, for optimal system design, it is necessary to 
accurately model the impact of the mobility in other 
network parameters. In this work, we measure the impact of 
the mobility management on radio and link metrics. In 
current centralized solutions, the mobility management 
relies on an IP mobility anchor node, which is the network 
agent that tracks the network connection point of a user as 
the user moves. Whenever the user changes their point of 
attachment to the network, the user registers with this agent 
through signaling messages informing of its current 
location. As a result of this signaling exchange, the Mobile 
Node (MN) acquires a new IP address in this foreign 
network.  

In mobility management protocols [41], [42], this anchor 
node is the centralized part of the system since it is on the 
critical path of both signaling and data for mobile users. 
Regarding the signaling, a mobility management protocol 
requires that an MN sends a location update to its mobility 
anchor whenever it moves from one subnet to another. This 
location registration is required even though the MN does 
not communicate with others while moving. The signaling 
cost associated with location updates may become very 
significant as the number of MNs increases.  

Moreover, this cost depends on the size in bytes of the 
signaling messages (su) and the number of hops between the 
MN and the mobility anchor (hMN-anchor) in every handover 
process during the time interval that the MN 
communication remains active. Thus, we refer to the 
aggregate signaling cost of registration update for a session 
as Cs and it is expressed as: 

 
𝐶௦ =  𝑠௨ℎெேି௔௡௖௛௢௥𝑁௛                       (10) 

where Nh is the number of handovers that cause a layer 3 
handover. 
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 E. AVAILABILITY MODEL 
Availability is defined as the probability of a user demand 
to be fulfilled at a given time. This parameter turns out to 
be of vital importance because in many occasions the total 
capacity provided is not sufficient to meet the user 
requirements. This fact will depend on whether his demand 
is satisfied by the capacity, so availability in the model is 
computed as 
 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦௞ = 𝑃{𝐶௞ ≥ 𝐷௞}                     (11) 
 
where 𝐶௞ is the capacity for the user k and 𝐷௞ are the 
demands from the user k. Total availability in the system is 
computed as an average of every user present in the 
scenario. 
 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦்௢௧௔௟ =  
∑ ஺௩௔௜௟௔௕௜௟௜௧௬ೖ ೖ

೔సభ

ே
           (12) 

F. BS-UE ASSIGNMENT 
Two policies for pairing UEs and BSs have been devised, 
being they two aimed at maximizing SINR. Other criteria 
could have been used, such as minimizing the distance or 
maximizing the power received between UE and BS. 
However, the maximization of the SINR is the one usually 
applied in actual network deployments. The two strategies 
are: 
 Planning 1: the UE is paired with the BS that provides 

the highest SINR out of all those available in the 
scenario, regardless its type. 

 Planning 2: the aim is to avoid continuous handovers 
between BSs. As so, it pairs the UE with the BS that 
provides the highest SINR among all those available in 
the scenario, but only when the change leads to an 
improvement in the SINR above a certain threshold. 

III. MULTILAYER NETWORK OPTIMIZATION  

A. NETWORK CONFIGURATIONS  
Two different configurations have been devised. A light 
setting with 20 UEs and 5 BSs, and a heavy one with 
50UEs and 20BSs, respectively. From now on, the first 
configuration will be mentioned as light configuration, and 
the second one as heavy configuration. These 
configurations distribute the propagation models randomly 
as shown in Fig. 1. Moreover, the type of UEs and BSs are 
also uniformly distributed. 

B. OPTIMIZATION PROBLEM  
This section clearly states the optimization problem 
addressed in this work. First, the decision variables that 
define the problem are the transmitted powers of the BSs, 
which fully impacts all the optimization objectives defined 
in the previous section. Indeed, it clearly determines the 
power consumption of the network (eq. (9)). As it also 
directly changes the SINR, because it modifies the power 

received by the users (eq. (4)) and, hence, the data rates 
provided by the network (eq. (6)) and the cell limits, 
inducing a different number of handovers, thus modifying 
the signaling cost. Moreover, the availability changes if the 
data rates changes. As it can be seen, updating the 
transmission power of just one single base station may 
provoke changes in the values of all the objectives. 

Given the problem difficulty, with a severe epistasis 
among the decision variables, and the potential large scale of 
the instances of the ultradense deployments, we have relied 
on metaheuristics [43] as optimization tools. More 
concretely, evolutionary multi-objective algorithms 
(MOEAs) have been used [44] because, on the one hand, 
they can approximate the Pareto front of a problem in one 
single run and, on the other hand, as randomized black-box 
optimizers, they can address optimization problems with 
nonlinear, non-differentiable or noisy objective functions. 
The objectives to be optimized are those shown in Section 
II, namely, capacity, power consumption, signaling cost and 
availability.  

In this way, the optimization problem is mathematically 
formulated as follows: Let Β be the set of the deployed 
Base Stations (BTSs). A solution to the presented problem 
is then a real-valued vector, 𝑠 ∈ (0,1]|஻|, where 𝑠௜ indicates 
the transmitted power of BTS 𝑖. Thus, the four objectives 
functions are: 

 
𝑓ଵ(𝑠) = min 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑠) 
𝑓ଶ(𝑠) = max  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑠) 
𝑓ଷ(𝑠) = min 𝑆𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑠) 
𝑓ସ(𝑠) = max 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑠) 
 
which are grouped and combined resulting in several multi-
objective optimization problems. 

C. ALGORITHMS 
A brief technical description of the each of the algorithms 
used to address the problem is provided in the following. 
Note that in order to measure the quality of the 
approximated fronts given by the algorithms, the 
hypervolume indicator (HV) was used, which is recognized 
as one of the most suitable Pareto-compliant metrics in the 
multi-objective community [45]. Higher values of this 
indicator are better. 
 
 NSGAII: The Non-Dominated Sorting Genetic 

Algorithm II [46] is a genetic algorithm based on 
generating a new population from the original one by 
applying the typical genetic operators (selection, 
crossover, and mutation); then, the individuals in the 
new and old population are sorted according to their 
rank, and the best solutions are chosen to create a new 
population.  
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 SMPSO: SMPSO [47] is a multi-objective particle 
swarm optimization algorithm in which global best 
particles are generally the non-dominated solutions 
found during the particle movement and they can be 
exploited to guide the particle swarm to approach the 
entire Pareto Front.  
 

All the two algorithms use Polynomial Mutation as 
mutation operator, with a probability of 0.01. In the case of 
NSGAII, SBXCrossover with crossover rate of 0.9 is also 
used. 

IV. RESULTS  

In order to provide the results with confidence, 30 
independent runs of the MOEAs have been carried out. 
Also, thorough statistical procedures have been used [48] 
with a confidence level of 95% (p-value < 0.05). The         
p-value obtained for the multcompare test is 1.5229e-06. 
The results of this procedure have shown that all the 
differences are statistically significant, thus pointing out 
that the HV of SMPSO is statistically greater (better) than 
that of NSGA-II and the MatLab algorithms. The results 
have been analyzed in terms of the empirical attainment 
functions (EAF) [49] and the best aggregated front among 
all the non-dominated solutions found in all the 30 runs. 
The EAD used here is the 50%-attainment surface in the 
multi-objective domain that is analogous to the median 
value in the single-objective one. 

A. JOINT OPTIMIZATION OF CAPACITY AND POWER 
CONSUMPTION  
The first experiment carried out considers two objectives: 
the capacity per user and the power consumption. The 
results show the average over time of the capacity for every 
UE. Similarly, they show the power consumption for every 
BS. Both light and heavy configurations have been 
considered. The assignment UE-BS selected is planning 1.  

Fig. 2 shows the average capacity that a user can reach 
for the lowest power consumption that can provide that 
capacity. It can be concluded that heavier configurations 
need to use larger amounts of power to fulfill the user data 
rates demanded by each user. This behavior can be 
explained from two points of view. On the one hand, the 
number of UEs is larger in the heavy configuration. 
Therefore, the number of BSs has to be larger to obtain the 
same capacity per user, and the transmitted power will be 
larger for a larger number of BS. On the other hand, the 
more UEs and BSs, the more interference is generated in 
the system for the same scenario, which implies difficulties 
to provide the same service. 

The benefits of having such an approximated Pareto front 
is that the decision maker can easily choose whether s/he 
desires to lose the capacity to save power, or conversely to 
provide the maximum possible capacity at the expense of 
power savings. One of the ways to find the balance between 

these two parameters can be obtained representing the 
relationship among themselves, the energy efficiency, as it 
can be observed in Fig. 3. This illustrates EE in the capacity 
range. The horizontal axis is the same as in Fig. 2, so that the 
vertical axis is scaled by normalizing it with respect to the 
horizontal axis and thus obtaining the EE. Therefore, the 
maximum point in terms of EE for both light and heavy 
strategies could be considered as an optimal operation point. 

Fig. 3 shows how the most efficient points are those with 
an average capacity of around 3 Gbps for the light 
configuration and 4 Gbps for the heavy configuration. In 
addition, it can be clearly seen how the light configurations 
work better than the heavy configurations. Finally, it shows 
the differences in efficiency are greater in the light 
configurations. 

 

 
FIGURE 2.  Pareto front of the average capacity per user against power 
consumption. Results obtained for planning 1 in both heavy and light 
configurations. 
 

 
FIGURE 3.  Energy efficiency of the Pareto front of the average capacity 
per user against power consumption. Results obtained for planning 1 in 
both heavy and light configurations. 
 

From this point on, only light configuration has been used 
(in this section and in the others as well). The solutions with 
higher energy consumption have also been limited. As it can 
be seen in Fig. 3 the energy efficiency falls drastically at 
these points and we are not interested in working on these 
points.  

Now, the planning strategy (BS-UE assignment) is 
changed to evaluate its impact. The optimization is done 
separately with 5 different threshold values (1, 3, 5, 7 and 9 
dB). The approximated Pareto fronts for the fixed threshold 
values are shown in Figs. 4 and 5. The results represent the 
best aggregated non-dominated solutions of the 30 runs of 
each threshold case in Fig. 4, whereas the attainment 
functions are depicted in Fig 5. Looking at Fig. 4, the 
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results show similar results for the different thresholds, 
except for 3 dB (orange line), which is slightly worse. 
Despite the range between 3.2 and 3.5 Gbits/s, the best 
approximated front is when the threshold is equal to 9dB. 
However, when moving to the average fronts in Fig. 5, the 
differences among thresholds diminish. In this figure, the 
blue line that represents a threshold of 1 dB is slightly 
better. This indicates that the algorithm can more easily 
find solutions with that threshold since average optimal 
results are achieved by the lowest threshold. In contrast 
with Fig. 4 where the best Pareto front results are found 
with a threshold of 9 dB. This fact indicates the need for a 
high computing workload to approach the average results 
towards the best aggregated values. 

As it is explained in Section II.C, the merit factor 
accepted by the scientific community, EE (bits/Joule), eases 
the comparison of different solutions of a given 
approximation to Pareto front. In order to obtain the 
maximum limit of the energy efficiency, the values have 
been obtained from the aggregated Pareto fronts (see Fig. 
4). Thus, Fig. 6 illustrates the energy efficiency for several 
thresholds, which are very similar among them. The only 
remarkable difference appears, again, in the central part of 
the graph, between 3 to 3.5 Gbits/s, where it seems that the 
slope decreases and the orange line (3 dB) is clearly below. 

To obtain more information about the effects of the 
threshold on the network parameters, a new experiment has 
been conducted, but now including a threshold parameter as 
a decision variable to be optimized. The results obtained in 
this case are illustrated in Figs. 7 and Fig 8. 
 

 
FIGURE 4.  Pareto front of the average capacity per user against power 
consumption for several fixed thresholds. Results obtained for planning 
2 in the light configuration. Best aggregated value. 

 

FIGURE 5. Pareto front of the average capacity per user against power 
consumption for several fixed thresholds. Results obtained for planning 
2 in the light configuration. Average. 

 
FIGURE 6.  Energy efficiency of the Pareto front of the average capacity 
per user against power consumption for several fixed thresholds. 
Results obtained for planning 2 in the light configuration. 

 

Fig. 7 depicts the approximated Pareto front when the 
threshold is taken into consideration. It also displays a color 
scale on the right part of the plot to show the threshold 
value computed by the algorithm for each of the non-
dominated solutions reached. It can be observed that all 
these solutions have always obtained thresholds above 5dB. 
A second interesting finding arises when the capacity is 
roughly 3.2 Gbits/s, where a sharp increase in the power 
consumption occurs. This is a very valuable information for 
the network designer (decision maker) as s/he can 
significantly reduce the energy consumption of the 
network, penalizing minimally its capacity. As it can be 
seen, at this point the algorithm tries different values for the 
threshold around 7 dB, without finding a better 
performance in terms of capacity without increasing power 
consumption. At a first glance, if only Fig. 7 is considered, 
it may seem reasonable to work at operating points below 
3Gbps. However, observing the energy efficiency in Fig. 8, 
the true fact is that the solutions near 4 Gbits/s do have the 
higher energy efficiency. This is due to the fact that the 
increase in energy consumption is counteracted by the rapid 
increase in capacity, so that in terms of efficiency, the 
increase in capacity is bearable at the expense of the 
additional transmission power required. It is also important 
to note from Fig. 8 that in the zone where the algorithm 
does not find suitable solutions (3 to 3.5 Gbits/s 
approximately) the trend of energy efficiency changes 
showing that best efficiencies are in accordance with Fig. 7. 

 

 

FIGURE 7.  Pareto front of the average capacity per user against power 
consumption when the threshold is optimized. Results obtained for 
planning 2 in the light configuration. 
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FIGURE 8.  Energy efficiency of the Pareto front of the average capacity 
per user against power consumption when the threshold is optimized. 
Results obtained for planning 2 in the light configuration. 

 

B. JOINT OPTIMIZATION OF SIGNALING COST AND 
CAPACITY  
The second experimentation is the joint optimization of 
data rates and signaling cost. As explained above, signaling 
cost is the accumulative layer 3 mobility signaling overhead 
for supporting mobility service for a user. This metric is 
directly proportional to the number of hops between the 
mobility anchor and the user and also to the total number of 
handovers. Therefore, the reduction of this cost implies an 
overall reduction in the handover latency. Therefore, the 
aim of this second experiment is to target a possible 6G 
scenario where ultra-low latency and very high 
transmission data rates are required.  

In a similar way to the previous section, the variables to 
be optimized are the transmitted power at the base station 
and the optimization is performed for fixed thresholds. 
Fig. 9 shows the aggregated front of the non-dominated 
solutions reached in the 30 independent runs. It can be seen 
that higher thresholds obtain the approximated fronts that 
converge the most. It has to be clarified that, a zero 
signaling cost indicates that the user remains in the same 
cell throughout the simulation, sacrificing capacity at the 
cost of decreasing latency. In order to further analyse the 
information enclosed in the approximated fronts, similar to 
the merit factor shown previously (EE), this work proposes 
for the first time, and to the best of our knowledge, a merit 
factor that provides the ratio of data sent for each signaling 
bit used (if no signalling is generated because no handover 
occurs, the metric remains undefined).  

 
FIGURE 9.  Pareto front of the average capacity per user against 
signaling cost for several fixed thresholds. Results obtained for 
planning 2 in the light configuration. Best aggregated value. 

Fig. 10 shows the results, which indicates that lower 
capacities obtain higher efficiencies in terms of signaling 
bits sent through the network per data bit. It can be 
therefore concluded that it is more interesting to work at 
operation points with low signaling. From the results, it can 
be seen that a high threshold is required to obtain the 
highest values in our merit factor (green and purple lines) 
since they obtain same merit factor for larger capacities. 

 
FIGURE 10.  Efficiency (𝒃𝒊𝒕𝒔𝒅𝒂𝒕𝒂/𝒃𝒊𝒕𝒔𝒔𝒊𝒈𝒏𝒂𝒍𝒊𝒏𝒈) of the Pareto front of the 
average capacity per user against signaling cost for several fixed 
thresholds. Results obtained for planning 2 in the light configuration. 

 
In a similar way to the previous section, an optimization 

with a threshold as the variable is done. Figs. 11 and 12 
show capacity-signaling cost optimization when the 
threshold value is a decision variable for the best 
aggregated value in order to see the maximum performance 
of the network. Similar to Fig. 9, Fig. 11 reveals that the 
higher capacity incurs the higher signaling cost. This is 
explained by the fact that to obtain maximum capacity, the 
user has to be constantly moving between those BSs that 
provide the best SINR, which incurs in signaling cost, and 
therefore, higher latencies. Moreover, paths followed by the 
signaling traffic are fixed. For that reason, it is not possible 
to find a large number of solutions in the Pareto front. 

To conclude this section, it can be said that high 
thresholds produce better results than low thresholds. It 
should also be noted that the cost of signaling vary much 
more strongly than the capacities in relative terms. Finally, 
it is more convenient to work in the area of low signaling as 
it is shown in Fig. 12. 

 

 

FIGURE 11.  Pareto front of the average capacity per user against 
signaling cost when the threshold is optimized. Results obtained for 
planning 2 in the light configuration. 
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FIGURE 12.  Efficiency (𝒃𝒊𝒕𝒔𝒅𝒂𝒕𝒂/𝒃𝒊𝒕𝒔𝒔𝒊𝒈𝒏𝒂𝒍𝒊𝒏𝒈) of the Pareto front of the 
average capacity per user against signaling cost when the threshold is 
optimized. Results obtained for planning 2 in the light configuration. 

C. JOINT OPTIMIZATION OF SIGNALING COST AND 
POWER CONSUMPTION  
In this section, a power consumption-signaling cost 
optimization is carried out following the methodology of 
the previous ones. Figs. 13 and 14 show the best aggregate 
and average value of the 30 simulations respectively. In 
these figures, it can be seen how the high threshold values 
(green and purple) work much better. Furthermore, the 
differences are much more pronounced for lower power 
consumption values. The higher power consumption incurs 
in lower signaling cost. The increase in the transmitted 
power by BSs decreases the number of handovers since the 
users tend to stay connected to the same BS. 

 
FIGURE 13.  Pareto front of the power consumption against signaling 
cost for several fixed thresholds. Results obtained for planning 2 in the 
light configuration. Best aggregated value. 

 

 
FIGURE 14.  Pareto front of the power consumption against signaling 
cost for several fixed thresholds. Results obtained for planning 2 in the 
light configuration. Average. 

 
 

In a similar way to the previous sections, a new merit 
factor that can compare the different points on the Pareto 
front is proposed. This new merit factor is the inverse of the 
watts consumed multiplied by the signaling cost. This merit 
factor will indicate the joint cost of the signaling and the 
power consumption and it will show the best operation 
points. Thus, Fig. 15 shows this new merit factor. In line 
with the previous figures, the best values of the new merit 
factor are obtained for the higher thresholds. This trend is 
shown across the entire range of power consumption. It can 
be seen how the most efficient working points are for the 
highest power consumed. 

 

 
FIGURE 15.  Efficiency (𝟏/(𝒃𝒊𝒕𝒔𝒔𝒊𝒈𝒏𝒂𝒍𝒊𝒏𝒈 · 𝑱𝒐𝒖𝒍𝒆)) of the Pareto front of the 
power consumption against signaling cost for several fixed thresholds. 
Results obtained for planning 2 in the light configuration. 

 
To follow the same structure as in the previous sections, 

optimization is carried out with the threshold as another 
decision variable in the optimization. The results are shown 
in Figs. 16 and 17. Fig. 16 presents the best Pareto front and 
Fig. 17 presents the merit factor. The results show how in 
the extremes of power consumption, the algorithm always 
chooses very high values for the threshold. This is in line 
with Figs. 13 and 14 where it can be seen that the 
differences between the different thresholds are greater at 
the extremes.  

 

 
FIGURE 16.  Pareto front of the power consumption against signaling 
cost when the threshold is optimized. Results obtained for planning 2 in 
the light configuration. 
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FIGURE 17.  Efficiency (𝟏/(𝒃𝒊𝒕𝒔𝒔𝒊𝒈𝒏𝒂𝒍𝒊𝒏𝒈 · 𝑱𝒐𝒖𝒍𝒆) of the Pareto front of the 
power consumption against signaling cost when the threshold is 
optimized. Results obtained for planning 2 in the light configuration. 

D. TRI-OBJECTIVE OPTIMIZATION PROBLEM  
From the previous sections, it can be seen how when 
comparing data rates and power consumption, the best 
operation points are for high data rates. However, when 
comparing signalling cost and data rates, the optimum 
operation points are at low data rate points. Therefore, these 
operation points are contradictory and a joint optimization 
of the three factors is necessary in order to draw 
conclusions. Therefore, a combination of the three previous 
optimizations is made, where a surface is obtained as Pareto 
front as it is a three-dimensional optimization. Fig. 18 
depicts this optimization and three trends can be 
distinguished. Signaling is minimized for low capacities 
and high power consumptions. Capacity is maximized for 
high power consumptions and high signaling. Power 
consumption is minimized for low capacities and high 
signaling.  

Finally, a merit factor that takes into account the three 
network parameters simultaneously (data rates, power 
consumption and signalling cost) is proposed. This merit 
factor is calculated by dividing the data bits by the power 
consumed and the signaling bits. It reveals how many data 
bits can be sent with a watt of power and one bit of 
signaling. Fig. 19 shows this new merit factor as a function 
of average capacity in Fig. 19(a), as a function of power in 
Fig. 19(b) and as a function of signaling in Fig. 19(c). In 
these figures, it can be seen that the highest efficiencies of 
this merit factor are given for medium-high capacity and 
power values (around 3.5 Gbits/s and 30 to 31 kW). Also, 
in accordance with the previous sections, the best 
operations points are those found for low signalization 
values. 

In addition, Fig. 20 shows a three-dimensional 
optimization that involves capacity, power consumption 
and availability. Taking into account availability is another 
key factor since the user should have coverage in order to 
satisfy his requirements. Total availability is obtained for 
high power consumptions where higher SINRs are able to 
improve the capacity, and therefore the data rate. 

 

 
FIGURE 18.  Pareto front of average capacity per user against power 
consumption against signaling cost. Results obtained for planning 1 in 
the light configuration. 
 

 

 
FIGURE 19.  Merit factor (𝒃𝒊𝒕𝒔𝒅𝒂𝒕𝒂/(𝑾 · 𝒃𝒊𝒕𝒔𝒔𝒊𝒈𝒏𝒂𝒍𝒊𝒏𝒈)) as a function of: 
(a) data rate, (b) power consumption and, (c) signaling cost. 

  
FIGURE 20.  Pareto front of average capacity per user against power 
consumption against availability. Results obtained for planning 1 in the 
light configuration. 

E. NSGAII AND SMPSO TRI-OBJECTIVE OPTIMIZATION 
PROBLEM  
The previous section shows the study of the objectives with 
the default algorithm used by MatLab. Going further as 
explained in Section III, this study is performed with two 
additional algorithms, NSGAII and SMPSO. These allow us 
to go deeper into the tri-objective optimization case and 
extend results depending on the algorithm used. Ten 
iterations have been performed for each algorithm. The 
figures shown throughout this section show a representative 
description of the set of all the iterations. 

Following the idea proposed in Fig. 18, a representation 
of the three-dimensional Pareto front is drawn in Fig. 21 for 
each of the three algorithms applied. On the one hand, the 
front of NSGAII differs slightly from the original MatLab 
front. On the other hand, the front proposed by SMPSO is 
quite different from the two previous ones. 
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In order to study these results further, the objectives are 

divided into three two-dimensional planes presented in 
Fig. 22. The first column, which draws the signaling as a 
colour scale, shows that NSGAII and SMPSO achieve better 
results than MatLab. NSGAII finds a space of solutions with 
lower    energy    consumption    (objectives     are     shifted 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

downwards) and less signaling (colder colors). In SMPSO it 
is remarkable that a set of low signalling cost objectives is 
found. They minimize energy consumption and signaling 
cost in exchange for lower average capacity per user. This set 
of objectives at the bottom left would be the example of a 
conservative deployment. The second column represents the 

FIGURE 21. Pareto fronts of average capacity per user against power consumption against signaling costs. Optimization algorithms are default 
in MatLab, NSGAII and SMPSO. Results obtained for planning 1 in the light configuration. 

FIGURE 22. Two-dimensional representation of the Pareto fronts. First, second and third rows represent MatLab, NSGAII and SMPSO algorithms 
respectively. First, second and third column represent signaling costs, power consumption and average capacity per user as a colour scale. 
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power consumption as a colour scale. NSGAII gets colder 
colours since it is the algorithm with the best solutions in 
terms of energy saving. SMPSO concentrates the objectives 
in high capacity areas except for a small section 
corresponding to the conservative case explained above. 

 Finally, the third column draws the power average 
capacity per user as a colour scale. By the same reasoning as 
above, NSGAII objectives are shifted to the left, 
corresponding to more energy efficient areas for similar 
capacities and signaling. SMPSO explores a new area at the 
bottom left corresponding to the conservative case. 

The previous analysis of the Fig. 22 can be completed with 
another analysis using performance metrics such as 
hypervolume. Table II shows the average hypervolume for 
all iterations of each algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

TABLE II 
HYPERVOLUME COMPARISON 

 MatLab NSGAII SMPSO 

Hypervolume 0.39259 0.48809 0.61668 

 
In terms of hypervolume, the best algorithm is SMPSO, 
followed by NSGAII in second place, and finally MatLab. 
The explanation is similar to that given in Fig. 22. On the one 
hand, NSGAII improves on MatLab with decreases in power 
consumption. On the other hand, SMPSO explores Pareto 
front areas that are not analyzed in the two previous 
algorithms. This case allows a more complete view of the 
Pareto front, which maximizes the hypervolume. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 23. Baseline in the two-dimensional representation of the Pareto fronts. First, second and third rows represent MatLab, NSGAII and 
SMPSO algorithms respectively. First, second and third column represent signaling costs, power consumption and average capacity per user as 
a colour scale. 
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F. BASELINE COMPARISON 
The hypervolume indicator shows the best Pareto fronts in a 
very compact way. However, it does not allow to see the 
improvement from the starting point. A visual comparison 
with the baseline can be made. The baseline used for the 
study consists on the average capacity per user, signalling 
cost and power consumption objectives when all BSs are 
operating at maximum power. This operation point provides 
the following results: 2.51Gbps (average capacity per user), 
43.9kW (power consumption) and 116.5kbps (signaling 
cost). Fig. 23 shows the operating point of the baseline on the 
Pareto fronts obtained for the three algorithms. In the first 
column it is clear that the power consumed in the deployment 
is improved, going from 43.9kW to values in the range of 
23kW to 33kW. The second column shows that the baseline 
obtains intermediate values in terms of signaling and 
capacity. However, the yellow color of the baseline indicates 
that the power consumed to obtain these capacities and 
signaling is much higher than the rest of the objectives on the 
fronts. Finally, the third column shows a performance similar 
to the first one, where the power consumed is much higher 
than the Pareto front. 

V. CONCLUSION 

In this work, we have presented a multilayer network 
optimization that optimizes some performance criteria. The 
comprehensive model, based on the physical and network 
layers, allows the multilayer optimization where all 
objectives are improved simultaneously. UEs capacity and 
BSs power consumption from the network layer are 
optimized. UEs signaling bits due to handovers in the 
network from the data link layer are also considered in the 
optimization. These optimizations are reflected in Pareto 
fronts, which show a set of non-dominated solutions to the 
problem. They keep a trade-off that provides the network 
designer with a set of optimal settings for the network 
deployment. In order to decide a certain configuration, the 
calculation of efficiency parameters, such as energy 
efficiency, has also been carried out, showing the optimum 
operating point for the network. To go deeper into finding the 
optimal working point, three new merit factors have been 
proposed that take into account different parameters of the 
network.  

The analysis of the merits factors shows the optimal 
operation points. These points can be useful for the 
telecommunication companies in order to allow new services 
with high performance in all parameters. Therefore, the new 
merits factors play a fundamental role in finding the balance 
between the different criteria assessed. Pareto fronts have 
been obtained from three different optimization algorithms. 
The comparison with the baseline shows that these Pareto 
fronts are able to improve multiple objectives 
simultaneously. The hypervolume analysis indicates that 
SMPSO presents the best objectives on the Pareto front. 

As a future direction, D2D communications and multi-
access edge computing (MEC) could improve the 

performance indicators since these technologies decrease the 
signaling costs and power consumption on the scenario due 
to the cooperation among close users. Moreover, the 
statistical multiplexing could increase the benefits of the 
optimization by coordinating several streams simultaneously. 
Although this technique slightly increases signaling traffic in 
the network, this is offset by the potential resource savings in 
terms of spectrum allocation. 

5G and 6G aim to substantially improve all these QoS 
metrics simultaneously. To this end, this study has easily 
illustrated the trade-off between these performance indicators 
reached by three multi-objective optimization algorithms. 
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