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SUMMARY 

 

 

The continual advances in the diagnosis of diseases have led Statistics to develop new 

methods to solve the problems that have been posed in this field. This Doctoral Thesis 

seeks to make a contribution to research into new statistical methods in the field of the 

statistical methods in diagnostic medicine. This Doctoral Thesis is focused on the study 

of the estimation and the comparison of parameters of two binary diagnostic tests 

subject to paired design and subject to partial verification of the disease. In the first 

situation, the problem leads to the analysis of 2 4  table and in the second situation it 

leads to the analysis of a 3 4  table. As tangible results of this doctoral thesis, one 

article has been published, two more are currently accepted for publication and a fourth 

article is being reviewed. These articles are included in their entirety in Appendices I - 

IV. 

Traditionally, the comparison of the sensitivities and the specificities of two binary 

diagnostic tests subject to a paired design was made comparing the two sensitivities and 

the two specificities independently, applying a comparison test with two binomial 

proportions paired to an   error. An alternative method consists of comparing the two 

sensitivities and the two specificities simultaneously, solving a global hypothesis test to 

an   error. This PhD has analysed in depth the study of the global test, proposing two 

test statistics, one obtained applying the Rao score test and the other with the Wald test. 

Moreover, based on the results of the simulation experiments carried out, some rules of 

application are given for the different methods studied.  

The likelihood ratios of a binary diagnostic test are very widely used parameters to 

compare the effectiveness of two binary diagnostic tests, as they are technically 



 

II 
 

equivalent to a relative risk. This Doctoral Thesis proposes new confidence intervals to 

compare the positive (negative) likelihood ratios of two binary diagnostic tests subject 

to a paired design, analysing the problem both from a frequentist perspective and a 

Bayesian one. The simulation experiments carried out to compare the asymptotic 

behaviour of the confidence intervals have allowed us to give some general rules of 

application for the intervals studied. Furthermore, a method is proposed to calculate the 

sample size to compare the positive (negative) likelihood ratios of two binary diagnostic 

tests through a confidence interval. 

When considering the losses of a misclassification with a diagnostic test, the 

parameter of effectiveness of the diagnostic test is the weighted kappa coefficient. This 

parameter depends on the sensitivity and specificity of the diagnostic tests, on the 

prevalence of the disease and on the relative importance between a false positive and a 

false negative. This Doctoral Thesis has related the comparison of the two weighted 

kappa coefficients with the relative true (false) positive fraction between the two binary 

diagnostic tests, and has studied the comparison of the weighted kappa coefficients of 

two diagnostic tests through confidence intervals for the difference and for the ratio 

between the two weighted kappa coefficients, analysing the problem from frequentist 

and Bayesian perspectives. Simulation experiments have been carried out to study the 

asymptotic behaviour of the confidence intervals proposed, and some general rules of 

application have been given. Moreover, a method has been proposed to calculate the 

simple size to compare the two weighted kappa coefficients through a confidence 

interval.  

When comparing the effectiveness of two binary diagnostic tests in the presence of 

partial disease verification, the selection of an individual to verify his or her disease 

status may depend on discrete covariates which are related to the disease. In this 

situation, a hypothesis test has been studied to compare the weighted kappa coefficients 

of both diagnostic tests. This problem has been solved applying two computational 

methods: the EM algorithm and the SEM algorithm. Simulation experiments have been 

carried out to study the behaviour of the test statistic proposed. 

 

Granada, September, 2020 
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CHAPTER 1 

 

 

INTRODUCTION 

 

The application of a diagnostic test for the diagnosis of a determined disease is a 

fundamental stage in medical practice, prior to the phases of treatment and prognosis. 

The diagnosis of the disease is not only important for the doctor or the clinician, since it 

conditions the treatment and the prognosis of the disease, but also for the individual 

concerned, as it eliminates the level of uncertainty that the individual has about his or 

her disease status. A diagnostic test is a medical test that is applied to an individual in 

order to determine the presence or the absence of a certain disease. There are different 

types of diagnostic tests: 

a). Binary diagnostic tests are those which lead to two results: positive (indicating 

the disease presence) or negative (indicating the absence of the disease). Examples 

would include a mammography for breast cancer or an echocardiography for the 

diagnosis of coronary disease. 

b). Quantitative diagnostic tests are those which lead to numerical values e.g. the 

concentration of PCR in cerebrospinal fluid for the diagnosis of meningitis. 

c). Ordinal diagnostic tests are those which lead to different values with a 

hierarchical structure e.g. the classification of the disease presence in ‘definitely yes’, 

‘probably yes’, ‘probably no’, and ‘definitely no’.  
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The most common diagnostic tests are binary diagnostic tests and these are the tests 

which are studied in this doctoral thesis. The application of a diagnostic test has various 

purposes (McNeil and Adelstein, 1976; Sox et al., 1989; Pepe, 2003; Zhou et al, 2011): 

a). To provide reliable information about the disease status of an individual (diseased 

or non-diseased). 

b). To intervene in the planning of the treatment of an individual. 

c). To investigate the mechanism and the nature of the disease. 

Moreover, the result of a diagnostic test depends on several factors:  

a). On the intrinsic accuracy of the test itself to distinguish between diseased and 

non-diseased individuals (discriminatory accuracy). 

b). On external factors (e.g. taking medication, consumption of alcohol, etc.). 

c). On the characteristics of each individual (e.g. the sex or the abnormal 

physiological conditions of an individual may interfere in the measurement of the 

test, etc.).  

The application of a diagnostic test may lead to mistakes, and therefore its accuracy is 

measured in terms of probabilities of functions of probabilities. In order to obtain 

unbiased estimators of those probabilities or of their functions it is necessary to assess 

the diagnostic test in relation to a gold standard. A gold standard (GS) is a medical test 

that objectively determines whether or not an individual has a disease. A biopsy for the 

diagnosis of breast cancer and a coronary angiography for the diagnosis of coronary 

disease are examples of GS.  

This doctoral thesis studies binary diagnostic tests (BDTs), the estimation of their 

parameters and the comparison of parameters of two BDTs subject to different types of 

sampling.  

 Let us consider a disease that may or may not be present among the individuals in a 

population. Let D be a random variable that models the result of the GS, in such a way 

that 1D   when the individual has the disease and 0D   when the individual does not 

have it. The probability of an individual in the population chosen at random having the 

disease is called disease prevalence  p , i.e.  1p = P D = . Let us consider a BDT 
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whose effectiveness is assessed in relation to a GS. Let T be the random variable that 

models the result of the BDT in such a way that 1T   when the result of the diagnostic 

test is positive and 0T   when it is negative. We then study different measurements of 

the effectiveness of a BDT whose inference has been studied in this doctoral thesis, as 

well as two types of situation in which it is possible to compare the effectiveness of two 

BDTs: complete disease verification and partial disease verification. 

 

1.1. Parameters of a BDT 

The parameters which have been subject to study in this doctoral thesis were: sensitivity 

and specificity, likelihood ratios and weighted kappa coefficient. 

 

1.1.1 Sensitivity and specificity 

The sensitivity ( Se ) is the probability of the result of the BDT being positive when the 

individual has the disease, i.e.  

 1| 1Se P T D   . 

The specificity ( Sp ) is the probability of the result of the BDT being negative when the 

individual does not have the disease, i.e.  

 0 | 0Sp P T D   . 

The sensitivity and the specificity represent the measurements of the accuracy of a BDT, 

as they only depend on the intrinsic ability of the test to distinguish diseased and non-

diseased individuals i.e. they depend on the physical, chemical or biological bases with 

which the BDT has been developed. A BDT with a high sensitivity is useful to rule out 

the presence of the disease and a BDT with a high specificity is useful to confirm the 

disease. We must demand of a BDT that its Youden Index (Youden, 1950), defined as  

1Y Se Sp   , 

be greater than zero  0Y  . The Youden Index takes values between -1 and 1, and 

verifies the following properties: 
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a). If the sensitivity and the specificity are complementary  1Se Sp   then 0Y   

and the BDT is non-informative. In this situation, the BDT is not related to the 

disease and the diagnosis of the disease can be made by tossing a coin whose 

probability of being either heads or tails is equal to 0.5. 

b). If 0Y   then 1T   must be a negative result and 0T   a positive result. 

Therefore, if 0Y  , the results of the BDT must be exchanged.  

 

1.1.2. Likelihood ratios 

Likelihood ratios (LRs) are other parameters which are used to assess the effectiveness 

of a BDT. Each likelihood ratio is a quotient of two probabilities defined as  

 
 

| 1
, 0,1.

| 0

P T i D
LR i

P T i D

 
 

 
 

The likelihood ratio represents the quotient between the probability of a postive or a 

negative result of the BDT in diseased individuals and the probability of the same result 

in non-diseased individuals. When the result of the BDT is positive, the LR, called the 

positive LR, is the quotient between the sensitivity and one minus the specificity, i.e. 

 
 

1| 1
.

1| 0 1

P T D Se
LR

P T D Sp
  
 

  
 

When the result of the BDT is negative, the LR, called the negative LR, is the quotient 

between one minus the sensitivity and the specificity, i.e. 

 
 

0 | 1 1
.

0 | 0

P T D Se
LR

P T D Sp
   
 

 
 

The LRs vary between 0 and infinity, and have the following properties:  

a). If the BDT and the GS are independent then 1LR LR   . 

b). If the BDT correctly classifies all of the individuals then LR    and 0LR  . 

c). If 1LR   then a positive result in the BDT is more probable for an individual 

who has the disease than for an individual who does not. 
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d). If 1LR   then a negative result in the BDT is more probable for an individual 

who does not have the disease than for an individual who does. 

e). The LRs quantify the increase in knowledge of the presence of the disease through 

the application of the BDT. Before applying the test, the odds of an individual having 

the disease are  pre-test odds 1p p  , where p  is the disease prevalence. After 

applying the BDT, the odds are 
 
 

1
post-test odds

0

P D T i

P D T i

 


 
, 0,1i  . The LRs 

relate the pre-test odds and the post-test odds: 

 
 

post test odds 1 pre test odds

post test odds 0 pre test odds.

T LR

T LR





  

  
 

Therefore, the likelihood ratios quantify the change in the odds of the disease 

obtained by knowledge of the application of the BDT.  

 

1.1.3. Weighted kappa coefficient 

Let us consider a BDT that is assessed in relation to a GS. Let L  L  the loss which 

occurs when for a diseased (non-diseased) individual the BDT gives a negative 

(positive) result. Therefore, the loss L  L  is associated with a false negative (positive). 

If an individual (with or without the disease) is correctly diagnosed by the BDT then 

0L L  . Let  1p P D   be the prevalence of the disease and 1q p  . Table 1.1 

shows the losses and the probabilities associated with the assessment of a BDT in 

relation to a GS, and the probabilities when the BDT and the GS are independent, i.e. 

when    P T i D j P T i    . Multiplying each loss in the 2 2  table by its 

corresponding probability and adding up all the terms, we find 

   1 1p Se L q Sp L   , 

a term that is defined as expected loss. Therefore, the expected loss is the loss that 

occurs when misclassifying with the BDT an individual with or without the disease. 

Moreover, if the BDT and the GS are independent, multiplying each loss by its 
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corresponding probability (subject to the independence between the BDT and the GS) 

and adding up all of the terms we find 

   1 1p p Se q Sp L q p Se q Sp L               , 

a term that is defined as random loss. Therefore, the random loss is the loss that occurs 

when the BDT and the GS are independent. The independence between the BDT and the 

GS is equivalent to the Youden index of the BDT being equal to zero  0Y   and is also 

equivalent to the expected loss being equal to the random loss. In terms of expected and 

random losses, the weighted kappa coefficient of a BDT is defined as 

 
Random loss Expected loss

Random loss
 
 . 

Substituting in this equation each loss with its expression, the weighted kappa 

coefficient of a BDT is expressed (Kraemer et al, 1990; Kraemer, 1992; Kraemer et al, 

2002) as 

   
( )

1 1

pqY
c

p Q c qQ c
 

  
, 

where 1Y Se Sp    is the Youden index,  1Q pSe q Sp    is the probability that 

the BDT result is positive, and  c L L L   is the weighting index.  

The weighted kappa coefficient of a binary test has the following properties:  

a). If the classificatory agreement between the BDT and the GS is perfect 

 1Se Sp   then   1c  . 

b). If the sensitivity and the specificity are complementary  1Se Sp   then 

  0c  . 

c). If the random expected loss is greater than the expected loss then   0c  ,  

d). If the expected loss is greater than the random expected loss then   0c   and 

the results of the diagnosis are interchanged, 1T   should be a negative result and 
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0T   should be a positive result; and the analysis should be limited only to the 

positive values of the weighted kappa coefficient. 

e). The weighted kappa coefficient is a function of the weighting index c which may 

be increasing (if Q p ), decreasing (if Q p ) or it can be a constant function which 

is equal to the Youden index if Q p . 

 

Table 1.1. Losses and probabilities. 
Losses 

(Probabilities) 
 1T   0T  Total 

1D   
0 

 p Se  
L  
  1p Se   

L  
 p  

0D   
L  
  1q Sp   

0 

 q Sp  
L  
 q  

Total 
L  

  1Q p Se q Sp    
L  

  1 1Q p Se q Sp       
L L  

 1p q   

Probabilities when the BDT and the GS are independent 
 1T   0T  Total 

1D   p Q   1p Q   p  

0D   q Q   1q Q   q  

Total Q  1 Q  1 

 

The weighting index c is a measure of the relative importance between the false 

positives and the false negatives. For example, let us consider the diagnosis of breast 

cancer using as a diagnostic mammography test. If the mammography test is positive in 

a woman that does not have cancer (false positive), the woman will be given a biopsy 

that will give a negative result. The loss L  is determined from the economic costs of 

the diagnosis and also from the risk, stress, anxiety, etc., caused to the woman. If the 

mammography test is negative in a woman who has breast cancer (false negative), the 

woman may be diagnosed at a later stage, but the cancer may spread, and the possibility 

of the treatment being successful will have diminished. The loss L  is determined from 

these considerations. The losses L  and L  are measured in terms of economic costs and 

also from risks, stress, etc., which is why in practice their values cannot be determined. 
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Therefore, as loss L cannot be determined, L is substituted by the importance that a false 

positive has for the clinician; in the same way, as loss 'L  cannot be determined, then 'L  

is substituted by the importance that a false negative has for the clinician. The value of 

the weighting index c will depend therefore on the relative importance between a false 

positive and a false negative. If the clinician has greater concerns about false positives, 

as it is the situation in which the BDT is used as a definitive test prior to a treatment that 

involves a risk for the individual (e.g., a definitive test prior to a surgical operation), 

then 0 0.5c  . If the clinician is more concerned about false negatives, as in a 

screening test, then 0.5 1c  . The index c is equal to 0.5 when the clinician considers 

that the false negatives and the false positives have the same importance, in which case 

 0.5  is the Cohen kappa coefficient. Weighting index c quantifies the relative 

importance between a false positive and a false negative, but it is not a measure that 

quantifies how much bigger the proportion of false positives is compared to the false 

negatives. If 0c   then 

     
 

1 1
0

1

Sp Q p FNF FPF

Q p FNF qFPF


   
 

 
, 

which is the chance-corrected specificity according to the kappa model. If 1c   then 

   
 

1
1

1 1

q FNF FPFSe Q

Q pFNF q FPF


 
 

  
, 

which is the chance-corrected sensitivity according to the kappa model. A low (high) 

value of  1  will indicate that the value of FNF is high (low), and a low (high) value 

of  0  will indicate that the value of FPF is high (low). The weighted kappa 

coefficient can be written as 

         
   

1 1 1 0

1 1

pc Q q c Q
c

pc Q q c Q

 


  


  
, 

which is a weighted average of  0  and  1 . Therefore, the weighted kappa 

coefficient is a measure that considers the proportion of false negatives (FNF) and the 

proportion of false positives (FPF). Moreover, for a set value of the c index and of the 

accuracy (Se and Sp) of the BDT, the weighted kappa coefficient strongly depends on 
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the disease prevalence among the population being studied, and its value increases when 

the disease prevalence increases. The weighted kappa coefficient is a measure of the 

beyond-chance agreement between the BDT and the GS. The properties of the kappa 

coefficient can be seen in the manuscript of Roldán-Nofuentes and Amro (2018). 

The weighted kappa coefficient is a valid parameter to assess and compare the 

performance of BDTs (Kraemer et al, 1990; Kraemer, 1992; Kraemer et al, 2002; Bloch, 

1997; Roldán-Nofuentes et al, 2009; Roldán-Nofuentes and Amro, 2018).  

 

1.2. Complete verification and partial verification 

The comparison of the effectiveness of two BDTs can be made in two types of situations 

depending on whether or not the disease status of all of the individuals is known or not. 

When the disease status of all the individuals is known through the application of a GS, 

the situation is called complete disease verification, since all of the individuals have had 

their disease status verified (present or absent). If the disease status of some individuals 

in unknown, the situation is called partial disease verification, since for a subset of 

individuals it is not known if they have the disease or not. Each one of these situations 

will now be explained. 

 

1.2.1. Complete verification 

Complete disease verification corresponds to the situation in which the disease status is 

known for all of the individuals in the study. In this situation, when comparing two 

BDTs the most frequent type of sample design is the paired design (Pepe, 2003; Zhou et 

al, 2011). This type of design consists of applying the two BDTs and the GS to all of the 

individuals in a random sample sized n. Table 1.2 shows the frequencies that are 

obtained when comparing two BDTs in relation to a GS subject to a paired design, 

where hT  is the variable that models the result of the hth BDT, in such a way that 1hT   

when its result is positive and 0hT   when it is negative, and D models the result of the 

GS, in such a way that 1D   when the individual has the disease and disease and 0D   

when this is not the case. 
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Table 1.2. Frequencies subject to a paired design. 

 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   11s  10s  01s  00s  s  

0D   11r  10r  01r  00r  r  

Total 11 11s r  10 10s r  01 01s r  00 00s r  n  

 

1.2.2. Partial verification 

In clinical practice, when assessing a single BDT it is common for the GS not to be 

applied to all of the individuals in the sample. Therefore, if the GS consists of a costly 

test or it means an important risk for an individual, the GS is not applied to that 

individual and, therefore, his or her disease status is unknown (present or absent). In this 

situation, the result of the BDT is known for all of the individuals in the sample, but the 

disease status (i.e. the result of the GS) is only known for a subset of them (and 

consequently it is unknown for a subset composed of the rest). This situation is known 

as partial disease verification (Begg and Greenes, 1983). If the sensitivity and the 

specificity (and the likelihood ratios and the weighted kappa coefficient) of a BDT are 

estimated excluding those individuals who have not been verified with the GS, the 

estimators obtained are affected by what is known as verification bias (Begg and 

Greenes, 1983; Roldán-Nofuentes and Luna, 2008; Montero-Alonso and Roldán-

Nofuentes, 2019).  

The problem of partial disease verification can also appear when comparing the 

effectiveness of two BDTs. In this situation, we obtain the frequencies given in Table 

1.3, where the variable V models the verification process, in such a way that 1V   

when the individual is verified with the GS and 0V   when the individual is not 

verified with the GS. Assuming that the verification process is missing at random 

(MAR), there are several different studies that have been carried out to compare 

parameters of two BDTs. Zhou (1998) studied a hypothesis test to compare the 

sensitivities (specificities) of two BDTs applying the method of maximum likelihood. 

Harel and Zhou (2007) applied multiple imputation to compare the two sensitivities 

(specificities) through confidence intervals. Roldán-Nofuentes and Luna (2006) studied 
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a hypothesis test to compare the weighted kappa coefficients of two BDTs applying the 

method of maximum likelihood. Roldán Nofuentes and Luna (2008, 2009) studied 

hypothesis tests to compare the sensitivities (specificities) of two BDTs applying the 

EM and SEM algorithms.  

 

Table 1.3. Cross-classification of test results by verification status and disease status. 

 1 1T   1 0T   

 2 1T   2 0T   2 1T   2 0T   

1V       
1D   11s  10s  01s  00s  

0D   11r  10r  01r  00r  

0V   11u  10u  01u  00u  

Total 11n  10n  01n  00n  
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CHAPTER 2 

 

 

OBJECTIVES 

 

2.1. Recommended methods to compare the accuracy of two 

binary diagnostic tests subject to a paired design 

Traditionally, the comparison of the accuracy of two BDTs subject to paired design 

consists of solving the two hypothesis tests 

0 1 2 1 1 2:   vs  :H Se Se H Se Se   

and 

0 1 2 1 1 2:   vs  :H Sp Sp H Sp Sp  , 

each one of them to an   error applying a comparison test with two paired binomial 

proportions e.g. applying the well-known McNemar test (Zhou, 2013) or another 

method (Fagerland et al, 2014). Therefore, the classic method consists of comparing the 

two sensitivities and the two specificities independently, solving each hypothesis test to 

an   error. An alternative to the classic method consists of contrasting the equality of 

the two sensitivities and of the two specificities simultaneously (Lachenbruch and 

Lynch, 1998), i.e. solving the global test 

   0 1 2 1 2 1 1 2 1 2:   and    vs  :   and/or  H Se Se Sp Sp H Se Se Sp Sp     
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to an   error. The objectives to be studied are: 1) to obtain new test statistics to solve 

the global test; and 2) to compare the asymptotic behaviour of the previous test statistics 

with others based on the individual hypothesis tests or with others based on the 

individual hypothesis tests to an   error and applying methods of multiple comparison. 

The study of these objectives will allow us to determine the optimal asymptotic methods 

to compare the accuracy of two BDTs subject to paired design, giving some general 

rules of application.  

 

2.2. Comparison of the likelihood ratios of two diagnostic tests 

subject to a paired design: confidence intervals and sample size 

The comparison of the LRs of two BDTs through hypothesis tests subject to a paired 

design has been the subject of several studies. Leisenring and Pepe (1998) studied the 

estimation of the LRs of a BDT through a regression model, and Pepe (2003) adapted 

this model to compare the LRs of two BDTs. Biggerstaff (2000) proposed a graphical 

method   to compare the LRs of two (or more) BDTs. Nevertheless, this method is non-

inferential and can only be applied to the estimators. Roldán-Nofuentes and Luna 

(2007) studied hypothesis tests to compare the LRs individually and also 

simultaneously. Dolgun et al (2012) extended the method of Leisenring and Pepe (1998) 

to compare the LRs simultaneously. Nevertheless, the comparison of the LRs through 

confidence intervals has not been studied in depth. From the studies by Pepe (2003) and 

by Roldán-Nofuentes and Luna (2007), confidence intervals are obtained for the ratio of 

the positive (negative) LRs. Therefore, the following objectives are posed: 1) to obtain 

new confidence intervals for the ratio of the positive (negative) LRs; 2) to compare the 

asymptotic behaviour of the confidence intervals studied; and 3) to study a method to 

calculate the sample size necessary to compare the LRs through a confidence interval. 
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2.3. Asymptotic confidence intervals for the difference and the 

ratio of the weighted kappa coefficients of two diagnostic tests 

subject to a paired design 

Bloch (1997) studied the comparison of the weighed kappa coefficients of two BDTs 

subject to a paired design deducing a Wald type statistic. Based on this study, inverting 

the test statistic we obtain a confidence interval for the difference between the two 

weighted kappa coefficients. The objectives that are posed are: 1) to study new 

confidence intervals for the difference and the ratio of the weighted kappa coefficients 

of two BDTs; 2) to compare the asymptotic behaviour of the confidence intervals 

studied, giving some general rules of application; and 3) to study a method to calculate 

the sample size necessary to compare the two weighted kappa coefficients through a 

confidence interval. 

 

2.4. EM and SEM algorithms to compare the weighted kappa 

coefficients of two diagnostic tests in the presence of partial 

verification and discrete covariates 

In the presence of partial disease verification, the selection of an individual to verify his 

or her disease status with the GS may also depend on the discrete covariates that are 

related to the disease. Zhou (1998) studied a hypothesis test to compare the sensitivities 

(specificities) of two BDTs when in the presence of partial disease verification, discrete 

covariates are observed in all the individuals. The objective that is posed is to study a 

hypothesis test to compare the global weighted kappa coefficients of two BDTs when in 

the presence of partial disease verification a discrete covariate is observed in all the 

individuals. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

3.1. Recommended methods to compare the accuracy of two 

binary diagnostic tests subject to a paired design 

Traditionally, the comparison of the accuracy of two BDTs subject to a paired design 

consisted of solving the two hypothesis tests  

0 1 2 1 1 2:   vs  :H Se Se H Se Se   

and 

0 1 2 1 1 2:   vs  :H Sp Sp H Sp Sp  , 

each one of them to an   error applying a comparison test with two paired binomial 

proportions. Subject to a paired design these hypothesis tests are equivalent to the tests  

0 10 01 1 10 01:   vs  :H p p H p p   

and 

0 01 10 1 01 10:   vs  :H q q H q q  , 

respectively. Another alternative method is to solve the global test  

   0 1 2 1 2 1 1 2 1 2:   and    vs  :   and/or  H Se Se Sp Sp H Se Se Sp Sp     
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We will now summarize the methods that exist to solve the individual tests and the 

global test. 

 

3.1.1. Individual tests 

The comparison of the sensitivities (specificities) of two BDTs subject to a paired 

design consists of the comparison of two paired binomial proportions. We will now 

summarize some different methods to solve this problem. 

 

3.1.1.1. Conditional exact test 

In hypothesis test 0 10 01:H p p  the proportions 11p  and 00p  do not appear, and so it is 

possible to discard these proportions and, consequently, also discard the frequencies 11s  

and 00s . Conditioning on the sum of the discordant frequencies, i.e. conditioning on 

10 01s s , it is verified that 10 01 1p p  , and it is also verified that 10s  is the product of a 

binomial distribution of parameters 10 01s s  and 10p , i.e.  10 01 10,Bin s s p . If the null 

hypothesis is true then 10 01 1 2p p  , and, therefore, both the hypothesis test 

0 01 10:H q q vs 1 10 01:H p p  is also equivalent to test 0 10: 1 2H p   vs 1 10: 1 2H p  . 

Finally, the two-sided exact p-value for the comparison test of the two sensitivities is 

  10 0110 01,
10 01

0

1
two-sided exact p-value 2

2

s sMin s s

j

s s

j





      
  

 . 

If 10 01s s  then the two-sided exact p-value equals one. In a similar way, the two-sided 

exact p-value to compare the two specificities is  

  10 0110 01,
10 01

0

1
two-sided exact p-value 2

2

r rMin r r

j

r r

j





      
  

 . 

 

3.1.1.2. Conditional mid-p test 

The conditional mid-p test (Lancaster, 1961) is a modification of the exact conditional 

test. This method consists of subtracting the probability of the observed outcome 10s  
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from the two-sided exact p-value. Thus, the mid-p values to compare the two 

sensitivities and the two specificities are 

10 01

10 01

10

1
mid-p value two-sided exact p-value

2

s ss s

s

     
  

 

and 

10 01

10 01

10

1
mid-p value two-sided exact p-value ,

2

r rr r

r

     
  

 

respectively. The conditional mid-p test is also referred to as quasi-exact test. 

 

3.1.1.3. McNemar test 

The McNemar test (McNemar, 1947) is the asymptotic version of the conditional exact 

test. Conditioning on the sum of discordant frequencies and applying the Central Limit 

Theorem, the statistic for hypothesis test 0 10 01:H p p  is 

 
10 01

10 01

ˆ ˆ

ˆ ˆ

p p
z

Var p p





, 

which is distributed according to a standard normal distribution, where 

   2

10 01 10 01
10 01ˆ ˆ

p p p p
Var p p

s

  
  . 

If the null hypothesis is true, then  

   10 01
0 10 01ˆ ˆ

p p
Var p p

s


  . 

Finally, the test statistic for the McNemar test is  

 10 01 10 01Mz s s s s   . 

It is very common to express this statistic in terms of the chi-square distribution, i.e. 

 2

2 10 01

10 01
M

s s

s s






, 
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which is distributed asymptotically according to a chi-square distribution with one 

degree of freedom. In a similar way, the test statistic of the McNemar test is obtained to 

compare the two specificities: 

 2

2 10 01

10 01
M

r r

r r






. 

 

3.1.1.4. McNemar test with continuity correction 

In the McNemar test the binomial distribution is approximated through the normal 

distribution. In this situation, it is common to apply continuity correction (cc). Edwards 

(1948) proposed the following continuity correction version of the McNemar test, 

 
10 01

10 01

1
ˆ ˆ

ˆ ˆ
Mcc

p p
sz

Var p p

 



. 

Performing the same algebraic operations in the previous section, it is obtained that the 

statistics of the McNemar test with cc are 

   2 2

10 01 10 012 2

10 01 10 01

1 1
  and  Mcc Mcc

s s r r

s s r r
 

   
 

 
, 

respectively. 

 

3.1.1.5. Modified McNemar test 

Bennett and Underwood (1970) proposed a modification of the statistic of the McNemar 

test adding 0.5 to the observed frequencies. This correction improves the approximation 

to the chi-square distribution. The statistics of MMT are: 

   2 2

2 210 01 10 01

10 01 10 01

  and  
1 1MM MM

s s r r

s s r r
 

 
 

   
. 
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3.1.1.6. Wald test 

The comparison of the two sensitivities (specificities) can also be made applying the 

Wald test (1943). The Wald test statistic to compare the sensitivities is 

 
  

2

2 10 01

10 01 11 00 10 014W

s s s

s s s s s s





  
, 

which is distributed asymptotically according to a chi-square distribution with one 

degree of freedom. To compare the two specificities, the Wald test statistics is 

 
  

2

2 10 01

10 01 11 00 10 014W

r r r

r r r r r r





  
. 

 

3.1.1.7. Modified Wald test 

As the WT tends to reject too often under the null hypothesis when the sample size is 

small or moderate, May and Johnson (1997) proposed a modification of the Wald 

statistic adding 0.5 to each one of the discordant frequencies, i.e. 

 

   
 

   

2 2

2 210 01 10 01
2 2

10 01 10 01
10 01 10 01

  and  

1 1
MW MW

s s r r

s s r r
s s r r

s s

 
 

 
 

     

. 

This modification reduces the size of the Wald statistic, and for 50n   the size of the 

test is close to the nominal error. 

 

3.1.1.8. Likelihood ratio test 

Conditioning in the sum of the discordant frequencies, if the null hypothesis 

0 10 01:H p p  is true then it is verified that    10 01 10 01ˆ ˆ 2p p s s s   . The likelihood 

ratio statistic to compare the sensitivities is 

2 10 01
10 01

10 01 10 01

2 2
2 ln lnLR

s s
s s

s s s s


    
          

, 

and in a similar way, the likelihood ratio statistic to compare the specificities is 
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2 10 01
10 01

10 01 10 01

2 2
2 ln lnLR

r r
r r

r r r r


    
          

, 

whose distributions are asymptotically a chi-square with one degree of freedom. 

 

3.1.1.9. Unconditional exact test 

The conditional exact test and the mid-p test are based on the conditioning on the sum 

of the discordant frequencies. Suissa and Shuster (1991) proposed, based on the statistic 

of the McNemar test, an exact test which uses all the frequencies in the sample and, 

therefore, does not condition in the sum of the discordant frequencies. When we 

compare the two sensitivities, the power function of the test is 

   10 01
10 01 10 01 10 01

10 01

, 1
s ms s

C

s
P p p p p p p

s s s m
 

    
 , 

where 10 01m s s   and     10 10 10, :  ;  0,1,..., ;  0,1,...,C s m s h m s m m s    , with

    2Mh m z m m   and Mz  the calculated value of the McNemar statistic. If the 

null hypothesis is true, then the distribution of  10, ,s m s m  is a trinomial distribution 

with parameters s and probability vector is  2, 2,1
T   , i.e. 

   
10 01

1
2

m
s m

C

s
P

s s s m
          

 , 

and where 10 01p p    is the nuisance parameter. The nuisance parameter is eliminated 

by maximizing this function over the range of  . The function  P   is simplified as  

     1 1
s

s jj
j j

j k

s
P F j i

j
   



 
    

 
 , 

where 2int 1mk z    ,  intji h j    ,  int .  is the integer function and jF  is the 

cumulative binomial distribution function with parameters j and 1 2 . Finally, the two-

sided exact p-value is calculated as 
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  
0 1

two sided exact p-value 2 sup P



 

  . 

The two-sided exact p-value to compare the two specificities is calculated in a similar 

way, substituting “s” with “r” and “p” with “q”. 

 

3.1.1.10. Unconditional McNemar test 

Lu (2010) proposed a statistic for the McNemar test that considers all the frequencies in 

the sample, and which therefore does not condition in the sum of the discordant 

frequencies. The hypothesis test 0 10 01:H p p  vs 1 10 01:H p p  is equivalent to the 

hypothesis test 

10 01 10 01
0 1

10 01 10 01 10 01 10 01

:   vs  :
p p p p

H H
p p p p p p p p

 
   

. 

Subject to the null hypothesis, the frequency 10s  (or 01s ) is the product of binomial 

distribution of parameters s and  10 01 2p p   . The estimators of the average and of 

the variance of the binomial distribution are  10 01
ˆ 2s s s    and 

   2

10 0110 01ˆ ˆ1
2 4

s ss s
s

s
 


   . Approximating to the normal distribution and 

applying the Central Limit Theorem, the statistic for the hypothesis test of equality of 

the two sensitivities is 

    
10 10 01

10 01 11 00

ˆ

ˆ ˆ1
UM

s s s s
z

s s s s ss
s



 

 
 

  
, 

or in terms of the chi-square distribution 

 
  

2

2 10 01

10 01 11 00
UM

s s s

s s s s s





  
, 

whose distribution is asymptotically a chi-square with one degree of freedom. In a 

similar way, we obtain the statistic to compare the two specificities: 
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 
  

2

2 10 01

10 01 11 00
UM

r r r

r r r r r





  
. 

 

3.1.1.11. Unconditional likelihood ratio test 

Lu (2011) also proposed a likelihood ratio test statistic to compare two paired binomial 

proportions without discarding the concordant frequencies. The likelihood ratio test 

statistic is obtained in two phases: in the first phase we obtain the likelihood ratio test 

statistic when the four frequencies ijs  are combined in two, 10s  and 11 01 00s s s  ; and in 

the second phase we obtain the likelihood ratio test statistic when the four frequencies 

ijs  are combined in another two, 01s  and 11 10 00s s s  . Finally, the likelihood ratio test 

statistic is calculated as an average of the two likelihood ratio test statistics. In the 

context studied here, the likelihood ratio test statistics are 

       

2 10 01
10 01

10 01 10 01

10 01
10 01

10 01 10 01

2 2
ln ln

2 2
ln ln

2 2

ULR

s s
s s

s s s s

s s s s
s s s s

s s s s s s


   

         
    

           

 

and 

       

2 10 01
10 01

10 01 10 01

10 01
10 01

10 01 10 01

2 2
ln ln

2 2
ln ln ,

2 2

ULR

r r
r r

r r r r

r r r r
r r r r

r r r r r r


   

         
    

           

 

which in both cases asymptotically follow a chi-square with one degree of freedom. 

 

3.1.2. Global test 

Lachenbruch and Lynch (1998) studied the simultaneous comparison of the sensitivities 

and of the specificities, i.e. solving the global test  

   0 1 2 1 2 1 1 2 1 2:   and    vs  :   and/or  H Se Se Sp Sp H Se Se Sp Sp     

to an   error. Therefore, these authors have proposed these test statistics: 
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2 10 01 10 01
10 01 10 01

10 01 10 01 10 01 10 01

2 2 2 2
2 ln ln ln lnLR

s s r r
s s r r

s s s s r r r r


        
                      

 

and 

   2 2

2 10 01 10 01

10 01 10 01
R

s s r r

s s r r


 
 

 
. 

The first one is obtained applying the likelihood ratio test and the second one adding the 

test statistics of the individual tests of the McNemar test. 

 

3.1.3. Methodology 

We have studied in greater depth the global test applying the Wald Method (1943) and 

the Rao Method (1948), in order to obtain new asymptotic solutions for this hypothesis 

test. Moreover, Monte Carlo simulation experiments were carried out to compare the 

different methods based on the individual tests (to an   error and applying the multiple 

comparison methods of Bonferroni (1936) and Holm (1979)) and in the global test, and 

in this way we were able to determine which are the methods with the best asymptotic 

behaviour to compare the sensitivities and specificities of two BDTs subject to a paired 

design. 

 

3.2. Comparison of the likelihood ratios of two diagnostic tests 

subject to a paired design: confidence intervals and sample size 

Pepe (2003) and Roldán-Nofuentes and Luna proposed confidence intervals for the ratio 

of the LRs of two BDTs subject to a paired design. 

 

3.2.1. Regression model 

Leisenring and Pepe (1998) studied the estimation of the LRs of a BDT in presence of 

covariates through a regression model. For the positive LR, the regression model with p 

covariables is   1 0 1
1

ln
p

i p
i

LR X X 



  , where i  are the parameters of the model 
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and  1 11 1,..., pX X X  is the matrix of covariates. This model can be used to compare 

two BDTs (Pepe, 2003), i.e.   0 1ln T TLR X X      , where TX  is a variable dummy 

to compare a BDT in relation to another. The regression model to compare the two 

negative LRs is   0 1ln T TLR X X      . In these models, the ratio 1 2LR LR    is 

estimated as 1̂e  and the ratio 1 2LR LR    as 1ˆe . The confidence interval for   is 

  1 2 0
ˆˆ ˆexp lnz Var  


     , 

where 1 2z   is the  100 1 2 th  percentile of the standard normal distribution and 

     
1 1 2 2

0

1 21 2

ˆ ˆ ˆ ˆ1 1ˆ ˆln
ˆ ˆˆ ˆ1 1

Se Sp Se Sp
Var

sSe sSer Sp r Sp
          

 

is the estimated variance of ̂  subject to the null hypothesis 0 1 2:H LR LR  . The 

confidence interval for   s similar to the previous one, where 

     
1 1 1 1

0

1 11 1

ˆ ˆ ˆ ˆ1 1ˆ ˆln
ˆ ˆˆ ˆ1 1

Se Sp Se Sp
Var

rSp rSps Se s Se
          

. 

 

3.2.2. Logarithmic interval 

Roldán-Nofuentes and Luna (2007) studied a hypothesis test to compare the LRs 

applying the method of maximum likelihood and the delta method to solve the 

hypothesis test  0 : ln 0H    vs  1 : ln 0H   , where   is   or  . The test 

statistic is    ˆˆ ˆln Var  , and its distribution is asymptotically normal. Inverting the 

test, the logarithmic CI for   is 

  1 2
ˆˆ ˆexp lnz Var      , 

where  ˆ ˆlnVar     is obtained applying the delta method. 
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3.2.3. Methodology 

New confidence intervals were studied for the ratio of the positive (negative) LRs 

applying the Wald Method (1943), the Fieller method (1940), Bootstrap (Efron and 

Tibshirani, 1993) and the Bayesian Monte Carlo method (Boos and Stefanski, 2013). 

Monte Carlo simulation experiments were carried out to study the asymptotic coverage 

and the average width of the confidence intervals studied. Moreover, a method has been 

proposed to calculate the sample size to compare the positive (negative) LRs through a 

confidence interval, applying for this purpose an iterative method of calculation of the 

sample size based on a pilot sample. 

 

3.3. Asymptotic confidence intervals for the difference and the 

ratio of the weighted kappa coefficients of two diagnostic tests 

subject to a paired design 

The comparison of the weighted kappa coefficients of two BDTs subject to a paired 

design was studied by Bloch (1997).  

 

3.3.1. Bloch method 

Bloch (1997) studied the comparison of the weighted kappa coefficients of two BDTs 

subject to a paired design, i.e. 

       0 1 2 1 1 2:   vs  :H c c H c c     . 

The test statistic for this hypothesis test is 

   
       

 1 2

1 2 1 2

ˆ ˆ
0,1

ˆˆ ˆˆ ˆ ˆ ˆ2 ,
n

c c
z N

Var c Var c Cov c c

 

   



 

           
, 

where the variances-covariances are obtained applying the delta method. Inverting the 

test statistic, a Wald type confidence interval for    1 2c c   is 

            1 2 1 2 1 2 1 2
ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 , .c c z Var c Var c Cov c c                    
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3.3.2. Methodology 

New confidence intervals were obtained for the difference and for the ratio of the 

weighted kappa coefficients of two BDTs, thus extending the study by Bloch (1997). 

Therefore, we used the Wald method (1943), the Fieller method (1940), Bootstrap 

(Efron and Tibshirani, 1993) and the Bayesian Monte Carlo method (Boos and 

Stefanski, 2013). Monte Carlo simulation experiments were carried out to study the 

asymptotic coverage and the average width of the confidence intervals studied, giving 

some general rules of application for the intervals for the difference and for the ratio. 

Furthermore, a method has been proposed to calculate the sample size to compare the 

two weighted kappa coefficients through a confidence interval, applying for this 

purpose a methodology similar to that applied in Section 3.2. 

 

3.4. EM and SEM algorithms to compare the weighted kappa 

coefficients of two diagnostic tests in the presence of partial 

verification and discrete covariates 

In the presence of partial disease verification, the comparison of the weighted kappa 

coefficients of two BDTs when a discrete covariate is observed in all of the individuals 

is a question that has not been previously studied. Therefore, in this situation it is 

considerd that in all of the n individuals in the sample we observe a vector 

 1 2, ,..., MX x x x  of a discrete covariate, where mx   1,...,m M  is each one of the 

different values or patterns that the covariate can take. For the mth pattern of the 

covariate  mX x  we obtain the frequencies from Table 3.1. The total sample of n 

individuals can be seen as a mixture of M multinomial independent 3 4  tables.  

The objective is to study a hypothesis test to compare the two weighted kappa 

coefficients in this situation.  
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Table 3.1. Observed frequencies in the presence of partial verification for mX x . 

 1 1T    1 0T    

 2 1T   2 0T    2 1T   2 0T   Total 
1V         

1D   11ms  10ms   01ms  00ms  ms  

0D   11mr  10mr   01mr  00mr  mr  

0V   11mu  10mu   01mu  00mu  mu  

Total 11mn  10mn   01mn  00mn  mn  

 

3.4.1. Methodology 

This problem was solved applying two methods of computation: the EM algorithm and 

the SEM algorithm. 

 

3.4.1.1. EM algorithm 

The EM algorithm (Dempster et al, 1977) is a very well known method in Statistics to 

impute the estimators of parameters in presence of missing data, and it requires that 

missing data to be missing at random (MAR). For the mth table  mX x  let us suppose 

that from each frequency ijmu  of non-verified individuals, ijmd  have the disease and 

ijm ijmu d  do not have the disease, with , 0,1i j  . Then each one of the M 3 4  tables 

can be expressed in the form of a 2 4  table with frequencies ijm ijms d  for 1D   and 

ijm ijm ijmr u d   for 0D  . Table 3.2 shows the frequencies of the complete data for 

mX x . For each one of the multinomial 3 4  tables the missing information is the true 

disease status of the individuals not verified with the GS. This information is 

reconstructed in the E step of the algorithm and in the M step the values of the 

maximum likelihood estimators are imputed. The application of the EM algorithm 

allows us to obtain the estimations of the weighted kappa coefficients of the BDTs. 
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Table 3.2. Complete data for mX x . 

 1 1T    1 0T    

 2 1T   2 0T    2 1T   2 0T   Total 

1D   11 11m ms d  10 10m ms d   01 01m ms d 00 00m ms d  m ms d  

0D   
11 11

11

m m

m

r u

d




 10 10

10

m m

m

r u

d




  
01 01

01

m m

m

r u

d




 00 00

00

m m

m

r u

d




 m m

m

r u

d




 

Total 11mn  10mn   01mn  00mn  mn  

 

3.4.1.2. SEM algorithm 

The estimation of the matrix of variances-covariances of the estimators was obtained 

through the application of the SEM algorithm (Meng and Rubin, 1991). The SEM 

algorithm (Supplemental EM) is a computational method that allows us to estimate the 

variance-covariance matrix of a vector of estimators using the calculations made in the 

application of the EM algorithm. Let ˆ
θ

 be the variance-covariance matrix, and 

Dempster et al (1977) demonstrated that 

  11
ˆ ocI I DM

  
θ

 

where I is the identity matrix and 1
mis ocDM I I  , when ocI  is the Fisher information 

matrix of the complete data and misI  is the Fisher information matrix of the missing 

data. The SEM algorithm consists of three phases: (1) to assess the matrix 1
ocI  , (2) to 

assess the DM matrix, and (3) to assess the variance-covariance matrix ˆ
θ

. The main 

objective of the SEM algorithm is to calculate the elements of the DM  matrix, which is 

done through an algorithm that uses calculations made by the EM algorithm that runs 

iterations of the EM algorithm. Therefore, the application of the SEM algorithm allows 

us to estimate the variances-covariances of the weighted kappa coefficients of the BDTs. 

 

3.4.1.3. Hypothesis Test 

Once we have obtained the estimators of the weighted kappa coefficients and their 

variances-covariances applying the previous algorithms, the test statistic for the 

hypothesis test  
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       0 1 2 1 1 2:  vs  :H c c H c c      

is 

 
   

       
1 2

1 2 1 2

ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ2 ,

c c
z

Var c Var c Cov c c

 

   




           
, 

which is distributed according to a normal distribution when the sample size n is large.  

Once the hypothesis test is solved, Monte Carlo simulation experiments were carried 

out to study its type I error and its power. 
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CHAPTER 4 

 

 

RESULTS 

 

This Doctoral Thesis has obtained different results related to the comparison of 

parameters of two BDTs. We will summarize the results obtained for each one of the 

objectives. The complete results can be seen in the Appendices. 

 

4.1. Recommended methods to compare the accuracy of two 

binary diagnostic tests subject to a paired design 

 Applying the Rao score test, a test statistic was obtained for the global 

hypothesis test: 

   2 2

2 10 01 10 01

10 01 10 01
R

s s r r

s s r r


 
 

 
, 

whose distribution is a chi-square with two degrees of freedom when the sample 

size n is large. 

 Applying the Wald method, a test statistic was obtained for the global 

hypothesis test: 

 
  

 
  

2 2

2 10 01 10 01

10 01 11 00 10 01 10 01 11 00 10 014 4W

s s s r r r

s s s s s s r r r r r r


 
 

     
, 
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whose distribution is a chi-square with two degrees of freedom when the sample 

size n is large. 

 Based on the results obtained in the simulation experiments, the following 

general rules of application can be established: 

1). When the prevalence is small  10%p   or very small  5%p   and the 

sample is small  50n   or moderate  100n  , solve the tests 0 1 2:H Se Se  

and 0 1 2:H Sp Sp  individually applying the Wald test or the Likelihood ratio 

test along with the Bonferroni (or Holm) method to an error 5%  . 

2). In any other situation, solve the global test  0 1 2 1 2:  and H Se Se Sp Sp   to 

an error 5%   applying the likelihood ratio test or the Wald test. In this 

situation, if the global test is not significant then the equality of the accuracy of 

both BDTs is not rejected, and if the global is significant then the causes of the 

significance will be investigated: a) testing the tests 0 1 2:H Se Se  and 

0 1 2:H Sp Sp  individually applying the Wald test or the likelihood ratio test 

along with the Bonferroni or Holm method to an error 5%   if the sample size 

is small or moderate  100n   or if the sample size is very large  1000n  ; or 

b) testing the tests 0 1 2:H Se Se  and 0 1 2:H Sp Sp  individually applying the 

McNemar test with continuity correction to an error 5%   if the sample size is 

large  200 500n  . 

 

4.2. Comparison of the likelihood ratios of two diagnostic tests 

subject to a paired design: confidence intervals and sample size 

 Applying the Wald method, a confidence interval was obtained for the ratio of 

the two positive (negative) likelihood ratios: 

     1 2 1 21
1 2 2 2

2 1 2 1 2

ˆˆ ˆ ˆ ˆ ˆ ˆ2 ,ˆ
1

ˆ ˆ ˆ ˆ ˆ

Var LR Var LR Cov LR LRLR
z

LR LR LR LR LR


 
     
  

. 
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 Applying the Fieller method, a confidence interval was obtained for the ratio of 

the two positive (negative) likelihood ratios: 

    2
2 2 2 2 2 2

1 2 12 1 2 1 2 12 1 2 1 11 1 2 2 22 1 2
1

2 2
2 2 22 1 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ

LR LR z LR LR z LR z LR zLR

LR LR z

   



   


   



     



, 

 where  ˆ ˆˆii iVar LR   and  12 1 2
ˆ ˆ ˆˆ ,Cov LR LR    

 The ratio of the positive (negative) likelihood ratios was estimated applying 

Bootstrap, calculating the bias-corrected interval. 

 The ratio of the positive (negative) likelihood ratios was estimated applying the 

Bayesian Monte Carlo method, calculating a confidence interval based on 

quantiles.  

 From the simulation experiments carried out, the following general rules of 

application for the intervals were given: 

1). For the ratio of the positive likelihood ratios, use the logarithmic confidence 

interval, whatever the sample size may be, although when 200n   we can also 

use the Wald, the Fieller and the Bootstrap intervals. 

2). For the ratio of the negative likelihood ratios, use the Wald CI, whatever the 

sample size may be. 

 A method was proposed to calculate the sample size necessary to estimate the 

ratio of the positive (negative) likelihood ratios through the Wald confidence 

interval. The method requires the estimation of all the parameters starting from a 

pilot sample. 
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4.3. Asymptotic confidence intervals for the difference and the 

ratio of the weighted kappa coefficients of two diagnostic tests 

subject to a paired design 

 The relation between the two weighted kappa coefficients and the true (false) 

positive fraction between the two BDTs was studied. 

 The difference and the ratio between the two weighted kappa coefficients was 

estimated applying Bootstrap, calculating the bias-corrected interval for the 

difference and for the ratio.  

 The difference and the ratio between the two weighted kappa coefficients was 

estimated applying the Bayesian Monte Carlo method, calculating a confidence 

interval based on quantiles for the difference and for the ratio.  

 A logarithmic interval was obtained for the ratio of the two weighted kappa 

coefficients: 

 
 

 
 

 
 

1 1 1
1 2

2 2 2

ˆ ˆˆexp ln
ˆ ˆ

c c c
z Var

c c c

  
  

             
      

, 

where 

 
 

 
 

 
 

   
   

1 2 1 21
2 2

2 1 2 1 2

ˆˆ ˆˆ ˆ ˆ ˆ2 ,ˆˆ ln
ˆ ˆ ˆ ˆ ˆ

Var c Var c Cov c cc
Var

c c c c c

   
    

                   
    

. 

 Applying the Fieller method, a confidence interval was obtained for the ratio of 

the two weighted kappa coefficients: 

 
 

2
1 12 12 11 22

2 22

ˆ ˆ ˆ ˆ

ˆ

c

c

    
 

 
 , 

where     2
1 2ˆ ˆ ˆ ˆij i j ijc c z        ,  ˆ ˆˆii iVar c      and 

   12 1 2
ˆ ˆ ˆˆ ,Cov c c        

 Based on the simulation experiments carried out, the following general rules of 

application for the intervals were given: 
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1). If n is small  100n  , use the Wald CI for the ratio increasing the 

frequencies ijs  and ijr  in 0.5. 

2). If 100 400n  , use the Wald CI for the ratio without adding 0.5. 

3). If 500n  , use any of the CIs (for the difference or for the ratio) without 

adding 0.5. 

 A method was proposed to calculate the sample size necessary to estimate the 

ration between the two weighted kappa coefficients through the Wald 

confidence interval. The method requires estimation of all the parameters 

starting from a pilot sample. 

 A programme written in R that allows us to calculate all of the confidence 

intervals studied and also calculate sample size necessary to compare the two 

weighted kappa coefficients. The programme, called “citwkc” (Confidence 

Intervals for Two Weighted Kappa Coefficients) is available free of change at 

the following URL: 

https://www.ugr.es/~bioest/software/cmd.php?seccion=mdb 

 

4.4. EM and SEM algorithms to compare the weighted kappa 

coefficients of two diagnostic tests in the presence of partial 

verification and discrete covariates 

 Assuming that the missing data mechanism is MAR, the estimations of the 

weighted kappa coefficients are obtained in each pattern of the covariate 

applying the EM algorithm. The estimator of each global weighted kappa 

coefficient is obtained combining properly the estimators in each pattern of the 

covariate. 

 The variances-covariances of the weighted kappa coefficients were estimated 

applying the SEM algorithm. It has been demonstrated that the elements of the 

DM matrix between two different patterns of the covariate are equal to zero, and 

therefore the DM matrix is expressed as  

 1 2Diag , ,..., MDM DM DM DM , 
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 when mDM  is the DM matrix in the mth pattern of the covariate. 

 A Wald type test statistic was proposed to solve the hypothesis test of equality 

of the weighted kappa coefficients and simulation experiments were carried out 

to study its asymptotic behaviour, and it was found that its type I error fluctuates 

around the nominal error without overwhelming it when the sample size is large 

and that for the power to be high it is necessary to have a large sample size. 
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CHAPTER 5 

 

 

CONCLUSIONS 

 

5.1. Recommended methods to compare the accuracy of two 

binary diagnostic tests subject to a paired design 

Traditionally, the comparison of the accuracy of two BDTs subject to a paired design is 

made conditioning on the individuals with (without) the disease and comparing the two 

sensitivities (specificities) applying a comparison test with two paired binomial 

proportions to an   error. Therefore, each one of the tests 0 1 2:H Se Se  and 

0 1 2:H Sp Sp  are tested independently to an   error. An alternative to this method is 

to compare the two sensitivities and the two specificities simultaneously, i.e. performing 

the global test  0 1 2 1 2:  and H Se Se Sp Sp   vs  1 1 2 1 2:  and/or H Se Se Sp Sp  . This 

manuscript studies this global hypothesis test, extending the study by Lachenbruch and 

Lynch (1998), through the application of Rao’s score test and the Wald test. 

Lachenbruch and Lynch proposed two statistics for the global test, one obtained 

applying the likelihood ratio test and another one obtained as the sum of the McNemar 

statistic for the test 0 1 2:H Se Se  and of the McNemar statistic for the test 

0 1 2:H Sp Sp . In this study the same statistic has been derived applying Rao’s score 

test. Another statistic has also been obtained using the Wald test, which is also the sum 

of the Wald statistics for the individual tests. Another alternative method that has been 

studied to compare the accuracy of two BDTs consisted of testing the two individual 
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tests 0 1 2:H Se Se  and 0 1 2:H Sp Sp  through a comparison test of paired binomial 

proportions and application of the Bonferroni method or the Holm method. Simulation 

experiments were carried out to study the asymptotic behaviour of the different methods 

to compare the sensitivities and specificities, giving some general rules of application 

for the hypothesis tests studied. 

 

5.2. Comparison of the likelihood ratios of two diagnostic tests 

subject to a paired design: confidence intervals and sample size 

The likelihood ratios are parameters that are used to assess and compare the 

effectiveness of BDTs, and only depend on the sensitivity and specificity of the BDT. 

The comparison of the likelihood ratios of two BDTs consists of the comparison of two 

relative risks. This manuscript has studied this comparison through CIs for the ratio of 

the two positive (negative) likelihood ratios, considering paired design as a type of 

sampling. Six CIs were studied, of which five were frequentist and one was Bayesian. 

The five frequentist intervals are based on the asymptotic normality of the estimators of 

the LRs or of functions of the LRs. Regarding the Bayesian interval, this was obtained 

applying the Monte Carlo method and considering distribution which a priori are non-

informative. The comparison of the asymptotic behaviour of the CIs was studied though 

simulation experiments. The results of these experiments have shown that in order to 

estimate the ratio of the two positive likelihood ratios, in general terms, the intervals 

with the best behaviour are the logarithmic interval (for all sample sizes), the Wald 

interval, the Fieller interval or the Bootstrap (these last three for large or very large 

samples); on the other hand, in order to estimate the ratio of the two negative likelihood 

ratios the interval with the best behaviour is the Wald interval (for all sample sizes). A 

method has also been proposed to determine the sample size necessary to compare the 

ratio between the two positive (negative) likelihood ratios with a precision and 

confidence level. 
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5.3. Asymptotic confidence intervals for the difference and the 

ratio of the weighted kappa coefficients of two diagnostic tests 

subject to a paired design 

The weighted kappa coefficient of a BDT is a measure of the beyond-chance agreement 

between the BDT and the GS, and depends on the sensitivity and specificity of the BDT, 

on the disease prevalence and on the weighting index. The weighting index c is a 

measurement of the relative loss between a false positive and a false negative, and it is a 

value set by the clinician depending on the way that the BDT is going to be used. We 

have studied the comparison of the weighted kappa coefficients of two BDTs through 

confidence intervals subject to a paired design. Three intervals were studied for the 

difference of the two weighted kappa coefficients and another five intervals for the ratio 

between the two parameters. All of the intervals studied are asymptotic and simulation 

experiments were carried out to study their asymptotic behaviour, and based on the 

results of these experiments some general rules of application have been given. A 

method has also been proposed to calculate the sample size to estimate the ratio between 

the two weighted kappa coefficients with a determined accuracy and confidence.  

 

5.4. EM and SEM algorithms to compare the weighted kappa 

coefficients of two diagnostic tests in the presence of partial 

verification and discrete covariates 

The weighted kappa coefficient of a BDT is used to assess and compare the 

effectiveness of BDTs when considering the losses of a misclassification with the BDTs. 

A hypothesis test has been studied to compare the weighted kappa coefficients of two 

BDTs when in the presence of partial disease verification a discrete covariate is 

observed in all of the individuals. The hypothesis test proposed is based on the fact that 

the verification process with the gold standard only depends on the results of the two 

BDTs and on the covariate, and therefore on the fact that the verification process is 

MAR. The solution of the hypothesis test of equality of the two weighted kappa 

coefficients was achieved applying computational methods: the EM algorithm for the 

calculation of the estimators and the SEM algorithm for the calculation of the variances-

covariances. The EM algorithm is very well known and applied in a multitude of 
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problems with missing data. Nevertheless, the application of the SEM algorithm is not 

so frequent, even though this is a method which is inherent to the EM algorithm since it 

uses many of its calculations. Applying the SEM algorithm, it has been demonstrated 

that the elements of the DM matrix between estimators of two different patterns of the 

covariate are equal to 0, and therefore the DM matrix is expressed as a diagonal matrix 

of the form  1,..., MDM Diag DM DM , when each mDM  matrix is the DM matrix in 

the mth pattern of the covariate. This decomposition of the DM matrix simplifies the 

calculations of the variance-covariance matrix. Simulation experiments were carried out 

to study the asymptotic behaviour of the hypothesis test when the covariate is binary, 

which is a type of covariate which is frequent in clinical practice.  
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Abstract 

This manuscript assesses different methods to compare the sensitivities and the 

specificities of two diagnostic tests. It studies the comparison conditioning on the 

disease status and testing each hypothesis test individually to an   error, a global 

hypothesis test to simultaneously compare the parameters, and the individual 

comparison of the parameters along with the multiple comparison methods of 

Bonferroni and Holm. Simulation experiments were carried out to study the global type 

I errors and the global powers of the different methods, providing some general rules of 

application. When the prevalence is small and the sample size is small or moderate, it is 

recommended to compare the parameters individually along with the method of 

Bonferroni or Holm; in any other situation, it is recommended to compare the 

parameters simultaneously through a global test. The results were applied to an example 

of the diagnosis of coronary disease. 

 

Keywords: Binary diagnostic test, global hypothesis test, sensitivity, specificity. 
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1. Introduction 

A diagnostic test is a medical test that is applied to an individual to determine the 

presence or absence of a disease. When the result of a diagnostic test is positive or 

negative, the diagnostic test is called a binary diagnostic test (BDT). The mammography 

for the diagnosis of breast cancer and the stress test for the diagnosis of coronary 

disease are two examples of BDTs. The accuracy of a BDT is assessed in relation to a 

gold standard (GS), which is a medical test used to objectively diagnose the presence or 

absence of the disease. From this point on, it is assumed that the GS is an error-free test, 

and therefore it objectively determines if an individual does or does not have the 

disease. A biopsy for breast cancer and an angiography for coronary disease are two 

examples of the GS. The accuracy of a BDT is measured in terms of two fundamental 

parameters: the sensitivity and the specificity. The sensitivity (Se) is the probability of 

the BDT result being positive when the individual has the disease (positive GS), and the 

specificity (Sp) is the probability of the BDT result being negative when the individual 

does not have the disease (negative GS). Both parameters only depend on the intrinsic 

ability of the BDT to distinguish between individuals with and without the disease.  

The comparison of the accuracy of two BDTs in relation to a GS is an important topic 

in the study of statistical methods for clinical diagnosis, and consists of comparing the 

two sensitivities and the two specificities. This comparison can be made subject to two 

types of sample designs: unpaired design and paired design [1, 2]. Unpaired design 

consists of applying a BDT to a sample of 1n  individuals and the other BDT to a sample 

of 2n  individuals. The paired design consists of applying the two BDTs to all the 

individuals in a random sample sized n. In both types of designs, the disease status is 

known for all the individuals through the application of a GS. In unpaired design, the 

comparison of the two sensitivities (specificities) consists of solving the hypothesis test 

0 1 2:H Se Se  vs 1 1 2:H Se Se  ( 0 1 2:H Sp Sp  vs 1 1 2:H Sp Sp ) to an   error 

applying a method to compare two independent binomial proportions. In paired design, 

the problem is traditionally solved conditioning on the disease status and applying a 

comparison test of two paired binomial proportions. Thus, the comparison of the two 

sensitivities (specificities) is made conditioning on the individuals with (without) the 

disease and solving the test 0 1 2:H Se Se  vs 1 1 2:H Se Se  ( 0 1 2:H Sp Sp  vs 

1 1 2:H Sp Sp ) to an   error applying a comparison test of two paired binomial 



 

54 
 

proportions, e.g. the McNemar test. Therefore, the two sensitivities and the two 

specificities are compared independently solving each test, 0 1 2:H Se Se  and 

0 1 2:H Sp Sp , to an   error. 

When the two BDTs and the GS are applied to all the individuals in a sample sized n, 

an alternative method to the traditional one consists of comparing the two sensitivities 

and the specificities simultaneously, i.e. performing the global hypothesis test 

 0 1 2 1 2:   and  H Se Se Sp Sp   vs  1 1 2 1 2:   and/or  H Se Se Sp Sp  . Lachenbruch and 

Lynch [3] studied this hypothesis test succinctly, proposing two statistics for the test, 

one based on the likelihood ratio test and another on the sum of the McNemar tests of 

each individual test. 

This manuscript is motivated by a study [4] in which the accuracy of two BDTs 

(dobutamine echocardiography and myocardial perfusion scintigraphy) is compared, 

using the coronary angiography as the GS. Conditioning on the individuals with the 

disease and testing the test 0 1 2:H Se Se  vs 1 1 2:H Se Se  to an error 5%   applying 

the McNemar tests, the equality of the two sensitivities is rejected. Testing the test 

0 1 2:H Sp Sp  vs 1 1 2:H Sp Sp  to the same error applying the same method the equality 

of the two specificities is not rejected. Nevertheless, when performing the global test 

 0 1 2 1 2:   and  H Se Se Sp Sp   vs  1 1 2 1 2:   and/or  H Se Se Sp Sp   to an error 

5%   applying the results obtained by Lachenbruch and Lynch [3], the null 

hypothesis of equality of the two sensitivities and of the two specificities is not rejected. 

In Section 4, this example is discussed. The conclusions obtained (which are partly 

contradictory) in this example have motivated to study the comparison of the 

sensitivities and the specificities of two BDTs subject to a paired design using the 

classic method (the individual tests) and the alternative one (the global test), as well as 

an attempt to determine which methods should be applied and under what conditions. 

Section 2 reviews and proposes different methods to compare the two sensitivities 

and the two specificities individually and simultaneously. In Section 3, simulation 

experiments are carried out to study the global type I errors and the global powers of the 

different methods described in Section 2, and some general rules of application are 

given for the methods. These rules of application are based on the disease prevalence 

and the sample size. In general terms, when the prevalence is very small or small and 
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the sample size is small or moderate, it is recommendable to compare the two 

sensitivities and the two specificities individually along with the Bonferroni or Holm 

method, i.e. solving the tests 0 1 2:H Se Se  and 0 1 2:H Sp Sp  individual along with the 

Bonferroni (or Holm) method to an   error; in any other situation, it is recommendable 

to compare the two sensitivities and the two specificities simultaneously, i.e. solving the 

global test  0 1 2 1 2:  and H Se Se Sp Sp   to an   error. In Section 4, the results 

obtained are applied to the example of the diagnosis of coronary artery disease, and in 

Section 5 the results obtained are discussed. 

 

2. Methods to compare the accuracy 

Let us consider two BDTs and one GS that are applied to all of the individuals in a 

random sample of n individuals. Let hT  be the random variable that models the result of 

the hth BDT, in such a way that 1hT   when the result of the BDT is positive and 0hT   

when it is negative. Let the random variable D that models the result of the GS: 1D   

when the individual has the disease and 0D   when this is not the case. The application 

of the two BDTs and of the GS to all the individuals in the sample leads to the 

frequencies in Table 1. In this Section, we present different methods to compare the two 

sensitivities and the two specificities, considering that the hypothesis tests are always 

two-tailed.  

 

2.1. Individual hypothesis tests 

The sensitivities are compared in the individuals with the disease  1D   and testing 

the hypothesis test 0 1 2:H Se Se  vs 1 1 2:H Se Se  to an   error. By conditioning on 

1D   the sample  11 10 01 00, , ,s s s s  is the product of a multinomial distribution with 

probabilities  1 2, 1ijp P T i T j D    , with 1ijij
p  . Using the conditional 

dependence model of Vacek [5], the probabilities ijp  are written as 

   1 1

1 1 2 2 11 1
i ji j

ij ijp Se Se Se Se       , 
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where 1ij   if i j  and 1ij    if i j , and 1  is the covariance between the two 

BDTs when 1D  , verifying that     1 1 2 2 10 1 , 1Min Se Se Se Se    . If 1 0   then 

the two BDTs are conditionally independent when 1D  , an assumption that is not 

realistic, and therefore in practice 1 0  . In terms of the probabilities ijp , the 

sensitivities are expressed as 1 11 10Se p p   and 2 11 01Se p p  , with ˆ ij ijp s s . In this 

situation, the hypothesis test of equality of the sensitivities is equivalent to test 

 0 10 01 1 10 01:   vs  :H p p H p p  . (1) 

 

Table 1. Observed frequencies and probabilities when two BDTs are compared in 
relation to a GS subject to a paired design. 

Observed frequencies 

 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   11s  10s  01s  00s  s  

0D   11r  10r  01r  00r  r  

Total 11 11s r  10 10s r  01 01s r  00 00s r  n  

 

In a similar way, the specificities are compared conditioning on the individuals without 

the disease  0D   and testing the test 0 1 2:H Sp Sp  vs 1 1 2:H Sp Sp  to an   error. 

Conditioning on 0D   the sample  11 10 01 00, , ,r r r r  is the product of a multinomial 

distribution with probabilities  1 2, 0ijq P T i T j D    , with 1ijij
q  . Using the 

model of Vacek [5] again it is obtained that 

   1 1
1 1 2 2 01 1

i ji j
ij ijq Sp Sp Sp Sp       , 

where 0  is the covariance between the two BDTs when 0D  , verifying that 

    0 1 2 2 10 1 , 1Min Sp Sp Sp Sp    . The same as for 1 , in practice 0 0  . In 

terms of ijq , the specificities are expressed as 1 01 00Sp q q   and 2 10 00Sp q q  , with 

ˆij ijq r r . Therefore, the comparison test of the two specificities is equivalent to the 

test 

 0 01 10 1 01 10:   vs  :H q q H q q  . (2) 
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The hypothesis tests (1) and (2) are solved applying a test to compare two paired 

binomial proportions. Then eleven methods (two exact methods, one quasi-exact and 

eight asymptotic ones) are described to compare two paired binomial proportions, in the 

context studied here (sensitivities and specificities) and using the notation in Table 1. 

These methods are: 

1) Conditional exact test (CET) 

2) Conditional Mid-p test (Midp) 

3) McNemar test (MT) 

4) McNemar test with continuity correction (MTcc) 

5) Modified McNemar test (MMT) 

6) Wald test (WT) 

7) Modified Wald test (MWT) 

8) Likelihood ratio test (LRT) 

9) Unconditional exact Test (UET) 

10) Unconditional McNemar test (UMT) 

11) Unconditional likelihood ratio test (ULRT) 

In Appendix A there is a detailed explanation of each method. The comparison of the 

asymptotic behaviour (in terms of type I error and power) of methods to compare two 

paired binomial proportions has been the subject of several studies. May and Johnson 

[6] compared the methods CET, Midp, MT, MTcc, MMT, WT, MWT and LRT, and they 

recommended using the Midp, the MT or the MWT when the sum of discordant 

frequencies is lower than 40. Fagerland et al [7] compared the methods CET, Midp, MT, 

MTcc and UET, and they recommended using the MT and the Midp. 

 

2.2. Global hypothesis tests 

Another way of comparing the accuracy of two BDTs consist of comparing the two 

sensitivities and the two specificities simultaneously, i.e. performing the global 

hypothesis test 

    0 1 2 1 2 1 1 2 1 2:   and    vs  :   and/or  H Se Se Sp Sp H Se Se Sp Sp    . (3) 
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The solution of this hypothesis test is achieved without conditioning on the disease 

status. Therefore, this hypothesis test is solved based on the sample design used, in 

which the researcher has only set the size (n) of the only sample in the study. The 

observed frequencies given in Table 1,  11 10 01 00 11 10 01 00, , , , , , ,
T

s s s s r r r rx , are the 

product of a multinomial distribution. Let  11 10 01 00 11 10 01 00, , , , , , ,
T       ω  be the 

vector of probabilities of the multinomial distribution, where  1 21, ,ij P D T i T j      

and  1 20, ,ij P D T i T j      with , 0,1i j  . It is verified that 

    1 1

1 1 2 2 11 1
i ji j

ij ijSe Se Se Se           (4) 

and 

    1 1
1 1 2 2 01 1

i ji j
ij ijSp Sp Sp Sp          , (5) 

where  1 ijij
P D     is the disease prevalence and 1 ijij

     . In terms 

of the probabilities 
ij

  and ij , the sensitivities and the specificities are expressed as 

 1 11 10Se     ,  2 11 01Se     ,  1 01 00Sp      and  2 10 00Sp     . As 

îj ijs n   and ˆ
ij ijr n  , the estimators of the sensitivities and of the specificities are

 1 11 10Ŝe s s s  ,  2 11 01Ŝe s s n  ,  1 01 00Ŝp r r r   and  2 10 00Ŝp r r r  , and the 

estimator of the prevalence is ˆ s n  . Applying the delta method, its corresponding 

estimated variances are      ˆ ˆ ˆˆ ˆ1h h hVar Se Se Se n  ,      ˆ ˆ ˆˆ ˆ1h h hVar Sp Sp Sp n   

and  ˆ ˆˆ ˆVar n  , with 1,2h  . The global hypothesis test (3) is equivalent to the 

test 

    0 10 01 01 10 1 10 01 01 10:   and    vs  :   and/or  H H           . (6) 

Subject to the null hypothesis it is verified that  10 01 10 01 2       and that 

 01 10 01 10 2      , and its estimators are    10 01 10 01
ˆ ˆ 2s s n     and 

   01 10 01 10
ˆ ˆ 2r r n    . It is obvious that the hypothesis test (6) is also equivalent to 

the test  0 10 01 01 10:   and  H p p q q   vs  1 10 01 01 10:   and/or  H p p q q  , since 

ij ijp   and ij ijq  . Nevertheless, in the inconditional model the probabilities 
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involved are 
ij

  and ij , and not the probabilities ijp  and ijq  obtained under 

conditioning. 

Lachenbruch and Lynch [3] briefly studied the global hypothesis test, proposing two 

statistics: one obtained through the likelihood ratio test and another obtained by adding 

the two McNemar statistics (the sum of equations (19) and (20), see Appendix A). Three 

statistics are then presented to solve the global hypothesis test. Firstly, we present the 

likelihood ratio test statistics of Lachenbruch and Lynch. Secondly, we obtain a statistic 

applying the Rao’s score test [8], demonstrating that this statistic is the same as the 

second statistic (the sum of the two McNemar statistics) obtained by Lachenbruch and 

Lynch. Finally, the global test is solved by applying the Wald test [9]. 

 

2.2.1. Likelihood ratio test (LRT) 

Lachenbruch and Lynch [3] solved the global hypothesis test (6) by applying the 

likelihood ratio test. The likelihood function of the data is 

  10 01 00 10 10 0011 11
11 10 01 00 11 10 01 00; s s s r r rs rL k       ω x , where ! ! !ij ij

ij ij

k n s r
   

    
    
  . Subject to the 

null hypothesis, this function is   10 01 00 10 01 0011 11
0 11 10 00 11 01 00; s s s r r rs rL k      ω x . Applying the 

likelihood ratio test and performing algebraic operations, it is obtained that the 

likelihood ratio statistic is 

 2 10 01 10 01
10 01 10 01

10 01 10 01 10 01 10 01

2 2 2 2
2 ln ln ln lnLR

s s r r
s s r r

s s s s r r r r


        
                      

, (7) 

which is distributed asymptotically according to a chi-square distribution with two 

degrees of freedom when the null hypothesis is true. This statistic is the sum of the 

statistics obtained by applying the likelihood ratio test to compare the two sensitivities 

and the two specificities independently, i.e. the sum of expressions (27) and (28) (see 

Appendix A), and in which only the frequencies of the discordant pairs intervene. 

 

 

 

 



 

60 
 

2.2.2. Rao’s score test (RST) 

The global hypothesis test can be solved applying Rao’s score test [8]. The log-

likelihood function of the data in Table 1 is      ; ln ln lnij ij ij ijij ij
l k s r    ω x . 

Let  U ω  be a vector whose components are the derivates of  ;l ω x  with respect to ω  

i.e. 

  11 10 01 00 11 10 01 00

11 10 01 00 11 10 01 00

, , , , , , ,
T

s s s s r r r r

       
 

  
 

U ω . 

As ω  is the probability vector of a multinomial distribution, the variance-covariance 

matrix of ω̂  is   ˆ
Tdiag n  ω ω ωω . The estimator of ω  subject to the null 

hypothesis is  

11 10 01 10 01 00 11 10 01 10 01 00
0ˆ , , , , , , ,

2 2 2 2

T
s s s s s s r r r r r r

n n n n n n n n

      
 

ω . 

Substituting in  U ω  each parameter ij  and ij  with its corresponding estimator 

subject to the null hypothesis given in 0ω̂  it is obtained that 

  10 01 10 01
0

10 01 10 01 10 01 10 01

2 2 2 2
ˆ , , , , , , ,

T
s n s n r n r n

n n n n
s s s s r r r r

 
      

U ω . 

Finally, the Rao’s score test statistic for the global hypothesis test is 

   
0

2
ˆ0 0

ˆˆ ˆT
R  ωU ω U ω , 

which is distributed asymptotically according to a chi-square distribution with two 

degrees of freedom when the null hypothesis is true, and where 
0ˆ̂ω  is the matrix ˆω  

assessed in 0ω̂ . Performing algebraic operations, it is obtained that the Rao’s score test 

statistic is 

 
   2 2

2 10 01 10 01

10 01 10 01
R

s s r r

s s r r


 
 

 
. (8) 

This statistic is the sum of the statistics obtained applying the McNemar test to compare 

the two sensitivities and the two specificities independently, i.e. the sum of expressions 

(19) and (20) (see Appendix A), and therefore it is in line with the one proposed by 
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Lachenbruch and Lynch [3] based on the construction of two separate 2 2  tables 

obtained from Table 1 using the results of Hamdan et al [10]. 

 

2.2.3. Wald test (WT) 

Another way of performing the global test is through the classic Wald test [9]. Let 

 1 2 1 2, , ,
T

Se Se Sp Spθ  be the vector whose components are the sensitivities and the 

specificities. As the sensitivities and the specificities are written in terms of the 

probabilities of ω , applying the delta method, the variance-covariance matrix of vector 

θ̂  is ˆ ˆ

T             
πθ

θ θ

π π
. The hypothesis test (3) is equivalent to  

 0 1: 0  vs  : 0H H ψθ ψθ . (9) 

where ψ  is a complete range matrix sized 2 4  defined as  

1 1 0 0

0 0 1 1

 
   

ψ . 

Through the Multivariate Central Limit Theorem, it is verified that 

   ˆ ,
n

n N  θθ θ 0 Σ . Finally, the Wald test statistic for the hypothesis test (9) is 

   1
2

ˆ
ˆˆ ˆT T T

W


 
θ

θ ψ ψ ψ ψθ , (10) 

which is distributed asymptotically according to a chi-square distribution with two 

degrees of freedom when the null hypothesis is true. Performing algebraic operations, it 

is obtained that the Wald test statistic is  

 
 
  

 
  

2 2

2 10 01 10 01

10 01 11 00 10 01 10 01 11 00 10 014 4W

s s s r r r

s s s s s s r r r r r r


 
 

     
, (11) 

which is also the sum of the statistics obtained applying the Wald test to compare the 

two sensitivities and the two specificities independently, i.e. the sum of expressions (24) 

and (25) (see Appendix A). In this statistic, all the observed frequencies are used. 
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2.3. Other alternative methods 

The methods described in Section 2.1 compare the two sensitivities and the two 

specificities individually, testing each one of the hypothesis tests, 0 1 2:H Se Se  and 

0 1 2:H Sp Sp , to an   error, and the methods described in Section 2.2 compare the 

parameters simultaneously to an   error. Another alternative consists of comparing the 

sensitivities and the specificities individually (through the methods described in 2.1) 

and then applying a multiple comparison method to an   error. As multiple comparison 

methods, we propose the application of the Bonferroni method [11] and the Holm 

method [12]. The Bonferroni method is a classic one in post-hoc comparisons and, in 

the situation studied here, it consists of testing each individual test to an 2  error to 

thereby control the global   error. The Holm method is a less conservative post-hoc 

method than the Bonferroni one. Let 1p  and 2p  be the p-values obtained in each 

individual hypothesis test and let us suppose that 1 2p p , the Holm method consists of 

the following two steps:  

1) If 1 2p   then none of the two null hypothesis 0 1 2:H Se Se  and 0 1 2:H Sp Sp  

are rejected. In the opposite case  1 2p  , the null hypothesis corresponding to that 

hypothesis test is rejected and we go on to the next step. 

2) If 2p   then the null hypothesis corresponding to that hypothesis test is not 

rejected. In the opposite case  2p   that null hypothesis is rejected and the process 

ends. 

 

3. Simulation experiments 

Monte Carlo simulation experiments were carried out to study the global type I errors 

and the global powers of the methods described in Section 2. For the methods described 

in Sections 2.1 and 2.3, the objective is to study the global type I error and the global 

power of each method when comparing the two sensitivities and the two specificities. 

Thus, the global type I error is the one made when we reject the hypothesis 

0 1 2:H Se Se  and/or the hypothesis 0 1 2:H Sp Sp  when both are true, whether or not 

each test is to an   error or applying the Bonferroni method (or the Holm method). The 
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argument for the global power is similar to that of the global type I error. Therefore, the 

objective is not to study the type I error and the power of each individual hypothesis 

test, 0 1 2:H Se Se  or 0 1 2:H Sp Sp , which is a question that has been studied by other 

authors [6, 7]. For the methods described in Section 2.2, the objective is to study the 

type I error and the power of the global test  0 1 2 1 2:  and H Se Se Sp Sp  . The 

experiments consisted of generating 10,000N   random samples with multinomial 

distributions of different sizes,  50,100,200,300,400,500,1000,2000n  , and whose 

probabilities were calculated from equations (4) and (5). As sensitivity and specificity, 

the values  0.70,0.75,...,0.95  were taken for each BDT, which are frequent values in 

clinical practice. As disease prevalence, the values  5%,10%,25%,50%   were 

taken, which can be considered to be a very small (5%), small (10%), moderate (25%) 

and high value (50%) respectively. For the covariances 1  and 0  we took for both 25% 

(a low value), 50% (intermediate value), 75% (high value) and 90% (very high value) of 

its maximum value, i.e.     1 1 2 2 11 , 1f Min Se Se Se Se      and 

    0 1 2 2 11 , 1f Min Sp Sp Sp Sp      where  0.25,0.50,0.75,0.90f  . The N 

multinomial random samples were generated independently, and in such a way that in 

all of them it was possible to apply all the methods described in Section 2. Thus, for 

example, if a sample has a discordant frequency equal to zero, then it is not possible to 

apply the likelihood ratio test, and in this situation that sample has been discarded and 

another one has been generated instead until the completion of N samples. This situation 

has mainly occurred when the sample size has been small  50n   or moderate 

 100n  . As   error, the value 5% has been taken. For the N samples generated from 

the same multinomial distribution, we calculated the global type I error or the global 

power, according to the situation of each one of the different methods to compare the 

two sensitivities and the two specificities, i.e.: 1) 0 1 2:H Se Se  and 0 1 2:H Sp Sp  each 

one to an error 5%  , 2)  0 1 2 1 2:  and H Se Se Sp Sp   to an error 5%  , 3) 

0 1 2:H Se Se  and 0 1 2:H Sp Sp  and application of the Bonferroni method to an error 

5%  , and 4) 0 1 2:H Se Se  and 0 1 2:H Sp Sp  and application of the Holm method 

to an error 5%  . 
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3.1. Global type I errors 

For each one of the previous methods (1, 2, 3 and 4), the global type I errors were 

calculated in the different scenarios considered. For Method 1, a count was made of the 

number of samples in which 1 1 2:H Se Se  and/or 1 1 2:H Sp Sp  were accepted (when 

0 1 2:H Se Se  and 0 1 2:H Sp Sp  are true), each one to an error 5%  , and then we 

calculated the global type I error dividing the value obtained by N. For Methods 3 and 

4, the global type I errors were calculated in a similar way but applying the Bonferroni 

method and the Holm method respectively. Regarding Method 2, a count was made of 

the number of samples in which  1 1 2 1 2:  and/or H Se Se Sp Sp   was accepted when 

 0 1 2 1 2:  and H Se Se Sp Sp   was true, and that value was divided by N. The 

comparison of the global type I errors of the different methods was made using the 

following criteria. For those methods based on exact tests it was considered that the 

method performs well when its global type I error is 5% ; if the global type I error is 

5%  then the global type I error goes too far above the nominal error. For those 

methods based on approximate tests, it was considered that the method shows good 

global type I error performance when the global type I error fluctuates around the 

nominal error of 5% without going too far above it. Here it has been considered that the 

global type I error goes too far above the nominal error when the global type I error is 

7% . In Appendix B these criteria are justified. 

In Tables 2, 3 and 4, we show some of the results obtained for methods 1, 2 and 3 

respectively, and for different values of the parameters, indicating in bold that the global 

type I goes too far above the nominal error. The results for the Holm method are not 

shown, as they are practically identical to those obtained applying the Bonferroni 

method. The Monte Carlo standard error of a nominal error of 5% based on 10,000 

samples is 0.22%, and the overall average Monte Carlo error obtained is 0.21% (a value 

very close to 0.22%). Prevalence p and the covariances i  have an important effect on 

the type I global error of the methods proposed: the increase in prevalence involves (if 

the other parameters remain constant) an increase in the global type I error, whereas the 

increase in 1  and/or 0  involves (if the other parameters remain constant) a decrease in 

the global type I error. From the results the following conclusions are obtained: 
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a) Method 1: 0 1 2:H Se Se  and 0 1 2:H Sp Sp  each one to an error 5%  . In 

general terms, the global type I errors of the methods CET, Midp and UET go too far 

above the nominal error (global type I errors 5% ) when the sample size is large 

 200 500n   or very large  1000n   depending on the prevalence and on the 

covariances. The asymptotic tests MT, MMT, WT, MWT and LRT clearly go too far 

above the nominal error (global type I errors 7% ), and can even double it, when the 

sample size is large (the LRT can goes too far above the nominal error even with 

100n  ) or very large. The MTcc test only goes too far above the nominal error when 

the sample size is very large. The UMT and ULRT tests never exceed the nominal error, 

and their global type I errors are very small (they are not usually over 3%), and, 

therefore, they are excessively conservative tests (even more than the exact tests when 

they do not exceed the nominal error). In general terms, when comparing the two 

sensitivities and the two specificities testing the tests 0 1 2:H Se Se  and 0 1 2:H Sp Sp  

individually each one to an error 5%  , the method with the best behaviour when 

500n   is the McNemar test with cc (MTcc), although for 1000 2000n    its global 

type I error can be clearly 7%  depending on the prevalence and on the covariances i

. If the prevalence is very small  5%p  , the global type I error of the MTcc fluctuates 

around the nominal error without going too far above it; if the prevalence is higher 

 10%p   the global type I error can easily be above the nominal error. As for the 

effect of the covariances i , the global type I error of the MTcc fluctuates around the 

nominal error without going too far above it when the covariances take very high values 

(even when 500n  ); for other values of the covariances, the global type I error of the 

MTcc can go well above the nominal error especially when n is very large. 

b) Method 2:  0 1 2 1 2:  and H Se Se Sp Sp   to an error 5%  . The global type I 

errors of LRT, RST and WT methods do not go too far above the nominal error. From a 

sample size between 200 and 500, depending on the prevalence and on the covariances, 

the global type I error of each test fluctuates around the nominal error. In general terms, 

although there is no important difference between their type I errors, the LRT presents a 

global type I error closest to 5%, followed by the WT and the RST, especially when 

500n  . For 1000n   the three methods have a very similar global type I error, as these 

methods are asymptotically first order equivalent. Moreover, these three methods have a 
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global type I error which is slightly lower than the MTcc to an error 5%   when the 

prevalence is very small  5%p  ; for 10%p  , the global type I errors of these three 

methods are nearer to 5% than the global type I error of the del MTcc (Table 1: MTcc) 

with 5%   (when the latter does not go too far above the nominal error). Regarding 

the effect of the covariances i , their increase involves (if the other parameters remain 

constant) a decrease in the global type I error, especially when 500n  . When the 

covariances are very high, the global tests LRT and WT have a global type I error whose 

fluctuations are slightly better around the nominal error than the MTcc with 5%  . 

c) Method 3: 0 1 2:H Se Se  and 0 1 2:H Sp Sp  and application of the Bonferroni 

method to an error 5%  . The global type I errors of the methods Midp and UET can 

be 5%  when the sample size is very large  1000n  , in the rest of the situations 

their corresponding global type I errors are 5% . The rest of the methods have global 

type I errors that do not exceed the nominal error. As in case a), the UMT and ULRT 

methods are very conservative. In general terms, applying the Bonferroni method, the 

MT, WT and LRT methods have a global type I error closer to 5% than the rest of the 

methods. Furthermore, in very general terms, there is no important difference between 

the global type I errors of the WT and of the LRT methods along with Bonferroni and 

the global type I error of the method based on the McNemar test with cc to an error 

5%   (when this method has a global type I error 7% ). The MT along with 

Bonferroni has a global type I error which is slightly lower than that of the McNemar 

test with cc to an error 5%  . Moreover, although there is no important difference 

between the global type I errors of the individual methods (MT, WT and LRT) along 

with Bonferroni and the global type I errors of the methods to solve the global test 

 0 1 2 1 2:  and H Se Se Sp Sp  , in very general terms when 100n   the global tests are 

slightly more conservative than the individual tests along with Bonferroni. 

d) Method 4: 0 1 2:H Se Se  and 0 1 2:H Sp Sp  and application of the Holm method 

to an error 5%  . The results are practically identical to those obtained with Method 

3. 

 

 



 

67 
 

Table 2. Global type I errors (%) of the individual tests with 5%  . 
 1 2 1 2 1 00.80 , 0.90 , 5% , 0.04 , 0.0225  25% of the maximum valueSe Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0.47 1.32 1.32 0.47 1.30 3.06 1.32 3.04 1.32 0.05 0.15 
100 1.67 2.97 3.06 1.46 2.48 3.72 3.01 4.09 3.06 0.40 0.48 
200 3.03 4.49 5.39 2.95 4.45 5.59 4.75 5.58 5.39 0.62 0.77 
300 3.33 4.90 5.11 3.23 4.70 5.83 5.09 6.01 5.11 0.57 0.70 
400 3.81 5.43 5.44 3.71 5.37 6.79 5.52 6.80 5.44 0.71 0.81 
500 4.24 6.20 6.26 4.10 6.05 8.32 6.29 8.32 6.26 0.92 1.06 

1000 6.14 8.84 8.85 5.99 8.49 10.84 8.86 10.93 8.85 1.28 1.67 
2000 7.33 9.42 10.25 7.21 9.29 10.29 9.79 10.29 10.25 1.72 1.88 

 1 2 1 2 1 00.80 , 0.90 , 10% , 0.08 , 0.045  50% of the maximum valueSe Se Sp Sp p        
 

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0.11 0.42 0.42 0.11 0.42 1.50 0.43 1.48 0.42 0.01 0.02 
100 0.77 1.77 1.77 0.75 1.71 2.16 1.80 3.63 1.77 0.14 0.24 
200 2.86 4.78 5.04 2.48 4.25 6.02 4.78 6.23 5.04 0.41 0.73 
300 3.15 5.09 5.87 3.08 4.96 7.35 4.97 7.36 5.87 0.55 0.84 
400 3.58 5.89 6.48 3.54 5.83 8.48 5.89 8.74 6.48 0.63 0.93 
500 4.51 7.28 7.36 4.36 7.08 9.16 7.28 10.13 7.36 0.77 1.03 

1000 6.38 9.19 9.60 6.03 8.56 10.20 9.18 10.52 9.60 1.33 1.45 
2000 7.38 9.60 10.20 7.35 9.52 10.44 9.96 10.44 10.20 1.37 1.45 

 1 2 1 2 1 00.90 , 0.90 , 25% , 0.045 , 0.045  50% of the maximum valueSe Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0 0.10 0.10 0 0.18 0.48 0.10 0.48 0.10 0 0 
100 0.82 1.72 1.72 0.82 2.20 2.00 1.72 4.20 1.72 0.12 0.26 
200 2.68 4.82 4.88 2.40 6.42 6.12 4.82 7.72 4.84 0.44 1.02 
300 3.62 6.30 6.92 3.26 8.46 7.12 5.96 9.52 6.84 0.58 1.80 
400 4.72 7.46 8.24 4.68 8.18 8.68 7.46 11.30 7.90 0.92 1.30 
500 5.18 8.18 8.54 5.06 8.70 9.26 8.18 10.94 8.44 0.86 1.44 

1000 6.04 8.66 9.60 5.58 9.10 9.60 8.32 9.80 9.60 1.06 1.54 
2000 7.36 9.40 9.40 7.22 9.10 9.54 9.40 9.66 9.40 1.26 1.60 

 1 2 1 2 1 00.90 , 0.90 , 50% , 0.0675 , 0.0675 75% of the max.Se Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0 0 0 0 0 0 0 0 0 0 0 
100 0.04 0.08 0.08 0.04 0.36 0.18 0.08 0.38 0.08 0.02 0.04 
200 0.28 1.18 1.18 0.28 3.36 1.22 1.18 3.42 1.18 0.02 0.30 
300 1.58 3.70 3.70 1.58 4.90 3.92 3.70 8.26 3.70 0.08 0.74 
400 3.30 6.28 6.28 3.26 6.58 6.66 6.12 11.02 6.28 0.30 0.96 
500 3.82 7.20 7.20 3.66 7.42 7.20 6.80 11.82 7.20 0.48 1.56 

1000 5.74 8.58 10.14 5.40 8.34 10.14 8.10 10.26 10.14 1.06 1.26 
2000 7.54 10.30 10.32 7.20 8.86 10.32 10.30 10.62 10.32 0.98 1.10 

 1 2 1 2 1 00.90 , 0.80 , 25% , 0.0225 , 0.04  25% of the maximum valueSe Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 1.14 2.80 2.80 1.12 2.70 5.42 3.04 5.42 2.80 0.16 0.62 
100 3.40 5.00 5.28 2.88 4.34 6.26 5.30 6.42 5.04 1.00 1.00 
200 3.76 6.44 6.74 3.74 6.16 8.76 6.64 9.68 6.66 0.86 0.96 
300 5.36 8.38 8.40 5.20 8.32 9.20 8.40 11.36 8.38 1.28 1.52 
400 6.18 8.96 9.12 5.80 8.24 9.92 9.08 10.76 9.10 1.34 1.66 
500 6.20 8.70 9.44 5.64 8.76 9.88 8.92 10.04 9.28 1.28 1.34 

1000 7.68 9.72 10.16 7.62 9.38 10.40 9.82 10.40 10.15 1.72 1.68 
2000 8.12 9.56 9.64 8.02 9.38 9.90 9.56 9.90 9.64 1.34 1.54 

 1 2 1 2 1 00.90 , 0.80 , 50% , 0.081 , 0.144  90% of the maximum valueSe Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0 0 0 0 0 0 0 0 0 0 0 
100 0.01 0.02 0.02 0.01 0.02 0.06 0.02 0.14 0.02 0 0 
200 0.03 0.16 0.16 0.03 0.16 0.16 0.16 0.72 0.16 0 0 
300 0.19 0.71 0.71 0.19 0.71 0.73 0.71 1.46 0.71 0 0.01 
400 0.66 1.85 1.87 0.66 1.87 1.88 1.87 3.89 1.87 0.01 0.06 
500 1.22 2.93 2.94 1.22 2.91 2.93 2.91 6.23 2.93 0.04 0.15 

1000 4.05 7.35 7.56 3.72 6.75 7.56 6.76 10.03 7.56 0.41 0.89 
2000 5.90 8.83 9.62 5.52 8.35 9.62 8.38 9.84 9.82 0.90 1.34 

CET: Conditional exact test. Midp: Mid-p test. MT: McNemar test. MTcc. McNemar test with cc. MMT: Modified 
McNemar test. WT: Wald test. MWT: Modified Wald test. LRT: Likelihood ratio test. UET: Unconditional exact test. 
UMT: Unconditional McNemar test. ULRT: Unconditional likelihood ratio test. 
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Table 3. Global type I errors (%) of the global tests with 5%  . 
1 2 1 20.80 , 0.90Se Se Sp Sp     

  1 05%, 0.04, 0.0225 25% of the max.p       1 010%, 0.08, 0.045 50% of the max.p      

n LRT RST WT LRT RST WT 
50 0.45 0.18 0.56 0.13 0.03 0.15 

100 1.23 0.94 1.26 0.82 0.53 0.75 
200 2.07 1.83 2.13 2.65 1.93 2.59 
300 2.61 2.16 2.57 3.12 2.49 3.06 
400 3.03 2.71 3.10 3.48 2.79 3.42 
500 3.82 2.99 3.91 4.41 3.79 4.08 
1000 5.01 4.48 5.10 5.19 4.81 5.12 
2000 5.14 4.95 5.23 5.08 5.02 5.11 

1 2 1 20.90 , 0.90Se Se Sp Sp     

  1 025%, 0.045, 0.045 50% of the max.p       1 050%, 0.0675, 0.0675 75% of the max.p      

n LRT RST WT LRT RST WT 
50 0 0 0 0 0 0 

100 0.84 0.50 0.72 0.08 0.06 0.06 
200 2.86 2.10 2.36 0.58 0.32 0.40 
300 3.92 3.10 3.46 2.74 1.74 1.84 
400 5.00 4.16 4.52 4.44 3.22 3.38 
500 5.08 4.40 4.64 4.94 3.94 4.06 
1000 4.82 4.72 4.80 5.22 5.15 5.18 
2000 4.92 4.85 4.89 5.10 4.88 4.96 

1 2 1 20.90 , 0.80Se Se Sp Sp     

  1 025%, 0.0225, 0.04 25% of the max.p       1 050%, 0.045, 0.08 90% of the max.p      

n LRT RST WT LRT RST WT 
50 1.16 0.46 1.32 0 0 0 

100 2.82 2.30 2.86 0.01 0 0.01 
200 3.70 3.10 3.78 0.06 0.02 0.02 
300 5.12 4.46 4.94 0.34 0.20 0.20 
400 4.86 4.28 4.66 1.04 0.55 0.77 
500 5.04 4.56 4.98 1.86 1.14 1.36 
1000 5.52 5.44 5.52 4.73 3.71 3.96 
2000 5.22 5.18 5.20 5.14 4.84 4.91 

LRT: Likelihood ratio test. RST: Rao’s score test. WT: Wald test. 

 

3.2. Powers 

The global powers were calculated in a similar way to the global type I errors. Table 5 

shows some of the results obtained for the methods that have a global type I error with 

better behaviour, i.e. 0 1 2:H Se Se  and 0 1 2:H Sp Sp  through the McNemar test with 

cc to an error 5%   (Table 5: individual MTcc), the three global tests (Table 5: global 

LRT, global RST and global WT), and 0 1 2:H Se Se  and 0 1 2:H Sp Sp  through the MT, 

WT and LRT along with the Bonferroni method (Table 5: Bonferroni MT, WT and LRT). 

The choice of McNemar test with cc to an error 5%   is justified because its global 

type I error has a good behavior when 500n  . The global powers of the rest of the 

methods are not shown, since these methods have global type I errors that very 

frequently go too far above the nominal error. Nor do we show the results obtained with 
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the Holm method, as they are practically the same as those obtained with the Bonferroni 

method. From the results, the following conclusions are obtained. 

The prevalence of the disease and the covariances have an important effect on the 

global powers of the methods. The increase in the prevalence (if the other parameters 

remain constant) means an increase in the powers, whereas the increase in the 

covariances i  means (if the other parameters remain constant) a decrease in the 

powers. These results are to be expected, since an increase in the prevalence means an 

increase in the global type I errors, and an increase in the covariances means a decrease 

in the global type I errors. In general terms, the LRT and the WT for the global 

hypothesis test are a little more powerful than the RST, especially when 300 400n    

depending on the differences between the two sensitivities (specificities). Moreover, 

regarding the global test, there is no important difference between the power of the LRT 

and of the WT. 

Comparing the power of the LRT (WT) for the global test and the power of the 

McNemar test with cc to an error 5%  , in very general terms, the global tests are a 

little less powerful, between 1% and 5% approximately, when the prevalence is small or 

very small  10%p   and 200n  , and the powers are very similar when 300n  . 

When 500n   and the prevalence is moderate (25%) or large (50%), the global tests are 

more powerful, between 2% and 10% approximately depending on the sample size and 

on the prevalence. When 1000n   the powers are practically equal. 

Regarding the methods based on the individual tests along with the Bonferroni 

method, there is no important difference between the powers of the three methods, 

especially when 200n  . When the sample size is small or moderate, the WT and the 

LRT along with Bonferroni are slightly more powerful than the MT along with 

Bonferroni. Comparing the powers of these three methods with the power of the MTcc 

to an error 5%  , there is no method that is clearly more powerful than another. In 

very general terms,: when the sample size is small  50n   or moderate  100n   the 

WT and the LRT along with Bonferroni are usually slightly more powerful; when the 

sample size is large  200 500n   the individual MTcc to an error 5%   is usually 

slightly more powerful, and when the sample size is very large  1000n   the powers 

are practically equal. 
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Table 4. Global type I errors (%) of the individual tests with Bonferroni method  
1 2 1 2 1 00.80 , 0.90 , 5% , 0.04 , 0.0225 (25% of the maximum value)Se Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0.15 0.47 0.47 0.06 0.15 0.56 0.47 0.99 0.47 0.01 0.02 
100 0.80 1.39 1.39 0.60 1.19 1.57 1.42 1.51 1.39 0.07 0.14 
200 1.53 1.99 1.99 1.39 2.21 2.05 2.26 2.01 1.99 0.19 0.24 
300 1.56 2.33 2.33 1.44 2.11 2.59 2.15 2.58 2.33 0.16 0.21 
400 1.73 2.52 2.52 1.58 2.21 3.06 2.61 3.03 2.52 0.16 0.18 
500 2.09 3.02 3.02 1.82 2.53 3.78 3.04 3.64 3.02 0.22 0.28 

1000 3.00 4.51 4.53 2.64 3.72 5.02 4.53 5.03 4.53 0.34 0.47 
2000 3.62 4.87 4.88 3.50 4.67 5.45 4.92 5.09 4.88 0.59 0.70 

1 2 1 2 1 00.80 , 0.90 , 10% , 0.08 , 0.045 (50% of the maximum value)Se Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0.02 0.11 0.11 0.01 0.02 0.25 0.11 0.38 0.11 0.00 0.00 
100 0.34 0.75 0.75 0.17 0.38 0.82 0.79 1.13 0.75 0.01 0.03 
200 1.32 2.28 2.28 1.12 2.00 2.57 2.29 2.60 2.28 0.14 0.22 
300 1.48 2.48 2.48 1.32 2.15 3.07 2.46 3.05 2.48 0.16 0.23 
400 1.83 2.89 2.89 1.45 2.24 3.45 2.89 3.72 2.89 0.16 0.20 
500 2.07 3.42 3.42 1.72 2.67 3.67 3.40 4.38 3.42 0.19 0.26 

1000 3.13 4.66 4.67 2.81 4.26 4.85 4.64 4.91 4.67 0.27 0.43 
2000 3.60 4.91 4.95 3.34 4.58 4.94 4.86 4.97 5.04 0.39 0.46 

1 2 1 2 1 00.90 , 0.90 , 25% , 0.045 , 0.045 (50% of the maximum value)Se Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0 0 0 0 0 0.10 0 0.10 0 0 0 
100 0.28 0.82 0.82 0.14 0.28 0.84 0.82 1.48 0.82 0 0.06 
200 1.32 2.36 2.36 0.94 2.18 2.40 2.36 2.96 2.36 0.06 0.34 
300 1.62 2.92 2.92 1.46 3.86 3.08 2.92 3.98 2.92 0.14 0.54 
400 2.52 3.98 3.98 2.14 4.02 4.10 3.98 4.92 3.98 0.14 0.34 
500 2.40 4.26 4.26 1.94 4.22 4.28 4.26 4.94 4.26 0.34 0.40 

1000 2.98 4.48 4.48 2.80 4.62 4.70 4.42 4.70 4.48 0.28 0.52 
2000 3.88 4.92 4.98 3.78 4.86 5.10 4.88 5.12 5.06 0.30 0.50 

1 2 1 2 1 00.90 , 0.90 , 50% , 0.0675 , 0.0675 (75% of the maximum value)Se Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0 0 0 0 0 0 0 0 0 0 0 
100 0.04 0.04 0.04 0.02 0.04 0.04 0.04 0.08 0.04 0 0 
200 0.06 0.28 0.28 0.02 0.54 0.28 0.28 1.14 0.28 0 0.04 
300 0.62 1.58 1.58 0.16 1.64 1.58 1.58 3.06 1.58 0 0.26 
400 1.64 3.26 3.26 0.68 2.44 3.26 2.78 4.78 3.26 0.08 0.24 
500 1.92 3.66 3.66 1.14 3.42 3.66 2.62 4.50 3.66 0.08 0.46 

1000 2.78 4.34 4.34 2.72 3.86 4.88 4.04 4.88 4.34 0.28 0.42 
2000 3.46 5.06 5.06 3.22 4.38 5.34 4.88 5.36 5.06 0.20 0.24 

1 2 1 2 1 00.90 , 0.80 , 25% , 0.0225 , 0.04 (25% of the maximum value)Se Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0.40 1.12 1.12 0.16 0.70 2.60 1.14 2.00 1.10 0 0.08 
100 1.64 2.56 2.56 1.48 2.22 3.50 2.80 2.90 2.56 0.18 0.26 
200 1.86 2.88 2.88 1.56 2.26 3.08 2.94 3.88 2.88 0.22 0.26 
300 2.70 4.14 4.14 2.14 3.28 4.28 4.16 5.00 4.14 0.24 0.38 
400 2.86 4.36 4.36 2.46 3.72 4.74 4.40 4.76 4.36 0.30 0.56 
500 2.78 4.16 4.16 2.58 4.14 4.44 4.16 4.44 4.16 0.26 0.56 

1000 4.16 5.36 5.38 3.94 4.92 5.38 5.38 5.38 5.38 0.52 0.52 
2000 3.96 5.08 4.92 3.82 4.30 4.96 4.92 4.94 5.10 0.34 0.42 

1 2 1 2 1 00.90 , 0.80 , 50% , 0.081 , 0.144 (90% of the maximum value)Se Se Sp Sp p          

n CET Midp MT MTcc MMT WT MWT LRT UET UMT ULRT 
50 0 0 0 0 0 0 0 0 0 0 0 
100 0 0.01 0.01 0 0 0.01 0.01 0.02 0.01 0 0 
200 0 0.03 0.03 0 0 0.03 0.03 0.10 0.03 0 0 
300 0.08 0.19 0.19 0.01 0.08 0.19 0.19 0.43 0.19 0 0 
400 0.18 0.66 0.66 0.06 0.18 0.66 0.42 1.17 0.66 0.01 0.01 
500 0.42 1.22 1.22 0.17 0.45 1.22 0.49 2.16 1.22 0.01 0.02 

1000 1.79 3.52 3.52 1.29 2.47 3.70 2.47 4.11 3.52 0.12 0.21 
2000 2.91 4.53 4.53 2.59 4.02 4.84 4.02 4.66 4.53 0.23 0.36 

CET: Conditional exact test. Midp: Mid-p test. MT: McNemar test. MTcc. McNemar test with cc. MMT: Modified 
McNemar test. WT: Wald test. MWT: Modified Wald test. LRT: Likelihood ratio test. UET: Unconditional exact test. 
UMT: Unconditional McNemar test. ULRT: Unconditional likelihood ratio test. 
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Table 5. Global powers (%) of the methods. 
1 2 1 2 1 00.90 , 0.80 , 0.80 , 0.70 , 5% , 0.04 , 0.07 (25% of the maximum value)Se Se Sp Sp p          

n 
Individual 

MTcc 
Global LRT Global RST Global WT 

Bonferroni 
MT  

Bonferroni 
WT  

Bonferroni 
LRT  

50 9.01 7.11 6.10 8.69 8.48 11.96 8.99 
100 29.67 25.30 24.27 26.90 27.31 30.33 27.41 
200 60.89 56.12 54.86 56.00 57.88 59.66 58.16 
300 82.48 78.76 78.15 79.37 80.14 80.95 80.46 
400 92.96 90.05 89.74 90.25 90.14 90.44 90.26 
500 97.54 96.35 96.24 96.38 96.27 96.43 96.38 
1000 99.99 99.98 99.98 99.98 99.98 99.99 99.98 
2000 100 100 100 100 100 100 100 

1 2 1 2 1 00.90 , 0.80 , 0.80 , 0.70 , 10% , 0.072 , 0.126 (90% of the maximum value)Se Se Sp Sp p          

n 
Individual 

MTcc 
Global LRT Global RST Global WT 

Bonferroni 
MT  

Bonferroni 
WT  

Bonferroni 
LRT  

50 12.36 12.55 8.62 13.41 12.36 16.49 20.61 
100 60.07 58.64 55.37 57.56 59.91 60.65 61.73 
200 96.39 96.51 95.84 96.27 95.55 96.17 96.17 
300 100 100 100 100 100 100 100 
400 100 100 100 100 100 100 100 
500 100 100 100 100 100 100 100 
1000 100 100 100 100 100 100 100 
2000 100 100 100 100 100 100 100 

1 2 1 2 1 00.95 , 0.85 , 0.90 , 0.80 , 25% , 0.0213 , 0.04 (50% of the maximum value)Se Se Sp Sp p          

n 
Individual 

MTcc 
Global LRT Global RST Global WT 

Bonferroni 
MT  

Bonferroni 
WT  

Bonferroni 
LRT  

50 7.0 8.4 4.6 9.7 7.0 13.2 12.1 
100 40.7 46.4 41.8 46.1 40.3 43.3 43.4 
200 83.6 89.3 88.3 89.2 82.0 82.5 84.0 
300 96.7 98.0 97.7 98.0 95.8 95.9 96.3 
400 99.6 99.9 99.8 99.9 99.4 99.4 99.5 
500 99.9 100 100 100 99.9 99.9 99.9 
1000 100 100 100 100 100 100 100 
2000 100 100 100 100 100 100 100 

1 2 1 2 1 00.95 , 0.85 , 0.90 , 0.80 , 25% , 0.0319 , 0.06 (75% of the maximum value)Se Se Sp Sp p          

n 
Individual 

MTcc 
Global LRT Global RST Global WT 

Bonferroni 
MT  

Bonferroni 
WT  

Bonferroni 
LRT  

50 4.7 5.6 2.6 6.3 4.7 10.0 4.7 
100 45.3 51.7 45.9 49.6 45.3 46.2 45.3 
200 91.4 95.2 94.4 94.9 90.3 91.2 91.4 
300 99.3 99.7 99.6 99.6 99.2 99.2 99.3 
400 99.9 99.9 99.9 99.9 99.9 99.9 99.9 
500 100 100 100 100 100 100 100 
1000 100 100 100 100 100 100 100 
2000 100 100 100 100 100 100 100 

1 2 1 2 1 00.85 , 0.80 , 0.95 , 0.90 , 50% , 0.06 , 0.0425 (50% of the maximum value)Se Se Sp Sp p          

n 
Individual 

MTcc 
Global LRT Global RST Global WT 

Bonferroni 
MT  

Bonferroni 
WT  

Bonferroni 
LRT  

50 0.4 0.8 0.6 1.2 0.4 1.3 1.2 
100 8.0 12.5 9.7 12.4 7.9 8.4 12.3 
200 28.2 35.2 32.6 34.6 27.5 28.5 28.8 
300 46.8 51.5 49.6 51.1 43.6 45.2 45.1 
400 58.6 64.4 63.4 64.2 56.8 57.8 57.9 
500 71.5 75.2 74.4 75.0 67.5 69.9 68.9 
1000 95.8 96.9 96.8 96.9 93.9 95.0 95.0 
2000 100 100 100 100 99.9 99.9 99.9 

1 2 1 2 1 00.85 , 0.80 , 0.95 , 0.90 , 50% , 0.09 , 0.0634 (75% of the maximum value)Se Se Sp Sp p          

n 
Individual 

MTcc 
Global LRT Global RST Global WT 

Bonferroni 
MT  

Bonferroni 
WT  

Bonferroni 
LRT  

50 0.1 0.2 0.1 0.2 0.1 0.4 0.4 
100 4.3 8.2 6.1 7.3 4.3 4.5 8.9 
200 34.4 46.8 42.2 44.5 34.3 34.4 39.3 
300 59.8 70.5 67.9 69.1 58.5 59.5 60.3 
400 78.3 85.6 84.5 85.0 75.3 77.3 77.4 
500 86.6 90.7 90.1 90.4 84.3 85.6 85.6 
1000 99.6 99.7 99.7 99.7 99.4 99.4 99.4 
2000 100 100 100 100 100 100 100 
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Finally, comparing the powers of the global tests with those of the MT, WT and LRT 

methods along with Bonferroni, in general terms, the MT, WT and LRT methods along 

with Bonferroni are usually a little more powerful than the three global tests when 

10%p   and 100n  , and the powers are very similar when 200n  . When 

200 500n   and the prevalence is moderate or large  25%p  , the global tests are 

more powerful, between 2% and almost 10% approximately, depending on the sample 

size. 

 

3.3. Rules of application 

Based on the results obtained in the simulation experiments, the following general rules 

of application can be established: 

1). When the prevalence is small  10%p   or very small  5%p   and the sample 

is small  50n   or moderate  100n  , solve the tests 0 1 2:H Se Se  and 

0 1 2:H Sp Sp  individually applying the WT or the LRT along with the Bonferroni (or 

Holm) method to an error 5%  . 

2). In any other situation, solve the global test  0 1 2 1 2:  and H Se Se Sp Sp   to an 

error 5%   applying the LRT or the WT. In this situation, if the global test is not 

significant then the equality of the accuracy of both BDTs is not rejected, and if the 

global is significant then the causes of the significance will be investigated: a) testing 

the tests 0 1 2:H Se Se  and 0 1 2:H Sp Sp  individually applying the WT or the LRT 

along with the Bonferroni or Holm method to an error 5%   if the sample size is 

small or moderate  100n   or if the sample size is very large  1000n  ; or b) testing 

the tests 0 1 2:H Se Se  and 0 1 2:H Sp Sp  individually applying the McNemar test with 

cc to an error 5%   if the sample size is large  200 500n  . 

 

4. Example 

The results obtained were applied to the diagnosis of coronary artery disease [4], using 

dobutamine echocardiography (DE) and myocardial perfusion scintigraphy (MPS) as 

diagnostic tests and coronary angiography (CA) as the GS. Table 6 shows the 
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frequencies obtained applying the two BDTs and the GS to a sample of 548 men, and 

where the variable 1T  models the result of the DE, 2T  models the result of the MPS and

D  the result of the CA. This table also shows the estimation (estimation   standard 

error) of the accuracy of each BDT and of the disease prevalence, as well as the results 

obtained performing the global hypothesis test applying the three methods studied (the 

likelihood ratio test, Rao’s score test and the Wald test), and those obtained testing the 

individual hypothesis tests applying the McNemar test, the McNemar test with cc, the 

Wald test and the likelihood ratio test. With the three statistics for the global hypothesis 

test the same conclusion is obtained: the homogeneity of the two sensitivities and of the 

specificities is not rejected. The same conclusion is reached applying the individual 

hypothesis tests along with the Bonferroni (or Holm) method. Nevertheless, if each one 

of the individual hypothesis tests is solved to an error 5%   applying the McNemar 

test (Wald test or likelihood ratio test), we conclude that the two sensitivities are 

different (the sensitivity of the DE test is significantly greater than that of the MPS) and 

the equality of the two specificities is not rejected. 

Through the general rules given from the simulation experiments, this example must 

be solved applying the global test; incorrect conclusion would be obtained if the 

individual hypothesis tests (MT, WT and LRT) are applied to an error 5%  . If the 

two individual tests are solved to an error 5%   applying the McNemar test with cc 

the same conclusions are obtained as applying the global hypothesis test. Nevertheless, 

the simulation experiments have shown that this method can overcome in excess the 

nominal error when the sample size is very large and, therefore, it should not be used in 

this situation. 
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Table 6. Study of coronary disease. 
Observed frequencies 

 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   152 17 7 36 212 
0D   25 10 11 290 336 

Total 177 27 18 326 548 
Results 

Dobutamine ecocardiography Myocardial perfusion scintigraphy Prevalence 

1Ŝe SE  1Ŝp SE  2Ŝe SE  2Ŝp SE  p̂ SE  

0.797 0.028  0.896 0.017  0.750 0.030  0.893 0.017  0.387 0.021
 

Global hypothesis test: 

 0 1 2 1 2:  and H Se Se Sp Sp   vs  0 1 2 1 2:  and/or H Se Se Sp Sp   

Likelihood ratio test (LRT) Rao score test (RST) Wald test (WT) 
2 4.344 , 0.114p value   

 

2 4.214 , 0.122p value   
 

2 4.298 , 0.117p value   
 

Individual test: 0 1 2:H Se Se  vs 1 1 2:H Se Se  

McNemar test McNemar test with cc Wald test Likelihood ratio test 
2 4.167

0.041p value

 
 

 
2 3.375

0.066p value

 
 

 
2 4.250

0.039p value

 
 

 
2 4.296

0.038p value

 
 

 

Individual test: 0 1 2:H Sp Sp  vs 1 1 2:H Sp Sp  

McNemar test McNemar test with cc Wald test Likelihood ratio test 
2 0.048

0.827p value

 
 

 
2 0

1p value

 
 

 
2 0.048

0.827p value

 
 

 
2 0.048

0.827p value

 
 

 

 

5. Discussion 

Traditionally, the comparison of the accuracy of two BDTs subject to a paired design is 

made conditioning on the individuals with (without) the disease and comparing the two 

sensitivities (specificities) applying a comparison test with two paired binomial 

proportions to an   error. Therefore, each one of the tests 0 1 2:H Se Se  and 

0 1 2:H Sp Sp  are tested independently to an   error. An alternative to this method is 

to compare the two sensitivities and the two specificities simultaneously, i.e. performing 

the global test  0 1 2 1 2:  and H Se Se Sp Sp   vs  1 1 2 1 2:  and/or H Se Se Sp Sp  . This 

article studies this global hypothesis test, extending the study by Lachenbruch and 

Lynch [3], through the application of Rao’s score test and the Wald test. Lachenbruch 

and Lynch proposed two statistics for the global test, one obtained applying the 

likelihood ratio test and another one obtained as the sum of the McNemar statistic for 

the test 0 1 2:H Se Se  and of the McNemar statistic for the test 0 1 2:H Sp Sp . This last 
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statistic is obtained considering two independent 2 2  tables, one made up of 

individuals with the disease and another one made up of individuals without the disease 

and applying the results of Hamdan et al [10]. That is to say, it is considered that each 

table is extracted from a population, and that the two populations considered differ in 

their disease status. In Section 2.2.2 the same statistic has been derived applying Rao’s 

score test, assuming that there is a single sample extracted from a population that has a 

determined disease prevalence. Another statistic has also been obtained using the Wald 

test, which is also the sum of the Wald statistics for the individual tests. Another 

alternative method that has been studied to compare the accuracy of two BDTs consisted 

of testing the two individual tests 0 1 2:H Se Se  and 0 1 2:H Sp Sp  through a 

comparison test of paired binomial proportions and application of the Bonferroni 

method or the Holm method. 

Simulation experiments were carried out to study the global type I errors and global 

powers of the methods to compare the accuracy of the two BDTs. To study the sizes of 

the exact tests the criterion that was followed was that their global type I errors would 

not be over 5%. For approximate tests, the criterion that was followed was that their 

global type I errors fluctuate around 5% without exceeding it too much (global type I 

errors are not 7% ). This difference in criteria between both types of methods is based 

on the idea that we should not consider that both types of tests (exact and asymptotic) 

must be have the same type I error behaviour: an exact test should not give false 

significances whereas an asymptotic test may exceed the nominal error without giving 

too many false significances. The 7% is an acceptable value, very close to 5%, and does 

not lead to too many false significances. Fagerland et al [7] compared exact and 

asymptotic tests subject to the same criterion of 5%. If this criterion is used to interpret 

the results of the simulation experiments, in general terms the conclusions are the same 

regarding the global hypothesis test and the individual hypothesis tests along with 

Bonferroni or Holm, although on some occasions  500n   the global type I error may 

very slightly greater than 5%. Regarding the individual tests to an error 5%  , the 

asymptotic tests exceed the 5% with a sample size which is smaller than with the 

criterion of 7%, which further invalidates these methods for their practical application. 

Taking into account the “approximate” nature of an asymptotic test, the criterion of 7% 

for the asymptotic tests is more flexible than the one used by Fagerland et al. 
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Finally, when the sample is small or moderate, it may happen that there are too 

frequencies equal to zero, and therefore the tests given in the application rules can not 

be used. In this case, one solution is to add the value 0.5 to each of the observed 

frequencies, which is a solution that is widely used in the analysis of contingency tables. 

Simulation experiments carried out, similar to those in Section 3, have shown that this 

does not have an important effect either on the type I error or on the power of the tests. 
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Appendix A 

1. Conditional Exact Test (CET) 

In hypothesis test (1) the proportions 11p  and 00p  do not appear, and so it is possible to 

discard these proportions and, consequently, also discard the frequencies 11s  and 00s . 

Conditioning on the sum of the discordant frequencies, i.e. conditioning on 10 01s s , it is 

verified that 10 01 1p p  , and it is also verified that 10s  is the product of a binomial 

distribution of parameters 10 01s s  and 10p , i.e.  10 01 10,Bin s s p . If the null hypothesis 

is true then 10 01 1 2p p  , and, therefore, both the hypothesis test (1) is also equivalent 

to test 0 10: 1 2H p   vs 1 10: 1 2H p  . Finally, the two-sided exact p-value for the 

comparison test of the two sensitivities is 
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  10 0110 01,

10 01

0

1
two-sided exact p-value 2

2

s sMin s s

j

s s

j





      
  

 . (12) 

If 10 01s s  then the two-sided exact p-value equals one. In a similar way, the two-sided 

exact p-value to compare the two specificities is  

 
  10 0110 01,

10 01

0

1
two-sided exact p-value 2

2

r rMin r r

j

r r

j





      
  

 . (13) 

 

2. Conditional Mid-p Test (Midp) 

The conditional mid-p test [13] is a modification of the exact conditional test. This 

method consists of subtracting the probability of the observed outcome 10s  from (12). 

Thus, the mid-p values to compare the two sensitivities and the two specificities are 

 
10 01

10 01

10

1
mid-p value two-sided exact p-value

2

s ss s

s

      
  

 (14) 

and 

 
10 01

10 01

10

1
mid-p value two-sided exact p-value

2

r rr r

r

      
  

 (15) 

respectively. The condicional mid-p test is also referred to as quasi-exact test. 

 

3. McNemar Test (MT) 

The McNemar [14] test is the asymptotic version of the conditional exact test. 

Conditioning on the sum of discordant frequencies and applying the Central Limit 

Theorem, the statistic for hypothesis test (1) is 

 
 
10 01

10 01

ˆ ˆ

ˆ ˆ

p p
z

Var p p





, (16) 

which is distributed according to a standard normal distribution, where 

    2

10 01 10 01
10 01ˆ ˆ

p p p p
Var p p

s

  
  . (17) 

If the null hypothesis is true, then  
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   10 01
0 10 01ˆ ˆ

p p
Var p p

s


  . (18) 

Substituting in equation (18) the parameters with their estimators, and substituting the 

expression obtained in equation (16), it is obtained that the statistic for the McNemar 

test  10 01 10 01Mz s s s s   . It is very common to express this statistic in terms of the 

chi-square distribution, i.e. 

 
 2

2 10 01

10 01
M

s s

s s






, (19) 

which is distributed asymptotically according to a chi-square distribution with one 

degree of freedom. In a similar way, the statistic of the McNemar test is obtained to 

compare the two specificities: 

 
 2

2 10 01

10 01
M

r r

r r






. (20) 

 

4. McNemar Test with continuity correction (MTcc) 

In the McNemar test the binomial distribution is approximated through the normal 

distribution. In this situation, it is common to apply continuity correction (cc). Edwards 

[15] proposed the following continuity correction version of the McNemar test, 

 
 

10 01

10 01

1
ˆ ˆ

ˆ ˆ
Mcc

p p
sz

Var p p

 



. (21) 

Performing the same algebraic operations in the previous section, it is obtained that the 

statistics of the McNemar test with cc are 

 
   2 2

10 01 10 012 2

10 01 10 01

1 1
  and  Mcc Mcc

s s r r

s s r r
 

   
 

 
, (22) 

respectively. 
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5. Modified McNemar Test (MMT) 

Bennett and Underwood [16] proposed a modification of the statistic of the McNemar 

test adding 0.5 to the observed frequencies. This correction improves the approximation 

to the chi-square distribution. The statistics of MMT are: 

 
   2 2

2 210 01 10 01

10 01 10 01

  and  
1 1MM MM

s s r r

s s r r
 

 
 

   
. (23) 

 

6. Wald Test (WT) 

The comparison of the two sensitivities (specificities) can also be made applying the 

Wald test [9]. The statistic of the McNemar test is obtained substituting in equation (16) 

 10 01ˆ ˆVar p p  with its expression subject to the null hypothesis, i.e.  0 10 01ˆ ˆVar p p  

(equation (7)). Substituting in (16) the  10 01ˆ ˆVar p p  with its expression given in 

equation (17), and substituting the parameters with their estimators, we obtain the Wald 

test statistic to compare the sensitivities, i.e. 

 
 
  

2

2 10 01

10 01 11 00 10 014W

s s s

s s s s s s





  
, (24) 

which is distributed asymptotically according to a chi-square distribution with one 

degree of freedom. To compare the two specificities, the Wald test statistics is 

 
 
  

2

2 10 01

10 01 11 00 10 014W

r r r

r r r r r r





  
. (25) 

 

7. Modified Wald Test (MWT) 

As the WT tends to reject too often under the null hypothesis when the sample size is 

small or moderate, May and Johnson [6] proposed a modification of the Wald statistic 

adding 0.5 to each one of the discordant frequencies, i.e. 

 
 

   
 

   

2 2

2 210 01 10 01
2 2

10 01 10 01
10 01 10 01

  and  

1 1
MW MW

s s r r

s s r r
s s r r

s s

 
 

 
 

     

. (26) 
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This modification reduces the size of the Wald statistic, and for 50n   the size of the 

test is close to the nominal error. 

 

8. Likelihood Ratio Test (LRT) 

Conditioning on the sum of the discordant frequencies, if the null hypothesis (1) is true 

then it is verified that    10 01 10 01ˆ ˆ 2p p s s s   . It is easy to prove that the likelihood 

ratio statistic to compare the sensitivities is 

 2 10 01
10 01

10 01 10 01

2 2
2 ln lnLR

s s
s s

s s s s


    
          

, (27) 

and in a similar way, the likelihood ratio statistic to compare the specificities is 

 2 10 01
10 01

10 01 10 01

2 2
2 ln lnLR

r r
r r

r r r r


    
          

, (28) 

whose distributions are asymptotically a chi-square with one degree of freedom. 

 

2.1.9. Unconditional Exact Test (UET) 

The conditional exact test and the mid-p test are based on the conditioning on the sum 

of the discordant frequencies. Suissa and Shuster [17] proposed, based on the statistic of 

the McNemar test, an exact test which uses all the frequencies in the sample and, 

therefore, does not condition in the sum of the discordant frequencies. When we 

compare the two sensitivities, the power function of the test is 

   10 01
10 01 10 01 10 01

10 01

, 1
s ms s

C

s
P p p p p p p

s s s m
 

    
 , 

where 10 01m s s   and     10 10 10, :  ;  0,1,..., ;  0,1,...,C s m s h m s m m s    , with

    2Mh m z m m   and Mz  the calculated value of the McNemar statistic. If the 

null hypothesis is true, then the distribution of  10 , ,s m s m  is a trinomial distribution 

with parameters s and probability vector is  2, 2,1
T   , i.e. 
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   
10 01

1
2

m
s m

C

s
P

s s s m
          

 , 

and where 10 01p p    is the nuisance parameter. The nuisance parameter is eliminated 

by maximizing this function over the range of  . The function  P   is simplified as  

     1 1
s

s jj
j j

j k

s
P F j i

j
   



 
    

 
 , 

where 2int 1mk z    ,  intji h j    ,  int .  is the integer function and jF  is the 

cumulative binomial distribution function with parameters j and 1 2 . Finally, the two-

sided exact p-value is calculated as 

   
0 1

two sided exact p-value 2 sup P



 

  . (29) 

The two-sided exact p-value to compare the two specificities is calculated in a similar 

way, substituting “s” with “r” and “p” with “q”. 

 

2.1.10. Unconditional McNemar Test (UMT) 

Lu [18] proposed a statistic for the McNemar test that considers all the frequencies in 

the sample, and which therefore does not condition in the sum of the discordant 

frequencies. The hypothesis test (1) is equivalent to the hypothesis test 

10 01 10 01
0 1

10 01 10 01 10 01 10 01

:   vs  :
p p p p

H H
p p p p p p p p

 
   

. 

Subject to the null hypothesis, the frequency 10s  (or 01s ) is the product of binomial 

distribution of parameters s and  10 01 2p p   . The estimators of the average and of 

the variance of the binomial distribution are  10 01
ˆ 2s s s    and 

   2

10 0110 01ˆ ˆ1
2 4

s ss s
s

s
 


   . Approximating to the normal distribution and 

applying the Central Limit Theorem, the statistic for the hypothesis test of equality of 

the two sensitivities is 
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    
10 10 01

10 01 11 00

ˆ

ˆ ˆ1
UM

s s s s
z

s s s s ss
s



 

 
 

  
, 

or in terms of the chi-square distribution 

 
 

  

2

2 10 01

10 01 11 00
UM

s s s

s s s s s





  
, (30) 

whose distribution is asymptotically a chi-square with one degree of freedom. In a 

similar way, we obtain the statistic to compare the two specificities: 

 
 

  

2

2 10 01

10 01 11 00
UM

r r r

r r r r r





  
. (31) 

 

2.1.11. Unconditional Likelihood Ratio Test (ULRT) 

Lu [19] also proposed a likelihood ratio test statistic to compare two paired binomial 

proportions without discarding the concordant frequencies. The likelihood ratio test 

statistic is obtained in two phases: in the first phase we obtain the likelihood ratio test 

statistic when the four frequencies ijs  are combined in two, 10s  and 11 01 00s s s  ; and in 

the second phase we obtain the likelihood ratio test statistic when the four frequencies 

ijs  are combined in another two, 01s  and 11 10 00s s s  . Finally, the likelihood ratio test 

statistic is calculated as an average of the two likelihood ratio test statistics. In the 

context studied here, the likelihood ratio test statistics are 

 

       

2 10 01
10 01

10 01 10 01

10 01
10 01

10 01 10 01

2 2
ln ln

2 2
ln ln

2 2

ULR

s s
s s

s s s s

s s s s
s s s s

s s s s s s


   

         
    

           

 (32) 

and 

 

       

2 10 01
10 01

10 01 10 01

10 01
10 01

10 01 10 01

2 2
ln ln

2 2
ln ln ,

2 2

ULR

r r
r r

r r r r

r r r r
r r r r

r r r r r r


   

         
    

           

 (33) 

which in both cases asymptotically follow a chi-square with one degree of freedom. 
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Appendix B 

The choice of the method with the best performance of the global type I error was made 

comparing the fluctuations of this error around the nominal error 5%  . For the 

methods based on exact tests, it was considered that the method has a good type I error 

performance when the type I error is 5% . For the methods based on asymptotic tests, 

it was considered that the method has a good global type I error performance when the 

global type I error fluctuates around 5% without going too far above it, a situation 

considered when the global type I error is 7% . This difference in criteria between 

exact methods and asymptotic methods is based on the idea that we should not consider 

that both types of methods (exact and asymptotic) must have the same type I error 

performance: an exact method must not go above the nominal error (it must not give 

false significances) whereas an asymptotic method may go above the nominal error 

without giving false significances. 

For asymptotic methods, the cut-off point of 7% is due to the relation that exists 

between the asymptotic hypothesis tests and their confidence intervals, and it has been 

used by different authors to compare the asymptotic performance of approximate 

intervals [20, 21, 22, 23]. Therefore, these authors have established the following 

criterion for the choice of an optimum confidence interval (to 95% confidence): the 

probability of the coverage of the confidence interval being higher than 93%, in which 

case it is said that the interval does not fail. We define * *         , where 

1 0.95     is the nominal confidence of the confidence interval and *  the 

coverage probability calculated. A confidence interval fails if its coverage probability is 

93% , i.e. if 2   . In this situation, the type I error of the corresponding two-

tailed hypothesis test is 7% , and therefore it is an excessively liberal hypothesis test 

and one which gives false significances. If 2%  , i.e. the coverage probability is 

higher than 97%, then the corresponding hypothesis test is very conservative (its type I 

error is very small, 3% ).  
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Abstract 

Positive and negative likelihood ratios are parameters which are used to assess and 

compare the effectiveness of binary diagnostic tests. Both parameters only depend on 

the sensitivity and specificity of the diagnostic test and are equivalent to a relative risk. 

This article studies the comparison of the likelihood ratios of two binary diagnostic tests 

subject to a paired design through confidence intervals. Six approximate confidence 

intervals are presented for the ratio of the likelihood ratios, and simulation experiments 

are carried out to study the coverage probabilities and the average lengths of the 

intervals considered, and some general rules of application are proposed. A method is 

also proposed to determine the sample size necessary to estimate the ratio between the 

likelihood ratios with a determined precision. The results were applied to two real 

examples. 

 

Keywords: Likelihood ratios, binary diagnostic test, sample size. 
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1. Introduction 

A diagnostic test is a medical test that is applied to an individual in order to determine 

the presence or absence of a disease. When the result of a diagnostic test is positive or 

negative, the diagnostic test is called a binary diagnostic test (BDT). A stress test for the 

diagnosis of coronary disease is an example of BDT. The effectiveness of a BDT is 

measured in terms of two fundamental parameters: sensitivity and specificity. The 

sensitivity (Se) is the probability of the BDT being positive when the individual has the 

disease, and the specificity (Sp) is the probability of the BDT being negative when the 

individual does not have it. The Se and the Sp of a BDT are estimated in relation to a 

gold standard (GS), which is a medical test which objectively determines whether or not 

an individual has the disease or not. An angiography for coronary disease is an example 

of GS. Other parameters that are used to assess the effectiveness of a BDT are the 

likelihood ratios (LRs) (Pepe, 2003; Zhou et al, 2011). When the BDT is positive, the 

likelihood ratio, called the positive likelihood ratio  LR , is the ratio between the 

probability of correctly classifying an individual with the disease and the probability of 

incorrectly classifying an individual who does not have it. When the BDT is negative, 

the likelihood ratio, called the negative likelihood ratio  LR , is the ratio between the 

probability of incorrectly classifying an individual who has the disease and the 

probability of correctly classifying an individual who does not have it. The LRs only 

depend on the sensitivity and the specificity of the BDT and do not depend on the 

disease prevalence, and therefore the LRs are superior parameters of the accuracy of a 

BDT (Zhou et al, 2011). 

The comparison of the parameters of two BDTs has been the subject of numerous 

studies in Statistical literature. When the two BDTs and the GS are applied to all of the 

individuals in a random sample sized n (paired design), the comparison of the two 

sensitivities (specificities) is made by applying a comparison test of two paired binomial 

proportions. Subject to this same sample design, the comparison of the LRs of two 

BDTs is more complex. Leisenring and Pepe (1998) studied the estimation of the LRs of 

a BDT through a regression model. Pepe (2003) adapted this model to compare the LRs 

of two BDTs, for which in the regression model a variable dummy is considered to 

compare a BDT in relation to another. Moreover, Pepe proposed a confidence interval 

for the ratio of the two positive (negative) LRs estimating the variance of the ratios 
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subject to the null hypothesis of equality of the two LRs. Section 3.1 summarizes the 

method of Pepe (2003). Biggerstaff (2000) proposed a graphical method to compare the 

LRs of two (or more) BDTs. Nevertheless, this method is not inferential and can only be 

applied to the estimators. Roldán-Nofuentes and Luna (2007) studied hypothesis tests to 

compare the LRs individually and simultaneously, and they also studied the same 

problem for the case of ordinal diagnostic tests. The hypothesis tests proposed by 

Roldán-Nofuentes and Luna (2007) are based on the logarithmic transformation of the 

ratio of the positive (negative) LRs, and therefore by inverting the test statistics of the 

individual tests, confidence intervals are obtained for the ratio of the two LRs (in 

Section 3.2 we summarize this method). Dolgun et al (2012) extended the method of 

Leisenring and Pepe (1998) to compare the LRs simultaneously. 

Comparing the sensitivities (specificities) of two BDTs, we compare the intrinsic 

accuracy of both BDTs, and we determined which BDT is more accurate for an 

individual who has the disease (which BDT has the greatest sensitivity) or for an 

individual who does not have the disease (which BDT has the greatest specificity). 

Comparing the positive (negative) LRs of two BDTs it is possible to quantify with 

which BDT it is more likely to obtain a positive (negative) result for the BDT for an 

individual who has the disease than for an individual who does not.  

In this manuscript we study the comparison of the LRs of two BDTs through 

confidence intervals (CIs), making the following contributions: a) four intervals to 

compare the LRs, and b) a method to calculate the sample size to compare the LRs 

through CIs. Section 2 presents the LRs and their properties. Section 3 presents the CIs 

studied by Pepe (2003), by Roldán-Nofuentes and Luna (2007), and four new CIs are 

proposed: a Wald type interval, an interval based on the Fieller method, a bootstrap 

interval based on the bias-corrected interval, and a Bayesian interval based on non-

informative beta distributions and on the application of the Monte Carlo method. In 

Section 4, simulation experiments are carried out to study the coverage probabilities and 

the average lengths of the CIs presented in Section 3. Section 5 presents a method to 

calculate the sample size to compare the LRs through CIs. In Section 6, the results are 

applied to two real examples, and in Section 7 the results obtained are discussed. 
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2. Likelihood ratios 

Let us consider a BDT that is assessed in relation to a GS. Let T be the variable that 

models the result of the BDT: 1T   when the BDT is positive and 0T   when it is 

negative. Let D be the variable that models the result of the GS: 1D   when the 

individual has the disease and 0D   when this is not the case. Let  1P D    be the 

disease prevalence in the population studied, and 1   . The positive LR (Pepe, 

2003; Zhou et al, 2011) is defined as 

 
 
 

1 1

1 0 1

P T D Se
LR

P T D Sp
  
 

  
, (1) 

and the negative LR as  

 
 
 

0 1 1

0 0

P T D Se
LR

P T D Sp
   
 

 
. (2) 

The LRs vary between 0 and infinity, and have the following properties:  

a) If the BDT and the GS are independent then 1LR LR   . 

b) If the BDT correctly classifies all of the individuals then LR    and 

0LR  . 

c) If 1LR   then a positive result in the BDT is more probable for an individual 

who has the disease than for an individual who does not. 

d) If 1LR   then a negative result in the BDT is more probable for an individual 

who does not have the disease than for an individual who does. 

e) The LRs quantify the increase in knowledge of the presence of the disease 

through the application of the BDT. Before applying the test, the odds of an 

individual having the disease are  pre-test odds 1   , where   is the disease 

prevalence. After applying the BDT, the odds are 
 
 

1
post-test odds

0

P D T i

P D T i

 


 
, 

0,1i  . The LRs relate the pre-test odds and the post-test odds: 

 
 

post test odds 1 pre test odds

post test odds 0 pre test odds.

T LR

T LR





  

  
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Therefore, the likelihood ratios quantify the change in the odds of the disease 

obtained by knowledge of the application of the BDT.  

We then study the comparison of the LRs of two BDTs subject to a paired design 

through CIs.  

 

3. Confidence intervals 

Let us consider two BDTs that are assessed in relation to the same GS. Let hT  be the 

variable that models the result of the hth BDT, with 1,2h  , defined in a similar way to 

the variable T given in Section 2. Let hSe  and hSp  be the sensitivity and the specificity 

of the hth BDT, and hLR  and hLR  the positive and negative likelihood ratios 

respectively. Table 1 shows the frequencies and the theoretical probabilities obtained 

when comparing two BDTs in relation to a GS subject to a paired design. In the 

observed frequencies given in Table 1, the only value set by the researcher is the sample 

size n. 

 

Table 1. Frequencies and probabilities subject to a paired design. 
Frequencies 

 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   11s  10s  01s  00s  s  

0D   11r  10r  01r  00r  r  

Total 11 11s r  10 10s r  01 01s r  00 00s r  n  
Probabilities 

 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   11p  10p  01p  00p    

0D   11q  10q  01q  00q    

Total 11 11p q  10 10p q  01 01p q  00 00p q  1 

 

Applying the model of conditional dependence of Vacek (1985), the theoretical 

probabilities are expressed as 

    1 1

1 1 2 2 11 1
i ji j

ij ijp Se Se Se Se          (1) 
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and 

    1 1
1 1 2 2 01 1

i ji j
ij ijq Sp Sp Sp Sp         , (2) 

when 1ij   if i j  and 1ij    if i j , with , 0,1i j  , and verifying that ijij
p   

and ijij
q  . The parameters 1  and 0  are the dependence factors between the two 

BDTs when 1D   and when 0D   respectively, verifying that 

    1 1 2 2 10 1 , 1Min Se Se Se Se     and     0 1 2 2 10 1 , 1Min Sp Sp Sp Sp    . If 

1 0 0    then the two BDTs are conditionally independent from the disease, which is 

not normally a realistic one. In practice, the BDTs are conditionally dependent on the 

disease, so that 1 0   and/or 0 0  . The frequencies of Table 1 are the product of a 

multinomial distribution whose vector of probabilities is 

 11 10 01 00 11 10 01 00, , , , , , ,
T

p p p p q q q qψ . The maximum likelihood estimators of these 

probabilities are ˆ ij ijp s n  and ˆij ijq r n , those of   and   are ˆ s n   and ˆ r n  , 

and the variance-covariance matrix of ψ̂  is   ˆ diag T n  ψ ψ ψψ . 

In terms of the probabilities of the vector ψ , the sensitivity and the specificity of 

each BDT are written as  1 10 11Se p p   ,  1 00 01Sp q q   ,  2 01 11Se p p    

and  2 00 10Sp q q   . The estimators of the sensitivities and the specificities are

11 10
1

ˆ s s
Se

s


 , 11 01

2
ˆ s s
Se

s


 , 01 00

1
ˆ r r
Sp

r


  and 10 00

2
ˆ r r
Sp

r


 , and those of the 

dependence factors are 11 11 00 10 01
1 1 2

ˆ ˆ ˆˆ
ˆ

p s s s s
Se Se

s





    and 

00 11 00 10 01
0 1 2

ˆ ˆ ˆˆ
ˆ

q r r r r
Sp Sp

r





   . Applying the delta method, it holds that the variances-

covariances of ˆ
hSe  and ˆ

hSp  are 

 
       

   1 0
1 2 1 2

1 1ˆ ˆ,  ,

ˆ ˆ ˆ ˆ, ,  , .

h h h h
h h

Se Se Sp Sp
Var Se Var Sp

n n

Cov Se Se Cov Sp Sp
n n

 
 
 

 
 

 
 (5) 

The rest of the covariances are zero. Regarding the LRs, applying the delta method 

again, their variances-covariances (the proof can be seen in Appendix A) are 
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       
 

       

        
   
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h
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Se Se Cov Sp Sp Sp Sp Cov Se
Cov LR LR





 

 

 




 


  


 

  


 2

2 2
1 2

ˆ
.

Se

Sp Sp

 (6) 

Substituting in the previous expressions the parameters with their estimators, we obtain 

the expressions of the estimators of the variances-covariances. Pepe (2003) studied the 

comparison of the LRs considering the ratio between them, i.e. 1 2LR LR    and 

1 2LR LR   . Roldán-Nofuentes and Luna (2007) considered the Napierian 

logarithm of  . In this study, we are going to follow the same criteria as Pepe, and 

therefore we are going to compare the LRs through CIs for   and  . From here 

onwards, we are going to consider that hLR  is hLR  or hLR , and that   is   or  , 

depending on whether we compare the positive LRs or the negative LRs. If the CI for   

contains the value one, then we do not reject the equality of the LRs of both BDTs; in 

the opposite case, the LR of a BDT is significantly higher than that of the other BDT. 

Applying the delta method (see Appendix A), the variance of ̂  is 

  
     1 2 1 22

2 2
1 2 1 2

ˆ ˆ ˆ ˆ2 ,
ˆ

Var LR Var LR Cov LR LR
Var

LR LR LR LR
 

 
   
 
 

. (7) 

Then six CIs are presented for each ratio   and  . The first interval was proposed by 

Pepe (2003), the second is deduced from the study by Roldán-Nofuentes and Luna 

(2007), and the rest of the intervals are contributions made by this manuscript. 

 

3.1. Regression model 

Leisenring and Pepe (1998) studied the estimation of the LRs of a BDT in presence of 

covariates through a regression model. For the positive LR, the regression model with p 
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covariates is   1 0 1
1

ln
p

i p
i

LR X X 



  , where i  are the parameters of the model 

and  1 11 1,..., pX X X  is the matrix of covariates. This model can be used to compare 

two BDTs (Pepe, 2003), i.e.   0 1ln T TLR X X      , where TX  is a variable dummy 

to compare a BDT in relation to another. The regression model to compare the two 

negative LRs is   0 1ln T TLR X X      . In these models, the ratio   is estimated 

as 1̂e  and the ratio   as 1ˆe . The confidence interval for   is 

   1 2 0
ˆˆ ˆexp lnz Var  


     , (8) 

where 1 2z   is the  100 1 2 th  percentile of the standard normal distribution and 

     
1 1 2 2

0

1 21 2

ˆ ˆ ˆ ˆ1 1ˆ ˆln
ˆ ˆˆ ˆ1 1

Se Sp Se Sp
Var

sSe sSer Sp r Sp
          

 

is the estimated variance of ̂  subject to the null hypothesis 0 1 2:H LR LR  . The 

confidence interval for   s similar to the previous one, where 

     
1 1 1 1

0

1 11 1

ˆ ˆ ˆ ˆ1 1ˆ ˆln
ˆ ˆˆ ˆ1 1

Se Sp Se Sp
Var

rSp rSps Se s Se
          

. 

The book by Pepe (2003) discusses the confidence interval obtained from the regression 

model. 

 

3.2. Logarithmic interval 

Roldán-Nofuentes and Luna (2007) studied a hypothesis test to compare the positive 

(negative) LRs of two BDTs subject to a paired design. These hypothesis tests are based 

on the transformation of the Napierian logarithm of the ratio between the two positive 

(negative) LRs, i.e.,  0 : ln 0H    vs  1 : ln 0H   , where   is 1 2LR LR    or 

1 2LR LR   , and the test statistic is 

 
 
 

 
ˆln

0,1
ˆ ˆln

N
Var






  
, (9) 
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where  ˆ ˆlnVar     is an unrestricted estimator of the variance and is calculated 

applying the delta method (see Appendix A), i.e. 

  
     1 2 1 2

2 2
1 2 1 2

ˆ ˆ ˆ ˆ2 ,
ˆln

Var LR Var LR Cov LR LR
Var

LR LR LR LR
      , (10) 

and substituting in this expression each parameter with its estimator. Inverting the test 

statistic (9), it holds that the CI for  ln   is    1 2
ˆˆ ˆln lnz Var     . Finally, the 

logarithmic CI for   is 

   1 2
ˆˆ ˆexp lnz Var      . (11) 

Roldán-Nofuentes and Luna studied the size (and the power) of the test  0 : ln 0H    

through simulation experiments. As the logarithmic interval (11) is obtained by 

inverting the test statistic (9), the coverage probability of this interval is equal to 1 

minus the type I error obtained in the simulations carried out by Roldán-Nofuentes and 

Luna, and therefore the results are equivalent. 

 

3.3. Wald CI 

The Wald interval (Wald, 1943) is a classic interval for a parameter. Assuming the 

asymptotic normality of ̂ , i.e.  ˆ ,Var
n

N      , the Wald CI for   is  

 
     1 2 1 2

1 2 2 2
1 2 1 2

ˆˆ ˆ ˆ ˆ ˆ ˆ2 ,
ˆ 1

ˆ ˆ ˆ ˆ

Var LR Var LR Cov LR LR
z

LR LR LR LR
 

 
    
  

. (12) 

 

3.4. Fieller CI 

The Fieller method (1940) is a classic method used to calculate a CI for the ratio of two 

parameters, and requires us to assume that the estimators are distributed according to a 

normal bivariate distribution. Therefore, assuming the bivariant normality, i.e. 

   1 2 1 2
ˆ ˆ, , ,

T T

n
LR LR N LR LR

   LR , where  
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   
   

1 1 2

1 2 2

,

,

Var LR Cov LR LR

Cov LR LR Var LR

 
   

 
LR , 

and applying the Fieller method, it is verified that  

      2
1 2 1 1 2 2

ˆ ˆ 0, 2 ,
n

LR LR N Var LR Cov LR LR Var LR      . 

The Fieller CI is obtained by searching for the set of values for   that satisfy the 

inequality 

 
 

     

2

1 2 2
1 22

1 1 2 2

ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ ˆ2 ,

LR LR
z

Var LR Cov LR LR Var LR




 





 
. 

Solving this inequation, the Fieller CI for   is 

    
 

2
2 2 2 2 2 2

1 2 12 1 2 1 2 12 1 2 1 11 1 2 2 22 1 2

2 2
2 22 1 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ

LR LR z LR LR z LR z LR z

LR z

   



   



   



     


, (13) 

where  ˆ ˆˆii iVar LR   and  12 1 2
ˆ ˆ ˆˆ ,Cov LR LR  . This interval is valid when 

    2
2 2 2 2 2

1 2 12 1 2 1 11 1 2 2 22 1 2
ˆ ˆ ˆ ˆˆ ˆ ˆLR LR z LR z LR z           and 2 2

2 22 1 2
ˆ ˆ 0LR z    . 

 

3.5. Bootstrap CI 

The Bootstrap method is one which is widely used for the estimation of parameters. The 

Bootstrap CI is calculated generating B random samples with replacement from the 

sample sized n, and then a CI is calculated. For the interval, we considered the bias-

corrected Bootstrap CI (Efron and Tibshirani, 1993). For each one of the B samples 

with replacement, we calculate the estimators of the LRs and of  , i.e. 1
ˆ

BiLR , 2
ˆ

BiLR  

and ˆBi , with 1,...,i B . The parameter   is estimated as the average of the B 

Bootstrap estimations, i.e. 
1

1ˆ ˆ
B

B Bi
iB

 


  . Let  ˆ ˆ# BiA     be the number of 

samples in which the Bootstrap estimator ˆBi  is lower than the maximum likelihood 

estimator ̂ . Let  1
0ẑ A B  , where  1   is the inverse function of the standard 
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normal cumulative distribution function. Let  1 0 1 2ˆ2q z z     and 

 2 0 1 2ˆ2q z z    , then the bias-corrected Bootstrap CI is 

     1 2ˆ ˆ ,  q q
B B   (14) 

where  ˆ q
B  is the qth quantile of the distribution of the B Bootstrap estimations of  . 

The bias-corrected bootstrap CI is consistent, as it verifies (Shao and Tu, 1995) that 

   ,
ˆ ˆ ˆ

n B B n nP n x P n x               converges in probability to zero when the 

sample size is very large  n   for every value x, where BP  is the bootstrap 

distribution and ,
ˆ

B n  is the is the upper (lower) limit of the bootstrap CI. 

 

3.6. Bayesian CI 

The previous CIs are all frequentists, the problem can also be addressed from a 

Bayesian perspective. Conditioning on 1D  , i.e. on the individuals who have the 

disease, it is verified that  11 10 1,s s B s Se   and that  11 01 2,s s B s Se  . 

Conditioning on 0D   it is verified that  01 00 1,r r B r Sp   and that 

 10 00 2,r r B r Sp  . Considering the distribution of the BDT 1, the estimators of its 

sensitivity and specificity are 11 10
1

ˆ s s
Se

s


  and 01 00

1
ˆ r r
Sp

r


 , which are estimators of 

binomial proportions. In a similar way, the estimators 11 01
2

ˆ s s
Se

s


  and 10 00

2
ˆ r r
Sp

r


  

are also estimators of binomial proportions. Therefore, for these estimators, conjugate 

beta prior distributions are proposed, i.e. 

    ˆ ˆ,   and  , ,
h h h hh Se Se h Sp SpSe Beta Sp Beta      (15) 

with 1,2h  . Let  11 10 01 00 11 10 01 00, , , , , , ,s s s s r r r rn  be the vector of observed frequencies, 

then the posteriori distributions for the estimators of the sensitivity and the specificity of 

the BDT 1 are 

  
1 11 11 10 01 00

ˆ ,Se SeSe Beta s s s s     n  (16) 

and 
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  
1 11 01 00 11 10

ˆ ,Sp SpSp Beta r r r r     n . (17) 

In a similar way, the posteriori distributions for the estimators of the sensitivity and the 

specificity of the BDT 2 are 

  
2 22 11 01 10 00

ˆ ,Se SeSe Beta s s s s     n  (18) 

and 

  
2 22 10 00 11 01

ˆ ,Sp SpSp Beta r r r r     n . (19) 

Once all the distributions have been defined, the posteriori distribution for the LRs of 

each BDT, and for   and  , can be approximated by applying the Monte Carlo 

method (Boos and Stefanski, 2013). This method consists of generating M random 

values of the posteriori distributions given in equations (16) to (19). In each interaction 

the generated values of sensitivities  ˆ
hiSe  and specificities  ˆ

hiSp  are plugged in the 

equations 
ˆ

ˆ
ˆ1
hi

hi

hi

Se
LR

Sp
 


 and 

ˆ1ˆ
ˆ

hi
hi

hi

Se
LR

Sp
 
 , and from these each ratio ˆi  is calculated. 

As an estimator of each ratio the average of the M Bayesian estimations is calculated, 

i.e. 
1

1ˆ ˆ
M

Ba i
iM

 


  . Finally, from the M values ˆi  a CI based on the quantiles is 

calculated, i.e. the  100 1 %   CI for   is 

     2 1 2ˆ ˆ ,  Ba Ba
    , (20) 

where  ˆ q
Ba  is the thq quantile of the distribution of the M Bayesian estimations ˆi . 

 

All of the CIs presented are for 1 2LR LR  . If we want to calculate the CI for 

2 1LR LR   1   , the regression, logarithmic, Fieller, Bootstrap and Bayesian 

intervals are obtained by calculating the inverse of each boundary of the corresponding 

interval for . Nevertheless, the Wald CI for   is obtained from the Wald CI for   

dividing each boundary by 2̂ , i.e. if  ,L U   is the Wald CI for   then the Wald CI 

for 1    is  2 2ˆ ˆ,L U   . 
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4. Simulation experiments 

Monte Carlo simulation experiments were carried out to study the coverage probability 

(CP) and the average length (AL) of each one of the CIs presented in the Section 3. For 

this purpose, 10,000N   random samples of multinomial distributions with sizes 

 50,100,200,300,400,500,1000n   were generated, and their probabilities were 

calculated from equations (1) and (2). As the sensitivity and the specificity of each 

BDT, the values  , 0.70,0.75,...,0.90,0.95h hSe Sp   were taken, which are realistic 

values in clinical practice, and the LRs were calculated with the equations 

 1h h hLR Se Sp    and  1h h hLR Se Sp    with 1,2h  . For the disease prevalence, 

 10%,25%,50%   was considered, and for the dependence factors 1  and 0  

intermediate values (50% of the maximum value of each i ) and high values (80% of 

the maximum value of each i ) were taken, i.e.  

    1 1 2 2 11 , 1k Min Se Se Se Se      and     0 1 2 2 11 , 1k Min Sp Sp Sp Sp     , 

where  0.50,0.80k  . Once the value of the parameters in each scenario was set, 

the probabilities of each multinomial distribution were calculated by substituting the 

value of the parameters in equations (3) and (4). 

For the Bootstrap interval, for each one of the N random samples generated, 

2,000B   replacement samples were generated in turn, and from the B replacement 

samples the bias-corrected bootstrap CI was calculated through the method described in 

Section 3.5.  

Regarding the Bayesian CI, for the estimators of the two sensitivities and of the two 

specificities, the  1,1Beta  distribution was considered as prior distribution. The choice 

of this distribution is justified by the fact that it is a non-informative distribution, which 

is flat for every possible value of the sensitivities and the specificities, and it has a 

minimum impact on the posteriori distributions. Moreover, for each one of the N 

generated random samples, 10,000M   random samples were generated in turn, and 

from the M samples the Bayesian CI was been calculated by applying the method 

described in Section 3.6. 
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The simulation experiments were designed so that in every random sample 

generated, it is possible to estimate all the parameters and their variances-covariances. 

Therefore, if a parameter could not be estimated in a sample (for example, ˆ 0hSe  ) then 

that sample was discarded and another one was generated in its place. This problem 

mainly occurred in the samples with a size of 50. In each one of the scenarios 

considered (values set for hSe , hSp ,  , 1  and 0 ) the coverage probability (CP) and 

the average length (AL) were calculated for each one of the six CIs for   and  . The 

CP of each CI was calculated as the quotient between the number of intervals that 

contained the parameter (  or  , depending on the case) and the number of samples 

generated N, and the AL was calculated adding the length of the N intervals and dividing 

this number by N. As the confidence level we took 95%. 

The comparison of the asymptotic behaviour of the CIs was made following the 

criterion based on whether the CI “fails” or “does not fail” for a confidence of 95%. 

This criterion, which has been used by other authors (Price and Bonett, 2004; Martín-

Andrés and Álvarez-Hernández, 2014a, 2014b; Montero-Alonso and Roldán-Nofuentes, 

2018), establishes that a CI fails (or does not fail) if its coverage probability is 93%  

 93% . The selection of the CI with the best asymptotic behaviour was made through 

the following steps: 1) Choose the CIs with the fewest failures, and 2) Choose the CIs 

which are the most accurate, i.e. those with least AL, and among these those which have 

a CP closest to 95%. This method is justified in Appendix B. 

 

4.1. Positive LRs 

Tables 2 and 3 show some of the results obtained for the intervals of  , considering 

two different scenarios of sensitivities and specificities. In these tables, failures are 

indicated in bold type. From the results of the experiments, the following conclusions 

are reached:  

a) Regression method. The CI obtained applying the regression method does not fail, 

and it has a CP of 100% or very close to this value. In general terms, its AL is larger 

than that of the rest of the intervals. 

b) Logarithmic CI. The logarithmic CI does not fail. In very general terms, when the 

sample size is small  50n   or moderate  100n   its CP is 100% or very near to this 
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value. When the sample size is large  200 400n    or very large  500n   its CP 

fluctuates around 95%. The AL of this interval is lower than that of the interval 

calculated through regression. 

c) Wald CI. When 1  , this interval may fail if 100n   and the prevalence is 

moderate  25%   or large  50%  , whereas if 200n   the interval does not fail. 

When 1   the interval does not fail. In situations in which the Wald CI does not fail, 

its CP and AL are very similar to those of the logarithmic CI. 

c) Fieller CI. The Fieller CI does not fail. In general terms, its CP is 100% or very 

close to this value when 100n  . When 200n   its CP behaves in a very similar way to 

the CP of the logarithmic and Wald intervals (and the ALs are very similar). Therefore, 

when 200n  , the behaviour of the Fieller CI is very similar to the logarithmic and 

Wald intervals. 

d) Bootstrap CI. In very general terms, when 100n   this interval may fail if 1   

or its CP is equal (or very near) to 100% if 1  . When 200n  , the Bootstrap CI 

does not fail, its CP fluctuates around 95% and its AL is very similar to that of the 

logarithmic, Wald and Fieller intervals. Therefore, when 200n   the Bootstrap interval 

has an asymptotic behaviour which is very similar to that of logarithmic, Wald and 

Fieller intervals. 
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Table 2. Coverage probabilities and average lengths of the CIs for the ratio of the two 
positive LRs (I). 

1 2 1 2

1 1 2 2

9.5  4.5  0.056  0.125  2.111  0.444

0.95  0.90  0.90  0.80

LR LR LR LR

Se Sp Se Sp

           
   

  

1 010%  0.0225  0.0400      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 99.95 7.06 99.40 5.72 97.20 4.53 100 8.93 98.30 3.09 99.90 5.90 

100 99.25 5.73 97.90 4.75 97.40 4.16 99.80 5.64 98.50 3.69 99.10 5.42 
200 99.40 3.04 96.85 2.49 96.60 2.38 97.90 2.61 96.90 2.52 99.30 3.04 
300 98.90 2.26 96.15 1.86 96.10 1.81 96.85 1.90 95.60 1.89 99.00 2.27 
400 99.10 1.86 95.90 1.53 95.85 1.50 96.10 1.55 95.80 1.55 99.15 1.86 
500 98.50 1.61 95.55 1.33 95.45 1.31 95.90 1.35 95.05 1.34 98.35 1.62 
1000 98.20 1.07 95.45 0.89 95.30 0.88 95.65 0.89 95.35 0.90 98.20 1.08 

1 010%  0.0360  0.0640      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 99.95 6.54 99.10 4.78 95.50 3.93 99.95 7.74 91.80 2.51 99.95 5.48 

100 99.90 5.15 98.60 3.76 96.55 3.39 99.45 4.57 95.60 2.72 99.90 4.91 
200 99.60 2.93 96.90 2.09 96.00 2.01 98.15 2.19 96.35 1.95 99.55 2.93 
300 99.65 2.21 96.30 1.57 95.90 1.53 97.25 1.61 96.00 1.53 99.60 2.22 
400 99.80 1.82 95.90 1.30 95.95 1.28 97.10 1.32 96.30 1.28 99.85 1.83 
500 99.75 1.59 95.80 1.13 95.75 1.12 96.35 1.15 95.65 1.13 99.80 1.60 
1000 99.55 1.07 95.45 0.76 95.35 0.76 95.70 0.77 95.50 0.76 99.60 1.08 

1 025%  0.0225  0.0400      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 99.85 6.04 97.80 4.89 91.30 3.95 99.90 6.38 93.60 2.72 99.65 5.49 

100 99.50 5.19 97.90 4.28 95.05 3.74 99.40 4.52 97.45 3.28 99.35 4.90 
200 98.45 2.96 95.60 2.44 94.75 2.32 97.30 2.50 95.90 2.62 98.40 2.91 
300 98.45 2.28 95.45 1.88 95.25 1.83 97.05 1.91 94.95 2.03 98.30 2.25 
400 99.00 1.91 96.10 1.59 95.95 1.55 96.65 1.60 95.60 1.68 98.85 1.90 
500 98.55 1.65 95.60 1.37 95.25 1.35 96.15 1.38 95.55 1.43 98.55 1.65 
1000 98.30 1.14 95.15 0.95 94.90 0.94 95.30 0.95 94.65 0.97 98.35 1.14 

1 025%  0.0360  0.0640      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 5.77 96.80 4.21 91.50 3.50 99.65 5.56 83.55 2.20 100 5.25 

100 99.85 4.45 95.40 3.19 91.85 2.88 97.15 3.45 89.15 2.31 99.80 4.25 
200 99.60 2.85 96.15 2.02 94.00 1.95 96.40 2.08 94.85 1.93 99.60 2.80 
300 99.40 2.23 94.15 1.59 94.10 1.55 95.15 1.62 94.10 1.60 99.40 2.21 
400 99.55 1.87 94.95 1.32 94.85 1.30 95.15 1.34 94.65 1.35 99.50 1.85 
500 99.15 1.66 94.85 1.18 94.75 1.16 95.70 1.19 95.05 1.21 99.15 1.65 
1000 99.50 1.14 95.00 0.81 95.15 0.81 95.70 0.82 94.90 0.83 99.30 1.14 

1 050%  0.0225  0.0400      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 99.75 5.98 96.75 4.88 89.35 3.80 99.75 6.11 86.45 2.31 99.55 5.39 

100 99.60 5.91 96.35 4.87 92.20 3.97 98.90 5.22 94.45 2.81 99.40 5.38 
200 98.85 3.78 95.90 3.13 94.15 2.89 97.70 3.21 96.85 3.10 98.70 3.65 
300 98.50 2.87 95.00 2.38 94.70 2.26 96.40 2.41 95.40 2.61 98.30 2.82 
400 98.50 2.40 95.35 1.99 95.05 1.92 96.80 2.02 94.65 2.20 98.25 2.37 
500 98.35 2.08 95.80 1.72 95.45 1.68 95.25 1.74 95.25 1.88 98.20 2.06 
1000 97.50 1.41 94.55 1.17 94.80 1.15 95.50 1.17 93.80 1.22 97.60 1.40 

1 050%  0.0360  0.0640      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 99.90 5.47 94.15 4.03 88.70 3.28 99.20 5.26 67.35 1.89 99.80 4.97 

100 99.85 5.20 93.80 3.80 91.40 3.22 96.65 4.24 78.55 2.13 99.75 4.79 
200 99.70 3.45 93.75 2.47 93.65 2.32 93.70 2.56 89.75 2.15 99.45 3.34 
300 99.55 2.72 94.65 1.93 94.45 1.86 94.65 1.98 94.10 1.90 99.55 2.67 
400 99.65 2.33 95.15 1.66 94.90 1.62 95.45 1.69 95.35 1.69 99.65 2.31 
500 99.45 2.06 95.55 1.46 95.15 1.43 95.25 1.48 96.00 1.51 99.20 2.04 
1000 99.20 1.40 94.75 1.00 94.80 0.99 94.85 1.00 94.80 1.03 99.25 1.40 
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Table 3. Coverage probabilities and average lengths of the CIs for the ratio of the two 
positive LRs (II). 

1 2 1 2

1 1 2 2

6  6  0.118  0.118  1  1

0.90  0.85  0.90  0.85

LR LR LR LR

Se Sp Se Sp

           
   

 

1 010%  0.0450  0.0638      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 99.95 3.61 99.50 2.51 99.85 2.18 100 4.67 100 1.96 99.95 3.16 
100 99.80 2.38 97.75 1.65 97.90 1.52 98.85 2.37 98.60 1.51 99.75 2.33 
200 99.65 1.33 96.40 0.92 96.90 0.89 97.65 1.02 97.00 0.91 99.60 1.35 
300 99.65 1.00 96.25 0.70 96.45 0.68 97.90 0.74 96.75 0.69 99.70 1.01 
400 99.65 0.84 95.60 0.58 96.00 0.58 96.95 0.61 96.10 0.58 99.65 0.84 
500 99.50 0.72 95.30 0.51 95.70 0.50 96.35 0.52 95.70 0.51 99.60 0.73 

1000 99.25 0.48 94.65 0.34 94.30 0.34 95.15 0.35 94.80 0.34 99.25 0.49 

1 010%  0.0720  0.1020      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 3.18 100 1.79 99.90 1.62 100 3.65 100 1.43 100 2.77 
100 100 2.19 99.85 1.11 99.75 1.06 100 1.58 99.95 0.99 100 2.15 
200 100 1.28 98.15 0.60 98.20 0.59 98.75 0.67 98.55 0.57 100 1.29 
300 100 0.98 97.05 0.45 97.15 0.45 97.45 0.48 97.95 0.43 100 0.98 
400 100 0.82 96.85 0.37 96.90 0.37 97.05 0.39 97.15 0.37 100 0.82 
500 100 0.71 96.30 0.33 96.40 0.32 96.80 0.34 96.65 0.32 100 0.72 

1000 100 0.49 95.80 0.22 95.80 0.22 96.15 0.22 96.32 0.22 100 0.49 

1 025%  0.0450  0.0638      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 99.90 3.24 99.35 2.25 99.55 1.97 100 3.58 99.95 1.81 99.85 3.06 
100 99.65 2.05 96.95 1.39 96.95 1.30 100 1.78 99.15 1.38 99.75 2.00 
200 99.30 1.24 95.00 0.86 94.85 0.84 98.45 0.94 95.00 0.90 99.15 1.23 
300 99.70 0.97 94.45 0.68 94.10 0.66 97.35 0.71 94.20 0.70 99.65 0.96 
400 99.45 0.82 95.55 0.57 94.85 0.57 97.10 0.60 95.05 0.59 99.35 0.82 
500 99.45 0.73 94.70 0.51 94.15 0.50 96.15 0.53 94.25 0.52 99.40 0.72 

1000 99.60 0.51 95.45 0.36 95.25 0.36 95.85 0.36 95.15 0.36 99.50 0.51 

1 025%  0.0720  0.1020      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.80 100 1.49 99.85 1.38 100 2.51 100 1.27 100 2.66 
100 100 1.93 99.30 0.89 99.25 0.86 100 1.15 100 0.82 100 1.89 
200 100 1.21 96.95 0.53 96.50 0.53 98.70 0.59 98.30 0.53 100 1.20 
300 100 0.96 95.85 0.42 95.65 0.42 96.75 0.45 97.65 0.42 100 0.95 
400 100 0.82 95.35 0.36 94.95 0.36 96.30 0.38 96.35 0.37 100 0.82 
500 100 0.73 95.25 0.32 95.25 0.32 95.90 0.33 95.80 0.33 100 0.73 

1000 100 0.50 95.25 0.22 95.25 0.22 95.70 0.23 95.40 0.23 100 0.50 

1 050%  0.0450  0.0638      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 99.95 3.27 99.95 2.27 99.60 1.97 100 3.54 100 1.67 99.95 3.06 
100 100 2.51 98.90 1.69 97.65 1.52 100 2.39 99.85 1.50 99.85 2.39 
200 99.55 1.54 95.60 1.06 94.30 1.01 98.80 1.22 96.45 1.12 99.35 1.51 
300 99.35 1.20 96.00 0.83 95.10 0.81 97.70 0.90 95.65 0.86 99.25 1.19 
400 99.55 1.02 95.40 0.71 95.40 0.69 96.10 0.75 95.55 0.74 99.50 1.01 
500 99.55 0.89 95.20 0.62 94.75 0.61 96.20 0.65 94.15 0.64 99.50 0.89 

1000 99.55 0.61 94.40 0.43 94.75 0.43 95.75 0.44 94.25 0.44 99.50 0.61 

1 050%  0.0720  0.1020      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.81 100 1.50 99.95 1.38 100 2.58 100 1.24 100 2.66 
100 100 2.25 99.90 1.05 99.70 1.00 100 1.51 100 0.94 100 2.16 
200 100 1.49 99.20 0.66 98.45 0.65 99.95 0.77 99.95 0.64 100 1.47 
300 100 1.17 97.70 0.51 97.05 0.50 99.50 0.56 99.45 0.51 100 1.16 
400 100 1.00 96.50 0.43 96.40 0.43 98.55 0.46 97.95 0.44 100 0.99 
500 100 0.89 95.75 0.39 95.35 0.38 97.55 0.40 96.80 0.39 100 0.88 

1000 99.95 0.61 95.55 0.27 95.25 0.27 96.65 0.28 95.60 0.27 99.95 0.61 
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e) Bayesian CI. The Bayesian CI does not fail and has a CP and an AL which are 

very similar to those of the interval obtained by regression. The CP and the AL of the 

Bayesian interval are almost always higher than those of the logarithmic, Wald, Fieller 

and Bootstrap intervals. 

 

4.2. Negative LRs 

Tables 4 and 5 show some of the results obtained for   considering the same scenarios 

as for  . Failures are indicated in bold type. From the results, the following 

conclusions are obtained:  

a) Regression method. This interval has an asymptotic behaviour which is very 

similar to that of the same interval for  . 

b) Logarithmic CI. In general terms, this interval can fail when 1   and the 

dependence factors are high, whatever the sample size may be. This interval does not 

fail when 1  , and its CP is 100% or very near to this value when 100n  , and even 

with 200n   if the prevalence is small. When this interval does not fail, its AL is lower 

than that of the interval obtained through regression. 

c) Wald CI. The Wald CI does not fail, and its CP is 100% (or very near) when 

100n  , and its CP fluctuates around 95% when 200n  . The AL of the Wald CI is 

slightly lower than that of the logarithmic CI (when this does not fail), and its CP shows 

better fluctuations around 95% than that of the logarithmic interval. 

c) Fieller CI. This interval does not show any failures. In very general terms, the 

Fieller CI has a very similar CP to that of the Wald CI when 1  . When 1  , the 

CP of the Fieller CI is 100% (or near) when 100n  , and fluctuates around 95% if 

200n  . Its AL is greater than that of the Wald CI, especially when 500n  . 

d) Bootstrap CI. This interval has many failures when 1  , especially when the 

prevalence is small or moderate, and regardless of the sample size. When 1  , the 

interval does not fail, and its CP is greater than that of the Wald CI or the logarithmic 

CI, especially when the prevalence is small or moderate. Regarding the Fieller CI, the 

CP of the Bootstrap interval is very similar to that of the Fieller interval, and its AL is 

slightly lower than that of the Fieller CI, especially for 500n  . 
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e) Bayesian CI. The same as for  , the Bayesian CI for   does not fail and has a 

CP and an AL which are very similar to those of the interval obtained through 

regression. The same as for  , the CP and the AL of the Bayesian interval are higher 

than those of the logarithmic, Wald, Fieller and Bootstrap intervals. 

 

4.3. Rules of application  

Considering the asymptotic behaviour of each one of the CIs studied, it is possible to 

give some general rules of application for the CIs studied. These rules of application are 

for the different scenarios considered in the simulation experiments, scenarios that 

correspond to realistic values of prevalence, sensitivities and specificities in clinical 

practice. Based on the sample size, which in practice is the only parameter set by the 

researcher, the rules are the following: 

a) For the ratio  , use the logarithmic CI, whatever the sample size may be, 

although when 200n   we can also use the Wald, the Fieller and the Bootstrap 

intervals. 

b) For the ratio  , use the Wald CI, whatever the sample size may be. 
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Table 4. Coverage probabilities (%) and average lengths of the CIs for the ratio of the 
two negative LRs (I). 

1 2 1 2

1 1 2 2

9.5  4.5  0.056  0.125  2.111  0.444

0.95  0.90  0.90  0.80

LR LR LR LR

Se Sp Se Sp

           
   

 

1 010%  0.0225  0.0400      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 99.95 2.07 97.30 1.65 96.85 1.27 99.50 2.71 14.80 1.79 99.75 1.90 
100 99.90 2.02 96.60 1.59 96.05 1.17 99.60 2.49 35.50 1.83 99.85 1.81 
200 99.95 1.99 96.15 1.42 95.90 1.09 99.55 2.40 53.70 1.68 99.85 1.79 
300 99.85 1.81 95.45 1.30 95.15 1.03 99.05 1.99 75.95 1.59 99.75 1.65 
400 99.85 1.67 96.55 1.23 95.55 0.97 99.10 1.75 86.05 1.55 99.75 1.54 
500 99.80 1.62 96.95 1.20 95.95 0.96 98.80 1.70 88.80 1.48 99.60 1.50 

1000 99.55 1.22 96.90 0.93 95.90 0.81 97.85 1.16 95.80 1.05 99.45 1.16 

1 010%  0.0360  0.0640      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.18 92.60 1.63 99.95 1.31 99.50 2.83 5.50 1.66 100 2.01 
100 100 2.11 90.85 1.53 98.90 1.19 99.25 2.48 17.25 1.70 100 1.91 
200 100 2.16 91.15 1.38 98.35 1.12 99.25 2.57 33.00 1.53 100 1.96 
300 99.95 1.94 90.20 1.21 97.60 1.01 98.10 2.02 54.45 1.43 99.90 1.78 
400 99.95 1.76 92.40 1.13 97.10 0.95 97.65 1.64 65.25 1.39 99.90 1.63 
500 99.90 1.68 92.80 1.09 96.10 0.91 97.85 1.55 70.45 1.35 99.85 1.56 

1000 99.90 1.22 93.40 0.79 95.60 0.71 97.45 0.97 84.65 0.93 99.80 1.16 

1 025%  0.0225  0.0400      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.06 97.80 1.56 96.35 1.18 99.30 2.66 34.05 1.86 99.75 1.87 
100 100 1.87 96.20 1.34 95.95 1.04 99.65 2.13 64.85 1.67 99.80 1.70 
200 99.65 1.64 96.00 1.22 95.80 0.98 98.00 1.77 89.30 1.50 99.60 1.52 
300 99.50 1.44 95.95 1.07 95.60 0.90 97.40 1.46 93.15 1.28 99.45 1.35 
400 99.10 1.21 95.75 0.93 95.40 0.81 96.55 1.16 95.35 1.05 98.90 1.15 
500 99.50 1.06 95.55 0.82 95.45 0.73 96.00 0.97 95.60 0.89 99.20 1.01 

1000 98.60 0.65 95.20 0.52 95.15 0.50 94.65 0.55 95.55 0.52 98.45 0.64 

1 025%  0.0360  0.0640      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.13 91.90 1.48 99.90 1.19 99.30 2.60 18.35 1.71 99.95 1.95 
100 100 2.07 90.35 1.29 99.00 1.08 98.45 2.31 37.80 1.53 99.95 1.89 
200 99.85 1.71 91.65 1.09 96.55 0.92 97.40 1.58 67.35 1.35 99.80 1.59 
300 99.85 1.48 92.25 0.95 96.35 0.82 97.15 1.28 77.20 1.14 99.75 1.39 
400 99.85 1.26 91.90 0.81 95.90 0.72 96.85 1.02 82.05 0.94 99.85 1.20 
500 99.85 1.06 92.70 0.69 95.70 0.63 96.35 0.80 87.20 0.77 99.65 1.02 

1000 99.50 0.65 94.45 0.43 95.35 0.42 96.20 0.45 94.40 0.44 99.55 0.64 

1 050%  0.0225  0.0400      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 99.90 1.82 97.65 1.35 99.90 1.07 99.60 2.13 71.70 1.76 99.85 1.69 
100 99.85 1.67 96.35 1.23 99.30 0.98 99.05 1.82 84.60 1.56 99.80 1.55 
200 99.70 1.23 97.10 0.94 96.95 0.81 98.00 1.19 96.05 1.07 99.60 1.17 
300 98.75 0.92 96.25 0.73 94.40 0.66 95.60 0.81 97.25 0.76 98.50 0.89 
400 98.55 0.75 95.45 0.60 94.45 0.56 95.25 0.64 96.80 0.61 98.60 0.73 
500 98.15 0.66 94.35 0.53 94.40 0.50 94.10 0.55 95.05 0.53 97.80 0.65 

1000 98.65 0.44 95.20 0.35 95.20 0.35 94.80 0.36 94.35 0.36 98.45 0.43 

1 050%  0.0360  0.0640      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 1.90 92.35 1.25 99.30 1.04 98.35 2.01 47.90 1.60 99.95 1.77 
100 100 1.74 92.05 1.11 97.80 0.93 97.80 1.63 60.20 1.43 99.95 1.62 
200 100 1.26 93.55 0.82 96.30 0.73 97.45 1.02 81.85 0.97 99.90 1.20 
300 99.65 0.94 94.70 0.62 95.15 0.58 96.65 0.70 90.15 0.67 99.50 0.91 
400 99.70 0.77 94.55 0.51 95.30 0.48 95.95 0.54 93.10 0.52 99.50 0.75 
500 99.75 0.65 95.30 0.44 95.20 0.42 95.85 0.46 94.80 0.44 99.55 0.64 

1000 99.65 0.43 95.75 0.30 94.80 0.29 95.40 0.30 96.30 0.29 99.55 0.43 
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Table 5. Coverage probabilities (%) and average lengths of the CIs for the ratio of the 
two negative LRs (II). 

1 2 1 2

1 1 2 2

6  6  0.118  0.118  1  1

0.90  0.85  0.90  0.85

LR LR LR LR

Se Sp Se Sp

           
   

 

1 010%  0.0450  0.0638      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.55 100 1.84 99.50 1.55 100 3.35 100 1.72 100 2.34 
100 100 2.54 100 1.74 98.85 1.44 99.95 3.04 100 1.65 100 2.33 
200 100 2.52 100 1.58 95.90 1.36 99.90 3.01 100 1.56 100 2.32 
300 100 2.48 100 1.52 93.85 1.34 99.60 2.70 100 1.52 100 2.31 
400 100 2.39 99.65 1.51 93.15 1.32 99.20 2.53 100 1.51 99.90 2.26 
500 100 2.35 99.65 1.43 94.35 1.31 99.05 2.45 100 1.50 100 2.25 

1000 99.85 1.98 97.15 1.33 93.95 1.24 96.85 1.86 98.70 1.38 99.85 1.91 

1 010%  0.0720  0.1020      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.73 100 1.76 99.90 1.56 100 3.45 100 1.39 100 2.51 
100 100 2.68 100 1.56 99.80 1.40 100 2.84 100 1.34 100 2.49 
200 100 2.65 100 1.42 99.80 1.30 100 2.78 100 1.23 100 2.40 
300 100 2.61 100 1.28 98.60 1.19 99.95 2.62 100 1.12 100 2.33 
400 100 2.52 100 1.19 97.70 1.11 98.90 2.05 100 1.07 100 2.27 
500 100 2.42 100 1.13 97.10 1.07 97.95 1.85 100 1.03 100 2.18 

1000 100 1.91 99.80 0.85 96.80 0.82 97.15 1.16 100 0.80 100 1.85 

1 025%  0.0450  0.0638      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.56 100 1.72 98.20 1.46 100 3.23 100 1.67 100 2.40 
100 100 2.51 100 1.53 95.45 1.35 99.85 2.91 100 1.55 99.95 2.35 
200 99.95 2.40 99.50 1.50 93.90 1.31 98.90 2.57 99.95 1.53 99.90 2.20 
300 99.85 2.26 98.55 1.48 94.65 1.25 98.00 2.35 99.75 1.47 99.80 2.15 
400 99.70 1.98 96.95 1.33 93.05 1.19 96.20 1.85 98.20 1.37 99.55 1.92 
500 99.55 1.74 95.20 1.18 92.35 1.10 94.55 1.50 96.40 1.24 99.40 1.70 

1000 99.25 1.15 94.80 0.79 94.25 0.75 94.40 0.86 94.15 0.84 99.20 1.13 

1 025%  0.0720  0.1020      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.86 100 1.57 99.80 1.41 100 3.11 100 1.40 100 2.65 
100 100 2.81 100 1.37 98.90 1.26 100 2.95 100 1.22 100 2.54 
200 100 2.45 100 1.14 97.75 1.07 100 1.86 100 1.04 100 2.30 
300 100 2.22 99.90 1.01 97.20 0.97 99.80 1.54 100 0.93 100 2.10 
400 100 1.92 96.95 0.86 96.80 0.83 98.55 1.17 99.95 0.80 100 1.85 
500 100 1.69 96.55 0.74 96.45 0.72 98.15 0.94 99.90 0.71 100 1.65 

1000 100 1.13 96.05 0.49 95.95 0.48 96.50 0.53 98.45 0.49 100 1.10 

1 050%  0.0450  0.0638      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.45 100 1.59 95.50 1.40 99.90 2.80 100 1.65 99.95 2.31 
100 99.95 2.42 99.25 1.56 94.70 1.35 99.00 2.69 99.95 1.55 99.90 2.25 
200 99.80 2.01 96.90 1.34 93.30 1.25 96.20 1.89 98.85 1.37 99.70 1.94 
300 99.65 1.57 96.75 1.08 94.30 1.05 96.30 1.29 97.20 1.15 99.60 1.54 
400 99.70 1.32 95.40 0.91 94.65 0.88 95.20 1.02 95.20 0.97 99.70 1.30 
500 99.70 1.17 95.10 0.81 94.90 0.78 94.70 0.88 94.20 0.85 99.65 1.15 

1000 99.40 0.78 95.20 0.54 94.60 0.54 95.05 0.56 94.75 0.56 99.35 0.77 

1 050%  0.0720  0.1020      

 Regression Logarithmic Wald Fieller Bootstrap Bayesian 
n CP AL CP AL CP AL CP AL CP AL CP AL 
50 100 2.67 99.95 1.36 99.50 1.26 99.95 2.64 100 1.30 100 2.51 
100 100 2.49 100 1.16 98.45 1.09 100 1.95 100 1.09 100 2.36 
200 100 1.94 99.55 0.86 97.30 0.83 99.40 1.18 100 0.81 100 1.88 
300 100 1.55 98.80 0.67 97.00 0.66 98.55 0.80 99.75 0.65 100 1.51 
400 100 1.30 96.95 0.56 96.90 0.55 97.80 0.63 99.60 0.55 100 1.28 
500 100 1.14 96.25 0.50 96.25 0.49 96.05 0.54 98.20 0.50 100 1.13 

1000 100 0.78 95.35 0.34 95.10 0.34 95.35 0.35 95.30 0.35 100 0.77 
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5. Sample size 

An important question when comparing two parameters is the calculation of the sample 

size necessary to compare the parameters with a determined error and power. In the 

context of the comparison of the LRs, Roldán-Nofuentes and Luna (2007) proposed a 

method to calculate the sample size to solve the hypothesis test  0 : ln 0H    vs 

 1 : ln 0H   . We then study the same problem but from the perspective of the CIs. 

Therefore, we study the problem of calculating the sample size necessary to estimate the 

ratio between the two LRs with a precision   and a confidence  100 1 % . As in the 

previous sections, we consider that   is   or  . Let us first consider the Wald CI, 

which can be applied both to estimate   (with 200n  ) and   (for any sample size). 

Based on the asymptotic normality of the estimator of  , it is verified that 

 1 2
ˆ ˆz Var    , i.e. the probability of obtaining an estimator ̂  is in this 

interval with a probability  100 1 % . Let us consider that 2 1LR LR  and, therefore, 

that 1   (the Wald interval will be lower than one) and let   be the precision set by 

the researcher. As it has been assumed that 1  , then   must be lower than one, and 

if we want to have a high level of precision then   must be a small value. The sample 

size n is calculated from the expression 

 
     1 2 1 2

1 2 2 2
1 2 1 2

ˆ ˆ ˆ ˆ2 ,Var LR Var LR Cov LR LR
z

LR LR LR LR    . (21) 

This equation is obtained from the Wald CI (equation (12)). Substituting the variances 

and the covariance with their respective expressions given in equations (6) and clearing 

n we obtain the expression of the sample size to estimate  with a precision   and a 

confidence  100 1 % . For   the equation of the sample size is  

 
    

2
2

1 2 1 0

1 1 2 1 2

1 2 2

1 1 1
h h

h h h

z Se Sp
n

Se Sp Se Se Sp Sp
   
    






    
                 

 , (22) 

and for   is 

 
    

2
2

1 2 1 0

1 1 2 1 2

1 2 2

1 1 1
h h

h h h
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n

Se Sp Se Se Sp Sp
   
    






    
                 

 . (23) 
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If it is considered that 1   (and consequently the Wald CI is higher than one) the 

BDTs can always be permuted and   will then be lower than one. Another alternative 

consists of setting a value for a precision   , in a similar way to the previous situation 

when 1  , and then apply equation (22) or (23) considering 2ˆ   . As is explained 

at the end of Section 3, this is due to the fact that if  ,L U   is the Wald CI for 

1 2 1LR LR    then the Wald CI for 2 11 LR LR     is 
2 2

 ,  
ˆ ˆ
L U 

 
 
 
 

. It is easy to 

check that the calculated value of the sample size n is the same both if 1   (with a 

precision  ) and if 1   (with precision 2ˆ   ).  

In order to be able to apply the previous equations, it is necessary to know the 

sensitivities, the specificities (and therefore the LRs,   and  ), the dependence 

factors between the two BDTs  i  and the prevalence   . In practice, these values 

can be estimated from a pilot sample or can be obtained from another similar study. 

Therefore, the method to calculate the sample size requires us to know some estimations 

of the accuracy (Se and Sp) of each BDT, of the dependence factors between the BDTs 

and of the disease prevalence, obtained for example from a pilot study or from other 

previous studies. The method to calculate the size of the sample consists of the 

following steps: 

Step 1. Take a pilot sample sized 0n  (in general terms, 0 200n   if   is estimated to 

then be able to calculate the Wald CI), and with this sample we calculate ˆ
hSe , ˆ

hSp  

(and therefore ˆ
hLR , ̂  and ̂ ), î  and ̂ . The Wald CI for   is then calculated, 

and if this interval has a precision  , i.e.  1 2
ˆ ˆz Var    , then the required 

precision has been reached; if not, go to the following step. 

Step 2. Based on the estimations obtained in Step 1, calculate the sample size n 

applying equation (22) or (23). 

Step 3. Take the sample of n individuals (add 0n n  individuals to the initial pilot 

sample), and from this new sample we calculate ˆ
hSe , ˆ

hSp , î , ̂  and the Wald CI. If 

the Wald CI has a precision  , then the set precision has been achieved; if not, 

consider the new sample to be a pilot sample  0n n  and go back to Step 1. 



 

111 
 

This proposed procedure to calculate the sample size is iterative, and therefore it 

does not guarantee that with the sample size calculated we can then estimate the 

parameter   with the required precision. Moreover, if the researcher sets a precision 

   to estimate   and also sets a precision    to estimate  , once both sample sizes 

have been calculated through the previous method, the researcher must take a sample 

size of at least the maximum of the two sample sizes, to thus guarantee the precision in 

both estimations. In general, the calculation of the sample size makes sense when the 

confidence interval for   does not contain the value one, since in this situation (the 

interval contains the value one) the equality of both LRs is not rejected and it does not 

make sense to determine how much larger one LR is compared to the other. 

Nevertheless, if the pilot sample is small (for example to estimate  ) and the Wald CI 

for   contains the value 1, it may be useful to calculate the sample size to estimate the 

 . In this situation, the Wald CI for   will be very wide (as the pilot sample is 

small) and may contain the value 1 even if 1LR  and 2LR  are different. 

The calculation of the sample size depends on the estimations obtained from an 

initial pilot sample. In order to study the effect that this sample has on the calculation of 

the sample size, simulation experiments were carried out which were similar to those 

carried out in Section 4. From the values of the parameters, we calculated the sample 

size n applying equation (22) or (23) depending on the case, taking a precision equal to 

0.10, and we then generated 10,000N   random samples with multinomial 

distributions sized n . In each one of the N random samples, we calculated the sample 

size in   from the estimators calculated with the random sample, and then calculated the 

average sample size in n N  and the relative bias    RB n n n n   . Table 6 

shows the results obtained for the scenarios considered in Tables 5 and 6 ( 1  ). From 

the results, it holds that that the dependence factors i  have an important effect on the 

calculation of the sample size, and the sample size is smaller when the dependence 

factors are larger. Moreover, the increase in the prevalence means an increase (decrease) 

in the sample size to estimate     . The relative biases obtained are very small, and 

therefore the sample sizes calculated from equations (22) and (23) are robust. 

Consequently, the initial pilot sample does not have an important effect on the 

determination of the sample size to estimate  . 
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Table 6. Sample size to estimate  . 

1 2 1 2

1 1 2 2

9.5  4.5  0.056  0.125  2.111  0.444

0.95  0.90  0.90  0.80

LR LR LR LR

Se Sp Se Sp

           
   

 

Sample size for   

1 00.0225  0.0400    

 10%   25%   50%   
Sample size 958 1,073 1,571 

Average sample size 981 1,084 1,597 
Relative bias (%) 2.40 1.03 1.66 

1 00.0360  0.0640    

 10%   25%   50%   
Sample size 701 786 1,152 

Average sample size 734 796 1,160 
Relative bias (%) 4.71 1.27 0.69 

Sample size for   

1 00.0225  0.0400    

 10%   25%   50%   
Sample size 14,439 5,793 2,922 

Average sample size 14,715 5,896 2,966 
Relative bias (%) 1.91 1.78 1.51 

1 00.0360  0.0640    

 10%   25%   50%   
Sample size 10,336 4,147 2,092 

Average sample size 10,482 4,186 2,118 
Relative bias (%) 1.41 0.94 1.24 

 

If the initial pilot sample has a small or moderate size, then in order to estimate   

we use the logarithmic CI. In this situation, the process is similar to the previous one, 

and the sample size is calculated from the equation    1 2 ˆln lnz Var 


    , where 

the expression of  ˆlnVar     is given in equation (10). Following a similar process to 

the previous one, it holds that 

 
      
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1 1 2 1 2

1 2 2

ln 1 1 1
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h h h
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Se Sp Se Se Sp Sp
  
    





    
                 

 . (24) 

 

6. Applications 

The results obtained were applied to two real examples: a) a study of the diagnosis of 

coronary disease, and another study of the diagnosis of colorectal cancer. 
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6.1. Diagnosis of coronary disease 

The results obtained were applied to the study by Weiner et al (1979) on the diagnosis 

of coronary disease, which is a widely used study to illustrate statistical methods for the 

estimation and comparison of parameters of BDTs. Weiner et al studied the diagnosis of 

coronary artery disease using as diagnostic tests the exercise test and the resting EKG, 

and the coronary arteriography as a GS. Table 7 shows the frequencies obtained by 

applying three medical tests to a sample of 1,465 males, where 1T  models the result of 

the exercise test, 2T  models the result of the resting EKG and D the result of the GS. 

Table 7 also shows the estimations of the LRs    and their standard errors, as well as 

the CIs for   and  .  

For  , from any of the six CIs (all of them are greater than one) it holds that the 

positive LR of the exercise test is significantly larger than the positive LR of the resting 

EKG, i.e. a positive result in the exercise test is more indicative of the presence of the 

disease than a positive result in the resting EKG. Interpreting the results of the 

logarithmic CI, the positive LR of the exercise test is (with a confidence of 95%) a value 

between 1.632 and 2.713 times larger than the positive LR of the resting EKG.  

Regarding  , all of the CIs intervals (all are less than one) we reject the equality of 

the two negative LRs, and it holds that a negative result for the resting EKG is more 

indicative of the absence of the disease than a negative result of the exercise test. 

Interpreting the Wald CI, the negative LR of the resting EKG is (with a confidence of 

95%) a value between 2.872  20.262 0.302  and 3.783  20.345 0.302  times larger 

than the negative LR of the exercise test. 

Moreover, in order to illustrate the method to calculate the sample size, we are going 

to consider that the researcher wants to estimate   with a precision equal to 0.10, 

which can be considered to be a high precision. The Wald CI for   is  1.569 , 2.639 , 

and therefore multiplying this interval by  2 2ˆ1 1 2.109   it holds that the 95% 

Wald CI for 2 1LR LR      is  0.353 , 0.593 , and the precision is 0.12. As 0.12 is 

higher than 0.10, it is necessary to increase the sample size to estimate   with the 

required precision. Setting the confidence at 95% and taking 
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 2 2ˆ 2.109 0.10 0.445       , applying equation (22) it holds that 2,146n  . 

Consequently, it is necessary to add 681 new individuals to the initial sample of 1,465 

individuals, and once the data are obtained it is necessary to check that the required 

precision has been achieved.  

 

Table 7. Diagnosis of coronary disease. 
 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   224 591 32 176 1,023 
0D   35 80 41 286 442 

Total 259 671 73 462 1,465 
Results 

 Se Sp LR LR  
Exercise test 0.797 0.013  0.740 0.021  3.065 0.250  0.274 0.019  
Resting EKG 0.250 0.014  0.828 0.018  1.453 0.171  0.906 0.026  

p 1  0  
1 2LR LR    1 2LR LR    

0.698 0.020 0.034 2.109 0.273  0.302 0.021  

CIs for 1 2LR LR    

Regression CI Logarithmic CI Wald CI 

 1.589 , 2.786   1.632 , 2.713   1.569 , 2.639  

Fieller CI Bootstrap CI Bayesian CI 

 1.647 , 2.765   1.501 , 2.612   1.668 , 2.567  

CIs for 1 2LR LR    

Regression CI Logarithmic CI Wald CI 

 0.263 , 0.351   0.265 , 0.348   0.262 , 0.345  

Fieller CI Bootstrap CI Bayesian CI 

 0.262 , 0.346   0.280 , 0.348   0.264 , 0.343  

 

6.2. Diagnosis of colorectal cancer 

The results obtained were applied to a study of the diagnosis of colorectal cancer, using 

as diagnostic tests Fecal Occult Blood Testing (FOBT) and Fecal Immunochemical 

Testing (FIT), and the biopsy as the GS. Table 8 shows the results obtained by applying 

the three tests to a sample of 168 adult men with suspicious symptoms of the disease, 

where the variable 1T  models the result of the FOBT, 2T  models the result of the FIT 

and D models the result of the biopsy. This data came from a study carried out at the 

University Hospital of Granada in Spain. Table 8 also shows the estimations of the LRs, 

their standard errors and the confidence intervals for    and  . 



 

115 
 

Applying the rule given in Section 4.3, as 168 200n    the logarithmic CI for   

must be used in addition to the Wald CI for  . For  , the logarithmic CI contains the 

value one, and therefore we do not reject the equality of both positive LRs. Regarding 

 , the Wald CI does not contain the value one, and therefore we reject the equality of 

both negative LRs. Thus, a negative result for the FOBT is more indicative of the 

presence of colorectal cancer than a negative result for the FIT. The negative LR of the 

FOBT is (with a confidence of 95%) a value between 1.321 and 3.183 times larger than 

the negative LR of the FIT. The Wald CI for 1   is  0.260 , 0.628 , calculated as 

 2 21.321 2.252  , 3.183 2.252 . 

 

Table 8. Diagnosis of colorectal cancer. 
 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   68 1 18 13 100 
0D   4 2 1 61 68 

Total 72 3 19 74 168 
Results 

 Se Sp LR LR  
FOBT 0.690 0.046  0.912 0.034  7.841 3.093  0.340 0.052  
FIT 0.860 0.035  0.926 0.032  11.622 5.057  0.151 0.038  

p 1  0  1 2LR LR    1 2LR LR    

0.595 0.087 0.052 0.675 0.215  2.252 0.475  

CIs for 1 2LR LR    

Regression CI Logarithmic CI Wald CI 

 0.212 , 2.108   0.356 , 1.255   0.254 , 1.096  

Fieller CI Bootstrap CI Bayesian CI 

 0.278 , 2.277   0.281 , 1.283   0.222 , 2.057  

CIs for 1 2LR LR    

Regression CI Logarithmic CI Wald CI 

 1.265 , 4.001   1.488 , 3.403   1.321 , 3.183  

Fieller CI Bootstrap CI Bayesian CI 

 1.556 , 3.894   1.553 , 3.778   1.281 , 4.006  

 

In order to illustrate in this example the method of sample size calculation, let us 

suppose that the researchers want to estimate 1   with a precision equal to 0.10, or in 

other words, to estimate   with a precision of  2 2ˆ0.10 0.10 2.252 0.50    . As 

with the sample of 168 individuals the precision obtained with the Wald CI for   is 
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0.931 0.50 , or rather a precision equal to 0.184  0.10  with the Wald CI for 1  , 

then it is necessary to calculate the sample size. Considering the sample of 168 

individuals to be a pilot sample, applying equation (23) it holds that 561n  . Therefore, 

561 individuals are needed (we have to add 393 to the sample of 198) in order to 

estimate    1   with a precision equal to 0.50 (0.10) with a confidence of 95%. 

 

7. Discussion 

The LRs are parameters that are used to assess and compare the effectiveness of BDTs, 

and only depend on the accuracy (sensitivity and specificity) of the BDT. The 

comparison of the positive (negative) LRs of two BDTs subject to a paired design is a 

topic which has not been widely studied in Statistical literature and consists of the 

comparison of two relative risks subject to the same type of design. The previous 

studies (Leisenring and Pepe (1998) and Pepe (2003), Roldán-Nofuentes and Luna 

(2007), Dolgun et al (2012) focused mainly on the study of hypothesis tests to compare 

the positive (negative) LRs of the two BDTs. The comparison of the positive (negative) 

LRs through CIs has been the object of the very little research, and the studies that have 

been published by Pepe (2003) and Roldán-Nofuentes and Luna (2007) have focused on 

proposing CIs without dealing with this question in more depth. In this article, we 

extend the scope of these previous studies, proposing four new intervals: three of which 

are frequentist (Wald, Fieller and Bootstrap) and one which is Bayesian. The Wald and 

Fieller intervals are based on the asymptotic normality of the ratio of the LRs, and the 

Bootstrap interval is based on the fact that the bootstrap estimator of the ratio of the LRs 

can be transformed to a normal distribution. Regarding the Bayesian Interval, this was 

obtained by applying the Monte Carlo method considering a priori non-informative 

distributions. The importance of the study of the CIs for the ratio of the positive 

(negative) LRs does not only lie in the fact that these CIs allow us to compare the two 

positive (negative) LRs, but also that it allows us to determine (when the equality of 

both LRs is rejected) how much bigger one LR than the other, which means an 

advantage over the hypothesis tests.  

The comparison of the asymptotic behaviour of the six CIs was studied through 

simulation experiments. The results of these experiments has shown that, in the 
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scenarios considered, in order to estimate the ratio 1 2LR LR   , in general terms, the 

intervals with the best behaviour are the logarithmic one (for all the sample sizes), the 

Wald, Fieller or Bootstrap intervals (these last three for large or very large samples); 

whereas in order to estimate 1 2LR LR    the interval with the best behaviour is the 

Wald interval (for all of the samples sizes). The use of different CIs for   and for   

may be due to the convergence to the normal distribution of the estimators. For an 

informative BDT, i.e. for a BDT whose Youden index is higher than 0 

 1 0Y Se Sp    , it must be verified that 1LR   and that 1LR  . Then, 

considering that the two BDTs are informative (as should be the case in clinical 

practice),   is the ratio between two values greater than 1 and   is the ratio between 

two values lower than 1. For  , ˆln  converges better to the normal distribution than 

̂  for 200n  , but when 200n   both (̂  and ˆln ) has a good approximation to 

the normal distribution. The Wald CI for   has a better asymptotic behaviour than the 

logarithmic CI for  , which must be due to the fact that ̂  converges more quickly 

to the normal distribution (even with large samples) than ˆln . 

An important question when comparing parameters of two BDTs is the calculation of 

the sample size necessary to compare the parameters based on certain specifications. 

When a hypothesis test is carried out, the sample size is calculated based on an   error, 

a   power and a difference (or ratio) to be detected among the parameters. Roldán-

Nofuentes and Luna (2007) proposed a method to calculate sample size to solve the 

hypothesis test ( 0 : ln 0H   ) of equality of the positive (negative) LRs. This article 

proposes, as a complement to the study of the CIs, a method to determine the sample 

size necessary to estimate the ratio between the LRs with a previously set precision. 

This is a topic that has never been studied and, therefore, represents a contribution to 

Statistical literature on the subject analysed in this article. The method, which is based 

on the Wald (logarithmic) CI, requires knowledge of the estimations of the sensitivities, 

specificities, dependence factors and disease prevalence. These estimations can be 

obtained from a pilot sample or another similar study and, therefore, as it depends on 

the pilot sample selected. Therefore, the method does not guarantee that with the 

calculated sample size the parameter   can be estimated with the set precision, and it is 

necessary to check this precision. 
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The intervals studied in this article can also be applied when the sample design is 

case-control. In this type of design, the two BDTs are applied to all of the individuals in 

two random samples, one of 1n  individuals with the disease and another one of 2n  

individuals without the disease. If thus type of sampling is used, two multinomial 

distributions are involved, one for the case sample, whose probabilities are 

   1 1

1 1 2 2 11 1
i ji j

ij ijp Se Se Se Se        with 1ijp  , and the other for the control 

sample, whose probabilities are    1 1
1 1 2 2 01 1

i ji j
ij ijq Sp Sp Sp Sp        with 1ijq  . 

Here, the variances-covariances of the sensitivities and specificities are 

       

   
1 2

1 0
1 2 1 2

1 2

1 1ˆ ˆ,  ,

ˆ ˆ ˆ ˆ, ,  , .

h h h h
h h

Se Se Sp Sp
Var Se Var Sp

n n

Cov Se Se Cov Sp Sp
n n

 

 
 

 
 

The equations of the estimators and of the variances-covariances given in the 

regression, logarithmic, Wald and Fieller intervals are valid substituting s with 1n  and r 

with 2n . Regarding the Bootstrap interval, it is necessary to generate B samples with 

replacement from the case sample and another B samples with replacement from the 

control sample, and the process is the same as the one described in Section 3.5. 

Regarding the Bayesian interval, the process is similar substituting s with 1n  and r with 

2n . 

The methodology used in this article, both to obtain the CIs and to calculate the 

sample size, can be used to compare other parameters of BDTs, e.g. the odds ratios. The 

odds ratio of a BDT is defined as   1 1OR SeSp Se Sp      and is a measure of the 

association between the BDT and the GS. It is easy to check that the ratio of the odds 

ratios of two BDTs is  1 2 1 2LR LR LR LR    , and therefore from this expression it is 

possible to deduce CIs similar to those given in Section 3 and can also be applied to the 

same procedure as in Section 5 to determine the sample size necessary to compare the 

odds ratios of two BDTs through a CI. 

In this manuscript we studied the comparison of the LRs of two binary diagnostic 

tests. When the diagnostic test is quantitative, its accuracy is measured by the area under 

the ROC curve. The LRs are related to the equation of the ROC curve. Thus, for a single 
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quantitative diagnostic test, for each one of the cut off points c of the estimated ROC 

curve a value for Ŝe  and a value ˆ1 Sp  are obtained, and therefore a value for L̂R  

(and another one for L̂R ). For L̂R , its numerator Ŝe  is the “y” coordinate of the 

estimated ROC curve, and the denominator ˆ1 Sp  is the “x” coordinate of the estimated 

ROC curve. The estimator of LR for an interval  1 2,c c  of test values corresponds to the 

slope of the line segment between 1c  and 2c  on the estimated ROC curve. In the case of 

two quantitative diagnostic test, for each cut off point of each estimated ROC curve, we 

obtain a value for ̂  and another one for ̂ , and therefore it is possible to calculate the 

CIs studied in Section 3. 

 

Appendix A 

The variances-covariances of all of the parameters were obtained applying the delta 

method. Let  1 1 2 2, , ,
T

Se Sp Se Spθ  be a vector whose components are the sensitivities 

and the specificities, let  1 2 1 2, , ,   LR
T

LR LR LR LR . be a vector whose components 

are the positive LRs and the negative LRs, and  ,
T

  ω . The matrix of variances-

covariances of θ̂  is  

ˆ ˆ

T             
ψθ

ψ ψ

θ θ
. 

Regarding the LRs, the matrix of variances-covariances of L̂R  is 

ˆ ˆ

T             LR θ

LR LR

θ θ
. 

Finally, the matrix of variances-covariances of ω̂  is 

 ˆ ˆ

T             
ω θ

ω ω

θ θ
.  (25) 

The matrix of variances-covariances of  ˆln ω  is calculate in a similar way, i.e. 

 
   

ˆˆln

ln ln
T

    
         

ω θ

ω ω

θ θ
. 
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Performing the algebraic operations in each one of the previous expressions and 

substituting each parameter with its estimator, we obtain the asymptotic variances-

covariances given in the equations (5), (6), (7) and (10) respectively. 

 

Appendix B 

The selection of the CI with the best asymptotic behaviour was made through the 

following steps: 1) Choose the CIs with the least failures ( 93%CP  ), 2) Choose the 

CIs which are the most precise (lowest AL) and among these those which have a CP 

closest to 95%. The first step in this method establishes that the CI does not fail when 

93%CP  . The confidence level was set at 95%, i.e. 1 0.95     was set as the 

nominal confidence and, therefore, a nominal error 5%  . Let *  be the calculated 

CP, then * *         , where *  is the type I error.  

Furthermore, the hypothesis test to check the equality of the two LRs is 

0 1 2:H LR LR  vs 1 1 2:H LR LR , which is equivalent to checking 0 : 1H    vs 

0 : 1H   . In Step 1, a CI fails if 93%CP  , i.e. if 2   . In this situation, the type I 

error of the hypothesis test is 7% , and therefore it is a very liberal hypothesis test and 

can give false significances. If 2%  , i.e. 97%CP  , then the hypothesis test is 

very conservative (its type I error is very small, 3% ), but does not give false 

significances. Therefore, the choice of the CI is linked to the decisions of the hypothesis 

test, and it is preferable to choose a conservative test rather than a very liberal one (as 

there will be no false significances due to the fact that its type I error is lower than the 

nominal one). 
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Abstract 

The weighted kappa coefficient of a binary diagnostic test is a measure of the beyond-

chance agreement between the diagnostic test and the gold standard, and depends on the 

sensitivity and specificity of the diagnostic test, on the disease prevalence and on the 

relative importance between the false positives and the false negatives. This article 

studies the comparison of the weighted kappa coefficients of two binary diagnostic tests 

subject to a paired design through confidence intervals. Three asymptotic confidence 

intervals are studied for the difference between the parameters and five other intervals 

for the ratio. Simulation experiments were carried out to study the coverage 

probabilities and the average lengths of the intervals, giving some general rules for 

application. A method is also proposed to calculate the sample size necessary to 

compare the two weighted kappa coefficients through a confidence interval. A program 

in R has been written to solve the problem studied and it is available as supplementary 

material. The results were applied to a real example of the diagnosis of malaria. 

 

Keywords: weighted kappa coefficient, paired design, binary diagnostic test. 

 

Mathematics Subject Classification: 62P10, 6207. 
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1. Introduction 

A diagnostic test is medical test that is applied to an individual in order to determine the 

presence or absence of a disease. When the result of a diagnostic test is positive 

(indicating the presence of the disease) or negative (indicating its absence), the 

diagnostic test is called a binary diagnostic test (BDT) and its accuracy is measured in 

terms of two fundamental parameters: sensitivity and specificity. Sensitivity (Se) is the 

probability of the BDT result being positive when the individual has the disease, and 

specificity (Sp) is the probability of the BDT result being negative when the individual 

does not have the disease. Sensitivity is also called true positive fraction (TPF) and 

specificity is also called true negative fraction (TNF), verifying that 1TPF FNF   and 

that 1TNF FPF  , where FNF (FPF) is the false negative (positive) fraction. The 

accuracy of a BDT is assessed in relation to a gold standard (GS), which is a medical 

test that objectively determines whether or not an individual has the disease. When 

considering the losses of an erroneous classification with the BDT, the performance of 

the BDT is measured in terms of the weighted kappa coefficient (Kraemer et al, 1990; 

Kraemer, 1992; Kraemer et al, 2002). The weighted kappa coefficient depends on the Se 

and Sp of the BDT, on the disease prevalence (p) and on the relative importance 

between the false positives and the false negatives (weighting index c). The weighted 

kappa coefficient is a measure of the beyond-chance agreement between the BDT and 

the GS. 

Furthermore, the comparison of the performance of two BDTs is an important topic 

in the study of Statistical Methods for Diagnosis in Medicine. The comparison of two 

BDTs can be made subject to two types of sample designs: unpaired design and paired 

design. In the book by Pepe (2003) we can see a broad discussion about both types of 

sample designs. Summing up, subject to an unpaired design each individual is tested 

with a single BDT, whereas subject to a paired design each individual is tested with the 

two BDTs. Consequently, unpaired design consists of applying a BDT to a sample of 1n  

individuals and the other BDT to another sample of 2n  individuals; paired design 

consists of applying both BDTs to all of the individuals of a sample sized n. The 

comparative studies based on a paired design are more efficient from a statistical point 

of view than the studies based on an unpaired design, since it minimizes the impact of 

the between-individual variability. Therefore, in this article we focus on paired design. 

Subject to this type of design, Bloch (1997) has studied an asymptotic hypothesis test to 
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compare the weighted kappa coefficients of two BDTs. Nevertheless, if the hypothesis 

test is significant, this method does not allow us to assess how much bigger one 

weighted kappa coefficient is compared to another one, and it is necessary to estimate 

this effect through confidence intervals (CIs). Thus, the objective of our study is to 

compare the weighted kappa coefficients of two BDTs through CIs. Frequentist and 

Bayesian CIs have been studied for the difference and for the ratio of the two weighted 

kappa coefficients. If a CI for the difference (ratio) does not contain the zero (one) 

value, then we reject the equality between the two weighted kappa coefficients and we 

estimate how much bigger one coefficient is than another one. Consequently, our study 

is an extension of the Bloch method to the situation of the CIs. We have also dealt with 

the problem of calculating the sample size to compare the two parameters through a CI.  

The manuscript is structured in the following way. In Section 2, we explain the 

weighted kappa coefficient of a BDT and we relate the comparison of the weighted 

kappa coefficients of two BDTs with the relative true (false) positive fraction of the two 

BDTs. Section 3 summarizes the Bloch method and we propose CIs for the difference 

and the ratio of the weighted kappa coefficients of two BDTs subject to a paired design. 

In Section 4, simulation experiments are carried out to study the asymptotic behaviour 

of the proposed CIs, and some general rules of application are given. In Section 5, we 

propose a method to calculate the sample size necessary to compare the two weighted 

kappa coefficients through a CI. In Section 6, a programme written in R is presented to 

solve the problems posed in this manuscript. In Section 7, the results were applied to a 

real example on the diagnosis of malaria, and in Section 8 the results are discussed. 

 

2. Weighted kappa coefficient 

Let us consider a BDT that is assessed in relation to a GS. Let L  L  the loss which 

occurs when for a diseased (non-diseased) individual the BDT gives a negative 

(positive) result. Therefore, the loss L  L  is associated with a false negative (positive). 

If an individual (with or without the disease) is correctly diagnosed by the BDT then 

0L L  . Let D  be the variable that models the result of the GS: 1D   when an 

individual has the disease and 0D   when this is not the case. Let  1p P D   be the 

prevalence of the disease and 1q p  . Let T  be the random variable that models the 
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result of the BDT: 1T   when the result of the BDT is positive and 0T   when the 

result is negative. Table 1 shows the losses and the probabilities associated with the 

assessment of a BDT in relation to a GS, and the probabilities when the BDT and the GS 

are independent, i.e. when    P T i D j P T i    . Multiplying each loss in the 

2 2  table by its corresponding probability and adding up all the terms, we find 

   1 1p Se L q Sp L   , a term that is defined as expected loss. Therefore, the 

expected loss is the loss that occurs when erroneously classifying with the BDT an 

individual with or without the disease. Moreover, if the BDT and the GS are 

independent, multiplying each loss by its corresponding probability (subject to the 

independence between the BDT and the GS) and adding up all of the terms we find 

   1 1p p Se q Sp L q p Se q Sp L               , a term that is defined as random 

loss. Therefore, the random loss is the loss that occurs when the BDT and the GS are 

independent. The independence between the BDT and the GS is equivalent to the 

Youden index of the BDT being equal to zero i.e. 1 0Se Sp   , and is also equivalent 

to the expected loss being equal to the random loss. In terms of expected and random 

losses, the weighted kappa coefficient of a BDT is defined as 

 
Random loss Expected loss

Random loss
 
 . 

Substituting in this equation each loss with its expression, the weighted kappa 

coefficient of a BDT is expressed (Kraemer et al, 1990; Kraemer, 1992; Kraemer et al, 

2002) as 

 
   

( )
1 1

pqY
c

p Q c qQ c
 

  
, (1) 

where 1Y Se Sp    is the Youden index,  1Q pSe q Sp    is the probability that 

the BDT result is positive, and  c L L L   is the weighting index. The weighting 

index c is a measure of the relative importance between the false positives and the false 

negatives. For example, let us consider the diagnosis of breast cancer using as a 

diagnostic mammography test. If the mammography test is positive in a woman that 

does not have cancer (false positive), the woman will be given a biopsy that will give a 

negative result. The loss L  is determined from the economic costs of the diagnosis and 

also from the risk, stress, anxiety, etc., caused to the woman. If the mammography test 
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is negative in a woman who has breast cancer (false negative), the woman may be 

diagnosed at a later stage, but the cancer may spread, and the possibility of the treatment 

being successful will have diminished. The loss L  is determined from these 

considerations. The losses L  and L  are measured in terms of economic costs and also 

from risks, stress, etc., which is why in practice their values cannot be determined. 

Therefore, as loss L cannot be determined, L is substituted by the importance that a false 

positive has for the clinician; in the same way, as loss 'L  cannot be determined, then 

'L  is substituted by the importance that a false negative has for the clinician. The value 

of the weighting index c will depend therefore on the relative importance between a 

false positive and a false negative. If the clinician has greater concerns about false 

positives, as it is the situation in which the BDT is used as a definitive test prior to a 

treatment that involves a risk for the individual (e.g., a definitive test prior to a surgical 

operation), then 0 0.5c  . If the clinician is more concerned about false negatives, as 

in a screening test, then 0.5 1c  . The index c is equal to 0.5 when the clinician 

considers that the false negatives and the false positives have the same importance, in 

which case  0.5  is the Cohen kappa coefficient. Weighting index c quantifies the 

relative importance between a false positive and a false negative, but it is not a measure 

that quantifies how much bigger the proportion of false positives is compared to the 

false negatives. If 0c   then 

      
 

1 1
0

1

Sp Q p FNF FPF

Q p FNF qFPF


   
 

 
, (2) 

which is the chance corrected specificity according to the kappa model. If 1c   then 

    
 

1
1

1 1

q FNF FPFSe Q

Q pFNF q FPF


 
 

  
, (3) 

which is the chance corrected sensitivity according to the kappa model. A low (high) 

value of  1  will indicate that the value of FNF is high (low), and a low (high) value 

of  0  will indicate that the value of FPF is high (low). The weighted kappa 

coefficient can be written as 

          
   

1 1 1 0

1 1

pc Q q c Q
c

pc Q q c Q

 


  


  
, (4) 
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which is a weighted average of  0  and  1 . Therefore, the weighted kappa 

coefficient is a measure that considers the proportion of false negatives (FNF) and the 

proportion of false positives (FPF). Moreover, for a set value of the c index and of the 

accuracy (Se and Sp) of the BDT, the weighted kappa coefficient strongly depends on 

the disease prevalence among the population being studied, and its value increases when 

the disease prevalence increases. The weighted kappa coefficient is a measure of the 

beyond-chance agreement between the BDT and the GS. The properties of the kappa 

coefficient can be seen in the manuscript of Roldán-Nofuentes and Amro (2018). 

 

Table 1. Losses and probabilities. 
Losses (Probabilities) 

 1T   0T   Total 

1D   0  p Se  L    1p Se   L   p  

0D   L    1q Sp   0  q Sp  L   q  

Total 
L  

  1Q p Se q Sp      
L  

  1 1Q p Se q Sp       L L   1  

Probabilities when the BDT and the GS are independent 
 1T   0T   Total 

1D   p Q   1p Q   p  

0D   q Q   1q Q   q  

Total Q  1 Q  1 

 

The weighted kappa coefficient is a valid parameter to assess and compare the 

performance of BDTs (Kraemer et al, 1990; Kraemer, 1992; Kraemer et al, 2002; Bloch, 

1997; Roldán-Nofuentes et al, 2009; Roldán-Nofuentes and Amro, 2018).  

When comparing the accuracies of two BDTs, Pepe (2003) recommends using the 

parameters 1
12

2

Se
rTPF

Se
  and 1

12
2

FPF
rFPF

FPF
 , where 1h hFPF Sp  , with 1,2h  . If 

12 1rTPF   then the sensitivity of Test 1 is greater than that of Test 2, and if 12 1rFPF   

then the FPF of Test 1 is greater than that of Test 2 (the specificity of Test 2 is greater 

than that of Test 1). The comparison of the weighted kappa coefficients of two BDTs 

can be related to the previous measures, and these have an important effect on the 

comparison of  1 c  and  2 c . From now onwards, it is considered that 0 1hSe  , 

0 1hSp   and 0 1p  , with 1,2h  . Let us consider the subindexes i and j, in such a 
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way that if 1i    2i   then 2j    1j  . It is obvious that if 1ij ijrTPF rFPF   then 

1 2Se Se  and 1 2Sp Sp , and that therefore    1 2c c   with 0 1c  . Let  

 
     

       
2 1 1 2

1 2 1 2 2 1

1 1 1

1 1

p Se Sp Se Sp
c

p Se Se Sp Se p Sp Se p

      
      

. (5) 

In terms of ijrTPF  and 12rFPF  the following rules are verified to compare  1 c  and 

 2 c : 

a) If 1ijrTPF   and 1ijrFPF  , or 1ijrTPF   and 1ijrFPF  , then    i jc c   for 

0 1c  . 

b). If 1ijrTPF   and 1ijrFPF  , then: 

 b.1)    i jc c   if 0 1c c    

 b.2)    i jc c   if 0 1c c    

 b.3)    1 2c c   if c c , with 0 1c   

 b.4)    i jc c   for 0 1c   if 0c   (or 1c  ) and 1ij ijrTPF rFPF   

 b.5)    i jc c   for 0 1c   if 0c   (or 1c  ) and 1ij ijrFPF rTPF   

c) If 1ijrTPF   and 1ijrFPF  , then: 

 c.1)    i jc c   if 0 1c c    

 c.2)    i jc c   if 0 1c c    

 c.3)    2 1c c   if c c , with 0 1c   

 c.4)    i jc c   for 0 1c   if 0c   (or 1c  ) and 1ij ijrTPF rFPF   

 c.5)    i jc c   for 0 1c   if 0c   (or 1c  ) and 1ij ijrFPF rTPF   

The demonstrations can be seen in the Appendix A of the supplementary material. 

Regarding c , this is obtained solving the equation    1 2 0c c    in c. The graphs in 

Figure 1 show how  1 c  (on a continuous line) and  2 c  (on a dotted line) vary 
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depending on the weighting index c, taking as prevalence  5%,25%,50%,75%p  , 

for 1 0.80Se  , 1 0.95Sp  , 2 0.90Se   and 2 0.85Sp  . These graphs correspond to the 

case in which 12 1rTPF   and 12 1rFPF  , and therefore    1 2c c   when c c , and 

   2 1c c   when c c , and c  is equal to 0.95 when 5%p  , 0.75 when 25%p  , 

0.50 when 50%p   and 0.25 when 75%p   . If the clinician considers that a false 

positive is 1.5 times more important than a false negative, then 0.4c   and 

   1 2c c   in the population with  5%,25%,50%p   and    2 1c c   in the 

population with 75%p  . If in the population with 75%p   the clinician has a greater 

concern about a false positive than a false negative  0 0.5c  , then    1 2c c   if 

0 0.25c   and    2 1c c   if 0.25 0.5c  ; in the populations with 

 5%,25%,50%p  ,    1 2c c   when 0 0.5c  . 

We will now study the comparison of the weighted kappa coefficients of two BDTs 

through CIs subject to a paired design. 

 

Figure 1. Weighted kappa coefficients with 12 1rTPF   and 12 1rFPF  . 

1 1 2 2 12 120.80  0.95  0.90  0.85  0.89  0.33Se Sp Se Sp rTPF rFPF       
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3. Confidence intervals 

Let us consider two BDTs which are assessed in relation to the same GS. Let 1T  and 2T  

be the random binary variables that model the results of each BDT respectively. Let hSe  

and hSp  be the sensitivity and specificity of the hth BDT, with 1,2h  . Table 2 

(Observed frequencies) shows the frequencies that are obtained when both BDTs and 

the GS are applied to all the individuals in a random sample sized n. The frequencies ijs  

and ijr  are the product of a multinomial distribution whose probabilities are also shown 

in Table 1 (Theoretical probabilities), where  1 21, ,ijp P D T i T j     and 

 1 20, ,ijq P D T i T j    , with , 0,1i j  . The probability of the two BDTs being 

positive when an individual has the disease is 1 2 1Se Se  , where 1  is the covariance or 

dependence factor between the two BDTs when 1D  ; and the probability of the two 

BDTs being negative when an individual does not have the disease is 

  1 2 01 1Sp Sp    , where 0  is the covariance or dependence factor between the 

two BDTs when 0D  . This model is known as the Vacek (1985) conditional 

dependence model. Applying this model, the probabilities ijp  and ijq  are written as  

    1 1

1 1 2 2 11 1
i ji j

ij ijp p Se Se Se Se          (6) 

and 

    1 1
1 1 2 2 01 1

i ji j
ij ijq q Sp Sp Sp Sp         , (7) 

where 1ij   if i j  and 1ij    if i j , with , 0,1i j  . It is verified that 

    1 1 2 2 10 1 , 1Min Se Se Se Se     and     0 1 2 2 10 1 , 1Min Sp Sp Sp Sp    . If 

1 0 0    then the two BDTs are conditionally independent on the disease. In practice, 

the assumption of conditional independence is not realistic, and so 1 0   and/or 0 0  . 

Let  11 10 01 00 11 10 01 00, , , , , , ,
T

p p p p q q q qπ  be the vector of probabilities of the 

multinomial distribution, and it is verified that 
1

, 0
ij

i j

p p


   and 
1

, 0

1 ij
i j

q p q


    . The 

maximum likelihood estimators of the probabilities are ˆ ij ijp s n  and ˆij ijq r n . 
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The rules given in Section 2 about the effect of rTPF  and rFPF  on the comparison 

of  1 c  and  2 c  are theoretical rules that can be applied to the estimators, but they 

cannot guarantee that one weighted kappa coefficient will be higher than another. This 

question should be studied through hypothesis tests and confidence intervals. The Bloch 

method to compare the weighted kappa coefficients of two BDTs subject to a paired 

design is summarized below, and different CIs are proposed to compare these 

parameters subject to the same type of sample design. 

 

Table 2. Observed frequencies and theoretical probabilities when two BDTs are 
compared in relation to a GS subject to a paired design. 

Observed frequencies (Theoretical probabilities) 
 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   11s   11p  10s   10p  01s   01p  00s   00p  s   p  

0D   11r   11q  10r   10q  01r   01q  00r   00q  r   q  

Total 
11 11s r  

 11 11p q  
10 10s r  

 10 10p q  
01 01s r  

 01 01p q  
00 00s r  

 00 00p q  
n   1  

 

3.1. Hypothesis test 

Bloch (1997) studied the comparison of the weighted kappa coefficients of two BDTs 

subject to a paired design. In terms of probabilities (6) and (7), the weighted kappa 

coefficient of BDT 1 is 

        

     
11 10 01 00 01 00 10 11

1 1 1

0 0 1 1
0 0

1k k k k
k k

p p q q p p q q
c

pc p q q c p q


 

    


    
, 

and that of BDT 2 is 

        

     
11 01 10 00 10 00 01 11

2 1 1

0 0 1 1
0 0

1k k k k
k k

p p q q p p q q
c

pc p q q c p q


 

    


    
. 

Substituting in the previous expressions the parameters by their estimators, the 

estimators of the weighted kappa coefficients are 
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        

     
11 10 01 00 01 00 10 11

1 1 1

0 0 1 1
0 0

ˆ
1k k k k

k k

s s r r s s r r
c

sc s r r c s r


 

    


    
 (8) 

and 

        

     
11 01 10 00 10 00 01 11

2 1 1

0 0 1 1
0 0

ˆ
1k k k k

k k

s s r r s s r r
c

sc s r r c s r


 

    


    
. (9) 

Their variances-covariance are obtained applying the delta method (see the Appendix B 

of the supplementary material). Subject to paired design the covariance between the two 

sensitivities and between the two specificities are given by 1
1 2

ˆ ˆ,Cov Se Se
np

     and 

0
1 2

ˆ ˆ,Cov Sp Sp
nq

     respectively (Appendix B of the supplementary material), where 1  

and 0  are the covariances between the two BDTs when 1D   and 0D   respectively. 

These covariances also affect the covariances between the two weighted kappa 

coefficients, just as can be seen in the expressions given in the Appendix B of the 

supplementary material. Finally, the statistic for the hypothesis test    0 1 2:H c c   

vs    1 1 2:H c c   is 

 
   

       
 1 2

1 2 1 2

ˆ ˆ
0,1

ˆˆ ˆˆ ˆ ˆ ˆ2 ,
n

c c
z N

Var c Var c Cov c c

 

   



 

           
. (10) 

 

3.2. Confidence intervals 

When two parameters are compared, the interest is generally focused on studying the 

difference or the ratio between them. We then compare the weighted kappa coefficients 

of two BDTs through CIs for the difference    1 2c c     and for the ratio 

   1 2c c   . Through the CIs: a) the two weighted kappa coefficients are 

compared, in such a way that if a CI for the difference (ratio) does not contain the zero 

(one) value, then we reject the equality between the weighted kappa coefficients; and b) 

we estimate (if the two weighted kappa coefficients are different) how much bigger one 

weighted kappa coefficient is than the other. Firstly, three CIs are proposed for the 
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difference of the two weighted kappa coefficients, and secondly five CIs are proposed 

for the ratio. 

 

3.2.1. CIs for the difference 

For the difference of the two weighted kappa coefficients we propose the Wald, 

bootstrap and Bayesian CIs.  

Wald CI. Based on the asymptotic normality of the estimator of    1 2c c    , 

i.e.  ˆ ,N Var       when the sample size n is large, the Wald CI for the difference 

  is very easy to obtain inverting the test statistic proposed by Bloch (1997), therefore 

            1 2 1 2 1 2 1 2
ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 ,c c z Var c Var c Cov c c                     , (11) 

where 1 2z   is the  100 1 2 th  percentile of the standard normal distribution. 

Bootstrap CI. The bootstrap CI is calculated generating B random samples with 

replacement from the sample of n individuals. In each sample with replacement, we 

calculate the estimators of the weighted kappa coefficients and the difference between 

them, i.e.  1
ˆ

i B c ,  2
ˆ

i B c  and    1 2
ˆ ˆ ˆiB i B i Bc c    , with 1,...,i B . Then, based on 

the B differences calculated, the average difference is estimated as 
1

1ˆ ˆ
B

B iB
iB

 


  . 

Assuming that the bootstrap statistic ˆ
B  can be transformed to a normal distribution, the 

bias-corrected bootstrap CI (Efron and Tibshirani, 1993) for   is calculated in the 

following way. Let  ˆ ˆ# iBA     be the number of bootstrap estimators îB  that are 

lower than the maximum likelihood estimator    1 2
ˆ ˆ ˆc c    , and let 

 1
0ẑ A B  , where  1   is the inverse function of the standard normal cumulative 

distribution function. Let  1 0 1 2ˆ2z z      and  2 0 1 2ˆ2z z     , then the bias-

corrected bootstrap CI is     1 2ˆ ˆ,B B
   , where  ˆ j

B

  is the jth quantile of the distribution 

of the B bootstrap estimations of  .  

Bayesian CI. The problem is now approached from a Bayesian perspective. The 

number of individuals with the disease (s) is the product of a binomial distribution with 
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parameters n and p, i.e.  ,s B n p . Conditioning on the individuals with the disease, 

i.e. conditioning on 1D  , it is verified that  

    11 10 1 11 01 2,   and  ,s s B s Se s s B s Se    . (12) 

The number of individuals without the disease (r) is the product of a binomial 

distribution with parameters n and q, i.e.  ,s B n q , with 1q p  . Conditioning on 

the individuals without the disease  0D  , it is verified that 

    01 00 1 10 00 2,   and  ,r r B r Sp r r B r Sp    . (13) 

Considering the marginal distributions of each BDT, the estimators of the sensitivity and 

the specificity of the BDT 1, 11 10
1

ˆ s s
Se

s


  and 01 00

1
ˆ r r
Sp

r


 , and of the BDT 2, 

11 01
2

ˆ s s
Se

s


  and 10 00

2
ˆ r r
Sp

r


 , are estimators of binomial proportions. In a similar 

way, considering the marginal distribution of the GS, the estimator of the disease 

prevalence, ˆ
s

p
n

 , is also the estimator of a binomial proportion. Therefore, for these 

estimators we propose conjugate beta prior distributions, which are the appropriate 

distributions for the binomial distributions involved, i.e. 

      ˆ ˆ ˆ, ,  ,  and ,
h h h hh Se Se h Sp Sp p pSe Beta Sp Beta p Beta        . (14) 

Let  11 10 01 11 10 01, , , , , , ,s s s s r r r n s v  be the vector of observed frequencies, with 

00 11 10 01s s s s s    , r n s   and 00 11 10 01r n s r r r     . Then the posteriori 

distributions for the estimators of the sensitivities, of the specificities and of the 

prevalence are: 

 

 
 

 
 

 

1 1

2 2

1 1

2 2

1 11 10 11 10

2 11 01 11 01

1 01 00 01 00

2 10 00 10 00

ˆ , ,

ˆ , ,

ˆ , ,

ˆ , ,

ˆ , .

Se Se

Se Se

Sp Sp

Sp Sp

p p

Se Beta s s s s s

Se Beta s s s s s

Sp Beta r r n s r r

Sp Beta r r n s r r

p Beta s n s

 

 

 

 

 

     

     

      

      

   

v

v

v

v

v

 (15) 
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Once we have defined all distributions, the posteriori distribution for the weighted 

kappa coefficient of each BDT, and for the difference between them, can be 

approximated applying the Monte Carlo method. This method consists of generating M 

values of the posteriori distributions given in equations (15). In the ith iteration, the 

values generated for sensitivities   ˆ i
hSe  and specificities   ˆ i

hSp  of each BDT, and for 

the prevalence   ˆ ip , are plugged in the equations 

  
        

          

ˆ ˆˆ ˆ 1
ˆ ( ) ,   1,2,

ˆ ˆˆ ˆ1 1

i i i i
h hi

h i i i i
h h

p q Se Sp
c h

p Q c q Q c


 
 

  
 (16) 

where           ˆ ˆ ˆˆ ˆ 1i i i i i
h h hQ p Se q Sp   . We then calculate the difference between the two 

weighted kappa coefficients in the ith iteration:          1 2
ˆ ˆ ˆi i ic c    . As the estimator 

of the average difference of the weighted kappa coefficients, we calculate the average of 

the M estimations of difference, i.e.  

1

1ˆ ˆ
M

i

iM
 



  . Once the Monte Carlo method is 

applied, based on the M values  ˆ i  we propose the calculation of a CI based on 

quantiles, i.e. the  100 1 %   CI for   is 

  2 1 2,q q  , (17) 

where q  is the th  quantile of the distribution of the M values  ˆ i . 

 

3.2.2. CIs for the ratio 

We propose five CIs for the ratio of the two weighted kappa coefficients: Wald, 

logarithmic, Fieller, bootstrap and Bayesian CIs.  

Wald CI. Assuming the asymptotic normality of the estimator of    1 2c c   , 

i.e.  ˆ ,VarN       when the sample size n is large, the Wald CI for   is 

  1 2
ˆ ˆˆz Var    , (18) 
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where  ˆV̂ar   is obtained applying the delta method (Agresti, 2002), and whose 

expression (see Appendix B) is 

                 
 

2 2
2 1 1 2 1 2 1 2

4
2

ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ,ˆˆ
ˆ

c Var c c Var c c c Cov c c
Var

c

       



            . 

Expressions of the variances-covariance can be seen in Appendix B. 

Logarithmic CI. Assuming the asymptotic normality of the Napierian logarithm of 

the ̂ , i.e.       ˆln ln ,Var lnN       when the sample size n is large, an 

asymptotic CI for  ln   is 

      1 2
ˆ ˆˆln ln lnz Var  

     . 

Taking exponential, the logarithmic CI for   is 

  1 2
ˆ ˆˆexp lnz Var  

       
, (19) 

where  ˆˆ lnVar  
   is obtained applying the delta method (see Appendix B), i.e. 

    
 

 
 

   
   

1 2 1 2

2 2
1 2 1 2

ˆˆ ˆˆ ˆ ˆ ˆ2 ,ˆˆ ln
ˆ ˆ ˆ ˆ

Var c Var c Cov c c
Var

c c c c

   


   
                . 

Fieller CI. The Fieller method (1940) is a classic method to obtain a CI for the ratio 

of two parameters. This method requires us to assume that the estimators are distributed 

according to a normal bivariate distribution, i.e.         1 2ˆ ˆ, ,
T

cc c N c     κκ  

when the sample size n is large, where       1 2,
T

c c c κ  and 

 
     

     
1 1 211 12

21 22 1 2 2

,

,c

Var c Cov c c

Cov c c Var c

   
    

                        
κ . 

Applying the Fieller method it is verified that 

     2
1 2 11 12 22

ˆ ˆ 0, 2
n

c c N         . The Fieller CI is obtained by 

searching for the set of values for   that satisfy the inequality 
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    2

1 2 2
1 22

11 12 22

ˆ ˆ

ˆ ˆ ˆ2

c c
z 

 
    

   
 

. 

Finally, the Fieller CI for    1 2c c    is 

 
2

12 12 11 22

22

ˆ ˆ ˆ ˆ

ˆ

   



 

 , (20) 

where     2
1 2

ˆ ˆ ˆ ˆij i j ijc c z         with , 1,2i j  , and verifying that 12 21ˆ ˆ  . This 

interval is valid when 2
12 11 22

ˆ ˆ ˆ    and 22ˆ 0  . 

Bootstrap CI. The bootstrap CI for   is calculated in a similar way to that of the 

bootstrap interval explained in Section 3.1 but considering   instead of  . In each 

sample with replacement obtained we calculate the estimators of the weighted kappa 

coefficients and the ratio between them, i.e.  1
ˆ

i B c ,  2
ˆ

i B c  and    1 2
ˆ ˆ ˆ
iB i B i Bc c   , 

with 1,...,i B . Then, based on the B ratios calculated we estimate the average ratio as 

1

1ˆ ˆ
B

B iB
iB

 


  . Assuming that the statistic ˆ
B  can be transformed to a normal 

distribution, the bias-corrected bootstrap CI (Efron and Tibshirani, 1993) for   is 

obtained in a similar way to how the bootstrap CI for   is calculated, considering now 

that  ˆ ˆ# iBA    . Finally, the bias-corrected bootstrap CI is     1 2ˆ ˆ,B B
   , where  ˆ j

B

  

is the jth quantile of the distribution of the B bootstrap estimations of  . 

Bayesian CI. The Bayesian CI for   is also calculated in a similar way to that of the 

bayesian CI presented in Section 3.1. Considering the same distributions given in 

equations (14) and (15), in the ith iteration of the Monte Carlo method we calculate the 

ratio          1 2
ˆ ˆ ˆi i ic c    and as an estimator we calculate  

1

1ˆ ˆ
M

i

iM
 



  . Finally, 

based on the M values  ˆ i  we calculate the CI based on quantiles. 

 

The five previous CIs are for the ratio    1 2c c   . If we want to calculate the 

CI for the ratio    2 1c c    1   , then the logarithmic, Fieller, bootstrap and 

Bayesian CIs are obtained by calculating the inverse of each boundary of the 
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corresponding CI for    1 2c c   . Nevertheless, the Wald CI for   is obtained 

from the Wald CI for   dividing each boundary by 2̂ , i.e. if  ,L U   is the Wald CI 

for    1 2c c    then the Wald CI for    2 1c c     is  2 2ˆ ˆ,L U   .  

 

4. Simulation experiments 

Monte Carlo simulation experiments were carried out to study the coverage probability 

(CP) and the average length (AL) of each of the CIs presented in Section 3.2. For this 

purpose, we generated 10,000N   random samples with multinomial distribution sized 

 25,50,100,200,300,400,500,1000n  . The random samples were generated setting 

the values of the weighted kappa coefficients, following these steps: 

1. For the disease prevalence, we took the values  5%,10%,25%,50%p  . 

2. For the weighting index, we took a small, intermediate and high value: 

 0.1,0.5,0.9c  . 

3. As values of the weighted kappa coefficients with 0c   and 1c  , we took the 

following values:      0 , 1 0.01,0.02,...,0.98,0.99h h   . 

4. Next, using all of the values set previously, we calculated the sensitivity and the 

specificity of each diagnostic test solving the equations 

   
   

   
   

0 1 1 0
  and  

0 1 0 1
h h h h

h h
h h h h

q p p q
Se Se

q p q p

   
   

        
 

, 

considering, quite logically, only those cases in which the Youden index is higher 

than 0, i.e. 1 0h h hY Se Sp    . 

5. The values of  h c  were calculated applying the equation 

         
   

1 1 1 0

1 1
h h h h

h
h h

pc Q q c Q
c

pc Q q c Q

 


  


  
, 

where  1h h hQ pSe q Sp   . 
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6. As values of the weighted kappa coefficients we considered 

   0.2,0.4,0.6,0.8h c  , and from these we calculated   and  . In order to be 

able to compare the coverage probabilities of the CIs for   and for  ,  1 c  and 

 2 c  must be the same for   and  .  

Following the idea of Cicchetti (2001), simulations were carried out for values of  h c  

with different levels of significance: poor   0.40h c  , fair   0.40 0.59h c  , 

good   0.60 0.74h c   and excellent   0.75 1h c  . As values of the 

dependence factors 1  and 0  we took intermediate values (50% of the maximum value 

of each i ) and high values (80% of the maximum value of each i ), i.e. 

    1 1 2 2 11 , 1f Min Se Se Se Se      and     0 1 2 2 11 , 1f Min Sp Sp Sp Sp      

where  0.50,  0.80f  . Probabilities of the multinomial distributions, equations (6) 

and (7), were calculated from values of the weighted kappa coefficients, and not setting 

the values of the sensitivities and specificities. In each scenario considered, for each one 

of the N random samples we calculated all the CIs proposed in Section 3.2. For the 

bayesian CIs we considered as prior distribution a  1,1Beta  distribution for all of the 

estimators (sensitivities, specificities and prevalence). This distribution is a non-

informative distribution and is flat for all possible values of each sensitivity, specificity 

and prevalence, and has a minimum impact on each posteriori distribution. For the 

bootstrap method, for each one of the N random samples we also generated 2,000B   

samples with replacement; and for the Bayesian method, for each one of the N random 

samples we also generated another 10,000M  . Moreover, the simulation experiments 

were designed in such a way that in all of the random samples generated we can 

estimate the weighted kappa coefficients and their variances-covariance, in order to be 

able to calculate all of the intervals proposed in Section 3.2. As the confidence level, we 

took 95%. 

The comparison of the asymptotic behaviour of the CIs was made following a similar 

procedure to that used by other authors (Price and Bonett, 2004; Martín-Andrés and 

Álvarez-Hernández, 2014a, 2014b; Montero-Alonso and Roldán-Nofuentes, 2019). This 

procedure consists of determining if the CI “fails” for a confidence of 95%, which 

happens if the CI has a 93%CP  . The selection of the CI with the best asymptotic 
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behaviour (for the difference and for the ratio) was made following the following steps: 

1) Choose the CIs with the least failures ( 93%CP  ), and 2) Choose the CIs which are 

the most accurate, i.e. those which have the lowest AL. In the Appendix C of the 

supplementary material this method is justified. 

 

4.1. CIs for the difference   

Tables 3 and 4 show some of the results obtained (CPs and ALs) for 

 0.6, 0.4, 0.2,0     , indicating in each case the scenarios (  h c , hSe , hSp  and p) 

in which these values were obtained, and for intermediate values of the dependence 

factors 1  and 0 . These Tables indicate the failures in bold type and it was considered 

that    1 2c c  . If it is considered that    1 2c c  , the CPs are the same and the 

conclusions too. From the results, the following conclusions are obtained: 

a) Wald CI. For  0.6, 0.4     the Wald CI fails for a small  50n   and a 

moderate  100n   sample size, and for a large sample size  200n   the Wald CI 

does not fail. For  0.2,0    the Wald CI does not fail.  

b) Bootstrap CI. In very general terms, for  0.6, 0.4     this CI fails when 

100n  , and for 200n   this interval does not fail. For 0.2    this CI fails for almost 

all the sample sizes, and for 0   does not fail. When this CI does not fail, the AL is 

slightly lower than the Wald CI for  0.2,0   , and slightly higher for 

 0.6, 0.4     and 200n  . 

c) Bayesian CI. In very general terms, for  0.6, 0.4     this CI fails when 50n  , 

whereas for 100n   this CI does not fail. For  0.2,0    this CI does not fail. 

Regarding the AL, in the situations in which it does not fail, the AL is slightly higher 

than the ALs of the Wald CI and of the bootstrap CI. 
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Table 3. Coverage probabilities (CPs) and average lengths (ALs) of the CIs for the 
difference   of the two weighted kappa coefficients (I). 

   1 2

1 1 2 2 1 0

0.1 0.2  0.1 0.8  0.6

0.484  0.684  0.852  0.911  0.0359  0.0306  50%Se Sp Se Sp p

  
 

   

      
 

 Wald CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL 

25 0.335 0.866 0 0.643 0.287 0.923 
50 0.737 0.646 0.038 0.589 0.762 0.690 
100 0.912 0.470 0.750 0.473 0.937 0.501 
200 0.958 0.337 0.952 0.354 0.968 0.364 
300 0.972 0.276 0.980 0.295 0.982 0.301 
400 0.960 0.239 0.969 0.258 0.971 0.262 
500 0.955 0.214 0.972 0.231 0.975 0.236 

1000 0.937 0.152 0.963 0.164 0.965 0.168 

   1 2

1 1 2 2 1 0

0.9 0.2  0.9 0.8  0.6

0.28  0.92  0.82  0.98  0.02

 

52  0.0092  10%Se Sp Se Sp p

  
 

   

      
 

 Wald CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL 

25 0.114 0.999 0 0.651 0.033 0.987 
50 0.566 0.863 0 0.640 0.280 0.838 
100 0.760 0.682 0.031 0.614 0.600 0.667 
200 0.885 0.503 0.487 0.490 0.815 0.503 
300 0.934 0.411 0.733 0.402 0.886 0.418 
400 0.935 0.354 0.823 0.347 0.903 0.365 
500 0.947 0.314 0.892 0.309 0.937 0.326 

1000 0.947 0.220 0.938 0.218 0.947 0.233 

   1 2

1 1 2 2 1 0

0.1 0.4  0.1 0.8  0.4

0.804  0.887  0.82  0.98  0.0723  0.0089  10%Se Sp Se Sp p

  
 

   

      
 

 Wald CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL 

25 0.847 0.812 0.473 0.671 0.920 0.899 
50 0.856 0.715 0.602 0.608 0.910 0.764 
100 0.924 0.534 0.847 0.528 0.953 0.580 
200 0.968 0.373 0.955 0.423 0.978 0.426 
300 0.957 0.302 0.986 0.367 0.976 0.369 
400 0.951 0.261 0.992 0.313 0.978 0.315 
500 0.955 0.232 0.994 0.259 0.979 0.262 

1000 0.941 0.164 0.994 0.202 0.967 0.204 

   1 2

1 1 2 2 1 0

0.5 0.4  0.5 0.8  0.4

0.76  0.72  0.85  0.95  0.0570  0.0180  25%Se Sp Se Sp p

  
 

   

      
 

 Wald CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL 

25 0.894 0.810 0.004 0.613 0.962 0.858 
50 0.935 0.580 0.516 0.516 0.961 0.641 
100 0.945 0.397 0.824 0.379 0.970 0.458 
200 0.946 0.275 0.928 0.271 0.971 0.320 
300 0.952 0.221 0.934 0.220 0.974 0.259 
400 0.940 0.191 0.938 0.192 0.963 0.224 
500 0.948 0.171 0.942 0.170 0.979 0.200 

1000 0.945 0.120 0.944 0.119 0.979 0.140 
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Table 4. Coverage probabilities (CPs) and average lengths (ALs) of the CIs for the 
difference   of the two weighted kappa coefficients (II). 

   1 2

1 1 2 2 1 0

0.9 0.6  0.9 0.8  0.2

0.62  0.98  0.911  0.937  0.0277  0.0094  5%Se Sp Se Sp p

  
 

   

      
 

 Wald CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL 
25 1 1.009 0.757 0.724 1 1.018 
50 0.996 0.913 0.829 0.659 0.999 0.916 

100 0.993 0.823 0.928 0.580 0.998 0.801 
200 0.934 0.642 0.763 0.535 0.986 0.649 
300 0.922 0.533 0.745 0.483 0.964 0.551 
400 0.941 0.456 0.794 0.434 0.971 0.481 
500 0.933 0.404 0.799 0.393 0.962 0.430 
1000 0.948 0.282 0.913 0.282 0.967 0.305 

   1 2

1 1 2 2 1 0

0.1 0.6  0.1 0.8  0.2

0.195  0.995  0.477  0.987  0.0509  0.0026  25%Se Sp Se Sp p

  
 

   

      
 

 Wald CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL 
25 1 0.928 1 0.644 1 0.981 
50 0.999 0.787 1 0.613 1 0.866 

100 0.994 0.604 0.999 0.581 0.999 0.692 
200 0.985 0.429 0.997 0.464 0.998 0.505 
300 0.981 0.347 0.991 0.393 0.994 0.411 
400 0.973 0.297 0.986 0.346 0.992 0.352 
500 0.967 0.263 0.984 0.311 0.989 0.311 
1000 0.957 0.182 0.988 0.222 0.987 0.213 

   1 2

1 1 2 2 1 0

0.5 0.4  0.5 0.4  0

0.76  0.72  0.40  0.943  0.0480  0.0206 25%Se Sp Se Sp p

  
 

  

      
 

 
 Wald CI Bootstrap CI Bayesian CI 

n CP AL CP AL CP AL 
25 0.990 0.811 0.988 0.624 0.999 0.826 
50 0.978 0.683 0.998 0.598 0.994 0.691 

100 0.962 0.499 0.967 0.466 0.985 0.522 
200 0.955 0.353 0.963 0.340 0.981 0.381 
300 0.944 0.288 0.943 0.280 0.965 0.314 
400 0.960 0.250 0.962 0.244 0.980 0.274 
500 0.946 0.223 0.945 0.219 0.966 0.246 
1000 0.951 0.158 0.951 0.155 0.972 0.175 

   1 2

1 1 2 2 1 0

0.9 0.4  0.9 0.4  0

0.943  0.229  0.70  0.70  0.0200  0.0343  50%Se Sp Se Sp p

  
 

  

      
 

 Wald CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL 
25 1 0.936 1 0.735 1 0.950 
50 0.997 0.788 0.997 0.717 1 0.786 

100 0.992 0.602 0.982 0.578 0.997 0.617 
200 0.980 0.435 0.981 0.432 0.990 0.461 
300 0.959 0.356 0.965 0.358 0.973 0.382 
400 0.951 0.307 0.958 0.311 0.972 0.332 
500 0.956 0.274 0.958 0.278 0.969 0.297 
1000 0.956 0.193 0.958 0.196 0.970 0.210 

 

Similar conclusions are obtained when the dependence factors take high values. 

Therefore, regarding the effect of the dependence factors i  on the asymptotic 

behaviour of the CIs, in general terms they do not have a clear effect on the CPs of the 

CIs. 
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4.2. CIs for the ratio   

Tables 5 and 6 show some of the results obtained for  0.25,0.50,0.75,1  , 

considering the same scenarios as in Tables 3 and 4. As in the case of the previous CIs, 

it was considered that    1 2c c  , and the same conclusions are obtained if 

   1 2c c  . From the results, the following conclusions are obtained: 

a) Wald CI. The Wald CI fails when 0.25   and the sample size is small  50n   

or moderate  100n  , and this CI does not fail for the rest of the values of   and 

sample sizes. 

b) Logarithmic CI. This CI fails when  0.25,0.50   and 200 300n    depending 

on the value of  . For 0.75   this CI fails for some large sample sizes, and for 1   

it does not fail. This CI fails more than the Wald CI, and in the situations in which it 

does not fail, its AL is slightly higher than that of the Wald CI. 

c) Fieller CI. This CI fails when  0.25,0.5   and 50n  , and it does not fail for 

the rest of the values of   and sample sizes. In general terms, when there are no 

failures, its AL is similar to that of the Wald and Logarithmic CIs. 

d) Bootstrap CI. This CI has numerous failures when  0.25,0.50,0.75  , whereas 

for 1   it does not fail. When 1  , its AL is greater than that of the Wald and 

Logarithmic CIs, especially when 400n  , and its AL is also slightly lower than that of 

the Fieller CI.  

e) Bayesian CI. This CI only fails when 0.25   and 50n  . When this CI does not 

fail, its AL is, in general terms, somewhat larger than that of the rest of the CIs. 
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Table 5. Coverage probabilities (CPs) and average lengths (ALs) of the CIs for the ratio 
  of the two weighted kappa coefficients (I). 

   1 2

1 1 2 2 1 0

0.1 0.2  0.1 0.8  0.25

0.484  0.684  0.852  0.911  0.0359  0.0306  50%Se Sp Se Sp p

  
 

  

      
 

 
 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 0.823 1.351 0.088 1.517 0.700 1.950 0.368 2.260 0.884 2.704 
50 0.837 0.803 0.532 0.886 0.828 0.851 0.634 0.882 0.905 0.965 
100 0.931 0.551 0.832 0.608 0.942 0.565 0.889 0.569 0.954 0.585 
200 0.957 0.389 0.920 0.422 0.962 0.392 0.952 0.388 0.970 0.402 
300 0.970 0.318 0.933 0.340 0.974 0.319 0.969 0.316 0.984 0.328 
400 0.960 0.277 0.936 0.293 0.967 0.278 0.962 0.276 0.976 0.285 
500 0.957 0.248 0.944 0.260 0.967 0.248 0.969 0.247 0.975 0.256 

1000 0.945 0.175 0.963 0.179 0.944 0.176 0.943 0.175 0.953 0.182 

   1 2

1 1 2 2 1 0

0.9 0.2  0.9 0.8  0.25

0.28  0.92  0.82  0.98  0.0252  0.00092 1 %

 

0Se Sp Se Sp p

  
 

  

      
 

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 0.885 1.760 0.002 2.029 0.566 3.567 0.011 3.175 0.866 3.851 
50 0.916 1.249 0.259 1.415 0.765 1.660 0.040 1.722 0.767 1.816 
100 0.936 0.846 0.636 0.947 0.884 0.939 0.363 1.048 0.843 0.986 
200 0.958 0.560 0.835 0.617 0.945 0.581 0.807 0.607 0.932 0.594 
300 0.967 0.440 0.900 0.479 0.960 0.450 0.902 0.456 0.948 0.459 
400 0.965 0.373 0.931 0.402 0.959 0.379 0.932 0.380 0.943 0.387 
500 0.971 0.327 0.936 0.349 0.971 0.331 0.942 0.330 0.960 0.339 

1000 0.950 0.227 0.941 0.235 0.950 0.228 0.949 0.227 0.955 0.234 

   1 2

1 1 2 2

0.1 0.4  0.1 0.8  0.5

0.804  0.887  0.82  0.98  10%Se Sp Se Sp p

    

    
 

1 00.0723  0.0089    

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 0.918 1.141 0.835 1.259 0.893 2.824 0.543 1.157 0.906 2.310 
50 0.959 1.021 0.859 1.119 0.939 1.518 0.897 1.140 0.978 1.710 
100 0.961 0.619 0.922 0.655 0.949 0.693 0.880 0.670 0.975 0.828 
200 0.962 0.395 0.947 0.406 0.959 0.409 0.914 0.400 0.977 0.470 
300 0.955 0.315 0.951 0.320 0.956 0.321 0.928 0.312 0.976 0.363 
400 0.953 0.271 0.949 0.274 0.952 0.274 0.935 0.265 0.975 0.308 
500 0.951 0.240 0.950 0.242 0.953 0.242 0.932 0.234 0.971 0.271 

1000 0.939 0.169 0.943 0.170 0.939 0.170 0.934 0.163 0.963 0.189 

   1 2

1 1 2 2 1 0

0.5 0.4  0.5 0.8  0.5

0.76  0.72  0.85  0.95  0.0570  0.0180  25%Se Sp Se Sp p

  
 

  

      
 

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 0.997 1.328 0.918 1.493 0.966 2.222 0.901 2.463 0.999 2.825 
50 0.983 0.780 0.924 0.848 0.966 0.855 0.925 0.894 0.995 1.057 
100 0.977 0.488 0.957 0.510 0.969 0.501 0.952 0.498 0.990 0.586 
200 0.958 0.323 0.956 0.329 0.957 0.327 0.940 0.320 0.981 0.372 
300 0.958 0.257 0.954 0.260 0.957 0.259 0.945 0.252 0.978 0.292 
400 0.948 0.221 0.947 0.222 0.948 0.221 0.936 0.215 0.966 0.249 
500 0.954 0.196 0.953 0.197 0.954 0.196 0.943 0.190 0.972 0.220 

1000 0.944 0.137 0.951 0.137 0.945 0.137 0.933 0.132 0.968 0.152 
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Table 6. Coverage probabilities (CPs) and average lengths (ALs) of the CIs for the ratio 
  of the two weighted kappa coefficients (II). 

   1 2

1 1 2 2 1 0

0.9 0.6  0.9 0.8  0.75

0.62  0.98  0.911  0.936  0.0277  0.0094  5%Se Sp Se Sp p

  
 

  

      
 

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 1 1.514 1 1.679 1 2.689 0.999 2.578 1 3.538 
50 0.999 1.409 0.994 1.487 0.993 1.972 0.979 2.311 1 2.392 
100 0.999 1.323 0.993 1.451 0.993 1.899 0.975 1.425 1 1.980 
200 0.971 0.909 0.933 0.965 0.940 1.037 0.965 0.998 0.991 1.173 
300 0.946 0.709 0.916 0.738 0.939 0.767 0.958 0.784 0.973 0.854 
400 0.955 0.583 0.933 0.599 0.944 0.601 0.959 0.620 0.977 0.679 
500 0.943 0.506 0.925 0.516 0.931 0.516 0.961 0.551 0.969 0.579 

1000 0.947 0.341 0.945 0.344 0.943 0.344 0.969 0.375 0.969 0.377 

   1 2

1 1 2 2 1 0

0.1 0.6  0.1 0.8  0.75

0.195  0.995  0.477  0.987  0.0509  0.0026  25%Se Sp Se Sp p

  
 

  

      
 

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 1 1.687 1 1.924 1 4.747 1 2.676 1 4.561 
50 1 1.266 1 1.400 1 2.837 1 1.609 1 2.308 
100 0.999 0.865 0.997 0.923 0.997 0.946 0.998 0.945 1 1.188 
200 0.992 0.565 0.990 0.583 0.986 0.579 0.975 0.618 0.997 0.700 
300 0.971 0.444 0.990 0.452 0.976 0.449 0.958 0.493 0.992 0.536 
400 0.971 0.375 0.985 0.380 0.972 0.378 0.960 0.420 0.989 0.448 
500 0.966 0.328 0.976 0.331 0.971 0.331 0.964 0.371 0.987 0.390 

1000 0.955 0.223 0.965 0.224 0.960 0.224 0.976 0.255 0.986 0.258 

   1 2

1 1 2 2 1 0

0.5 0.4  0.5 0.4  1

0.76  0.72  0.40  0.943  0.0480  0.0206 25%Se Sp Se Sp p

  
 

  

      
 

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 0.979 1.627 0.999 1.835 0.990 5.762 0.977 2.244 0.999 3.650 
50 0.953 1.525 0.991 1.708 0.977 3.028 0.981 2.173 0.995 2.728 
100 0.941 1.350 0.983 1.467 0.962 2.342 0.956 1.703 0.984 2.051 
200 0.953 0.972 0.971 1.014 0.955 1.212 0.960 1.091 0.979 1.251 
300 0.950 0.770 0.953 0.790 0.944 0.851 0.941 0.825 0.965 0.931 
400 0.955 0.658 0.969 0.670 0.960 0.705 0.959 0.694 0.980 0.776 
500 0.951 0.582 0.954 0.590 0.947 0.612 0.943 0.607 0.965 0.678 

1000 0.952 0.403 0.955 0.406 0.951 0.413 0.950 0.410 0.972 0.458 

   1 2

1 1 2 2 1 0

0.9 0.4  0.9 0.4  1

0.943  0.229  0.70  0.70  0.0200  0.0343  50%Se Sp Se Sp p

  
 

  

      
 

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 1 1.857 1 2.233 1 4.483 1 2.595 1 4.216 
50 0.999 1.762 0.999 2.134 0.997 3.455 0.979 1.943 1 3.294 
100 0.995 1.685 0.997 1.876 0.992 2.338 0.974 1.770 0.997 2.396 
200 0.983 1.195 0.988 1.278 0.980 1.345 0.980 1.268 0.990 1.445 
300 0.964 0.943 0.982 0.986 0.959 1.003 0.965 0.989 0.971 1.093 
400 0.957 0.803 0.976 0.828 0.951 0.838 0.957 0.839 0.971 0.913 
500 0.954 0.709 0.970 0.726 0.956 0.733 0.960 0.739 0.970 0.801 

1000 0.956 0.491 0.964 0.496 0.956 0.499 0.959 0.505 0.969 0.545 

 

Similar conclusions are obtained when the dependence factors take high values. 

Therefore, regarding the effect of the dependence factors on the CIs, in general terms 

they do not have a clear effect on the CPs of the CIs. 
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4.3. CIs with a small sample 

The results of the simulation experiments have shown that the CIs may fail when the 

sample size is small  25 50n   . A classic solution to this problem is adding the 

correction 0.5 to each observed frequency, as is frequent in the analysis of 2 2  tables. 

To assess this procedure, the same simulation experiments as before were carried out for 

 25,50,100n   adding the value 0.5 to all of the observed frequencies ijs  and ijr . 

Table 7 shows some of the results obtained for the CIs for the ratio  . The results for 

the difference   are not shown since, although this method improves the CP of the CIs, 

these intervals continue to fail when they failed without adding the correction. The 

results for 100n   are not shown either, since these are very similar to those obtained 

without adding the correction.  

 

Table 7. Coverage probabilities (CPs) and average lengths (ALs) of the CIs for   with 
small samples. 

   1 2

1 1 2 2 1 0

0.9 0.2  0.9 0.8  0.25

0.28  0.92  0.82  0.98  0.0252  0.00092 1 %

 

0Se Sp Se Sp p

  
 

  

      
 

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 0.999 1.808 0.008 1.960 0.653 3.014 0.145 2.150 0.783 3.531 
50 0.940 1.287 0.262 1.464 0.768 1.710 0.556 1.440 0.768 1.813 

   1 2

1 1 2 2 1 0

0.5 0.4  0.5 0.8  0.5

0.76  0.72  0.85  0.95  0.0570  0.0180  25%Se Sp Se Sp p

  
 

  

      
 

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 1 1.458 0.961 1.659 0.984 2.332 0.940 1.897 1 3.118 
50 0.992 0.836 0.960 0.913 0.982 0.932 0.962 0.869 0.997 1.141 

   1 2

1 1 2 2 1 0

0.9 0.6  0.9 0.8  0.75

0.62  0.98  0.911  0.936  0.0277  0.0094  5%Se Sp Se Sp p

  
 

  

      
 

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 1 1.812 1.000 2.073 1 3.554 1 2.425 1 4.053 
50 1 1.593 1.000 1.789 1 2.564 0.999 2.067 1 2.682 

   1 2

1 1 2 2 1 0

0.9 0.4  0.9 0.4  1

0.943  0.229  0.70  0.70  0.0200  0.0343  50%Se Sp Se Sp p

  
 

  

      
 

 Wald CI Logarit. CI Fieller CI Bootstrap CI Bayesian CI 
n CP AL CP AL CP AL CP AL CP AL 

25 1 1.896 1 2.140 1 4.727 1 2.571 1 4.234 
50 1 1.798 1 1.991 1 3.211 1 2.418 1 3.242 

 

As conclusions, in general terms, it holds that: a) the Wald CI for   does not fail, its 

CP is 100% or very close to 100%, and its AL is lower than the rest of the intervals 

when these do not fail; b) the logarithmic, Fieller, Bootstrap and Bayesian CIs may 
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continue to fail when 0.25  . Consequently, when the sample size is small one must 

use the Wald CI for   adding the value 0.5 to all of the observed frequencies. 

 

4.4. Rules of application 

The CIs for the difference and for the ratio of the two weighted kappa coefficients 

compare both parameters, and therefore we can decide which method is preferable to 

make this comparison. Once we have studied the coverage probabilities and the average 

lengths of the CIs for    1 2c c     and for    1 2c c   , from the results 

obtained some general rules of application can be given for the CIs in terms of sample 

size. These rules are based on the failures and on the coverage probabilities, since the 

average lengths of the CIs for the difference and for the ratio cannot be compared as 

they are different intervals. In terms of sample size n: 

a) If n is small  100n  , use the Wald CI for   increasing the frequencies ijs  and 

ijr  in 0.5. 

b) If 100 400n  , use the Wald CI for the ratio   without adding 0.5. 

c) If 500n  , use any of the CIs (for the difference or for the ratio) proposed in 

Section 3.2 without adding 0.5. 

In general terms, if the sample size is small, the Wald CI calculated adding 0.5 to each 

observed frequency does not fail. In this situation, its AL increases in relation to the 

Wald CI without adding 0.5, but its CP also increases meaning that the interval does not 

fail. When 100 400n   the CI that behaves best (fewest failures and its CP shows 

better fluctuations around 95%) is the Wald CI for the ratio  . When the sample size is 

very large  500n  , there is no important difference between the asymptotic behaviour 

of the proposed CIs, and therefore any one of them can be used. When the sample size 

is small,  50n   the CIs may fail, especially when the difference between the two 

weighted kappa coefficients is not small. 
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5. Sample size 

The determination of the sample size to compare parameters of two BDTs is a topic of 

interest. We then propose a method to calculate the sample size to estimate the ratio   

between two weighted kappa coefficients with a precision   and a confidence 

 100 1 % . This method is based on the Wald CI for  , which is, in general terms, 

the interval with the best asymptotic behaviour. Furthermore, this method requires a 

pilot sample (or another previous study) from which we calculate estimations of all of 

the parameters ( iSe , iSp , i  and p, and consequently of  i c ) and the Wald CI for  . 

If the pilot sample size is not small and the Wald CI for   calculated from this sample 

contains the value 1, it makes no sense to determine the sample size necessary to 

estimate how much bigger one weighted kappa coefficient is than the other one, as the 

equality between both is not rejected. Nevertheless, if the pilot sample is small and the 

Wald CI (adding 0.5) contains the value 1, it may be useful to calculate the sample size 

to estimate the ratio  . In this situation, the Wald CI (adding 0.5) will be very wide (as 

the pilot sample is small) and may contain the value 1 even if  1 c  and  2 c  are 

different. Let us considerer that    2 1c c   and therefore 1  , and let   be the 

precision set by the researcher. As it has been assumed that 1  , then   must be lower 

than one, and if we want to have a high level of precision then   must be a small value. 

On the other and, based on the asymptotic normality of    1 2
ˆ ˆ ˆc c    it is verified 

that  1 2
ˆ ˆz Var    , i.e. the probability of obtaining an estimator ̂  is in this 

interval with a probability  100 1 % . Setting a precision  , we can then calculate 

the sample size n from 

  1 2
ˆz Var  . (21) 

where 

                 
 

2 2
2 1 1 2 1 2 1 2

4
2

ˆ ˆ ˆ ˆ2 ,ˆ c Var c c Var c c c Cov c c
Var

c

       



            . 

In the Appendix B of the supplementary material, we can see how this expression is 

obtained. This variance depends on the weighted kappa coefficients and on their 
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respective variances and covariance. Furthermore, the variances  ˆiVar c    and the 

covariance    1 2ˆ ˆ,Cov c c     (their expressions can be seen in the Appendix B of the 

supplementary material) depend, among other parameters, on the sample size n. 

Consequently, it is possible to use this relation to calculate the sample size to estimate 

the ratio  . Substituting in the equation of  ˆVar   the variances and the covariance 

with its respective expressions, substituting the parameters with their estimators and 

clearing n in equation (21), it is obtained that 

 
   

2 2
1 2

2 3 3

2 2 2 2 2
2

1 2 3

2
1

2 2
11 21 1 12 22 0 13 23

1 2

ˆ

ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1

ˆ

2
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ

h h h h h h h

h h

z
n

p q

a Se Se q a Sp Sp p a p q

Y

a a q a a p a a p q
YY

 


 





 

            


    


  (22) 

where    1
ˆˆ ˆ ˆ ˆ ˆh ha pq p q c c   ,    2 1

ˆˆ ˆ ˆh h ha a q c c    and 

     3
ˆˆ ˆ ˆˆ ˆ ˆ1 2 1 2 1h h h h ha p Y c p Y Sp c c          . This method requires us to know 

ˆ
hSe , ˆ

hSp , î  and p̂  (and therefore  ˆ
h c ), for example obtained from a pilot sample or 

from previous studies. The procedure to calculate the sample size consists of the 

following steps: 

1) Take pilot samples sized n  (in general terms, 100n   to be able to calculate the 

Wald CI without adding 0.5 or use the Wald CI adding 0.5 to the frequencies if n is 

small), and from this sample calculate ˆ
hSe , ˆ

hSp , î , p̂  and  ˆ
h c , and a then 

calculate the Wald CI for  . If the Wald CI calculated has a precision  , i.e. if 

Upper limit Lower limit

2


 , then with the pilot sample the precision has been 

reached and the process has finished (  has been estimated with a precision   to a 

confidence  100 1 % ); if this is not the case, go to the following step. 

2) From the estimations obtained in Step 1, calculate the new sample size n  applying 

equation (22). 
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3) Take the sample of n individuals ( n n  is added to the pilot sample), and from 

the new sample we calculate ˆ
hSe , ˆ

hSp , î , p̂ ,  ˆ
h c  and the Wald CI for  . If the 

Wald CI calculated has a precision  , then with the new sample the precision has 

been reached and the process has finished. If the Wald CI does not have the required 

precision, then this new sample is considered as a pilot sample and the process starts 

again at step 1. In this situation, the new sample has a size n calculated in step 2, i.e. 

we add n n  individuals to the initial pilot sample (sized n ). Therefore, the process 

starts again at step 1 considering the new sample as the pilot sample and from this 

sample we calculate the values of the estimators and the Wald CI. 

The method to calculate the sample size is an iterative method which depends on the 

pilot sample and which does not guarantee that   will be estimated with the required 

precision. Each time that the previous process (steps 1-3) is repeated, we calculate 

(starting from an initial sample) the new sample size to estimate  , i.e. we calculate the 

number of individuals that must be added to the initial sample to obtain a new sample. 

Therefore, this process adjusts the size of the initial pilot sample, adding (in each 

iteration of the process: steps 1-3) the number of individuals necessary to obtain the 

right sample size to estimate   with the precision required. The programme in R 

described in the Section 6 allows us to calculate the sample size to estimate  . 

If the Wald CI for   is higher than one, the BDTs can always be permuted and   

will then be lower than one. Another alternative consists of setting a value for a 

precision  , in a similar way to the previous situation when 1  , and then apply the 

equation (22) with 2ˆ   , where    1 2
ˆ ˆ ˆ 1c c    . This is due to the fact that if 

 ,L U   is the Wald CI for    1 2 1c c     then the Wald CI for 

   2 11 c c       is  2 2ˆ ˆ ,  L U   . It is easy to check that the calculated 

value of the sample size n is the same both if 1   (with precision  ) and if 1   (with 

precision 2ˆ   ). 

Simulation experiments were carried out to study the effect that the pilot sample has 

on the calculation of the sample size. These experiments consisted of generating 

10,000N   random samples of multinomial distributions considering the same 

scenarios as those given in Tables 5 and 6. The equation of the sample size depends on 



 

153 
 

the values of the estimators, which in turn depend on the pilot sample. Consequently, 

the pilot sample may have an effect on the sample size calculated. To study this effect, 

the simulation experiments consisted of the following steps: 

1) Calculate the sample size n from the values of the parameters set in the different 

scenarios considered. Therefore, equation (22) was applied using the values of the 

parameters (instead of their estimators). 

2) Generate the N multinomial random samples sized n calculating the probabilities 

from equations (6) and (7), using the values of the previous parameters, and as i  we 

considered low values (25%), intermediate values (50%) and high values (80%). 

From each one of the N random samples, ˆ
hSe , ˆ

hSp , î  and p̂  (and therefore  ˆ
h c ) 

were calculated, and then we calculated the sample size in  applying equation (22). 

3) For each scenario, the average sample size and the relative bias were calculated, 

i.e. in n N   and    RB n n n n   .  

 

Table 7. Effect of the pilot sample on the sample size. 
   1 2

1 1 2 2

0.1 0.2  0.1 0.8  0.25

0.484  0.684  0.852  0.911  50%Se Sp Se Sp p

    

    
 

 1 00.0179 0.0153    1 00.0359 0.0306    1 00.0574 0.0489    

 0.05   0.10   0.05   0.10   0.05   0.10   

Sample size 3170 793 3066 767 2942 736 
Average sample size 3173 795 3068 769 2946 738 

Relative bias (%) 0.095 0.252 0.065 0.261 0.136 0.272 

   1 2

1 1 2 2

0.9 0.2  0.9 0.8  0.25

0.28  0.92  0.82  0.98  10

 

%Se Sp Se Sp p

    

    
 

 1 00.0126 0.0046    1 00.0252 0.0092    1 00.0403 0.0147    

 0.05   0.10   0.05   0.10   0.05   0.10   

Sample size 5104 1276 4947 1237 4758 1190 
Average sample size 5113 1287 4948 1246 4759 1218 

Relative bias (%) 0.18 0.83 0.02 0.73 0.02 2.35 

 

Table 7 (Effect of the pilot sample) shows some of the results obtained. The relative 

biases are very small, which indicates that the equation of the calculation of the sample 

size provides robust values, and therefore the choice of the pilot sample does not have 

an important effect on the calculation of the sample size.  
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6. Programme citwkc 

A programme has been written in R and called citwkc (Confidence Intervals for Two 

Weighted Kappa Coefficients) which allows us to calculate the CIs proposed in Section 

3 and the sample size proposed in Section 5. The programme runs with the command  

“  11 10 01 00 11 10 01 00citwkc , , , , , , , , , 0, 0.95s s s s r r r r cindex preci conf  ”, 

where cindex is the weighting index, preci is the precision that is needed to calculate the 

sample size and conf is the level of confidence (by default 95%). By default 0preci  , 

and the programme does not calculate the sample size, and only calculates it when 

0preci  . In this situation  0preci  , the programme checks if it is necessary to 

calculate the sample size. The programme checks that the values of the frequencies and 

of the parameters are viable (e.g. that there are no negative values, frequencies with 

decimals, etc,) and also checks that it is possible to estimate all of the parameters and 

their variances-covariances. For the intervals obtained applying the Bootstrap method, 

2,000 samples with replacement are generated, and for the Bayesian intervals 10,000 

random samples are generated. The results obtained on running the programme are 

saved in file called “Results_citwkc.txt” in the same folders from where the programme 

is run. The program is available for free at URL  

“https://www.ugr.es/~bioest/software/cmd.php?seccion=mdb”. 

 

7. Application 

The results obtained have been applied to the study by Batwala et al (2010) on the 

diagnosis of malaria. Batwala et al have applied the Expert Microscopy Test and the 

HRP2-Based Rapid Diagnostic Test to a sample of 300 individuals using the PCR as the 

GS. The observed frequencies of this study are shown in Table 9, where the 1T  models 

the result of the Expert Microscopy Test, 2T  models the result of the HRP2-Based Rapid 

Diagnostic Test and D models the result of the PCR. In this example, 1
ˆ 46.07%Se  , 

1
ˆ 97.16%Sp  , 2

ˆ 91.01%Se   and 2
ˆ 86.26%Sp  , and therefore 12 0.506rTPF   and 


12 0.207rFPF  . Applying the equation (5) it holds that 0.1902c  . As 12 1rTPF   and 


12 1rFPF  , applying the rule c) given in Section 2, it holds that    1 2

ˆ ˆc c   for 
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0 0.1902c   and that    1 2
ˆ ˆc c   for 0.1902 1c  . Applying the rules given in 

Section 4, as 300 400n    then it is necessary to use the Wald CI for the ratio  . 

Table 10 shows the values of  ˆ
h c , ̂ , ̂  and the 95% CIs when 

 0.1,0.1902,0.2,...,0.8,0.9c  . The results were obtained running the programme 

“citwkc” with the command  citwkc 41,0,40,8,5,1,24,181,c  taking 

 0.1,0.1902,0.2,...,0.8,0.9c  .  

For  0.1,0.1902,0.2,0.3c  , the Wald CI for   contains the value 1, and therefore 

in these cases we do not reject the equality of the weighted kappa coefficients of the 

Expert Microscopy Test and of the HRP2-Based Rapid Diagnostic Test. Therefore, 

when the clinician considers that a false positive is 9, 4 or 2.33 times more important 

than a false negative, we do not reject the equality between the weighted kappa 

coefficients of the Expert Microscopy Test and of the HRP2-Based Rapid Diagnostic 

Test in the population studied. The rest of the intervals for   also contain the value 1.  

For  0.4,0.5,...,0.8,0.9c  , the Wald CI   does not contain the value 1, and 

therefore in all of these cases we do not reject the equality of the weighted kappa 

coefficients of the Expert Microscopy Test and of the HRP2-Based Rapid Diagnostic 

Test in the population studied. Therefore, the clinician considers that a false negative is 

more important than a false positive (as happens in the situation in which the diagnostic 

tests are applied as screening tests), the weighted kappa coefficient of the HRP2-Based 

Rapid Diagnostic Test is significantly greater than the weighted kappa coefficient of the 

Expert Microscopy Test in the population studied. The same conclusion is obtained 

when the clinician considers that a false positive and a false negative have the same 

importance  0.5c  . If the clinician considers that a false positive is 1.5 times greater 

than a false negative (i.e. 0.4c  ), then the same conclusion is obtained. The rest of the 

CIs for   do not contain the value 1. For example, considering 0.9c  , interpreting the 

Wald CI for the ratio, it is concluded that in the population being studied the between 

the HRP2-Based Rapid Diagnostic Test and the PCR is, with a confidence of 95%, a 

value between 1.72  1 0.58 1.72  and 2.94  1 0.34 2.94  times greater than the 

agreement beyond chance between the Expert Microscopy Test and the PCR. 
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In order to illustrate the method to calculate the sample size presented in Section 5 

we will consider that 0.9c  , and therefore that the two BDTs are applied as a screening 

test. In this situation, the 95% Wald CI for   is  0.34 , 0.58 , and the precision is 0.12. 

As an example, we will consider that the clinician wishes to estimate the ratio between 

the two weighted kappa coefficients with a precision 0.10  . As with the sample of 

300 individuals the desired precision  0.10 0.12    was not achieved, then using 

this sample as a pilot sample and running the programme citwkc with the command 

 citwkc 41,0,40,8,5,1,24,181,0.9,0.1  it holds that 435n  . Therefore, to the sample 

pilot of 300 individuals we must add 135 more. Once the new sample has been taken, it 

is necessary to check that the precision 0.10   is verified.  

 

Table 9. Study of Batwala et al and results. 

 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   41 0 40 8 89 
0D   5 1 24 181 211 

Total 46 1 64 189 300 

 

Table 10. CIs for the ratio    1 2c c   . 

c  1̂ c   2̂ c  ̂  Wald Logarithmic Fieller Bias-corrected Bayesian 

0.1 0.726 0.642 1.131 0.925 , 1.335 0.943 , 1.355 0.940 , 1.357 0.926 , 1.344 0.883 , 1.393 
0.1902 0.659 0.659 1 0.811 , 1.189 0.828 , 1.208 0.823 , 1.206 0.817 , 1.204 0.776 , 1.234 

0.2 0.653 0.661 0.988 0.800 , 1.174 0.817 , 1.194 0.812 , 1.192 0.808 , 1.192 0.766 , 1.219 
0.3 0.593 0.681 0.871 0.695 , 1.046 0.711 , 1.065 0.704 , 1.059 0.701 , 1.065 0.673 , 1.083 
0.4 0.543 0.701 0.775 0.609 , 0.939 0.625 , 0.958 0.615 , 0.948 0.615 , 0.952 0.593 , 0.971 
0.5 0.501 0.723 0.693 0.537 , 0.847 0.553 , 0.866 0.541 , 0.854 0.541 , 0.857 0.525 , 0.877 
0.6 0.464 0.747 0.621 0.476 , 0.768 0.492 , 0.786 0.479 , 0.772 0.481 , 0.776 0.468 , 0.799 
0.7 0.433 0.772 0.561 0.425 , 0.698 0.440 , 0.716 0.426 , 0.701 0.430 , 0.707 0.418 , 0.727 
0.8 0.406 0.799 0.508 0.380 , 0.637 0.395 , 0.654 0.381 , 0.639 0.384 , 0.644 0.375 , 0.667 
0.9 0.382 0.827 0.462 0.341, 0.582 0.356 , 0.599 0.342 , 0.584 0.347 , 0.594 0.339 , 0.611 

 

8. Discussion 

The weighted kappa coefficient of a BDT is a measure of the beyond-chance agreement 

between the BDT and the GS, and depends on the sensitivity and specificity of the BDT, 

on the disease prevalence and on the weighting index. The weighted kappa coefficient is 

a parameter that is used to assess and compare the performance of BDTs. In this article, 
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we have studied the comparison of the weighted kappa coefficients of two BDTs 

through confidence intervals when the sample design is paired. 

Three intervals have been studied for the difference of the two weighted kappa 

coefficients and five more intervals for the ratio of the two parameters. All the intervals 

studied are asymptotic and simulation experiments have been carried out to study their 

coverage probabilities and average lengths subject to different scenarios and for 

different sample sizes. Based on the results of the simulation experiments, some general 

rules of application have been given. When the sample size is moderate  100n   or 

large  200 400n    it is preferable to compare the two weighted kappa coefficients 

through an interval for the ratio, and when the sample size is very large  500n   the 

two weighted kappa coefficients can be compared through the difference or the ratio. 

When the sample size is small  50n  , the interval with the best behaviour is the Wald 

CI for the ratio   adding 0.5 to all of the observed frequencies. Adding 0.5 to all of the 

frequencies does not improve the behaviour of the intervals for the difference  , since 

these continue to fail when they failed without adding the value 0.5. This question may 

be due to the fact that the ratio ̂  converges more quickly to the normal distribution 

than the difference ̂ . In the simulation experiments, the asymptotic behaviour of the 

Bayesian CIs has been studied using the  1,1Beta  distribution as prior distribution for 

all of the parameters. The choice of the values of the hyperparameters of the Beta 

distribution will depend on the previous information that the researcher has. If the 

researcher has some information and wants this information to have some weight in the 

data, then it is possible to use higher values of   and  , i.e. considering a  ,Beta    

distribution with , 1   . The increase in   and   adds information and decreases the 

variance and, therefore, there is less uncertainty about the parameter. If the researcher 

does not want this information to have a great weight in the posteriori distribution, then 

the researcher chooses moderate values of   and   which are consistent with the 

information available, i.e. the average should be compatible with that information. To 

assess the effect that the Beta distribution has on the asymptotic behaviour of the 

Bayesian interval, we have carried out simulations (in a similar way to those carried out 

in Section 4) using as prior the distributions  5,5Beta  and  25,25Beta  for the 

Bayesian interval for    1 2c c   . These two distributions have the same average 
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as the  1,1Beta  distribution but different variances. The first distribution has a 

moderate weight in the subsequent distribution, the second has an important weight and 

the third one has a very important weight. In general terms, the results obtained with the 

distribution  5,5Beta  are very similar to those obtained with the  1,1Beta  

distribution. Regarding the  25,25Beta  distribution, there is no important difference in 

relation to the CPs obtained with the  1,1Beta , although for  0.25,0.50   the AL is 

slightly lower with the  25,25Beta , and when  0.75,1   the AL is slightly higher 

with the  25,25Beta . In general terms, when the Bayesian interval fails using the 

 1,1Beta  distribution then it also fails using the  5,5Beta  and the  25,25Beta . 

Furthermore, the Bayesian CI for    1 2c c    with the  5,5Beta  and 

 25,25Beta , respectively, does not display a better CP than the Wald CI (when it does 

not fail), and therefore the Bayesian CI does not improve the asymptotic behaviour of 

the Wald CI. 

The application of the CIs requires the marginal frequencies s and r to be higher than 

zero. If the marginal frequency s (or r) is equal to zero, then it is not possible to estimate 

the weighted kappa coefficient of each BDT. Moreover, if a marginal frequency ij ijs r  

is equal to zero, then it is possible to calculate all of the CIs proposed; but not if two of 

these marginal frequencies are equal to zero. In this last situation, one of the weighted 

kappa coefficients (or both) is equal to zero, and the variance and the covariance are 

also equal to zero. If 10 10 01 01 0s r s r     then    1 2
ˆ ˆc c   and 

          1 2 1 2
ˆ ˆˆ ˆ ˆ ˆ,Var c Var c Cov c c     , and the frequentist intervals cannot be 

calculated. A solution to this problem is to add 0.5 to each observed frequency. 

In this article, we have also proposed a method to calculate the sample size to 

estimate the ratio between the two weighted kappa coefficients with a determined 

precision and confidence. This method, based on the Wald CI for the ratio, is an 

iterative method, which starting from a pilot sample adds individuals to the sample until 

the CI has the set precision. From the initial sample we estimate a vector of parameters 

and in the second stage we calculate the sample size. Furthermore, the simulation 

experiments carried out to study the robustness of the method to calculate the sample 
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size have shown that the method has practical validity and the choice of the pilot sample 

has very little effect on this method. 

When the two diagnostic tests are continuous, for each cut off point of each 

estimated ROC curve there will be a value of ˆ
hSe  and of  hFPF  (and therefore of 

ˆ 1 hhSp FPF  ), with 1,2h  . Once the clinician has set the value of the weighting 

index,  1
ˆ c  and  2

ˆ c  are calculated and therefore the confidence intervals studied in 

Section 3 can be applied. 

 

Supplementary material: Appendices A, B and C 

Appendices A, B and C are available as supplementary material of the manuscript in the 

URL: https://www.ugr.es/~bioest/software/cmd.php?seccion=mdb. 
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Appendix A 

From now onwards, we are going to suppose that 0 1hSe  , 0 1hSp  , 0 1p   and 

1q p  . Performing algebraic operations it is verified that  

    1 2
1 2

pq
c c

D D
     (1) 

where    1 1h h hD p Q c qQ c     is the denominator of  h c , with 1, 2h  , and 

  1 1 2q c p        (2) 

where    1 1 2 2 11 1Se Sp Se Sp      and 2 1 2 1 2 1 2Y Y Se Se Sp Sp       . Then 

   1 2c c   if 0  , since 0hD  . Solving equation    1 2 0c c    in c it holds 

that 

 1

1 2

q
c c

p

  
  

, (3) 

being c  a real value. From now onwards, the rules so that    1 2c c  , 

   2 1c c   and    1 2c c  , considering that 1i   and 2j   (the demonstrations 

for 2i   and 1j   are analogous). 

 

a) If 12 1rTPF   and 12 1rFPF  , or 12 1rTPF   and 12 1rFPF  , then    1 2c c   for 

0 1c  . 
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Let us suppose in the first place that 12 1rTPF   and that 12 1rFPF  , then 

1 2Se Se Se   and 1 2Sp Sp . Substituting in equation (2) it holds that 

   1 2Sp Sp cp q c Se       . Here 0   if   0cp q c Se   , since 1 2Sp Sp . If 

0c   or 1c  , then   0cp q c Se    since 0qSe  , and  1 0p Se   is verified; and 

as 1 2Sp Sp , then 0   and    1 2c c  . Let us suppose that 0 1c   and p Se , 

then     0cp q c Se c p Se qSe      , and it is verified that 0   and 

   1 2c c  . If p Se , then       1 1 0cp q c Se c Se p Se p        , since 

  1 0c Se p    and  1 0Se p  . Therefore, 0   and    1 2c c  . 

Let us now suppose that 12 1rTPF   and that 12 1rFPF  , then 1 2Se Se  and 

1 2Sp Sp . It is easy to check that when 0c   or 1c   it is verified that 0   and, 

therefore,    1 2c c  . Moreover, as 12 1rTPF   and 12 1rFPF   then dividing both 

parameters  12 12 1rTPF rFPF   it holds that 
 
 

1 212

12 2 1

1
1

1

Se SprTPF

rFPF Se Sp


 


, verifying that 

   1 1 2 2 11 1 0Se Sp Se Sp      . As 1 2Se Se  and 1 2Sp Sp  then 

2 1 2 1 2 0Se Se Sp Sp      . Furthermore, as it is verified that 1 2Se Se  then 

1 21 1Se Se   , and 1

2

1
0 1

1

Se

Se


 


. Moreover, as 1

2

1
Sp

Sp
  then 

 
31 1

2 2 2 2

1
0

1 1

Sp Se

Sp Se Sp Se


  

 
, when    3 2 1 1 21 1 0Se Sp Se Sp      . It is easy to 

check that 1 2 3    , so that 2 1   . Equation (2) can be written as  

 1 2( )q c cp      . (4) 

Let us suppose that 0 1c  , then if q c  it is verified that 0   and    1 2c c  . 

Let us now suppose that q c , then 0q c  . Equation (4) can be written as  

1 2( )c q cp        

being 0c q  . Let us suppose that  

1 20 ( ) 0c q cp         , 

so that  
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2
1 2 1 2

1

( ) ( )c q cp c q cp c q cp


             


. 

As 2 1    then 2

1

1





, so that  

2

1

0c q cp cp


   


, 

from where we obtain   

 0c q cp   . (5) 

Performing algebraic operations  

 1c q cp q c     

As 0 1c  , 1 0c   and 1 0c   , then  1 0q c   , which is contradictory with 

expression (5). Therefore, if q c  then 0   and    1 2c c  . 

The demonstrations for 12 1rTPF   and 12 1rFPF   are performed following a similar 

process to the previous one.  

 

b). If 12 1rTPF   and 12 1rFPF  , then: 

b.1)    1 2c c   if 0 1c c    

b.2)    1 2c c   if 0 1c c    

b.3)    1 2c c   if c c , with 0 1c   

b.4)    1 2c c   for 0 1c   if 0c   (or 1c  ) and 12 12 1rTPF rFPF   

b.5)    1 2c c   for 0 1c   if 0c   (or 1c  ) and 12 12 1rFPF rTPF   

 

Firstly, we are going to demonstrate that c  cannot be equal to 0 or to 1. As 

1rTPF   and 1rFPF  , then it is verified that 1 2Se Se  and 1 2Sp Sp . If 0c   then 

1 0  , and it is verified that  
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1 2

2 1

1
1

1

Se Sp

Se Sp


 


, 

which is incompatible with 1rTPF   and 1rFPF  , since as 1

2

1
Se

Se
  and 

2

1

1
0 1

1

Sp

Sp


 


 then it is verified that 1 2

2 1

1
1

1

Se Sp

Se Sp


 


. Therefore c  cannot be equal to 

0 if 1rTPF   and 1rFPF  . If 1c   then    1 2 2 1 1 21 1 0Sp Se Sp Se        , and 

it is verified that  

2 1

1 2

1
1

1

Sp Se

Sp Se


 


, 

which is incompatible with 1rTPF   and 1rFPF  , since as 2

1

1
Sp

Sp
  and 

1

2

1
0 1

1

Se

Se


 


 then it is verified that 2 1

1 2

1
1

1

Sp Se

Sp Se


 


. Therefore, c  cannot be equal to 

1 if 1rTPF   and 1rFPF  . 

Let us consider that 0 1c  , then we must verify one of the two following: 1) 

1 1 20 q p      , or 2) 1 2 1 0p q      . Condition 1 implies that 1 0   and 

1 2p   , and Condition 2 implies that 1 0   and 1 2p   . 

Moreover, as 1 2Se Se  and 1 2Sp Sp  (which implies that 1 21 1Sp Sp   ) then 

1 2Q Q . Furthermore, if c c  then performing algebraic operations, each weighted 

kappa coefficient is expressed as  

  h
h

h

Y
c


  , 

when 1 2

1 2

h
h

Q

p
   


  

, with 1,2h   . As 1 2Q Q , then 2 1 0    if 2 0  , and 

2 1 0    if 2 0  . If 2 0  , then  

 2 1 2
2 1 1 2 1 2

1 2

0 0 0
Q Q

p p
p

 
 

            
  

. 

If 2 0  , then 
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 2 1 2
2 1 1 2 1 2

1 2

0 0
Q Q

p p
p

 
 

           
  

. 

Therefore, whether 2 0   or 2 0  , it is always verified that 1 2p   . This 

condition is only compatible with Condition 1 obtained by the fact that 0 1c  , i.e. 

1 1 20 q p      . Therefore, it is always verified that 1 0   and 1 2p   . 

Moreover, from equation (3) it holds that  1 1 2q c p     , so that substituting 

this expression in equation (2) it holds that  

   1 2p c c      . (6) 

As 1 2p    then 1 2 0p    . Based on equation (6), if 0 1c c    then 0   and 

   1 2c c  . If 0 1c c    then 0   and    1 2c c  , and if c c  (with 

0 1c  ) then 0   and    1 2c c  . 

 

If 0c   then one of the following two conditions must be verified: 1) 

1 1 2 20 q p        , or 2) 2 2 1 1 0p q        . Condition 1 implies that 

1 0   and therefore    1 2 2 11 1Se Sp Se Sp   , and from this inequality it holds that  

1 1
12 12

2 2

1
1 1

1

Se Sp
rTPF rFPF

Se Sp


    


. 

As 1 0q   and 1 2 0p    , then applying equation (2) it holds that 0   and 

therefore    1 2c c  . Condition 2 implies that 1 0   and therefore 

   1 2 2 11 1Se Sp Se Sp   , and it holds that  

1 1
12 12

2 2

1
1 1

1

Sp Se
rFPF rTPF

Sp Se


    


. 

As 1 0q   and 1 2 0p    , applying equation (2) again it holds that 0   and 

therefore    1 2c c  . If 1c  , the demonstrations are similar to those of 0c  . 
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c) If 12 1rTPF   and 12 1rFPF  , then 21 1rTPF   and 21 1rFPF  , and the 

demonstrations are analogous to case b). 

 

Appendix B 

Bloch (1997) has deduced the expressions of the variances of  1̂ c  and  2ˆ c  and of 

the covariance between them. We then obtain equivalent expressions and we also 

deduce the variance of the ratio of the two weighted kappa coefficients, an expression 

which is necessary to apply the method to calculate the sample size explained in Section 

5. Let  1 1 2 2, , , ,
T

Se Sp Se Sp pω  be the vector of parameters, where 10 11
1

p p
Se

p


 , 

00 01
1

q q
Sp

q


 , 01 11

2

p p
Se

p


  and 00 10

2

q q
Sp

q


 , with 1q p  . Applying the delta 

method, the matrix of the asymptotic variances-covariances of ω̂  is 

ˆ ˆ

T             
πω

ω ω

π π
. 

Performing the algebraic operations it is obtained that 

      11 10 01 00 1 1
1 3

1ˆ p p p p Se Se
Var Se

np np

  
  , 

      11 01 10 00 2 2
2 3

1ˆ p p p p Se Se
Var Se

np np

  
  , 

      11 10 01 00 1 1
1 3

1ˆ q q q q Sp Sp
Var Sp

nq nq

  
  , 

      11 01 10 00 2 2
2 3

1ˆ q q q q Sp Sp
Var Sp

nq nq

  
  ,  ˆ

pq
Var p

n
 , 

11 00 10 01 1
1 2 3

ˆ ˆ,
p p p p

Cov Se Se
np np

     , 11 00 10 01 0
1 2 3

ˆ ˆ,
q q q q

Cov Sp Sp
nq nq

      

and 

     ˆ ˆ ˆ ˆˆ ˆ, , , 0h h h hCov Se Sp Cov Se p Cov Sp p   , with 1,2h  . 
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The estimators of the variances-covariances are obtained substituting each parameter 

with its corresponding estimator, where 11 10
1

ˆ s s
Se

s


 , 11 01

2
ˆ s s
Se

s


 , 01 00

1
ˆ r r
Sp

r


 , 

10 00
2

ˆ r r
Sp

r


 , ˆ

s
p

n
 , ˆ

r
q

n
 , 11 00 10 0111

1 1 2 2

ˆ ˆ ˆˆ
ˆ

s s s sp
Se Se

p s
 
    and 

00 11 00 10 01
0 1 2 2

ˆ ˆ ˆˆ
ˆ

q r r r r
Sp Sp

q r
 

   . Applying the delta method, the variance of  ˆh c  is 

             
2 2 2

ˆ ˆˆ ˆh h h
h h h

h h

c c c
Var c Var Se Var Sp Var p

Se Sp p

  


      
                 

. 

In this expression the covariances are zero. Performing the algebraic operations, it is 

obtained that 

         
2

2 2 2
1 2 3

ˆ ˆˆ ˆh
h h h h h h

h

c
Var c a Var Se a Var Sp a Var p

pqY




              
 

with 1,2h  , and where 

    1h ha pq p q c c   , 

    2 1h h ha a q c c    

and 

      3 1 2 1 2 1h h h h ha p Y c p Y Sp c c          . 

The expression of  ˆ ˆhVar c    is obtained substituting in the previous expressions each 

parameter with its estimator. Regarding the covariance between  1̂ c  and  2ˆ c , 

applying the delta method again it is obtained that  

           

     

1 2 1 2
1 2 1 2 1 2

1 2 1 2

1 2

ˆ ˆ ˆ ˆˆ ˆ, , ,

ˆ .

c c c c
Cov c c Cov Se Se Cov Sp Sp

Se Se Sp Sp

c c
Var p

p p

   
 

 

                 

 
 

 

In this expression, the rest of the covariances are equal to zero. Performing the algebraic 

operations it is obtained that  
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   
         

1 2

1 2
11 21 1 2 12 22 1 2 13 232 2

1 2

ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ, , .

Cov c c

c c
a a Cov Se Se a a Cov Sp Sp a a Var p

p q YY

 

 

  

    
 

The expression of    1 2
ˆ ˆ ˆ,Cov c c     is obtained substituting in this equation each 

parameter with its estimator. 

Regarding the ration of the two weighted kappa coefficients, the variance of   is 

easily calculated applying the delta method again, i.e. 

              
2

2

1 2
1 1 2

ˆ ˆ ˆ ˆ2 ,h
h h

Var Var c Cov c c
c c c

     
  

   
             
 . 

Performing the algebraic operations, 

                 
 

2 2
2 1 1 2 1 2 1 2

4
2

ˆ ˆ ˆ ˆ2 ,ˆ c Var c c Var c c c Cov c c
Var

c

       



            , (7) 

and substituting in this equation each parameter with its estimator, we obtain the 

expression of  ˆV̂ar  . The expression of variance of  ˆˆ lnVar  
   is calculated in a 

similar way to in the previous case, but considering  ln   instead of  . 

 

Appendix C 

The selection of the CI with the best asymptotic behaviour, both for the difference   

and for the ratio  , was made taking the following steps: 1) Choose the CIs with the 

least failures ( 93%CP  ), 2) Choose the CIs that are the most accurate i.e. those with 

the lowest AL. The first step in this method establishes that the CI does not fail when 

93%CP  . In the simulation experiments the CIs were calculated to a 95% confidence 

i.e. 1 0.95     is the nominal confidence and 5%   is the nominal error. Then 

* *         , where *  is the CP calculated and *  is the type I error.  

Moreover, the hypothesis test to check the equality of the two weighted kappa 

coefficients is    0 1 2:H c c   vs    1 1 2:H c c  . Based on the difference of both 

parameters, this hypothesis test is equivalent to test 0 : 0H    vs 1 : 0H   . This test 

can be solved through different methods. Applying Bloch’s method (1997), the test 
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statistic is given by equation (equation (10) of the manuscript). The statistics for the 

bootstrap method and for the Bayesian method are obtained computationally. 

In step 1 of the method, a CI has a failure if 93%CP  , i.e. if 2   . In this 

situation, the type I error of the corresponding hypothesis test is 7% , and therefore it 

is a very liberal hypothesis test and it can give false significances. The criteria of 93% 

has been used by other authors (Price and Bonett, 2004; Martín-Andrés and Álvarez-

Hernández, 2014a, 2014b; Montero-Alonso and Roldán-Nofuentes, 2018). If 2%  , 

i.e. 97%CP  , then the hypothesis test is very conservative (its type I error is very 

small, 3% ), but it does not give false significances. Consequently, the choose of the 

optimal CI is linked to the decisions of the hypothesis test, and it is preferable to choose 

a conservative test rather than a very liberal one (as there will be no false significances 

because its type I error is lower than the nominal one). The method for the CIs for the 

ratio   is justified in a similar way. 
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Abstract 

The weighted kappa coefficient of a binary diagnostic test is a measure of the beyond 

chance agreement between the diagnostic test and the gold standard, and depends on the 

sensitivity and the specificity of the diagnostic test, on the disease prevalence and on the 

relative importance between the false positives and the false negatives. This manuscript 

studies a hypothesis test to compare the weighted kappa coefficients of two binary 

diagnostic tests when, in the presence of partial disease verification, a discrete covariate 

is observed in all individuals. The EM algorithm is applied to estimate the weighted 

kappa coefficients and the SEM algorithm is applied to estimate their variances-

covariances. Simulation experiments were carried out to study the size and the power of 

the proposed hypothesis test. The results were applied to a real example on the 

diagnosis of the Alzheimer’s disease. 

 

Key words: Discrete covariate, EM and SEM algorithms, Partial verification, Weighted 

kappa coefficient. 
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1. Introduction 

The fundamental parameters of a binary diagnostic test (BDT) are sensitivity and 

specificity. The sensitivity (Se) is the probability of the BDT result being positive when 

the individual has the disease, and the specificity (Sp) is the probability of the result of 

the BDT being negative when the individual does not have the disease. In order to 

obtain unbiased estimators of the Se and Sp of a BDT it is necessary to assess the BDT 

in relation to a gold standard (GS), which is a medical test that objectively determines if 

an individual has the disease or not. When we consider the losses or costs associated 

with an erroneous classification with a BDT, the effectiveness of the BDT is estimated 

by the weighted kappa coefficient [1, 2, 3]. The weighted kappa coefficient of a BDT is 

a measure of the beyond chance agreement between the BDT and the GS, and depends 

on the Se and Sp of the BDT, on the disease prevalence (p) and on the relative 

importance between the false positives and the false negatives (weighting index).  

When comparing the parameters of two BDTs in relation to the same GS, the most 

frequent type of sampling is the paired design [4, 5]. This design consists of applying 

the two BDTs to all of the individuals in a random sample sized n, where the disease 

status (whether the disease is present or absent) of all of the n individuals is known 

through the application of the GS. Subject to this type of design, Roldán-Nofuentes and 

Sidaty-Regad [6] studied different methods to compare the sensitivities and the 

specificities of the two BDTs. Subject to this same type of sampling, the comparison of 

the weighted kappa coefficients of two BDTs is made by applying the method of Bloch 

[7]. 

Moreover, in clinical practice when comparing the parameters of two (or more) 

BDTs it is common for the GS not to be applied to all of the individuals in the sample. 

Therefore, if the GS consists of an expensive test or a test that represents a high risk for 

the individual, the GS is not applied to all of the individuals in the sample. In this 

situation, the results of the BDTs are known for all of the individuals in a sample, but 

the disease status (i.e. the result of the GS) is only known for a subset of them (and 

therefore is unknown for the remaining subset). This situation is known as partial 

disease verification. Assuming that the verification process is missing at random (MAR) 

[8], there are several studies that have been carried out to compare two BDTs. Zhou [9] 

studied a hypothesis test to compare the sensitivities (specificities) of two BDTs 

applying the method of maximum likelihood. Harel and Zhou [10] applied multiple 
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imputation to compare the two sensitivities (specificities) through confidence intervals. 

Roldán Nofuentes and Luna [11, 12] studied hypothesis tests to compare the 

sensitivities (specificities) of two BDTs applying the EM and SEM algorithms. Roldán-

Nofuentes and Luna [13] studied a hypothesis test to compare the weighted kappa 

coefficients of two BDTs applying the method of maximum likelihood.  

In the presence of partial disease verification, the selection of a patient to verify his 

or her disease status with the GS may also depend on discrete covariates which are 

related to the disease. For example, in the diagnosis of the Alzheimer’s disease [14] an 

advanced age of the patient (75 years) is a risk factor for this disease. The probability 

of selecting a patient to perform a clinical assessment (GS) conditionally depends on the 

result of the cognitive test (BDT) and on the age of the patient ( 75  years or 75 ). 

The age of the patient is modelled using a discrete (binary) variable  75  years or 

75 . Zhou [9] studied a hypothesis test to compare the sensitivities (specificities) of 

two BDTs when, in the presence of partial verification of the disease, discrete covariates 

are observed in all individuals. The probability of selecting a patient to perform a 

clinical assessment (GS) depends on the results of two BDTs (a new BDT and a 

cognitive test) and on the age of the patient ( 75  years or 75 ). Here the age of the 

patient is modelled through a binary variable. As cognitive deterioration increases in 

line with the age of the patient, age-adjustment is needed to properly describe the 

diagnosis effectiveness of each BDTs, and consequently to compare parameters of both 

BDTs.  

The objective of this manuscript is to study a hypothesis test to compare the 

weighted kappa coefficients of two BDTs when, in the presence of partial disease 

verification, a discrete covariate is observed in all individuals. The manuscript is 

structured in the following way. Section 2 explains the weighted kappa coefficient of a 

BDT. In Section 3, an asymptotic hypothesis test is deduced to compare the two 

weighted kappa coefficients in the situation previously described by applying the EM 

and SEM algorithms. In Section 4, simulation experiments are carried out to study the 

size and the power of the hypothesis test deduced in Section 3 when the covariate is 

binary. In Section 5, the results are applied to a real example on the diagnosis of the 

Alzheimer’s disease, and in Section 6 the results obtained are discussed. 
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2. Weighted kappa coefficient 

Let us consider a BDT whose effectiveness is evaluated with respect to a GS. Let L  be 

the loss or cost that is committed when the BDT is negative in an individual who has the 

disease, and let L  be the loss or cost that is committed when the BDT is positive in an 

individual who does not have the disease. The loss L  is associated with the false 

negatives and the loss L  is associated with the false positives, assuming that 0L L   

when an individual (with or without the disease) is classified correctly with the BDT. 

The weighted kappa coefficient  c  of a BDT is expressed [1, 2, 3] as 

 ( )
ppY

c
pcQ pcQ

 


, (1) 

where 1p p  , 1Y Se Sp    is the Youden’s index [15],  1Q pSe p Sp    is the 

probability of the BDT result being positive, 1Q Q  ,  c L L L   is the weighting 

index and 1c c  . The weighting index c is a measure of the relative importance 

between the false positives and the false negatives. For example, let us consider the 

diagnosis of the Alzheimer’s disease using a cognitive test as a diagnostic test. If the 

cognitive test is positive for a patient who does not have this disease (false positive), 

then a clinical assessment (GS) will be performed, which will finally give a negative 

diagnosis. The loss L  will be determined from the economic costs of the diagnosis and 

also based on the stress, anxiety, etc., caused to the patient. If the cognitive test is 

negative for a patient who has this disease (false negative), the patient may be 

diagnosed some time later. In this situation, the Alzheimer’s disease may have advanced 

and the possibilities of the treatment will help reduce some symptoms and help control 

some behavioural symptoms will be reduced. The loss L  is determined based on these 

considerations. Consequently, the losses L  and L  are not only measured in economic 

terms but also based on stress, anxiety, risks, etc., and therefore in clinical practice the 

value of these losses cannot be determined. This is the reason why the relative 

importance between the losses L  and L  is substituted by the relative importance 

between the false positives and the false negatives. The value of the weighting index 

can be assumed depending on the considerations made by the clinician about the false 

positives and the false negatives. If the clinician is more concerned about the false 

positives, as is the case in which the BDT is used as a prior step to a treatment involving 

some risk (for example a surgical operation), then 0 0.5c  . If the clinician is more 
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concerned about the false negatives, as is the case in which the BDT is used as a 

screening test, then 0.5 1c  . Index c is 0.5 when the BDT is used for a simple 

diagnosis (the false positives and the false negatives have the same importance), and in 

this situation  0.5  is known as Cohen’s kappa coefficient. If 0c   then 

   0 Sp Q Q    ans if 1c   then    1 Se Q Q   . The weighted kappa 

coefficient can also be written as 

      
   

0 1

0 1
c

c c

 


 



, (2) 

with 0 1c  . The weighted kappa coefficient is a measure of the beyond chance 

agreement between the BDT and the GS. In the studies by Kraemer et al [3], Roldán-

Nofuentes et al [16] and Roldán-Nofuentes and Amro [17, 18], we can see a broad 

review of the use and the properties of the weighted kappa coefficient. 

We will now study the comparison of the weighted kappa coefficients of two BDTs 

when in the presence of partial verification a discrete covariate is observed in all of the 

individuals. 

 

3. The model 

Let us consider two BDTs, Test 1 and Test 2, that are applied to all n individuals in a 

random sample. Let hT  be the random variable that models the result of the hth BDT, so 

that 1hT   when the result is positive and 0hT   when it is negative. Let V be the 

random variable that models the verification process, so that 1V   when the disease 

status of an individual is verified with the GS and 0V   when it is not. Let D be the 

random variable that models the result of the GS: 1D   when the individual verified has 

the disease and 0D   when the individual verified does not have the disease. Disease 

prevalence is  1p P D   and  1 0p p P D    . Moreover, let us consider that 

for all of the n individuals of the sample we observe a vector  1 2, ,..., MX x x x  of a 

discrete covariate, where mx  is each one of the different values or patterns that the 

covariate can take with 1,...,m M . Let us suppose that the number of individuals that 



 

177 
 

verify mX x  is mn , and therefore 
1

M

m
m

n n


  . For mX x  the frequencies obtained are 

those given in Table 1. 

 

Table 1. Observed frequencies in the presence of partial verification for mX x . 

 1 1T    1 0T    

 2 1T   2 0T    2 1T   2 0T   Total 

1V         

1D   11ms  10ms   01ms  00ms  ms  

0D   11mr  10mr   01mr  00mr  mr  

0V   11mu  10mu   01mu  00mu  mu  

Total 11mn  10mn   01mn  00mn  mn  

 

The sample of n individuals can be seen as a sample of a mixture of M multinomial 

independent 3 4  tables. For mX x , i.e. for the m-th table, the sensitivities of the 

BDTs are defined as 

 1 1 1 1,m mSe P T D X x     and  2 2 1 1,m mSe P T D X x    , 

and the specificities as 

 1 1 0 0,m mSp P T D X x     and  2 1 0 0,m mSp P T D X x    . 

It is assumed, just as happens in practice, that both BDTs are conditionally dependent on 

the disease, applying the conditional dependence model of Berry et al [19] to each one 

of the values of the covariate X, for mX x  it is verified that 

 
     

1 2

1 2 1 2 1

, 1,

1, 1, 1

m

m m ij m m m

P T i T i D X x

P T i D X x P T j D X x Se Se 

    

         
 

and 

 
       

1 2

1 2 1 2 0

, 0,

0, 0, 1 1 1 ,

m

m m ij m m m

P T i T i D X x

P T i D X x P T j D X x Sp Sp 

    

           
 

where 1ij   if i j  and 1ij    if i j , and the parameter 1m   0m  is the 

covariance [19] between both BDTs when 1D    0D   and mX x , verifying that 
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 1 1 21 1 max ,m m mSe Se   and     0 1 21 1 max 1 , 1m m mSp Sp    . If 1 0 1m m    

then both BDTs are conditionally independent on the disease when mX x , an 

assumption that is not realistic, so in practice 1 1m   and/or 0 1m  . 

For the m-th table the verification probabilities are defined as 

 1 21 , , ,ijkm mP V T i T j D k X x       , 

i.e. ijkm  is the probability of verifying with the GS the disease status of an individual in 

which 1T i , 2T j , D k  and mX x , with , , 0,1i j k   and 1,...,m M . Assuming 

that the verification process is MAR [8], i.e. that the probability of verifying the disease 

status of an individual only conditionally depends on the results of both BDTs and on 

the value of the covariate X, then  

  1 21 , ,ijkm ijm mP V T i T j X x       . (3) 

Let  m mP X x    be the probability that in an individual mX x . Let 

 1m mp P D X x    be the disease prevalence for the individuals with mX x , and 

1m mp p  . For mX x  the data ijms , ijmr  and ijmu , with , 0,1i j  , are the product of a 

multinomial distribution sized mn  and whose probabilities under the MAR assumption 

are shown in Appendix A (Partial verification: probabilities) of supplementary material 

of the manuscript.  

For the h-th BDT and mX x  it holds that    0hm hm hm hmSp Q Q    and 

   1hm hm hm hmSe Q Q   , with 1,2h  . Let 
1

M

m m
m

p p


  be the overall disease 

prevalence and 
1

M

m m
m

p p


 . The overall weighted kappa coefficients  0h  and  1h  

are 

  
    

    
1 1

1

1 1 0

0

1 1 0

M M

m m hm hm m m hm hm
m m

h M

m m hm hm m hm hm
m

p p p p

p p p

     


    

 



   
       

      

 


 (4) 

and 
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  
    

    
1 1

1

0 1 1

1

1 1 0

M M

m m hm hm m m hm hm
m m

h M

m m hm hm m hm hm
m

p p p p

p p p

     


    

 



          
      

 


, (5) 

where 

 
   

 
   

0 1
  and  

0 1 0 1
m hm m m hm m

hm hm
m hm m hm m hm m hm

p p p p

p p p p

 
 

   
 

 
 

. 

The proof can be seen in Appendix A (Overall weighted kappa coefficients) of 

supplementary material. Finally, for 0 1c  , the overall weighted kappa coefficient 

 h c  of the h-th BDT is 

      
   

0 1

0 1
h h

h
h h

c
c c

 


 



, (6) 

with 1,2h  .  

The objective of this manuscript is to study the comparison of the weighted kappa 

coefficients of both BDTs, i.e. 

       0 1 2 1 1 2:   vs  :H c c H c c     . 

If       1 2
ˆ ˆ ˆ,c c c κ  is the vector whose components are the estimators of  h c  

and  ˆ cκ  is the variance-covariance matrix of  ˆ cκ , then based on the asymptotic 

normality of  ˆ cκ ,        ˆ
ˆ 0,

T

cn
c c N  κκ κ , a Wald type test statistic for the 

hypothesis test is 

 
   

       
1 2

1 2 1 2

ˆ ˆ

ˆˆ ˆˆ ˆ ˆ ˆ2 ,

c c
z

Var c Var c Cov c c

 

   




           
, (7) 

which is distributed according to a standard normal distribution when the sample size n 

is large. We then obtain the estimators of  h c  applying the EM algorithm and the 

estimators of the variances-covariances applying the SEM algorithm.  

For each one of the M multinomial 3 4  tables the missing information is the true 

disease status of the individuals not verified with the GS  0V  . For the m-th table 

 mX x  let us suppose that from each frequency ijmu  of non-verified individuals, ijmd  
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have the disease and ijm ijmu d  do not have the disease, with , 0,1i j  . Then each one of 

the M tables can be expressed in the form of a 2 4  table with frequencies ijm ijms d  for 

1D   and ijm ijm ijmr u d   for 0D  . Table 2 shows the frequencies of each 2 4  table. 

 

Table 2. Frequencies of the complete data for mX x . 

 1 1T    1 0T    

 2 1T   2 0T    2 1T   2 0T   Total 

1D   11 11m ms d  10 10m ms d   01 01m ms d 00 00m ms d  m ms d  

0D   
11 11

11

m m

m

r u

d




 10 10

10

m m

m

r u

d




  
01 01

01

m m

m

r u

d




 00 00

00

m m

m

r u

d




 m m

m

r u

d




 

Total 11mn  10mn   01mn  00mn  mn  

 

Let the vectors be  1,..., M δ ,       1 11 10 0 ,..., 0M κ , 

      1 11 11 1 ,..., 1M κ ,       2 21 20 0 ,..., 0M κ ,       2 21 21 1 ,..., 1M κ , 

 1,..., Mp pp ,  1 11 1,..., M α  and  0 01 0,..., M α . Then, subject to the MAR 

assumption (3), the log-likelihood function based on n individuals is 

 

        

       
1 1 2 2 1 0

1 1

, 0 1 , 0 1

, 0 , 1 , 0 , 1 , , ,

log log ,
M M

ijm ijm m ijm ijm ijm ijm m ijm
i j m i j m

l

s d r u d   
   



    

δ κ κ κ κ p α α

 (8) 

where 

   11 1 1 1 2 21 1m m m m m m mp      ,    10 1 1 1 2 21 1 1m m m m m m mp         , 

   01 2 2 1 1 11 1 1m m m m m m mp         , 

       00 1 1 2 2 1 1 1 2 21 1 1 1 1m m m m m m m m m m mp                

   11 0 1 1 2 21 0 1 0m m m m m m mp              ,  

   10 1 1 0 0 2 21 0 1 0m m m m m m m mp                , 

   01 2 2 0 0 1 11 0 1 0m m m m m m m mp                 

and 
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        00 1 1 2 2 0 1 1 2 20 0 1 1 0 1 0m m m m m m m m m m mp                     . 

The proof can be seen in Appendix A (Complete data: probabilities) of supplementary 

material. The log-likelihood function is also written as 

 
        

          
1 1 2 2 1 0

1 2 1 1 2 2 1 0

, 0 , 1 , 0 , 1 , , ,

0 , 1 , 0 , 1 , , , ,

l

l l





δ κ κ κ κ p α α

δ κ κ κ κ p α α
 (9) 

where 

    
1

1
, 0 1

log
M

ijm m
i j m

l n 
 

 δ  (10) 

and 

 

        

       
2 1 1 2 2 1 0

1 1

, 0 1 , 0 1

0 , 1 , 0 , 1 , , ,

log log .
M M

ijm ijm ijm ijm ijm ijm ijm
i j m i j m

l

s d r u d 
   



    

κ κ κ κ p α α

 (11) 

The Fisher information matrix of function (9) is 

           1 1 2 2 1 0 1 2, 0 , 1 , 0 , 1 , , , Diag ,I I Iδ κ κ κ κ p α α , (12) 

where  1I I δ  and         2 1 1 2 2 1 0, 0 , 1 , 0 , 1 , , ,I I δ κ κ κ κ p α α  are the Fisher 

information matrixes of functions (10) and (11) respectively, verifying that 

           1 1 1
1 1 2 2 1 0 1 2, 0 , 1 , 0 , 1 , , , Diag ,I I I  δ κ κ κ κ p α α , (13) 

and consequently the covariances between δ  and the rest of parameters 

        1 1 2 2 1 00 , 1 , 0 , 1 , , ,κ κ κ κ p α α  are zero.  

The estimator of m  is easily calculated from the function (10), i.e. ˆ
m mn n  . All 

of the other parameters are going to be estimated from function (11) applying the EM 

algorithm. 

 

3.2. EM algorithm 

The missing information (disease status of the individuals who are not verified with the 

GS) is reconstructed in the E step of the algorithm and in the M step the values of the 
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maximum likelihood estimators are imputed. Let  t
ijmd  be the value of ijmd  in the t-th 

iteration of the EM algorithm and    
1

, 0

t t
m ijm

i j

d d


  . Let 
1

, 0
m ijm

i j

s s


  , 
1

, 0
m ijm

i j

r r


  , 

1

, 0
m ijm

i j

u u


  , ijm ijm ijm ijmn s r u    and 
1

, 0
m ijm

i j

n n


  . The values of the MLEs in the t-th 

iteration are calculated through the following equations: 

   

           
  

1 1 1 1

1 1 0 0 0 0 0 1 1 1
0 0 0 0

1 1

1
0

ˆ 0

h t t t
jm jm jm jm jm jm jm jm jm jm

j j j jt
m

t
m m m jm

j

s d r u d s d r u d

r u d n

    



       
             

       
 

   
 

   


, 

   

           
  

1 1 1 1

1 1 0 0 0 0 0 1 1 1
0 0 0 0

1 1

0
0

ˆ 1

t t t t
jm jm jm jm jm jm jm jm jm jm

j j j jt
m

t
m m jm

j

s d r u d s d r u d

s d n

    



       
             

       
 

  
 

   


, 

   
           

  

1 1 1 1

1 1 0 0 0 0 0 1 1 1
0 0 0 0

2 1

1
0

ˆ 0

t t t t
i m i m i m i m i m i m i m i m i m i m

t i i i i
m

t
m m m i m

i

s d r u d s d r u d

r u d n

    



       
             

       
 

   
 

   


, 

   
           

  

1 1 1 1

1 1 0 0 0 0 0 1 1 1
0 0 0 0

2 1

0
0

ˆ 1

t t t t
i m i m i m i m i m i m i m i m i m i m

t i i i i
m

t
m m i m

i

s d r u d s d r u d

s d n

    



       
             

       
 

  
 

   


, 

 
 

ˆ
t

t m m
m

m

s d
p

n


 ,  

     
     

11 11

1 1 1

1 1 1 1
0 0

ˆ
t t

m m m mt
m

t t
i m i m jm jm

i j

s d s d

s d s d



 

 


        
 

 

and 

 
     

     
11 11 11

0 1 1

1 1 1 1 1 1
0 0

ˆ
t t

m m m m m mt
m

t t
i m i m i m jm jm jm

i j

r u d r u d

r u d r u d



 

   


   
           

 
  

The proof can be seen in Appendix A (EM Algorithm: estimators) of supplementary 

material. The estimators in the  1 -tht   iteration of the algorithm are calculated with 

the same previous equations substituting super index t  with 1t  , where 
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 
 

   
1

ˆ
,   , 0,1  ,  1,...,

ˆ ˆ

t
t ijm

ijm ijm t t
ijm ijm

d u i j m M


 
   


, 

and where  ˆ t
ijm  and  ˆ t

ijm  are the estimators of probabilities ijm  and ijm  in the t-th 

iteration of the algorithm, and are calculated substituting in the expressions of ijm  and 

ijm  the parameters with their respective estimators obtained in the t-th iteration. As an 

initial value  0
ijmd  any value between 0 and ijmu  can be taken, i.e.  00 ijm ijmd u  . The EM 

algorithm stops when the difference between the values of the log-likelihood functions 

of two consecutive iterations is lower than a sufficiently small   value, e.g. 1010   or 

1210  . From the EM algorithm, in the m-th frequency table  mX x  seven 

parameters are estimated:  1 0m ,  1 1m ,  2 0m ,  2 1m , mp , 1m  and 0m . If the 

EM algorithm converged in T iterations, we denote as 

          1 1 2 2 1 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ0 , 1 , 0 , 1 , , ,m m m m m m mm p     θ  the final estimators obtained for 

mX x , with 1,...,m M . As the number of values of the covariate X is M, with the EM 

algorithm 7M  parameters are estimated in total, to which we have to add the estimation 

of the components of the vector δ  ( 1M  , since 
1

1
M

m
m




 ). Therefore, in total 8 1M   

parameters are estimated. 

Once we have obtained  ˆ 0hm  and  ˆ 1hm , with 1,2h   and 1,...,m M , the 

estimators  ˆ 0h  and  ˆ 1h  are calculated from equations (4) and (5), and finally 

 1
ˆ c  and  2

ˆ c  are calculated applying equations (6).  

Then the variances-covariances are estimated by applying the SEM algorithm [20]. 

 

3.3. SEM algorithm 

The estimation of the asymptotic variance-covariance matrix of  ˆ 0hm ,  ˆ 1hm , ˆmp , 

1ˆ m  and 0ˆ m , with 1,2h   and 1,...,m M , can be obtained through the application of 

the SEM algorithm [20]. The SEM algorithm is a computational method which allows us 

to estimate the variance-covariance matrix of a vector of estimators using the 
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calculations made in the application of the EM algorithm. Let ˆ
θ

 be the matrix of 

variances-covariances of  ˆ 0hm ,  ˆ 1hm , ˆmp , 1ˆ m  and 0ˆ m , with 1,2h   and 

1,...,m M , sized 7 7M M . Dempster et al [21] demonstrated that  

   11
ˆ ocI I DM

  
θ

, (14) 

where I is the matrix identity and 1
mis ocDM I I  , and where ocI  is the Fisher information 

matrix of the complete data and misI  is the Fisher information matrix of the missing 

data. The SEM algorithm consists of three phases: 1) the evaluation of the matrix 1
ocI  , 2) 

the evaluation of the matrix DM, and 3) the evaluation of the variance-covariance 

matrix ˆ
θ

. The main objective of the SEM algorithm is to calculate the DM  matrix. 

We then analyse the three phases of this algorithm in the situation studied here.  

The SEM algorithm firstly requires the evaluation of the matrix 1
ocI  . This matrix is 

the inverse matrix of the Fisher information matrix of the complete data, and is 

calculated with the log-likelihood function (9) obtained from the last M tables after the 

application of the EM algorithm described in Section 2.2. If the EM algorithm 

converges in T iterations, then the frequencies of the m-th table are  T
ijm ijms d  for 1D   

and  T
ijm ijm ijmr u d   for 0D  , with 1,...,m M . For the calculation of the Fisher 

information matrix, the parameters are substituted by their corresponding estimations 

obtained in the last iteration of the EM algorithm. 

The second phase of the SEM algorithm consists of calculating the DM matrix. Let 

the vectors be           1 1 2 2 1 00 , 1 , 0 , 1 , , ,m m m m m m mm p     θ  and  ˆ mθ , with 

1,...,m M . Each vector  mθ , sized 7, has as components the parameters in mX x , 

and  ˆ mθ  has as components the final estimators in mX x  obtained by applying the 

EM algorithm. Let the vectors be 

                          1 1 2 2 1 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ0 , 1 , 0 , 1 , , ,t t t t t t t t

m m m m m m mm p     θ , 

with 1,...,m M ,  which has as components the estimations of the parameters for 

mX x  in the t-th iteration of the EM algorithm. Let the vectors be 
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    1 ,..., Mθ θ θ ,     ˆ ˆ ˆ1 ,..., Mθ θ θ  and           ˆ ˆ ˆ1 ,...,t t t Mθ θ θ , 

each one of them sized 7M , obtained by concatenating the M respective vectors  mθ , 

 ˆ mθ  and    ˆ t mθ . The elements of the DM matrix, sized 7 7M M , are obtained by 

applying the following algorithm: 

 

INPUT:     ˆ ˆ ˆ1 ,..., Mθ θ θ  and           ˆ ˆ ˆ1 ,...,t t t Mθ θ θ . 

Step 1. Calculate           1 1 1ˆ ˆ ˆ1 ,...,t t t M  θ θ θ  applying the EM algorithm. 

Step 2. Let the vectors be 

              
              

            

1 1 1 2 2 1 0

2 1 1 2 2 1 0

7 1 1 2 2 1 0

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ0 , 1 , 0 , 1 , , ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ0 , 1 , 0 , 1 , , ,

.

.

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ0 , 1 , 0 , 1 , , , ,

t t
m m m m m m m

t t
m m m m m m m

tt
m m m m m m m

m p

m p

m p

     

     

     







τ

τ

τ

 

with 1,...,m M . Therefore, each vector    ˆ t
i mτ  has as the i-th component the 

estimation of the corresponding parameter obtained in the t-th iteration of the EM 

algorithm, and the rest of the components are the final estimations obtained by 

applying the EM algorithm. Let the vectors be 

                       

                       

                         

1 1 7 7

1 1 7 7

1 1 7 7

ˆ ˆ ˆ ˆˆ ˆ ˆˆ1 1 , 2 ,..., ,..., 1 1 , 2 ,...,

.

.

ˆ ˆ ˆ ˆˆ ˆˆ ˆ1 ,.., ,.., ,..., 1 ,.., ,..,

.

.

ˆ ˆ ˆ ˆˆ ˆˆ ˆ1 ,.., 1 , ,..., 1 ,.., 1 , .

t t tt

t t tt

t t t t

M M

m m M m m M

M M M M M M

 

 

   

υ τ θ θ υ υ θ θ

υ θ τ θ υ θ τ θ

υ θ θ τ υ θ θ τ
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For each vector    ˆ t
i mυ , with 1,...,7i   and 1,...,m M , execute the first iteration of 

the EM algorithm considering    ˆ t
i mυ  to be the initial value of the algorithm, and as 

a result we obtain the vectors    1ˆ t
i mω , with 1,...,7i   and 1,...,m M . 

Step 3. Calculate the elements of the DM matrix as  

    
     
     

1 ˆˆ
,

ˆ, ˆ

0,

t
ij j

t t
ij i i

k l
k l

k l k k

k l



 


 
 

ω θ

υ θ  (15) 

with , 1,...,7i j   and , 1,...,k l M , and where    1ˆ t
ij kω  is the j-th component of 

   1ˆ t
i kω . The proof can be seen in Appendix B of supplementary material.  

OUTPUT:           1 1 1ˆ ˆ ˆ1 ,...,t t t M  θ θ θ  and    ,t
ij k l , with , 1,...,7i j M  and 

, 1,...,k l M . 

 

This algorithm is repeated until  

        1 , ,t t
ij ijk l k l     , (16) 

where     [20]. Therefore, the bigger    (or  ) is, the greater the numerical errors 

of the DM matrix, affecting the estimation of the variance-covariance matrix.  

For each element of the DM matrix, convergence is reached in a number of different 

iterations. Let us suppose that  ,ijT k l  iterations of the previous algorithm are necessary 

to calculate the element  ,ij k l , then it is verified that  

    
     
     

1 ˆˆ
, ,   , 1,...,7,   1,...,

ˆˆ

ij

ij

ij

T
T ij j

ij T

i i

m m
m m i j m M

m m


 
  



ω θ

υ θ
. (17) 

and 

    , 0,   , 1,...,7,   , 1,..., ,   ijT

ij k l i j k l M k l     . (18) 

Therefore, for the same pattern of the covariate X, the elements of the DM matrix are 

calculated from equation (17); whereas the elements of the DM matrix are equal to 0 
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when the ij  elements are calculated between estimators of two different patterns of the 

covariate X (e.g. kX x  and lX x ). This simplifies the expression of the DM matrix. 

For mX x , with 1,...,m M , we define the mDM  matrix (sized 7 7 ) as 

      7 7, RijT

m ijDM m m   , (19) 

i.e., the mDM  is a matrix whose elements are the values given by equation (17) for 

mX x . Then the DM matrix is a diagonal matrix given by 

  1 2Diag , ,..., MDM DM DM DM . (20) 

The proof can be seen in Appendix B of supplementary material.  

Once the DM matrix has been imputed, the third phase of the SEM algorithm consists 

of calculating the asymptotic variance-covariance matrix by applying equation (14). The 

estimated variance-covariance matrix is not normally symmetrical due to the numerical 

errors committed in the calculation of the DM matrix. The assessment of the ˆ̂
θ

 matrix 

is made calculating the matrix   11
ˆ

ˆ
ôcI DM I DM

  
θ

, a matrix which represents the 

increase in the estimated variances-covariances estimated owing to the missing 

information. The smaller the stopping criterion    of the EM algorithm, the more 

symmetrical the matrix ˆ
ˆ

θ
, and therefore the more symmetrical ˆ̂

θ
 will be. 

Therefore, the problem of the asymmetry of ˆ̂
θ

 is solved by decreasing the stopping 

criterion of the EM algorithm [20]. Moreover, the ˆ̂
θ

 matrix may be nearly singular if 

the I DM  matrix is nearly singular. This situation may occur when the convergence 

of the EM algorithm is extremely slow. A discussion of this problem can be seen in the 

manuscript of Meng and Rubin [20]. 

Regarding vector  1,..., M δ , as it is the vector of probabilities of a multinomial 

distribution, its variance-covariance matrix is estimated as 

   1
ˆ 1

ˆ ˆ ˆ ˆ ˆDiag TI n      δ
δ δ δ δ . If the covariate is binary, then 2 11    and 

 ˆ 1 1 2
ˆ ˆ ˆ ˆV̂ar n    

δ
. 
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Once the matrixes ˆ
θ

 and ˆ
δ

are estimated, the variances-covariances of  ˆ 0h  and 

 ˆ 1h , 1,2h  , are estimated by applying the delta method. Let 

        1 1 2 20 , 1 , 0 , 1   κ , taking into account the fact that from equation (13) it is 

verified that    ˆ ˆˆ ˆ,
ˆ ˆ ˆDiag ,   

δ θδ θ
, the estimated variance-covariance matrix of κ̂  is 

 ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
T T

   

                               
κ δ θ

δ δ δ δ θ θ θ θ

κ κ κ κ

δ δ θ θ
. (21) 

Finally, the variance-covariance matrix of       1 2
ˆ ˆ ˆ,c c c κ  is estimated applying 

the delta method again, i.e. 

  
   

ˆˆ

ˆ ˆ

ˆ ˆ
T

c

c c

 

    
         

κκ

κ κ κ κ

κ κ

κ κ
. (22) 

 

4. Simulation experiments 

Monte Carlo simulation experiments were carried out to study the size and the power of 

the hypothesis test    0 1 2:H c c   vs    1 1 2:H c c  . These experiments 

consisted of generating 10,000N   random samples with multinomial distributions 

sized  100,200,...,500,1000,2000n  , whose probabilities were calculated from the 

expressions given in Appendix A (Partial verification: probabilities) of supplementary 

material. It was considered that the covariate X is binary  2M   with patterns 1x  and 

2x , such as for example any family history of the disease (Yes or No), sex, etc., and this 

is a frequent situation in clinical practice. As values for m  we considered 0.25, 0.50 

and 0.75, and for mp  we considered the values 5%, 25% and 50%, which represent a 

sufficient range of values to study the effect that these parameters have on the behaviour 

of the hypothesis test. As values of the weighted kappa coefficients  1 0m ,  1 1m , 

 2 0m  and  2 1m  we took the values  0.1,...,0.9 . From these values, we calculated 

the sensitivities and the specificities of the BDTs in each pattern of the covariate, i.e. 

from the system of equations    0hm hm hm hmSp Q Q    and 

   1hm hm hm hmSe Q Q    it holds that 
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     

   
1 0 1

0 1
m hm m hm hm

hm
m hm m hm

p p
Se

p p

  
 





 (23) 

and 

 
     

   
0 0 1

0 1
m hm m hm hm

hm
m hm m hm

p p
Sp

p p

  
 





, (24) 

with 1,2h   and 1,2m  . Then from the values hmSe  and hmSp  we calculated the 

maximum values of the factors 1m  and 0m . As values of 1m  and 0m  we took low, 

intermediate and high values, i.e.  

 1
1 2

1
,m

m m

f
f

Max Se Se
     

and 

    0
1 2

1
1 , 1m

m m

f
f

Max Sp Sp
   

 
, 

with  0.25,0.50,0.75f  , and then we calculated the covariances applying these 

equations. As weighting indexes for  1 c  and  2 c  we took the values 

 0.1,0.5,0.9c  , and then we calculated the weighted kappa coefficients  1 c  and 

 2 c  applying equations (6), considering for  1 c  and  2 c  only the values 

 0.2,0.4,0.6,0.8 . Therefore, the simulation experiments were designed from the values 

set for the weighted kappa coefficients. Moreover, following the idea of Cicchetti [22], 

we considered weighted kappa coefficients with different levels of clinical significance: 

poor   0.40i c  , fair   0.40 0.59i c  , good   0.60 0.74i c   and 

excellent   0.75 1i c  . As verification probabilities the following scenarios were 

considered: I) 11 10 01 000.50, 0.35, 0.05m m m m       , II) 

11 10 01 000.75, 0.50, 0.15m m m m       , III) 11 10 01 000.95, 0.65, 0.25m m m m      

and IV) 11 10 01 00 1m m m m       . Scenarios I, II and III correspond to situations of 

partial disease verification in which the verification probabilities are low, intermediate 

and high, respectively. Scenario IV corresponds to the case in which all of the 

individuals are verified with the GS and, consequently, it is a situation which can be 
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called complete verification (which is equivalent to a paired design). In this situation, 

the comparison of the two weighted kappa coefficients is made extending the Bloch 

method [7] to the case in which in all of the individuals we can observe a discrete 

covariate. In Appendix C of supplementary material, we give a brief description of this 

method. 

The simulation experiments were designed in such a way that if in a sample it is not 

possible to estimate a parameter (for example if ˆ 0hmSe  ) then that sample is discarded 

and another one is generated in its place until we obtain the N samples. As the nominal 

error we took 5%  . 

 

4.1. Partial Verification 

For scenarios I, II and II, the following conclusions are obtained. 

 

4.1.1 Type I error 

Tables 3 shows some of the results obtained for      1 2 0.2,0.8c c    and for 

different values of the rest of the parameters. The covariances 1m  and 0m  and the 

verification probabilities have an important effect on the type I error of the hypothesis 

test, while the rest of the parameters do not have a clear effect upon it. In general terms, 

for set values of verification probabilities, the increase in the covariances 1m  and 0m  

means a decrease in the type I error, regardless of the sample size. Regarding the 

verification probabilities, in general terms, their increase (for the same values of the 

covariances) means an increase in the type I error, especially when 500n  . The type I 

error of the test does not normally exceed too much the nominal error of 5%, fluctuating 

around especially when 500 1000n   , depending on the covariances and the 

verification probabilities. When the sample size is 500 , the type I error is very small 

and therefore the test is conservative. In general terms, the hypothesis test is a 

conservative test for not very large sample sizes, and has a type I error that fluctuates 

around the nominal error when the sample size is very large, but does not normally 

exceed too much the nominal error and, therefore the hypothesis test does not give too 

many false significances. Therefore, the hypothesis test studied has the classic 
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behaviour of an asymptotic test, its type I error is lower than the nominal error   and 

from a certain sample size onwards it fluctuates around  . 

 

4.1.2. Power 

Table 4 shows some of the results obtained for the power of the hypothesis test for 

different values of all the parameters. As for the type I error, the covariances  and 

 and the verification probabilities have an important effect on the power of the 

hypothesis test, whereas the rest of the parameters do not have a clear effect on the 

power. In general terms, for set values of the verification probabilities, the increase in 

the covariances  and  means an increase in the power of the test for any sample 

size. Regarding the verification probabilities, in general terms, an increase (for the same 

values of the covariances) means an increase in power. In very general terms, when the 

difference between  and  is small (e.g. ) it is necessary 

to have a very large sample size,  depending on the values of the 

covariances and the verification probabilities, so that the power is higher than 80% or 

90%. When the difference between  and  is greater, with a moderate sample 

size,  (depending on the values of the covariances and the verification 

probabilities), we obtain a power higher than 80% or 90%. 

 

 

 

 

 

 

 

 

 

 

1m

0m

1m 0m

 1 c  2 c    1 2 0.2c c  

500 1000n  

 1 c  2 c

200 300n  
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Table 3. Size (in %) of the hypothesis test in the presence of partial verification. 
   

       
       

1 2

1 2 1 2

11 11 21 21

12 12 22 22

0.5 0.5 0.2

0.10 , 0.25 , 0.25 , 0.75

 0 0.2 , 1 0.6 , 0 0.2 , 1 0.6

0 0.1 , 1 0.3 , 0 0.1 , 1 0.3

p p

 
 

   

   

 

   

   

   

 

 
111 011 101 001

112 012 102 002

0.50 , 0.35 , 0.05

0.75 , 0.50 , 0.15

   
   

   

   
 

n 
11 01

12 02

1.11 2

1.13 1.31

 
 

 

 
 11 01

12 02

1.21 3

1.27 1.61

 
 

 

 
 11 01

12 01

1.32 4

1.40 1.92

 
 

 

 
 

100 0.09 0.03 0.01 
200 0.54 0.49 0.19 
300 1.16 1.07 0.51 
400 1.88 1.54 0.88 
500 2.84 2.64 2.34 

1000 4.37 4.15 4.03 
2000 4.85 4.51 4.12 

 
111 011 101 001

112 012 102 002

0.75 , 0.50 , 0.15

0.95 , 0.65 , 0.25

   
   

   

   
 

n 
11 01

12 02

1.11 2

1.13 1.31

 
 

 

 
 11 01

12 02

1.21 3

1.27 1.61

 
 

 

 
 11 01

12 01

1.32 4

1.40 1.92

 
 

 

 
 

100 0.13 0.05 0 
200 0.99 0.78 0.22 
300 1.57 1.34 0.58 
400 2.28 2.01 0.94 
500 2.94 2.76 2.44 

1000 4.01 3.98 3.75 
2000 4.59 4.31 4.18 

   

       
       

1 2

1 2 1 2

11 11 21 21

12 12 22 22

0.9 0.9 0.8

0.10 , 0.50 , 0.50 , 0.50

 0 0.4 , 1 0.9 , 0 0.4 , 1 0.9

 0 0.2 , 1 0.8 , 0 0.2 , 1 0.8

p p

 
 

   

   

 

   

   

   

 

 
111 011 101 001

112 012 102 002

0.50 , 0.35 , 0.05

0.75 , 0.50 , 0.15

   
   

   

   
 

n 
11 01

12 02

1.02 2.83

1.01 1.14

 
 

 

 
 11 01

12 02

1.04 4.67

1.02 1.28

 
 

 

 
 11 01

12 01

1.07 6.5

1.03 1.42

 
 

 

 
 

100 0 0 0 
200 0.14 0.05 0.01 
300 0.33 0.11 0.07 
400 0.57 0.29 0.14 
500 1.62 0.30 1.19 

1000 3.51 3.36 3.12 
2000 4.87 4.52 4.15 

 
111 011 101 001

112 012 102 002

0.75 , 0.50 , 0.15

0.95 , 0.65 , 0.25

   
   

   

   
 

n 
11 01

12 02

1.02 2.83

1.01 1.14

 
 

 

 
 11 01

12 02

1.04 4.67

1.02 1.28

 
 

 

 
 11 01

12 01

1.07 6.5

1.03 1.42

 
 

 

 
 

100 0.01 0 0 
200 0.18 0.07 0.03 
300 0.46 0.17 0.04 
400 0.59 0.32 0.19 
500 1.85 0.50 0.36 

1000 3.88 3.48 3.31 
2000 4.79 4.76 4.27 
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Table 4. Power (in %) of the hypothesis test in the presence of partial verification. 
   

       
       

1 2

1 2 1 2

11 11 21 21

12 12 22 22

0.1 0.6 , 0.1 0.4

0.05 , 0.50 , 0.50 , 0.50

 0 0.8 , 1 0.8 , 0 0.7 , 1 0.7

 0 0.4 , 1 0.4 , 0 0.1 , 1 0.1

p p

 
 

   

   

 

   

   

   

 

 
111 011 101 001

112 012 102 002

0.50 , 0.35 , 0.05

0.75 , 0.50 , 0.15

   
   

   

   
 

n 
11 01

12 02

1.06 17.42

1.11 1.31

 
 

 

 
 11 01

12 02

1.12 33.83

1.21 1.61

 
 

 

 
 11 01

12 01

1.17 50.25

1.32 1.92

 
 

 

 
 

100 1.73 1.81 1.91 
200 13.96 19.42 25.55 
300 33.34 44.09 58.35 
400 51.37 63.41 80.13 
500 66.55 77.31 90.91 

1000 95.42 98.70 99.83 
2000 99.97 100 100 

 
111 011 101 001

112 012 102 002

0.75 , 0.50 , 0.15

0.95 , 0.65 , 0.25

   
   

   

   
 

n 
11 01

12 02

1.06 17.42

1.11 1.31

 
 

 

 
 11 01

12 02

1.12 33.83

1.21 1.61

 
 

 

 
 11 01

12 01

1.17 50.25

1.32 1.92

 
 

 

 
 

100 2.53 2.67 2.64 
200 19.47 26.72 35.84 
300 42.94 53.80 70.98 
400 62.11 74.36 87.73 
500 74.94 86.04 95.70 

1000 98.12 99.43 99.97 
2000 99.98 100 100 

   

       
       

1 2

1 2 1 2

11 11 21 21

12 12 22 22

0.9 0.8 , 0.9 0.6

0.10 , 0.25 , 0.25 , 0.75

 0 0.3 , 1 0.3 , 0 0.4 , 1 0.9

 0 0.7 , 1 0.9 , 0 0.3 , 1 0.6

p p

 
 

   

   

 

   

   

   

 

 
111 011 101 001

112 012 102 002

0.50 , 0.35 , 0.05

0.75 , 0.50 , 0.15

   
   

   

   
 

n 
11 01

12 02

1.02 2.83

1.02 1.64

 
 

 

 
 11 01

12 02

1.04 4.67

1.04 2.29

 
 

 

 
 11 01

12 01

1.07 6.5

1.06 2.93

 
 

 

 
 

100 2.53 2.61 2.72 
200 25.33 26.31 28.44 
300 44.68 49.13 53.92 
400 59.56 64.47 69.85 
500 69.74 74.79 81.07 

1000 92.55 95.56 98.06 
2000 99.71 99.94 99.98 

 
111 011 101 001

112 012 102 002

0.75 , 0.50 , 0.15

0.95 , 0.65 , 0.25

   
   

   

   
 

n 
11 01

12 02

1.02 2.83

1.02 1.64

 
 

 

 
 11 01

12 02

1.04 4.67

1.04 2.29

 
 

 

 
 11 01

12 01

1.07 6.5

1.06 2.93

 
 

 

 
 

100 4.68 4.22 3.84 
200 28.23 30.01 32.80 
300 47.85 51.89 57.03 
400 61.73 66.63 72.66 
500 71.64 77.18 82.88 

1000 94.58 97.02 98.67 
2000 99.94 99.96 99.99 
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4.2. Complete verification 

Table 5 shows some of the results obtained for Scenario IV (complete verification). For 

the same sample size and the same values of the covariances, the type I errors obtained 

subject to complete verification are always greater than those obtained in the presence 

of partial verification, without exceeding the error . Regarding the power 

subject to complete verification, this is always greater than when subject to partial 

verification. Subject to complete it is necessary to have a lower sample size to obtain a 

high power than when subject to partial verification. 

In summary, partial verification involves a decrease both in the type I error and the 

power of the hypothesis test to compare the two weighted kappa coefficients when in all 

of the individuals we observe a binary covariate. 

 

Table 5. Size and power (in %) of the hypothesis test in the presence of complete 
verification. 

   

       
       

1 2

1 2 1 2

11 11 21 21

12 12 22 22

0.5 0.5 0.2

0.10 , 0.25 , 0.25 , 0.75 ,

 0 0.2 , 1 0.6 , 0 0.2 , 1 0.6

0 0.1 , 1 0.3 , 0 0.1 , 1 0.3

p p

 
 

   

   

 

   

   

   

 

n 
11 01

12 02

1.11 2

1.13 1.31

 
 

 

 
 11 01

12 02

1.21 3

1.27 1.61

 
 

 

 
 11 01

12 01

1.32 4

1.40 1.92

 
 

 

 
 

100 0.75 0.49 0.11 
200 2.05 1.66 0.65 
300 3.51 2.55 1.56 
400 4.16 3.12 2.04 
500 3.85 2.36 2.91 
1000 4.06 4.35 3.62 
2000 4.21 4.47 4.95 

   

       
       

1 2

1 2 1 2

11 11 21 21

12 12 22 22

0.9 0.8 , 0.9 0.6

0.10 , 0.25 , 0.50 , 0.50

0 0.3 , 1 0.3 , 0 0.4 , 1 0.9

0 0.7 , 1 0.9 , 0 0.3 , 1 0.6

p p

 
 

   

   

 

   

   

   

 

n 
11 01

12 02

1.02 2.83

1.02 1.64

 
 

 

 
 11 01

12 02

1.04 4.67

1.04 2.29

 
 

 

 
 11 01

12 01

1.07 6.5

1.06 2.93

 
 

 

 
 

100 11.65 15.45 18.61 
200 51.61 62.12 76.93 
300 77.72 85.53 96.31 
400 89.25 95.35 99.64 
500 95.66 98.68 99.90 

1000 100 100 100 
2000 100 100 100 

 

5% 
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5. Example 

The model proposed in Section 3 was applied to the study by Hall et al [14] on the 

diagnosis of the Alzheimer’s disease. Hall et al used two diagnostic tests for the 

diagnosis of the Alzheimer’s disease: a new diagnostic test (NDT) based on a cognitive 

test applied to the patient and another test related to another person who knows the 

patient, and a standard diagnostic test based on a cognitive test (CT). As a GS, they used 

a clinical assessment (a neurological exploration, computerized tomography, neuro-

psychological and laboratory tests,…). As the advanced age ( 75  years) of a patient is 

considered to be a risk factor for the Alzheimer’s disease, the probability of selecting a 

patient for the clinical assessment was based on the results of two diagnostic tests and 

on the age of the patient ( 75  years or 75 ). The study by Hall et al corresponds to a 

two-phase study: in the first phase, two diagnostic tests were applied to all of the 

patients, and in the second phase the clinical assessment (GS) is only applied to a subset 

of patients depending on the results of both diagnostic tests and on the age of the patient 

(covariate). Therefore, it is assumed that the verification process is MAR. Table 6 shows 

the data from the study by Hall et al, where 1T  models the result of the NDT, 2T  that of 

the CT and D  that of the clinical assessment. In the following 1m   refers to patients 

whose age is 75  years and 2m   to the patients whose age is 75  years. 

 

Table 6. Data from the study of Hall et al. 
Age 75  years 

 1 1T    1 0T    

 2 1T   2 0T    2 1T   2 0T   Total 

1V         
1D   31 5  3 1 40 
0D   25 10  19 55 109 

0V   22 6  65 346 429 
Total 78 21  87 402 588 

Age 75  years 

 1 1T    1 0T    

 2 1T   2 0T    2 1T   2 0T   Total 

1V         
1D   7 0  0 0 7 
0D   10 19  6 34 69 

0V   9 11  52 759 831 
Total 26 30  58 793 907 
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In order to illustrate the model proposed in Section 3, it was considered that 0.9c  , 

a situation in which the clinician considers that a false negative is nine times more 

important than a false positive. Applying the EM algorithm taking  0 2ijm ijmd u  and as a 

stopping criterion 1210  , the algorithm converged in 778 iterations. For the patients 

whose age was 75  years 

       11 11 21 21

1 11 01

ˆ ˆ ˆ ˆ0 0.441 , 1 0.669 , 0 0.245 , 1 0.715

ˆ ˆˆ 0.118 , 1.082 , 3.365,p

   
 

   

  
 

and for patients whose age was 75  years 

       12 12 22 22

2 12 02

ˆ ˆ ˆ ˆ0 0.182 , 1 1 , 0 0.117 , 1 1

ˆ ˆˆ 0.012 , 1 , 4.129.p

   
 

   

  
 

From the data in Table 6, 1̂ 0.393   and 2̂ 1 0.393 0.607    . The overall estimated 

prevalence is ˆ 0.054p  . Substituting in equations (4) and (5) each parameter with its 

estimation 

   1 1
ˆ ˆ0 0.359  and  1 0.734   , 

and 

   2 2
ˆ ˆ0 0.223  and  1 0.787   . 

Finally, applying equation (6) 

   1 2
ˆ ˆ0.9 0.665  and  0.9 0.628   . 

Calculating the inverse Fisher information matrix of the complete data (from the last 

2 4  table obtained from the application of the EM algorithm), applying the SEM 

algorithm taking as the stopping criterion 610    and applying equation (21), the 

estimated variance-covariance matrix of         1 1 2 2
ˆ ˆ ˆ ˆ ˆ0 , 1 , 0 , 1   κ  is 

ˆ

0.0020 0.0015 0.0009 0.0005

0.0015 0.0111 0.0006 0.0055ˆ ,
0.0009 0.0007 0.0013 0.0012

0.0005 0.0054 0.0013 0.0096

 
   
 
 
 

κ  
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and applying equation (22), the estimated variance-covariance matrix of 

      1 2
ˆ ˆ ˆ0.9 0.9 , 0.9 κ  is 

 ˆ 0.9

0.0070 0.0023ˆ
0.0022 0.0051

 
   

 
κ . 

Test statistic for the hypothesis test    0 1 2: 0.9 0.9H    vs    1 1 2: 0.9 0.9H    is 

0.43z   and the two-sided p-value is 0.670, then the equality of the two weighted 

kappa coefficients is not rejected when 0.9c  . Therefore, when the clinician considers 

that a false negative is 9 times more important than a false positive  0.9c  , we do not 

reject the equality between the weighted kappa coefficients of the new diagnostic test 

and of the cognitive test in the population studied. 

Table 7 shows some of the results (  ˆ
i c , test statistic and two-sided p-value) when 

comparing the two weighted kappa coefficients for different values of the weighting 

index c. When both diagnostic tests are going to apply as tests previous to a treatment 

involving some risk  0 0.5c  , the weighted kappa coefficient of the NDT is 

significantly higher than that of the CT. The same conclusion is reached when 0.5.c   

When the diagnostic tests are going to apply as screening tests  0.5 1c   and the 

clinician considers that 0.6c   (a false negative is 1.5 times more important than a false 

positive), then the weighted kappa coefficient of the NDT is significantly higher than 

that of the CT. For the rest of the situations, screening tests with  0.7,0.8,0.9c  , the 

equality of the weighted kappa coefficients of the NDT and the CT is not rejected. 

 

Table 7. Results from the example of Hall et al for different values of the weighting 
index c. 

c  1
ˆ c   1

ˆ c  Test statistic Two-sided p-value 

0.1 0.378 0.240 3.28 0.001 
0.2 0.399 0.260 3.13 0.002 
0.3 0.424 0.283 2.94 0.003 
0.4 0.451 0.312 2.70 0.007 
0.5 0.482 0.347 2.40 0.016 
0.6 0.517 0.391 2.05 0.041 
0.7 0.559 0.447 1.62 0.106 
0.8 0.607 0.522 1.09 0.274 
0.9 0.665 0.628 0.43 0.670 
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6. Discussion 

The weighted kappa coefficient is a measure of the beyond chance agreement between 

the BDT and the GS, and is used to assess and compare the effectiveness of BDTs when 

considering the losses of an erroneous classification with the BDTs. In this article, we 

have studied a hypothesis test to compare the weighted kappa coefficients of two BDTs 

when in the presence of partial disease verification a discrete covariate is observed in all 

individuals. The hypothesis test proposed is based on the fact that the verification 

process with the GS only depends on the results of the two BDTs and on the covariate, 

and consequently that the verification process is MAR.  

The solution of the hypothesis test of equality of the two weighted kappa coefficients 

was carried out by applying computational methods: the EM algorithm for the 

calculation of the estimators and the SEM algorithm for the calculation of the variances-

covariances. The EM algorithm is well known and is applied in many problems with 

missing data. Nevertheless, the application of the SEM algorithm is not so frequent, and 

this is a method which is inherent to the EM algorithm as it uses many of its 

calculations. When applying the SEM algorithm to the situation analysed here with a 

discrete covariate, it is demonstrated that the elements of the DM matrix between 

estimators of two different patterns of the covariate are equal to 0, i.e.  , 0ij k l  , 

which leads to expressing the DM matrix as a diagonal matrix, 

 1,..., MDM Diag DM DM , where each mDM  matrix is the DM matrix in mX x . 

This decomposition of the DM matrix simplifies the calculations of the variance-

covariance matrix. 

An alternative method to the SEM algorithm for the estimation of the variance-

covariance matrix consists of applying the Louis method [23]. The Louis method 

requires us to calculate the conditional expectation of the square of the complete-data 

score function and is a method which has been criticized by several authors [20, 24]. 

The advantage of the SEM algorithm is that it is a method which makes use of many of 

the calculations of the EM algorithm.  

Once the model based on the EM and SEM algorithms was proposed, simulation 

experiments were carried out to study the size and the power of the hypothesis test when 

the covariate is binary. The choice of a binary covariate is justified by its practical 

usefulness, since in clinical studies it is frequent to have covariates of this type, such as 
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sex, family history, the presence or absence of a risk factor, etc. The results showed that 

the hypothesis test is a conservative test when the sample size is not excessively large, 

and the type I error fluctuates around the nominal error when the sample size is very 

large. The power of the test depends strongly on the covariances between the BDTs, on 

the verification probabilities and on the difference between the weighted kappa 

coefficients. In very general terms, when the covariances and the verification 

probabilities take low values, it is necessary to have a very large sample size, between 

500 and 1000 depending on the difference between the two weighted kappa coefficients, 

so that the power is higher than 80%. When the covariances and the verification 

probabilities are high, with a sample size between 200 and 500, depending on the 

difference between the two weighted kappa coefficients, we obtain a power higher than 

80%. Therefore, as the proposed hypothesis test is a conservative test with a sample size 

between 100 and 500, it may have a high power  80%  with 200 500n  , and a 

very high power ( 90%  or even close to 100%) with 1000n  , depending on the 

covariances and on the verification probabilities. Furthermore, for the sample sizes 

considered in the simulation experiments, the type I error does not exceed too much the 

nominal error and, therefore, the hypothesis test does not give too many false 

significances.  

The problem of comparison of the weighted kappa coefficients in the situation posed 

here was solved from an unconditional point of view. That is to say, the EM algorithm 

was applied from the likelihood function based on the n individuals in the sample 

(equation (11)). Another way of solving the problem is conditioning in each one of the 

M 3 4  tables (i.e. conditioning in each value of the covariate), and applying again the 

EM and SEM algorithms In this situation, for the m-th 3 4  table  mX x  the 

likelihood function based on mn  individuals is  

        

   

   

1 1 2 2 1 0

1

1 2
, 0

1

1 2
, 0

0 , 1 , 0 , 1 , , ,

log , , 1

log , , 0 .

m m m m m m m

ijm ijm m
i j

ijm ijm ijm m
i j

l p

s d P T i T i D X x

r u d P T i T i D X x

     







       

       





 

For each one of the M 3 4  tables, the EM algorithm is applied from the previous 

function, and then the SEM algorithm is applied in each table, calculating the matrixes 
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1DM ,…, MDM . Then the variance-covariance matrixes are calculated in each one of 

the M tables. Finally, applying the delta method in a similar way to how it is applied at 

the end of Section 3.2, we calculate the variances-covariances of the estimators of the 

overall weighted kappa coefficients of the two BDTs. Both perspectives, unconditioned 

and conditioned, lead to the same solutions. 

Finally, if the verification process depends on more than one discrete covariate, then 

we can consider a single covariate whose number of patterns would be the product of 

the number of patterns of each covariate [25]. For example, if in the study of 

Alzheimer’s disease the probability of verifying with the GS the status of an individual 

conditionally depends on the results of both BDTs and also on sex and age ( 75  years 

or 75 ), then we can consider a single covariate with four patterns (female 75  years, 

female 75  years, male 75  years and male 75  years).  
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Supplementary material of the manuscript: 

 

EM and SEM algorithms to compare the weighted kappa 

coefficients of two diagnostic tests in the presence of partial 

verification and discrete covariates 

 

Appendix A 

1. Partial verification: probabilities 

Let us consider mX x  and the parameters  1 2 1 2 1 0, , , , , , , ,m m m m m m ijm m mSe Se Sp Sp p     

defined in Section 3, then the probabilities of the m-th 3 4  table are: 

 
     

1 2

1 1

1 1 2 2 1 2 1

1, 1, , ,

1 1 1 ,

ijm m

i ji j
m m ijm m m m m ij m m m

f P V D T i T j X x

p Se Se Se Se Se Se   

      

      
 

 
       

1 2

1 1
1 1 2 2 1 2 0

1, 0, , ,

1 1 1 1 1

ijm m

i ji j
m m ijm m m m m ij m m m

g P V D T i T j X x

p Sp Sp Sp Sp Sp Sp   

      

        
 

and 

   1 2

1
0, , , ijm

ijm m ijm ijm
ijm

h P V T i T j X x f g





       , 

with , 0,1i j   and where 1ij   if i j  and 1ij    if i j . It is easy to check that 

 
1

, 0
ijm ijm ijm m

i j

f g h 


   , and therefore it is verified that  
1

, 0 1

1
M

ijm ijm ijm
i j m

f g h
 

   . 

Solving the system of equations    0hm hm hm hmSp Q Q    and 

   1hm hm hm hmSe Q Q    it is obtained that the sensitivity and the specificity of each 

BDT in mX x  are given by equations (23) and (24), i.e. 

     
   

1 0 1

0 1
m hm m hm hm

hm
m hm m hm

p p
Se

p p

  
 





 and 

     
   

0 0 1

0 1
m hm m hm hm

hm
m hm m hm

p p
Sp

p p

  
 





, 
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and substituting the parameters hmSe  and hmSp  in the expressions of the previous 

probabilities  , ,ijm ijm ijmf f h  and performing algebraic operations we obtain the 

probabilities of the multinomial distributions in terms of the weighted kappa 

coefficients  0hm  and  1hm , which are final expressions that have been used to 

generate the random samples in the simulation experiments.  

 

2. Overall weighted kappa coefficients 

For mX x  the sensitivity and specificity of each BDT are defined as 

 1 1,hm h mSe P T D X x     and  0 0,hm h mSp P T D X x    , with 1,2h  . Let 

 m mP X x    and  1m mp P D X x    defined in Section 3. Then the overall 

sensitivity and the overall specificity of each BDT are 1

M

m m hm
m

h

p Se
Se

p





 and 

1

M

m m hm
m

h

p Sp
Sp

p





, where 
1

M

m m
m

p p


  is the overall prevalence and 

1

1
M

m m
m

p p p


   . Substituting the overall sensitivity, the overall specificity and the 

overall prevalence in equations    0h h h hSp Q Q    and    1h h h hSe Q Q   , with 

 1h h hQ pSe p Sp    and 1h hQ Q  , and performing algebraic operations we obtain 

the expressions of  0h  and  1h , in terms of  0hm  and  1hm , given in (4) and 

(5). 

 

3. Complete data: probabilities 

Let us consider that the GS was applied to all of the individuals, then mX x  we obtain 

the 2 4  frequency table given in Table 1 (Complete data). The probability of each one 

of the cells in this table is  1 2, , , 1m m ijmP T i T i X x D        and 

 1 2, , , 0m m ijmP T i T i X x D       , where  1 2, , 1ijm mP T i T i D X x       and 
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 1 2, , 0ijm mP T i T i D X x      . Applying the conditional dependence model of 

Berry et al [19] it holds that 

 
   
     
1 2 1

1 1

1 1 2 2 1 2 1

1, 1,

1 1 1 ,

ijm m m ij m

i ji j
m m m m ij m m m

P T i D X x P T j D X x

Se Se Se Se Se Se

 

 

          

    
 (25) 

and 

 
   

       
1 2 0

1 1
1 1 2 2 1 2 0

0, 0,

1 1 1 1 1 .

ijm m m ij m

i ji j
m m m m ij m m m

P T i D X x P T j D X x

Sp Sp Sp Sp Sp Sp

 

 

          

      
 (26) 

Substituting in these probabilities each sensitivity and specificity with (23) and (24) 

respectively, and performing algebraic operations we obtain the probabilities of the cells 

of the table of the complete data in terms of the weighted kappa coefficients. 

 

4. Algorithm EM: estimators 

Let us consider mX x , the estimators of the sensitivities and specificities in the t-th 

iteration of the EM algorithm are 

 
   

 
11 11 10 10

1
ˆ

t t
t m m m m
m t

m m

s d s d
Se

s d

  



,  

   

 
11 11 01 01

2
ˆ

t t
t m m m m
m t

m m

s d s d
Se

s d

  



, 

 
   

 
01 01 01 00 00 00

1
ˆ

t t
t m m m m m m
m t

m m m

r u d r u d
Sp

r u d

    


 
 

and  

 
   

 
10 10 10 00 00 00

2
ˆ

t t
t m m m m m m
m t

m m m

r u d r u d
Sp

r u d

    


 
, 

and the estimator of the prevalence is     ˆ h h
m m m mp s d n  . Substituting the previous 

expressions in the equations    0hm hm hm hmSp Q Q    and    1hm hm hm hmSe Q Q    

and performing algebraic operations, we obtain the expressions of estimators    ˆ 0t
hm  

and    ˆ 1t
hm  in the t-th iteration of the EM algorithm. 
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Moreover, from equations (25) and (26) it holds that 11 1 1 2m m m mSe Se   and that 

  00 0 1 2 1 21 1 1m m m m m mSp Sp Sp Sp       . In the t-th iteration of the EM 

algorithm, the estimators of these probabilities (which are estimators of multinomial 

proportions) are  

          11 1 1 2 11 11
ˆ ˆ ˆˆt t t t t

m m m m m m mSe Se s d n     

and 

                00 0 1 2 1 2 00 00 00
ˆ ˆ ˆ ˆˆ ˆ 1 1 1t t t t t t t

m m m m m m m m m mSp Sp Sp Sp r u d n          . 

From these two equations, the expressions of  
1

ˆ t
m  and  

0
ˆ t

m  are obtained. 

 

Appendix B 

To simplify the demonstration, let us consider that the covariate X is binary and that it 

takes the values 1X   and 2X  . The extension of the demonstration to a covariate 

with 3M   patterns is analogous considering kX x  and lX x . Let us suppose that 

the initial values of the EM algorithm in each one of these two patterns of the covariate 

are  

                          0 0 0 0 0 0 0 0
11 11 21 21 1 11 01

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ1 0 , 1 , 0 , 1 , , ,p     θ  

and 

                          0 0 0 0 0 0 0 0
12 12 22 22 2 12 02

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ2 0 , 1 , 0 , 1 , , ,p     θ , 

both calculated applying the EM algorithm taking as initial values  0
1 10 ij ijd u   and 

 0
2 20 ij ijd u  , and when the final estimations obtained in T iterations 

          11 11 21 21 1 11 01
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ1 0 , 1 , 0 , 1 , , ,p     θ  

and 

          12 12 22 22 2 12 02
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ2 0 , 1 , 0 , 1 , , ,p     θ . 
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From  ˆ 1θ  and  ˆ 2θ  it is possible to calculate the probabilities of the last 2 4  table 

obtained by applying the EM algorithm, both for 1X   and for 2X  . Let  ˆ T
ijm  and 

 ˆ T
ijm , with 1,2m  , be these probabilities which are calculated substituting in the 

expressions of ijm  and of ijm  each parameter with its final estimator. In these last two 

tables it is verified that  

 
 

   2

ˆ
,   , 0,1,   1,2

ˆ ˆ

T
T ijm

ijm ij T T
ijm ijm

d u i j m


 
   


. 

For 1X   let the vectors be 

              

              

0 0
1 11 11 21 21 1 11 0

0 0
7 11 11 21 21 1 11 01

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ1 0 , 1 , 0 , 1 , , ,

.

.

.

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ1 0 , 1 , 0 , 1 , , , ,

kp

p

     

     





τ

τ

 

and for 2X   

              

              

0 0
1 12 12 22 22 2 12 02

0 0
7 12 12 22 22 2 12 02

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ2 0 , 1 , 0 , 1 , , ,

.

.

.

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ2 0 , 1 , 0 , 1 , , , .

p

p

     

     





τ

τ

 

Let the vectors also be  

                                

                                

0 0 0 0 0 0
1 1 2 2 7 7

0 0 0 0 0 0
1 1 2 2 7 7

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ1 1 , 2 ,  1 1 , 2 ,...,  1 1 , 2

.

.

.

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ2 1 , 2 ,  2 1 , 2 ,...,  2 1 , 2 .

  

  

υ τ θ υ τ θ υ τ θ

υ θ τ υ θ τ υ θ τ

 

The second step of the SEM algorithm consists of applying the first iteration of the EM 

algorithm with each one of the previous vectors. For example, using the vector    0
1

ˆ 1υ  it 

holds that for 1X   
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 
 

   

1
1 1
1 1 1 1

1 1

ˆ
,   , 0,1

ˆ ˆ
ij

ij ij

ij ij

d u i j


 
 


, 

where 

     1
111 11 11 11 11 21 21
ˆ ˆ ˆˆ ˆ ˆˆ 1 1p      ,      1

101 1 11 11 11 21 21
ˆ ˆ ˆˆ ˆ ˆˆ 1 1 1p         , 

     1
011 1 21 21 11 11 11
ˆ ˆ ˆˆ ˆ ˆˆ 1 1 1p         , 

         1
001 1 11 11 21 21 11 11 11 21 21
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ 1 1 1 1 1p                

       1 0
111 1 01 11 11 21 21

ˆˆ ˆ ˆ ˆ ˆ ˆ1 0 1 0p            ,  

       1 0
101 1 11 11 01 01 21 21

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0 1 0p              , 

     1
011 1 21 21 01 01 11 11

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0 1 0p                 

and 

            1 0 0
001 1 11 11 21 21 01 11 11 21 21

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 1 1 1 0p                   , 

with 

   
     

 
   

 
     

0
11 1 1 21 1 1 11 1

11 21 110 0
1 21 1 211 11 1 11 1 11 1 11

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ0 0 1ˆ ˆ ˆ,  ,  ,
ˆˆ ˆˆ ˆˆˆ ˆ ˆ ˆˆ 0 1 ˆ0 1 0 1

mp p p p p p

p pp p p p

  
  

    
  

  
 

 

and 

 
   

1 21 1
21

1 21 1 21

ˆˆˆ 1
ˆ

ˆ ˆ ˆˆ1 1

p p

p p




 





. 

For 2X   we obtain 

 
 

   

1
1 2
2 2 1 1

2 2

ˆ
,   , 0,1

ˆ ˆ
ij

ij ij

ij ij

d u i j


 
 


 

where 

     1
112 2 12 12 12 22 22
ˆ ˆ ˆˆ ˆ ˆˆ 1 1p      ,  

     1
102 1 12 12 12 22 22
ˆ ˆ ˆˆ ˆ ˆˆ 1 1 1p         , 
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     1
012 2 22 22 12 12 12
ˆ ˆ ˆˆ ˆ ˆˆ 1 1 1p         , 

         1
002 2 12 12 22 22 12 12 12 22 22
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ 1 1 1 1 1p               , 

     1
112 2 02 12 12 22 22

ˆˆ ˆ ˆ ˆ ˆ ˆ1 0 1 0p              ,  

     1
102 2 12 12 02 02 22 22

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0 1 0p                , 

     1
012 2 22 22 02 02 12 12

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0 1 0p                 

and 

          1
002 2 12 12 22 22 02 12 12 22 22

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 1 1 0 1 0p                     , 

with 

 
   

 
   

2 2 2 2 2 2
2 2

2 2 2 2 2 2 2 2

ˆ ˆˆ ˆˆ ˆ0 1ˆ ˆ and  ,   0,1
ˆ ˆˆ ˆ ˆ ˆˆ ˆ0 1 0 1

i i
i i

i i i i

p p p p
i

p p p p

 
 

   
 

  
 

. 

For 1X   it is verified that    1
1 1

ˆ ˆ T
ij ij   and that    1

1 1
ˆ ˆ T

ij ij  , since in  1
1îj  and  1

1
ˆ

ij  

   0
11

ˆ 0  intervenes instead of  11
ˆ 0  (which is the value that intervenes in  

1
ˆ T
ij  and in 

 
1

ˆ T
ij ). It is evident that  

 
 

   
 

1
1 1
1 1 11 1

1 1

ˆ
,   , 0,1

ˆ ˆ
Tij

ij ij ij

ij ij

d u d i j


 
  


. 

For 2X   it is verified that    1
2 2

ˆ ˆ T
ij ij   and that    1

2 2
ˆ ˆ T

ij ij  , since in the probabilities 

 1
2îj  and  1

2
ˆ

ij  the only estimators that intervene are the final ones obtained by applying 

the EM algorithm. Consequently, for 2X   it is verified that  

 
 

   

 

   
 

1
1 2 2
2 2 2 21 1

2 2 2 2

ˆ ˆ
,   , 0,1

ˆ ˆˆ ˆ

T
Tij ij

ij ij ij ijT T
ij ij ij ij

d u u d i j
 

   
   

 
, 

and therefore for 2X   the estimators obtained by applying the first iteration of the EM 

algorithm with    0
1

ˆ 1υ  (step 2 of the SEM algorithm) are equal to the final estimators 

obtained by applying the EM algorithm, i.e.      1
12 12

ˆ ˆ0 0  ,      1
12 12

ˆ ˆ1 1  ,

     1
22 22

ˆ ˆ0 0  ,      1
22 22

ˆ ˆ1 1  ,  1
2 2ˆ ˆp p ,  1

12 12
ˆ ˆ   and  1

02 02
ˆ ˆ  . Therefore, by 
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calculating the elements ij  between estimators of the different patterns of the 

covariate, it holds that these elements are equal to 0. In the previous situation for    0
1

ˆ 1υ  

it holds: 

   
     
     

   
     
     

   
 

     

1 1
0 012 12 12 12

18 190 0
11 11 11 11

1
0 02 02

1,14 0
11 11

ˆ ˆ ˆ ˆ0 0 1 1
1,2 0,  1,2 0,...,  

ˆ ˆ ˆ ˆ0 0 0 0

ˆ ˆ
1,2 0,

ˆ ˆ0 0

   
 

   

 
 

 
   

 


 



 

since all the numerators are equal to 0. Repeating the process again, the elements are 

calculated    1
1 1,2j , with 8,...,14j  , and again it is obtained that    1

1 1,2 0j  , and 

the process stops because the difference between the two consecutive iterations is 0 

   . The demonstration is identical to the rest of the vectors    0ˆ 1iυ . For the same 

covariate pattern, the elements ij  are calculated by applying equation (17). 

For a binary covariate, two DM matrixes are obtained: 1DM  and 2DM . 1DM  is the 

matrix between the estimators in 1X   and 2DM  is the matrix between the estimators 

in 2X  . Finally, the DM  matrix is obtained as  

 1 2,DM Diag DM DM , 

since  1,2 0ij   with 1,...,7i   and 8,...,14j  , and  2,1 0ij   with 8,...,14i   and 

1,...,7j  . 

 

Appendix C 

When all of the individuals are verified with the GS and in all of them we observe a 

discrete covariate, the comparison of the two weighted kappa coefficients is solved 

extending the Bloch method [7]. In this situation, for mX x  Table 1 is obtained with 

0ijmu u  . The method to solve the hypothesis test is: 

1). In each pattern of the covariate the Bloch method is applied to estimate the weighted 

kappa coefficients  0hm  and  1hm . The parameters m  and mp  are estimated as 

ˆ
m mn n   and ˆm m mp s n , and 

1

ˆˆ ˆ
M

m m
m

p p


 . 
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2). Calculate  ˆ 0h  and  ˆ 1h  substituting in equations (4) and (5) the parameters with 

their estimators, and then calculate  1
ˆ c  and  2

ˆ c  applying equation (6). 

3). Estimate the variances-covariances inverting the Fisher information matrix of the 

likelihood function of the complete data (equation (13) with 0ijmd  ). 

4). Estimate the variances-covariances of  1
ˆ c  and  2

ˆ c  applying the delta method 

(equations (21) and (22)), and then solve the hypothesis test calculating the test statistic 

(equation (7)). 

 

 

 

 

 


