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ばちひち ちぱふづぬぬはび ぱふづ ち〓ふの づびぴ〓づの づびばづひちのつは ち びづひ のはねぢひちつはび〬 びづつ ばちっどづのぴづび〮 ざはぬぶづひ〓づ〮

ぐはひ ふの ぬちつは〬 ねづ でふびぴちひ〓【ち つちひぬづ ぬちび でひちっどちび ちぬ ぃづのぴひは つづ あどはぬはで〓【ち きはぬづっふぬちひ
こづぶづひは くっとち つづ ぬち さのどぶづひびどつちつ ぁふぴ〓はのはねち つづ きちつひどつ〮 ぅの ばちひぴどっふぬちひ〬 ち ぬはび
どのぴづでひちのぴづび つづぬ がちぢはひちぴはひどは つづ ぉびちぢづぬ ぇふづひひづひは ぱふづ ぴちの ぢどづの ねづ とちの ちっはでどつは
ぴはつちび ぬちび ぶづっづび ぱふづ とづ づびぴちつは ばはひ ちぬぬ〓【〮 きふっとちび でひちっどちび ち ぬち ねどびねち ぉびちぢづぬ〬 ばはひ
びふび っぬちひちび づへばぬどっちっどはのづび づ どのぴづひづびちのぴづび どつづちび〮 す ばはひ びふばふづびぴは〬 づびばづっどちぬ ねづのっど〓はの ち
ぁつひど〓ちの〬 ねど っはねばちまのづひは つづ〮〮〮 ぢふづのは〬 つづ ぢちびぴちのぴづび っはびちび〬 ぬち ぶづひつちつ〮 ぇひちっどちび ばはひ ぴふ
でひちの づびてふづひぺは べ つづつどっちっど〓はの っはの ぬはび づへばづひどねづのぴはび〮 こどの づぬぬはび でひちの ばちひぴづ つづぬ ぴひちぢちなは
つどびっふぴどつは ちぱふ〓【 のは びづ とちぢひ〓【ち ばはつどつは ひづちぬどぺちひ〮 げづっふづひつは づびちび ぬはっちび のはっとづび づの づぬ
ぃあき〬 っどづではび つづ ぴちのぴは ねどひちひ ばはひ づぬ っはのてはっちぬ ち ぶづひ びど ばはつ〓【ちねはび ねづつどひ ぶづび〓【っふぬちび べ
っどぴはのづねちび〮 ごちねぢど〓づの〬 でひちっどちび ばはひ ぬぬづぶちひねづ ばちひち ちひひどぢち べ ちぢちなは づの ぬちび づびっちぬづひちび
つづぬ ぃあき〬 つづびつづ ぬち ばぬちのぴち ね〓ちび ぢちなち とちびぴち ぬち ね〓ちび ちぬぴち〮 ぅび ふの ぢふづの つづばはひぴづ〬 ねど
っはひちぺ〓はの ぴづ ぬは ちでひちつづっづひ〓ち〮 す ちとはひち てふづひち ぢひはねちび〬 ねふっとちび でひちっどちび ばはひ ちっはでづひねづ
ぴちの ぢどづの ちぬぬ〓【〬 ばはひ ひづっはでづひねづ べ ぬぬづぶちひねづ ちぬ ぴひちぢちなは〬 つづ っづのち〬 べ ぴはつは ぬは つづね〓ちび〮
ぃひづは ぱふづ ぱふづ ねどび づびぴちのっどちび ばはひ ちぬぬ〓【 のは ばはつひ〓【ちの とちぢづひ びどつは ねづなはひづび〮 ぁと〬 べ ばはひ
びふばふづびぴは〬 つちぬづ ぬちび でひちっどちび ち ぴふ ねちつひづ ばはひ ばちひどひぴづ づぬ つ〓【ち つづ きぉ っふねばぬづちまのはび〮



ぁふのぱふづ のは び〓づ びど つづぢづひ〓【ち ちぬづでひちひねづ ねふっとは づびは〮〮〮
ずっとスペイン語で書いて恐縮です。お待たせしました。今のチャプタ

ーで、この論文に関係する重要な方々ににお礼を申し上げます。なので、も
ちろん、深谷研究室の皆さんへ感謝を伝えさせていただきたいと思います。
まずは深谷さん、今までありがとうございます。初対面の私に、チャンスを
与えてくださって、そして深谷さんの研究室で働かせてくださり、心から感
謝しています。あの数ヶ月の間にたくさんのことを学びました。将来また一
緒に働けることを願っております。そして、深谷研究室のメンバーの皆さん
にもお礼を伝えたいです。余越さん、困った時に助けてくださり、そしてい
つも応援してくださって、本当にありがとうございました。川崎君、ラーメ
ンを食べてビールを飲みながら、スペイン語と日本語（スペ本語！）で色ん
な話してくれてありがとう。また「えちびぴち ねちまのちのち」を聞かせてね！濱本君、
ゲームや車の話が楽しかったよ。でも今度日本に行けたら話じゃなく、生で
車レーシングを見ましょう！そして、皆のお母さん、すなわち滝下さん、い
つも困った時に助けてくれて本当にありがとうございました。皆さん、あり
がとう。これからもよろしくお願いします。 けふどびどづひち ぴちねぢど〓づの とちっづひ ねづのっど〓はの
ちぬ がちぢはひちぴはひどは つづぬ つはっぴはひ ごづぴびふべち ごちぢちぴち〮 田羽多先生へ。〴年前このぐといを始
めた時に、形態形成について何も知りませんでした。しかし、〲〰〰〴年に先生
が出した「いづぶづぬはばねづのぴ」の記事の読んで、すごく勉強になりました。その
お陰で今この論文をかけるようになったと思います。本当に感謝しておりま
す。ぉけあで田羽多先生と直接話せてとても嬉しかったです。ごちねぢど〓づの ぱふどびどづひち
つちひぬづ ぬちび でひちっどちび ち ぬはび どのぴづでひちのぴづび つづぬ がちぢはひちぴはひどは つづ ごづひふとどひは くにふべちねち〮 奥山
先生、すっごく美味しいお酒や、ビールや、ワインや、あと記憶があんまり
残っていない位楽しい夜に先生と一緒に過ごせて、たのしかったです。本当
にありがとうございました。今度、日本に戻ったらいいスペインのワインを
ご馳走させてください！もちろん、たおさんもね！そして、美禰子さんにも
感謝しています。まさか憧れの歌手に会えるとは思っていなかった。今度私
が日本へ来たときには、一緒にカラオケへ行きましょうね！

ぁ ねどび ちねどではび つづ ぬち うちっふぬぴちつ つづ う〓【びどっち つづ ぬち さのどぶづひびどつちつ つづ こづぶどぬぬち〺 いはっに〬
おふねちへ〬 きどでふづ ごぁぎ〬 きどでふづ〬 ぁぬぢづひぴは べ ぁぬづびびちのつひち〮 ぃはの ぶはびはぴひはび〬 づびぴふつどちひ う〓【びどっち
てふづ ぴはつち ふのち ちぶづのぴふひち〮

ごちねぢど〓づの ぱふどづひは つちひぬづ づびばづっどちぬねづのぴづ ぬちび でひちっどちび ち きちひどち おはび〓づ げふどぺ きはのぴづひは〬
ぱふづ づの ばちぺ つづびっちのびづ〬 びどの づぬぬち づびぴち ぴづびどび のは とちぢひ〓【ち びどつは ばはびどぢぬづ〮

ぁ ぴはつはび ねどび っはねばちまのづひはび つづ どのぴづひっちねぢどは ぱふづ っはのはっ〓【 つふひちのぴづ ぬち っちひひづひち づの
こづぶどぬぬち〺 皆がいなかったら、私は日本語を話せるようにならなかった。でも
まあ、「っはねばちまのづひは つづ どのぴづひっちねぢどは」ってのはアレだけど。だって、私たちは
言語交換の相棒だけじゃないでしょ？みおちゃん、なっちゃん、純基、ソフ
ィア、かな、みやこちゃん、わかなちゃん〺日本の世界を初めて見せてくれて
ありがとう。皆のお陰で日本語を使い始め、「一歩」できた。まさふみ、しお
り、しほこ、ぱいせん、もとむ、なつみちゃん、あやちゃん、修平君、佳菜
葉〺 皆のお陰で日本語をもっと使えて、自由に「歩く」と「走る」ことがで
きた。そして、あずさ、君のお陰で「飛ぶ」ことができた。本当に、心から、
皆ありがとう。

ごちねばはっは ばふづつづ てちぬぴちひ ねづのっどはのちひ ち ねどび ばひはてづびはひちび つづ おちばはの〓づび〬 っはの ぱふどづの
ぴはつは づねばづぺ〓は〺 おきた先生、えりこ先生、ありがとう！

ぇひちっどちび ぴちねぢど〓づの ち ぴはつはび ちぱふづぬぬはび ぱふづ とづ っはのはっどつは つふひちのぴづ ねど ぶどつち づの ぇひちのちつち〮



ぇひちっどちび ち ぃちひはぬどのち 〨かえでちゃんしーた〩〮 この二年間日本語と他にも教えて
くれて、そしてたくさん助けてありがとう 〨これからもよろしくおお願いし
ます！ 〩〮 ぐはひ びふばふづびぴは〬 でひちっどちび ち ぴど ぴちねぢど〓づの こふびちのち 〨すずちゃん〩〬 三人で過
ごした夏は楽しかったね。また三人でどこかで会おう！ごちねぢど〓づの ぱふどづひは つちひ
ふのち づびばづっどちぬ ねづのっど〓はの ちぬ ねづなはひ ぢちひ なちばはの〓づび つづ ぴはつち ぇひちのちつち〺 ぉぺちにちべち かはぢちっとど〮
ぐちひち ちぱふづぬぬはび ぱふづ はび でふびぴづ ぬち っはねどつち なちばはのづびち〬 ぴづのづどび ぱふづ どひ〮 ぇひちっどちび りょう
さん 〨〼びづまのまのははははひひひひひ〡〩。あのぴちばちびや、生ビールや、夜中でいろんな話できて
すっごく楽しかった。グラナダではもう働かないだろうけど、絶対にまた
遊びに行きますね〮 後、みちこさんにもお礼を言わなくちゃ。みちこさんの
お陰で日本酒の真髄を学んで、味わえるようになった。人生が変わったぐら
い！だから、ありがとう。また一緒にいい純米酒や大吟醸酒を飲もう！す ばはひ
びふばふづびぴは〬 ゆいちゃん、あかねちゃん、ゆきちゃん、りさちゃんもありがと！

ぁ ぴはつはび ぬはび つづね〓ちび ぱふづ ばはひ てちぬぴち つづ づびばちっどは は ねづねはひどち のは とづ ばはつどつは っどぴちひ〮
ぇひちっどちび つづ ぶづひつちつ〮

こどづのつは っはのびっどづのぴづ つづ ぱふづ とづ つづなちつは ぬは ね〓ちび どねばはひぴちのぴづ ばちひち づぬ 「のちぬ〬 ぱふどびどづひち
つちひぬづ ぬちび でひちっどちび ち ねど てちねどぬどち〮 こどの づぬぬはび のは とちぢひ〓【ち ぬぬづでちつは ち のどのでふのち ばちひぴづ づの
ぬち ぶどつち〮 きふっとちび でひちっどちび ち ねどび とづひねちのはび〬 〓ふのどっはび づ どひひづづねばぬちぺちぢぬづび〮 ぇひちっどちび ち
おちぶどづひ〬 ばはひ ちでふちのぴちひ ぴはつちび べ っちつち ふのち つづ ねどび ひちひづぺちび つふひちのぴづ ぴちのぴはび ちまのはび〮 こ〓づ
ぱふづ とち びどつは つふひは〬 ばづひは ばはっは ち ばはっは どひ〓づ ねづなはひちのつは〮 きふっとちび でひちっどちび ち おはひでづ〬 ばはひ
びづひ づぬ とづひねちのは ねちべはひ ぱふづ っふちぬぱふどづひち とちぢひ〓【ち つづびづちつは〮 えづ ちばひづのつどつは ねふっと〓【びどねは
つづ ぴど〮 ぁばひはぶづっとは ぴちねぢど〓づの ばちひち つちひぬづ ぬちび でひちっどちび ち あ〓ちひぢちひち〬 ばはひ とちっづひ てづぬどぺ ち ねど
とづひねちのは べ ち ぴはつはび のはびはぴひはび〮 す ばはひ びふばふづびぴは〬 でひちっどちび ち ぃとはには ばはひ びづひ ぬち ぢはねぢどぴち
ね〓ちび ぢはのどぴち つづぬ ふのどぶづひびは〮 ぁふのぱふづ 〓ちのつちぴづ っはの はなは〬 ちとはひち とち ぬぬづでちつは ちぬでふどづの ぱふづ ぴづ
ばふづつづ とちっづひ びはねぢひち〮 ぃはの づぬ ばはっは ぴどづねばは ぱふづ ぬぬづぶち〬 べち びづ ねづひづっづ づびぴちひ づのぴひづ づびぴちび
ば〓ちでどのちび〺 〼でひちっどちび すどぴ〓ちの〡 ぇひちっどちび ち ねど ぁぢふづぬち〬 ぴ〓【はび べ ぴ〓【ちび〬 ばはひ づびぴちひ ちと〓【 つづびつづ
ぱふづ ぴづのでは ふびは つづ ひちぺ〓はの〮 す ばはひ 〓ふぬぴどねは〬 でひちっどちび ち ねどび ばちつひづび〬 ぬはび ぶづひつちつづひはび
ねづひづっづつはひづび つづ づびぴち ぴづびどび〮 こづ ひづぱふどづひづ ねふっとは づびてふづひぺは べ つづぴづひねどのちっど〓はの ばちひち
ばはつづひ でふどちひ べ づつふっちひ っはひひづっぴちねづのぴづ ち ふの とどなは〬 べ ねふっとは ね〓ちび ばちひち とちっづひぬは ぴちの
ぢどづの っはねは ぶはびはぴひはび とちぢ〓づどび とづっとは っはのねどでは〮 いづ のは びづひ ばはひ ぶはびはぴひはび〬 つどひづっぴちねづのぴづ
のどのでふのち つづ づびぴちび ば〓ちでどのちび とちぢひ〓【ちの びどつは ばはびどぢぬづび〮 ぅび ばはひ づぬぬは ぱふづ ぱふどづひは ひづびづひぶちひ
づびぴちび 〓ふぬぴどねちび ぬ〓【のづちび ち つづっどひはび ぬは ぱふづ〬 ばはひ ぶづひでみふづのぺち は びはぢひづづのぴづのつどねどづのぴは〬 ばはっちび
ぶづっづび ねづ とちぢひ〓づどび は〓【つは つづっどひ〮 ざふづびぴひち びづっっど〓はの とち びどつは びどの つふつち ぬち ね〓ちび っはねばぬどっちつち
つづ づびっひどぢどひ〮 す づび ぱふづ とちべ ぴちのぴちび っはびちび ぱふづ ちでひちつづっづひはび ぱふづ ぴちの びはぬは づのふねづひちひぬちび
ねづ ぬぬづぶちひ〓【ち っどづの ぶづっづび ね〓ちび づぬ の〓ふねづひは つづ ば〓ちでどのちび ぴはぴちぬづび ぱふづ ちぢちひっち ぴはつち ぬち
ぴづびどび〮 ぐはひ づびは〬 ぴひちび つちひぬづ ぶふづぬぴちび べ ぶふづぬぴちび ち ぬは ぱふづ ぱふどづひは つづっどひはび〬 っひづは ぱふづ ぬは
ひづびふねどひ〓づ びはぬは づの ぴひづび ばちぬちぢひちび〮 こはの ぴひづび ばちぬちぢひちび ぱふづ つづびづは っはの ぴはつちび ねどび てふづひぺちび
びづ ぱふづつづの でひちぢちつちび ちぱふ〓【 べ づの ぴはつはび ぬはび ぴどづねばはび〬 づの ぴはつはび ぬはび ばはびどぢぬづび ふのどぶづひびはび
ばちひちぬづぬはび〬 べ づの ぴはつはび ぬはび ねはねづのぴはび ぱふづ とづねはび ぶどぶどつは べ ぶどぶどひづねはび なふのぴはび〮 ぐちば〓ち
べ がはぬち 〨ぬは びどづのぴは〬 ばづひは のは ぶちねはび ち っちねぢどちひ ぬちび っはびぴふねぢひづび ちとはひち〩〺 でひちっどちび〮 くび
ぱふどづひは〮

す っはの づびぴは〬 つちねはび ばはひ 「のちぬどぺちつち づびぴち びづっっど〓はの ぴちの ばづひびはのちぬ〮 ぅの ぬはび びどでふどづのぴづび
っちば〓【ぴふぬはび づのぴひちひづねはび づの ねちぴづひどち〬 のは びどの ちのぴづび ぬちのぺちひ ふの 〓ふぬぴどねは ちでひちつづっどねどづのぴは〺

Gracias a ti, mi lector. No sé si sabes dónde te estás metiendo,
pero de todos modos gracias por dedicarme tu preciado tiempo.





Dissertation Summary

This thesis focuses on the development of models applied to di�erent areas
of morphogenesis. These areas refer to di�erent stages of the development
of the living being. For this reason, the models presented must be able of
working at di�erent scales, both spatial and temporal. This gives rise to a
modeling work where, depending on the problem to be dealt with, particular
mathematical tools have to be used for each one. Going into more particular
details, we can summarize the biological scales covered by this thesis into two:
the tissular scale and the molecular scale. On the one hand, the tissular scale
collects global biological events, which occur in a wide area of the developing
tissue. At this scale, the importance of the problem to be modeled resides
not in a sole element, but in a set of elements. Generally it is usually related
with the mathematical concept of macroscopic scale, where it tends to pose
continuous models de�ned by partial derivative equations. A clear example
of these models is the di�usion of proteins (signals) in a tissue. In this type of
problem, the temporal evolution of protein concentrations is modeled using
equations, usually parabolic, such as the di�usion equation. However, in
this thesis we study the signaling problem from a perspective more focused
on the biological elements itself. In this way, although it is still a problem
on a tissular scale, the way to approach it and model it mathematically
will depend basically on the biological machinery behind it: in this case,
the cytonemes. Cytonemes are biological components of which, at the time
of deposit of this document, little is still known both at the biological and
mathematical levels. Applying functional minimization techniques, and in
constant agreement between both biological and numerical experimentation,
the present thesis proposes novel modeling techniques to better analyze these
elements. On the other hand there exists the molecular scale. This focuses on
individual units, with their own functioning, such as the nucleus of cells that
make up a tissue. These, depending on the external information they receive,
behave in one way or another. In turn, the behavior of a cell is encoded
in the genes in its DNA. Therefore, a proper understanding of how gene
transcription (copying) works is a fundamental basis to better understand
the ins and outs of morphogenesis. At this scale, the present thesis tries to
address the problem of gene transcription through thermostatistic modeling.

xiii
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List of articles

During the development of the thesis the following articles have been pub-
lished or submitted:

• Analysis of the transcriptional logic governing di�erential spatial ex-
pression in Hh target genes, in collaboration with Óscar Sánchez, pub-
lished on PLOS ONE (2019),

• Thermodynamic modelling of transcriptional control: a sensitivity anal-
ysis, in collaboration with Óscar Sánchez, submitted to Applied Math-
ematics and Computation (2020),

• Regulation of transcriptional bursting by core promoter elements, in
collaboration with Takashi Fukaya and Moe Yokoshi, submitted to Cell
Reports (2020),

and working on:

• Modeling of morphogen transportation along moving cytonemes in
Droshophila melanogaster, in collaboration with Adrián Aguirre-Tamaral,
Isabel Guerrero and Juan Soler,

• Burst regulation by transcription factors, in collaboration with Takashi
Fukaya.

Thesis contents and methodology

The document presents a total of 4 chapters, structured in 2 parts. Chapter
1 summarizes the biological concepts that will be treated throughout the
thesis. Two parts that collect the main content of the document. Each part
contains chapters structured as follows: an introduction to the problem to
be modeled, deduction and properties of the proposed mathematical model,
and an experimental application to a biological system (Drosophila �y). In
this way, the �rst part is focused on the tissular scale, where Chapter 2
(Cytonemes) is collected. The second part deals with content related to the
molecular scale, in Chapter 3 (Transcriptional Dynamics). Finally, Chapter
4 includes some discussions of possible extensions applicable to the models
presented, as well as future work to be carried out after the thesis submission.
Additionally, an Appendix section has been included, where the reader can
�nd detailed proofs and calculations that have not been introduced in the
main text.



Resumen en castellano

La presente tesis se centra en el desarrollo de modelos aplicados a distin-
tos ámbitos de la morfogénesis. Dichos ámbitos se dan en diferentes etapas
del desarrollo del ser vivo. Por ello, los modelos presentados han de ser
capaces de trabajar en distintas escalas tanto espaciales, como temporales.
Esto da lugar un trabajo de modelado donde, dependiendo del problema a
tratar, se han de utilizar herramientas matemáticas particulares para cada
uno. Entrando en detalle, podemos resumir en dos las escalas biológicas
que tratan la presente tesis: la escala tisular, y la escala molecular. Por un
lado, la escala tisular recoge eventos biológicos globales, que se dan en una
amplia zona del tejido en desarrollo. En esta escala la importancia del pro-
blema a modelar reside no en un elemento en particular del problema, sino
en un conjunto de elementos. Generalmente suele atribuirse con el concepto
matemático de escala macroscópica, donde se tiende a plantear modelos con-
tinuos de�nidos por ecuaciones en derivadas parciales. Un ejemplo claro de
estos modelos es la difusión de proteínas (señales) en un tejido. En este
tipo de problemas se suele modelar la evolución temporal de las concentra-
ciones de proteínas mediante ecuaciones usualmente tipo parabólicas, como
la ecuación del difusión. Sin embargo, en la presente tesis se ha optado por
estudiar el problema de señalización desde una perspectiva más centrada
en el funcionamiento biológico en sí. De esta manera, si bien sigue siendo
un problema a escala tisular, la forma de abordarlo y modelarlo matemáti-
camente dependerá mucho de la maquinaria biológica que hay detrás: en
este caso, los citonemas. Los citonemas son componentes biológicas de las
que, a día de depósito de este documento, aún se conoce poco tanto a nivel
biológico como matemático. Aplicando técnicas de minimización de fun-
cionales, y en constante convenio entre la experimentación tanto biológica
como numérica, la presente tesis propone novedosas técnicas de modelado
para analizar mejor estos elementos. Por otro lado está la escala molecu-
lar. Ésta se centra en unidades individuales, con un funcionamiento propio,
tales como son los núcleos de las células que componen un tejido. Éstas,
dependiendo de la información externa que reciben, se comportan de una
manera u otra. A su vez, el comportamiento de una célula está codi�cado en
los genes que conforman su ADN. Por ello, comprender de forma adecuada
cómo funciona la transcripción (copiado) de genes es una base fundamental

xv
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para poder entender mejor los entresijos de la morfogénesis. En esta escala,
la presente tesis trata da abordar el problema de la transcripción génica
mediante modelados termoestadísticos.

Lista de artículos de la tesis

Durante el desarollo de la tesis se han publicado o sometido los siguientes
artículos:

• Analysis of the transcriptional logic governing di�erential spatial ex-
pression in Hh target genes, en colaboración con Óscar Sánchez, publi-
cado en PLOS ONE (2019),

• Thermodynamic modelling of transcriptional control: a sensitivity anal-
ysis, en colaboración con Óscar Sánchez, sometido a Applied Mathe-
matics and Computation (2020),

• Regulation of transcriptional bursting by core promoter elements, en
colaboración con Takashi Fukaya y Moe Yokoshi, sometido a Cell Re-
ports (2020),

y actualmente se está trabajando en:

• Modeling of morphogen transportation along moving cytonemes in
Droshophila melanogaster, en colaboración con Adrián Aguirre-Tamaral,
Isabel Guerrero y Juan Soler,

• Burst regulation by transcription factors, en colaboración con Takashi
Fukaya.

Organización y metodología del contenido de la tesis

El documento se presenta un total de 4 capítulos, estructurados en 2 partes.
El Capítulo 1 resume los conceptos biológicos que se irán tratando a lo largo
de la tesis. A continuación se presentan las dos partes que recogen el con-
tenido principal del documento. Cada parte contiene capítulos estructurados
de la siguiente manera: una introducción del problema a modelizar, deduc-
ción y propiedades del modelo matemático propuesto, aplicación experimen-
tal a un sistema biológico (mosca Drosophila). De esta manera, la primera
se centra en la escala tisular, donde se recoge el Capítulo 2 (Citonemas). La
segunda parte trata el contenido relacionado con la escala molecular, reco-
giendo el capítulo 3 (Dinámica transcripcional). Por último, el Capítulo 4
recoge algunas discusiones de posibles extensiones aplicables a los modelos
presentados, así como trabajo futuro a realizar tras el depósito de la tesis.
Adicionalmente se ha incluído una sección de Apéndices, donde el lector
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puede encontrar demostraciones y deducciones detalladas de cálculos que no
se han introducido en el texto principal.
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Chapter 1

Biological introduction

Morphogenesis [104] (from the Greek morphê shape and genesis creation), as
its name suggests, is the biological process that causes a cell, tissue or organ-
ism to develop its di�erent parts and tissues. It is one of three fundamental
aspects of developmental biology along with the control of tissue growth and
patterning of cellular di�erentiation. It can also take place in a mature or-
ganism, such as in the normal maintenance of tissue homeostasis by stem
cells, or in regeneration of tissues after damage [76]. Highly abnormal and
pathological tissue Morphogenesis is involved in degenerative diseases, and
cancer [4, 81].

The Morphogenesis has been a long-standing question from 19-th century
beginnings, from both experimental and theoretical point of view. Some of
the earliest ideas and mathematical descriptions on how physical processes
and constraints a�ect biological growth were written by D'Arcy Wentworth
Thompson in his 1917 book `On Growth and Form' [104]. In his work, he
explained animal body shapes as being created by varying rates of growth
in di�erent directions, for instance to create the spiral shell of a snail. Alan
Turing in his work `The Chemical Basis of Morphogenesis' (1952) [108] pre-
dicted a mathematical mechanism that describes Morphogenesis. In his work
he proposes a model of di�usion of two di�erent chemical signals, one acti-
vating and one deactivating biological processes, that predicts theoretically
the formation of developmental patterns (the so called Turing Patterns).
Some decades later, these patterns have been observed experimentally, and
fruitfully, in many relevant works [68, 56].

To examine Morphogenesis in depth, we need a su�ciently �exible (and
visible) biological system that can accommodate a range of experiments. As
the reader can understand, analyzing Morphogenesis involves studying living
beings at various stages of their development. That is, we need to have access
to internal biological variables (levels of protein expression, cell tissue, etc.),

1



2 Chapter 1. Biological introduction

with a resolution and in reasonable laboratory time scales. The Drosophila
�y has been one of the experimental setting par excellence.

1.1 Drosophila

Drosophila [109] is a genus of small �ies, belonging to the Drosophilidae fam-
ily, whose members are often called `fruit �ies'. They are also called vinegar
�ies since many species tend to remain near ripe or rotten fruit. The Dro-
sophila family is made up of about 1500 varieties, among which we have a
particular species: Drosophila melanogaster. With a small number of chro-
mosomes (4 pairs) and a short life cycle (around 2-3 weeks), D. melanogaster
is one of the most widely used species in the �eld of genetics. And it is that,
although it seems implausible, this little �y has a genome with 13,600 genes
that is certainly human-like. It is known that no more and no less than
75% of human disease genes have a version in the D. melanogaster genome,
as well as more than 50% protein sequences that have analogs in mammals
[109]. All this, added to its high reproduction rate, make Drosophila 1 one of
the best working tools for genetic experimentation and the study of Morpho-
genesis. Throughout this thesis, we will work extensively with experimental
data from Drosophila. Therefore, it is necessary to make a brief introduction
to certain basic concepts that de�ne it.

At one hand, Drosophila's body is de�ned in terms of four axes (Fig.
1.1):

• Dorso-Ventral : Axis that goes from the belly (Ventral) to the back
(Dorsal) of the �y.

• Anterior-Posterior : Axis that goes from the front (Anterior) to the
back (Posterior) of the �y.

• Right-Left : Axis that goes from the right view to the left of the �y.

• Proximo-Distal : Axis that goes from the closest part (Proximo) to the
outermost part (Distal) to the �y, in each of its extremities.

On the other hand, the �y exhibits a metamorphic development cycle, similar
to that of butter�ies and other insects (Fig. 1.2). That is, from the laying
and fertilization of the eggs, the �y goes through the stages [31]:

• Embryonic stage: Characterized by 17 cellular stages, and maternal-
provided morphogens such as Dorsal and Bicoid (see de�nition of mor-
phogen in next section).

1From now on we will omit the surname Melanogaster
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Figure 1.1: Drosophila's axes. Image obtained from [92]

• First, Second and Third instar larva stage: Formation of primal struc-
tures, such as the wing and eye imaginal discs. Each of these structures
are also equipped by morphogens, such as Hedgehog.

• Pupa stage: Last stage where the primal structures transition to the
adult form.

• Adult stage: Final stage. 8-10 hours after eclosion, females become
sexually mature and the cycle starts again.

All these stages are governed by dynamical cellular structures, and sig-
naling proteins that orchestrate the process. In the next section we will go
deeper, and de�ne what is the main functionality of these proteins, and their
importance in morphogenetic processes.

1.2 Morphogen signaling

If there were an essential word in Morphogenesis, it would be `signaling'.
However, it must be clari�ed that this word in biology di�ers slightly from
the common term which we are familiar with. In biology, the signals are
usually attributed essentially to how certain proteins are distributed and
con�gure the system. Proteins are chains of aminoacids that occur in nature
in di�erent shapes and structures. Depending on their chemical composition,
they are able to anchor and contact each other. These interactions are called
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Figure 1.2: Drosophila life cycle. The time from egg to adult is temperature
dependent. The above cycle is for a range of 21-23oC . The higher tempera-
ture, the faster generation time, whereas a low (to 18oC) temperature causes
a longer generation time. Image obtained from [24]

protein interactions, and they are the basic information transmission medium
used by nature in developmental biology [22].

In Morphogenesis, there is a type of protein that is called morphogen.
This has a fundamental role to control spatially how di�erent cells of the
system can di�erentiate into others [102]. Cell di�erentiation is the ability
of a cell to perform a speci�c function in the development of the living being.
In the early stages of development, embrionic cells are stem cells that are
undi�erentiated and require some kind of external signal to guide them. This
signal, normally provided externally during the fertilization of the organism,
is the morphogen. First, the morphogen invades a region of cells distributed
in the system (hereinafter, extracellular matrix, ECM). The morphogen in-
vasion results in a protein concentration pro�le called a gradient (do not
confuse with the mathematical concept). The spatial extension and concen-
tration of the gradient along the extracellular matrix play a fundamental
role in the correct di�erentiation of cells. And it is that, depending on the
amount of morphogen, and its exposure time, the cells acquire di�erent ge-
netic fates. This will lead to the segmentation and compartmentalization of
cells of di�erent types, which will be important for the successive stages of
the development of the organism.
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As the morphogen concentration gradient forms, cells can internalize the
protein within their nucleus. Internalization usually takes place through
what is known as transmembrane receptors [102]. These are proteins dis-
tributed through the entire thickness of the plasma membrane of the cell,
and they act as an access bridge from the outside to the inside of the cell.
The structure of these proteins is very speci�c: they are only able to contact
with those proteins that `�t' with them. That is why cells are equipped with
di�erent transmembrane receptors, each of them with the function of captur-
ing speci�c proteins and morphogens from the environment. It is interesting
to note that, until relatively recently, the cell membrane was viewed as a
passive structure. That is, the morphogen was the one that had to reach
the cell to be able to produce the `coupling' with the transmembrane re-
ceptor, to later be internalized by the cellular machinery. However, recent
advances in confocal microscopy have made possible to obtain much more
precise images of how this process occurs. And it is that, contrary to how
it was initially believed, cells are capable of modifying their cell membrane
to capture morphogen [50]. These extensions of the membrane are called
cytonemes, and they have structures that are very reminiscent of neurons.
They are microtubules with an actin backbone, which direct the membrane
towards the morphogen to promote protein-protein contact and promote sig-
naling.

These elements are present in the Morphogenesis of every living being.
In Drosophila [109], for example, we have the Dorsal morphogen (Dl) pro-
vided by the mother during the fertilization process. As its name indicates,
it is the morphogen responsible for the di�erentiation of cells in the Dorso-
Ventral axis during the embryonic phase and is absorbed by Toll receptors.
Other morphogens play their role in other stages of Drosophila's develop-
ment. For example, in the larval stage, there are circular structures that are
called Imaginary Disks. These represent the primordia of cuticular struc-
tures of the adult that will form in the pupa during metamorphosis. They
include wings, legs, antennae, eyes, head, thorax, and genitalia. The cells
allocated in the imaginal discs are called imaginal cells, and although they
are not stem cells, they are not di�erentiated either. That is why the imagi-
nal discs are equipped with morphogens that allow the di�erentiation of cells
for their function in the structure in question. In this thesis, we will work
with Hedgehog (Hh), one of the morphogens present in the imaginal discs of
wings, eyes, and thorax, together with its receptor Patched (Ptc). In addi-
tion to its essential role in developmental biology in Drosophila, the study
of Hh is important since it has a direct counterpart for vertebrate animals:
Sonic Hedgehog2 (Shh). It is present in the formation of structures such as
the hypothalamus in mice or the neural tube in chicken and humans. How-

2Indeed, in honor of the SEGA video game character R©.
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ever, the role of Shh is not only limited to embryonic development. Shh is
related to tumor formation in a signi�cant number of human cancers. These
include oral squamous cell carcinoma (OSCC) [103], present in more than
90% of head and throat tumors, and non-small cell lung carcinoma (NSCLC)
[48], present in lung cancer. And it is that, in cancer, aberrant expression
of Shh has been observed correlated with the extension and spread of the
tumor. For this reason, it is believed that Shh must have some function
related to tumor growth, and it lays the groundwork for possible alternative
anti-cancer therapies to conventional ones [4].

1.3 Genetic transcription

Once the receptors capture the morphogen, it forms a morphogen-receptor
complex that is internalized in the nucleus of the cell. Inside the nucleus is
the DNA, which encodes all the possible functions that the cell can perform.
In this way, the morphogen-receptor complex acts as an activating signal
for di�erent genes (called target genes of the signal), which will give rise
to the expression of other proteins necessary for the successive stages of
the process. The decoding of the information of these target genes is a
process that receives the name of gene transcription. To fully understand
how this process works, we must �rst introduce how a gene is structured
within the DNA chain. For this, it is necessary to remember that DNA
is a chain of 4 nucleotides characterized by its nitrogenous bases: adenine
(A), thymine (T), cytosine (C), and guanine (G). These are paired following
very speci�c complementarity rules, where adenine binds with thymine (A-
T), and guanine with cytosine (G-C), forming what is known as base pairs.
In this way, a double chain of nucleotides (a helix of base pairs) is built,
which gives shape to DNA (see Fig. 1.3). A gene is a segment of DNA. It
is characterized by a sequence of base pairs that encodes the synthesis of a
product (typically a protein). Here we have to make an important remark.
Regarding the gene concept, we are not referring to a speci�c sequence of
pairs. The same gene can be de�ned by di�erent base pairs sequences, called
alleles3. This is important when we de�ne the structure of DNA. Genes
are distributed throughout DNA in separate blocks called chromosomes (see
Fig. 1.3). Most living beings have an even number of chromosomes, which
is known as a Ploidy number. For example, the Drosophila genome is made
up of 4 pairs of chromosomes (i.e., Ploidy number of 2), which hold a total
of approximately 13,600 genes [109], and humans 23 pairs of chromosomes
with approximately 27,000 genes [27]. The reason for this parity is that every
chromosome has a copy (homologous chromosome) that contains versions of

3Please recall the classic example of Mendel and the peas. There the gene for the color
of pea seeds had two alleles (green and yellow).
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Figure 1.3: DNA structural scheme in the cell nucleus. Image adapted from
[117]

the same genes, so that DNA is made up of two copies (alleles) of the same
gene. These alleles come from sexual reproduction, where the female delivers
one of her pairs of chromosomes (and therefore, one of her alleles for each
gene) and the male the other.

Gene transcription is the process by which the base pairs that makeup
genes are copied, and typically ends up producing proteins. DNA is often
compact within the chromosome, coiled up in structures called histones (see
Fig. 1.3). That is why most genes are usually inaccessible and hidden, and
they need the DNA to be opened and copied. This process is controlled by
a protein called RNA polymerase. When DNA is accessible, PolII (a kind of
polymerase) binds to a speci�c region of the gene known as the promoter,
and from there begins to unwind the DNA. The unrolled DNA is copied
base pair by base pair, to form a copy of the gene called messenger RNA
(mRNA). This will travel outside the nucleus, entering the cell's cytoplasm,
while the RNA polymerase disengages from the DNA. The cytoplasm is the
place where the messenger RNA is synthesized into proteins, via what is
called the ribosomes, in other post-transcriptional events. The binding of
the RNA polymerase protein is, therefore, essential to have transcription.
The amount of messenger RNA sent to the cytoplasm depends on the num-
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ber of times the RNAp has copied the DNA. That is, the concentration of
protein synthesized at the end of the process depends strongly on the number
of anchors, per unit of time, that the PolII makes in the gene's promoter.
As we have discussed before, certain protein concentration levels play impor-
tant roles in developmental biology. It is for this reason that there is another
type of protein responsible for regulating the anchoring of RNA polymerase.
These proteins are called Transcription Factors (TFs) [120], and they are
also capable of anchoring to speci�c DNA sites called enhancers [100]. De-
pending on their nature, transcription factors are usually characterized by
two families: those that promote PolII binding (activators), and those that
prevent it (repressors). The speci�c mechanisms that govern these functions
are not fully understood. It is known that the transcription levels of the
protein in question are altered depending on the concentration of activators
or repressors. However, it has not been possible to observe directly how
these proteins interact with RNA polymerase, at the molecular level. There
is a large family of promoters and enhancers that are separated by a large
number of base pairs. This implies that TF-RNAp interactions can occur
over long distances, making the question much more intriguing.

Drosophila has di�erent transcription factors depending on the target
gene of the morphogen. For example, in the embryonic stage, the Dorsal
morphogen acts simultaneously as an activator of more than 50 genes in-
volved in the formation of the dorso-ventral axis. On the other hand, the
stage of the larva Drosophila is controlled by the transcription factor Cubitus
Interruptus (Ci), which appears both in an activating and repressive form
in gene expression such as patched (ptc) and decapentaplegic (dpp). As with
Hedgehog, these transcription factors have their counterparts on vertebrates
and are called Gli proteins. These are also involved in tumor development,
along with the regulatory proteins P53 and Nanog [113].

1.4 A multi-scale problem

In previous sections, we have discussed in a basic way the elements that
make up the problem that we deal with in this thesis. Before going into
more details, it is convenient to stop to re�ect on the scales where these
elements unfold. We have introduced protein as the fundamental element of
information transmission and interaction in developmental biology. An im-
portant part of characterizing any protein molecule is to determine its size
and shape [29]. The interior of protein subunits (aminoacids) and domains
consists of closely packed atoms. As a consequence, all proteins have ap-
proximately the same density, about 1.37g/cm3. This gives a partial speci�c
volume of ν2 = 0.73cm3/g, which can be used to calculate the volume V (in
nm3) occupied by a protein of mass M (in Dalton) as:
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V =
ν2 × 1021nm3/cm3

6.023× 1023Da/g
×M = 1.212× 10−3nm3/Da×M . (1.1)

However, what we really want is a physically intuitive parameter for the
size of the protein. If we assume the protein is packed in a sphere, we can
calculate its radius Rmin:

Rmin =
3

√
3V

4π
= 0.066

3
√
M , (1.2)

for the protein mass M in Dalton and the radius Rmin in nm. For example,
in Drosophila's embryo, we have introduced the morphogen Dorsal and its
receptor Toll. Dorsal has a mass of 111.551 kDa [110], which is a radius of
about 3.17 nm, while Toll has a mass of 124.656 kDa [110] (around 3.30 nm).
The same calculation can be applied to Drosophila's wing imaginal disk.
Hedgehog morphogen has a mass of 52.150 kDa [110], and Patched receptor
of 142.831 kDa [110]. This gives rise to similar sizes, with 2.46 nm for Hh and
3.44 nm for Ptc. It is interesting to see that these scales hold even when we
scale up the system (with a similar radius of 2.40 nm for Shh, of 47.773 kDa
[110], in the case of vertebrates). These numbers mean nothing if we don't
put them in context. To understand a little better what implications these
dimensions have on the scale of the problem, we can do a simple modeling
exercise in the case of the Dorsal morphogen in the Drosophila embryo.
This morphogen is known to spread across the outer surface of the embryo,
occupying approximately 40% of the entire dorso-ventral axis. The surface
of the embryo can be approximated by an ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1 (1.3)

where, taking the Fig. 1.1 as a reference, we can consider x as the anterior-
posterior axis, y the right-left axis, and z the dorso-ventral axis. As in
normal conditions, the anterior-posterior axis is the longest, in this way we
will naturally have a > b and a > c. In biology, the coordinates are also
usually considered so that the point (0, 0, 0) coincides with the most ventral
and centered position. Thus, taking

x̃ = x
ỹ = y
z̃ = z + c

(1.4)

we get the equation of the embryo in the biological coordinates

x̃2

a2
+
ỹ2

b2
+

(z̃ − c)2

c2
= 1 . (1.5)
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Knowing that the Dorsal gradient covers 40% of the entire dorso-ventral
axis (that is, z̃ ∈ [0, 0.8c]) we could calculate the region invaded by the mor-
phogen by integrating ( 1.5). To do the calculation rigorously, we could make
a change of variables to ellipsoidal coordinates, and then integrate on the sur-
face of the ellipsoid in the range we want. However, in this section, we are
more interested in doing a quick calculation, which gives us an approxima-
tion of the magnitudes we are working with. The experimental technique for
these cases is based on reconstructing three-dimensional surfaces, from 2D
projections. Following the experimental line, for each dorsal-ventral plane
z̃ ∈ (0, 2c) we can de�ne an ellipse

~e(θ; z̃) = (A(z̃) cos (θ), B(z̃) sin (θ)) (1.6)

with  A(z̃) = a

√
1− (z̃−c)2

c2
,

B(z̃) = b

√
1− (z̃−c)2

c2
,

(1.7)

and θ the parameterization angle. Note that we have to impose the value on
the poles to ful�ll (1.5), this is

~e(θ; 0) = ~e(θ; 2c) = (0, 0) , (1.8)

so we can reconstruct the embryo's surface by cutting around z̃ ∈ [0, 2c].
The length of the ellipses for each plane is given by the integral

Le(z̃) =

2π∫
0

|~e ′(θ; z̃)|dθ = 4

π∫
π/2

√
A2(z̃) sin2(θ) +B2(z̃) cos2(θ) dθ . (1.9)

Please note that the the eccentricity of all the ellipses that make up the
embryo is the same, that is,

e =

√
1− B2(z̃)

A2(z̃)
=

√
1− b2

a2
. (1.10)

Making use of this property and introducing the change of variable t =
sin (θ + π/2), we can rewrite (1.9) in the form of an elliptic integral

Le(z̃) = 4A(z̃)

1∫
0

√
1− e2t2√
1− t2

dt (1.11)

which solution can be expressed in terms of the hypergeometric Gaussian
function

Le(z̃) = 2πA(z̃) 2F1

(
1

2
,−1

2
; 1; e2

)
. (1.12)
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Integrating once more along z̃ ∈ [0, 0.8c] we obtain the surface that invades
the Dorsal gradient

DlS =

0.8c∫
0

Le(z̃)dz̃ (1.13)

=
πac

2
2F1

(
1

2
,−1

2
; 1; e2

) (
2 arcsin(−0.2) + sin

(
2 arcsin(−0.2)

)
+ π

)
.

A Drosophila embryo has an anterior-posterior axis of approximately a =
500µm, and is relatively symmetric around it with b = c = 90µm. This
would give us an area of approximately DlS = 105µm2. If we were to study
the embryo in the whole 40% of its surface, this magnitude �xes the spatial
scale of the problem. We previously have calculated the approximate radius
of a sphere packing Dorsal (Rmin = 3.17 nm), which gives a projected area
of 31.57 nm2. Supposing that Dorsal occupies homogeneously the embryo
surface, we see that the surface of the 40% of the embryo represents an
average of 3× 109 packed Dorsal proteins4.

This quick calculation allows us to establish the �rst scale of the problem.
If we want to study the morphogen gradient in its entirety, then it makes
sense to treat the gradient as a whole instead of studying its components
separately. On this new scale, proteins clump together in small regions of
space, but collectively their high numbers invade a considerable region of
tissue. This is what we will call throughout the thesis as the tissular scale
of Morphogenesis. In it, we will treat morphogen not as a given number of
proteins, but as a concentration of these. This is what is generally known as
a macroscopic limit of the problem. In biology, this type of approach is not
unusual, where concentration (molar) units are extensively used. If we are
interested in studying the evolution of the morphogenetic signal throughout
the tissue (in this case, the embryo), we can model the Dorsal morphogen
concentration as a continuous substance. This is dispersed over the sur-
face of the embryo so that at each point of this surface we can measure the
concentration that we have in Dorsal. In our model, this would mean that
[Dl] ∈ R+

0 is a function of the position [Dl] = [Dl](~r), for all ~r = (x̃, ỹ, z̃)
de�ned by (1.5). This macroscopic treatment of the problem has its math-
ematical advantages: instead of having an equation for each protein in the
system, we reduce all the information into a single equation that measures
the evolution of the concentration. There are quite examples of mathemati-
cal models applied to morphogenesis using parabolic equations such as Fick
(Heat) equation [68], and Flux-Limited equations [111]. However, we should
keep in mind that the elements that interact with morphogen are the cells

4This is, of course, an idealization. Tissues are formed by other elements, such cells and
other proteins. However, it is interesting to note that even under this naive approximation,
this number is of the order of magnitude that have been tested experimentally [57]
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that populate the ECM. Taking into account that the size of a Drosophila
cell is around 10µm2 [35], we would be talking about an extracellular matrix,
for the embryo, of approximately 1000 cells. If we study the problem at the
scale of a cell, we have lowered the mean number of proteins in Dorsal by
three orders of magnitude. This does not imply that the measurement based
on concentrations stops working, but experimentally important di�erences
concerning the tissue scale are beginning to be observed. These di�erences
reside, fundamentally, in the fact that at the cellular level one can appre-
ciate what is known as protein vesicles. A vesicle is a structure consisting
of liquid or cytoplasm, enclosed by a lipid bilayer. Vesicles are produced
naturally during the processes of secretion (exocytosis), uptake (endocyto-
sis) and transport of materials within the cellular plasma membrane. These
complexes usually are equipped by di�erent concentrations of proteins, which
are transferred from cell to cell. Cytonemes, previously introduced as exten-
sions of the cell membrane, is the medium that cells use to exchange proteins.
In this way, the vesicles can travel inside the cytonemes and be captured by
the receptors that extend along the membrane. For this reason, although
we are not yet treating morphogen as individual proteins, the macroscopic
approach cannot be used so lightly, since the concentration is no longer con-
tinuous. On this scale, morphogen is treated as `protein packages', which we
will denote as the cellular scale (we will go deeper in Chapter 2).

Once the vesicles have been internalized by the cell, we enter the last scale
of the problem: the molecular scale. Here the processes become discrete,
as we begin to deal with interactions that take place in speci�c regions of
DNA where proteins anchor (promoters and enhancers). These regions are
certainly small. Recall that DNA is made up of nucleotide base pairs, each of
them on Armstrong order. This means that a molecular scale is considerably
below the tissular scale. However, as we will see in Chapter 3, we can relate
these two using appropriate modeling hypotheses.



Part I

Tissular scale





Chapter 2

Cytonemes

In previous chapters, we have highlighted the importance of morphogens dur-
ing the development of living organisms. These are distributed throughout
the developing tissue, forming gradients whose concentration levels (among
other elements) decide the correct di�erentiation of cells. As we introduced
in Chapter 1, when we try to scale the problem down into the cellular level,
macroscopic descriptions begin to lose some validity. This is, instead of hav-
ing a continuous gradient in a region of space, at these scales, independent
agglomerations of morphogen (vesicles) can be appreciated. These vesicles
are packets of protein concentration, and are trapped by cells. Once the
morphogen vesicle is internalized, it regulates concentrations of other pro-
teins (transcription factors) and continues with other developmental steps.
In Chapter 1 we already introduced the cytonemes. These are extensions
of the cell membrane that regulate the exchange process of these vesicles.
They are dynamic structures in the shape of nanotubules, equipped with an
actin skeleton capable of elongating, retracting, and adequately orienting the
membrane to ensure the capture of proteins. A direct correlation between
the dynamics of these structures and that of the morphogen gradient has
recently been experimentally veri�ed [12, 121, 15, 16] (see Fig. 2.1). This
has caused the scienti�c community to consider cytonemes as tools that cells
use to interchange information between them. However, how cytonemes ori-
ent themselves in the extracellular matrix is a problem about which little is
known. In this thesis we have tried to give answers to this question, mak-
ing theoretical-experimental approaches that shed some light on this very
interesting problem.

2.1 Cytoneme mediated cellular communication

To carry out the study of cytonemes, we focus our analysis on Hedgehog sig-
naling, in the imaginal disc of Drosophila wing. As we already introduced in
Chapter 1, imaginal discs are structures that contain the primitive geometry,

15
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Figure 2.1: Four frames of time showing cytonemes dynamics. Top panels:
Hh activity gradient shown by expression of the Ptc. Bottom panels: cy-
tonemes. Middle panels: pro�le plots of vertically averaged pixel intensities
for the panels above (green curve) and below (red curve). The blue line
marks the A/P border. Image obtained from [12].

and protein information, necessary for the establishment of di�erent parts
of Drosophila. In particular, the imaginal disc during the formation of the
�y wing is composed of two cellular regions: the anterior and posterior com-
partments. Cells located in the posterior region express the Hedgehog (Hh)
morphogen, which invades the anterior region of the disc from what is called
the A/P border (developed around the 60% of the imaginal disc). There,
cells equipped with Patched (Ptc) receptors capture the Hh vesicles. At the
same time, the gen of Ptc, named ptc, is among the target genes of Hh. This
implies that, while Hh is captured by Ptc proteins, its concentration in the
membrane increases due to its genetic expression, stabilizing the morphogen
gradient between the A/P border and 20% of the anterior region. If we ob-
serve this process at a cellular scale, we can see cytonemes that extend the
membranes from both Hh-producing and receiving cells [12, 16]. These cy-
tonemes grow and invade both Anterior and Posterior regions, sending and
collecting morphogen vesicles.

The question then resides in how cells establish this cytoneme-mediated
communication. In this sense, there are previous studies that have identi�ed
proteins involved in the cytonemes dynamics [50]. On one hand, we have the
transmembrane protein Ihog. This acts as a Hedgehog co-receptor, working
in coordination with Patched, and it is also known to increase the half-
life of cytonemes in overexpression situations [49]. On the other hand, we
have the Heparan sulfate proteoglycans proteins (HSPGs). Among these,
Dally and Dally-Like (Dlp) stand out, which seems to be involved in the
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stabilization of cytonemes [50]. This motivates us to use these proteins as
possible fundamental ingredients to model the cytonemes orientation. We
will use these proteins as a starting point for modeling. Let us de�ne the
quantity

ρ(~r, t) = βIhog

(
[Ihog](~r) + [Ihog]cyt(~r, t)δcyt(~r, t)

)
(2.1)

+ βDlp

(
[Dlp](~r) + [Dlp]cyt(~r, t)δcyt(~r, t)

)

+ βDally

(
[Dally](~r) + [Dally]cyt(~r, t)δcyt(~r, t)

)
,

where

• [X](~r) denotes concentration of protein X at disc position ~r ∈ R2,

• [X]cyt(~r, t)δcyt(~r, t) is the concentration of protein X in a cytoneme
positioned at disc position ~r ∈ R2, at time t, and

• βX is a proportionality constant for the protein X,

for X = {Ihog,Dlp,Dally}. In fact, in collaboration with Isabel Guerrero's
laboratory (Severo Ochoa Molecular Biology Center, Madrid), we have been
able to verify that the distribution of these proteins in the imaginal disc
is correlated with the activation of Hh target genes. In particular, Ihog
concentration shows a signi�cant drop in those regions where Ptc is activated
by Hh uptake, while Dally and Dlp concentrations grow (see Fig. 2.2).

A/P

A/P

A/P

Figure 2.2: Wild-Type (WT) concentrations of Ihog ([Ihog]), Dally-Like
([Dlp]) and Dally ([Dally]). Left: experimental pro�le measured in di�erent
imaginal discs. Right: Disc-averaged mean concentrations in 2D and 1D,
projected in the A/P axis. Image obtained by Isabel Guerrero's laboratory.
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2.1.1 Cytoneme orientation �eld and potential

The next in our cytoneme model development is to check to what extent
ρ(~r, t) is able to control the cytonemes dynamics. For this, altered versions
of the extracellular matrix are usually generated, what are called clones.
Clones are cells in the tissue whose functionality have been genetically mod-
i�ed. In our case, Isabel Guerrero's laboratory generated di�erent clones
with malfunctions in the production of Ihog, Dlp and Dally (Dlp-Dally from
now on), expressing higher levels of these proteins. These higher levels, `over-
expression', are equivalent to twice the protein expression with respect the
Wild-Type concentration of the other cells in the tissue (see scheme in Fig.
2.3). During the collaboration, Isabel Guerrero's laboratory has been able
to show that cytonemes behave di�erently depending on the concentration
levels of the proteins. More speci�cally, their experiments seem to show that

• Cytonemes from cellular regions of overexpression of Ihog and WT-low
levels of Dlp-Dally, orient themselves towards regions of overexpression
of Dlp-Dally and WT-low levels of Ihog.

• Cytonemes from cellular WT-low Dlp-Dally overexpressing Ihog re-
gions deviate from other WT-low Dlp-Dally overexpressing Ihog re-
gions.

• Cytonemes from cellular Dlp-Dally overexpression clones and WT-low
levels of Ihog deviate from other Dlp-Dally overexpression regions and
WT-low levels of Ihog.

See Table 2.1 and Fig. 2.3 for an scheme of these behaviors. The rest of
combinations either lacked of signi�cance, or didn't represent any important
e�ect in the cytonemes orientation. On the other hand, these e�ects were
observed only if the interacting cytonemes where separated a maximum dis-
tance (about 5µm). This seems to indicate that there is a short-range and
dual interaction between the proteins. To model this interaction, we must
�rst specify a relationship between the constants βX in (2.1). On the one
hand, as shown by the WT distribution in the disc, Ihog seems to play an
opposite role to that of Dally and Dlp in the activation of the target genes.
Furthermore, it appears from previous clone experiments that opposite pro-
tein levels give rise to attraction or repulsion e�ects between cytonemes.
This motivates us to impose on our model a condition on the sign of its
corresponding constants:{

sign{βIhog} = −sign{βDlp} ,
sign{βDlp} = sign{βDally} .

(2.2)

In our model we have �xed βIhog > 0 and βDlp , βDally < 0. On the other
hand, experiments seem to indicate that interactions occur over short dis-
tances.
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Figure 2.3: Scheme of an experiment with clones in a Drosophila imaginal
disc. Cells marked in red are clones of Ihog overexpression ([Ihog] ↑). Cells
marked in green are clones of Dlp-Dally overexpression ([Dlp − Dally] ↑).
The Wild-Type concentrations in anterior region close to the A/P border are
high levels of Ihog ([Ihog] ↑) and low levels of Dlp-Dally ([Dlp−Dally] ↓).
The Wild-Type concentrations in posterior region close to the A/P border
are low levels of Ihog ([Ihog] ↓) and high levels of Dlp-Dally ([Dlp−Dally] ↑).
The behavior of citonemes emanating from the clones depends on the balance
between the WT and overexpressed concentrations. I.e.: Ihog clones in the
anterior region will have a balance between the overexpressed levels of Ihog
and the WT high levels of Dlp-Dally (charge 0©); Dlp-Dally clones in the
posterior region will have a balance between the overexpressed levels of Dlp-
Dally and the WT high levels of Ihog (charge 0©); Ihog clones in the posterior
region will have a positive behaviour, due to the overexpressed levels of Ihog
and the WT low levels of Dlp-Dally (charge +©); Dlp-Dally clones in the
anterior region will have a negative behaviour, due to the overexpressed levels
of Dlp-Dally and the WT low levels of Ihog (charge −©). Cytonemes of the
same charge repel each other, and cytonemes of di�erent charges attract each
other. `Nothing' stands for no signi�cant e�ect in the cytonemes orientation.
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[Ihog] ↑ [Ihog] ↑ [Ihog] ↓ [Ihog] ↓
[Dlp−Dally] ↑ [Dlp−Dally] ↓ [Dlp−Dally] ↑ [Dlp−Dally] ↓

[Ihog] ↑ Nothing Nothing Nothing Nothing
[Dlp−Dally] ↑ 0© VS 0© 0© VS +© 0© VS −© 0© VS 0©

[Ihog] ↑ Nothing Repulsion Atraction Nothing
[Dlp−Dally] ↓ +© VS 0© +© VS +© +© VS −© +© VS 0©

[Ihog] ↓ Nothing Atraction Repulsion Nothing
[Dlp−Dally] ↑ −© VS 0© −© VS +© −© VS −© −© VS 0©

[Ihog] ↓ Nothing Nothing Nothing Nothing
[Dlp−Dally] ↓ 0© VS 0© 0© VS +© 0© VS −© 0© VS 0©

Table 2.1: Observations from the clones experiments done in Guerrero's lab-
oratory. Di�erent levels of Ihog, Dlp and Dally lead to di�erent behaviors in
the cytoneme dynamics. Legend: X ↑, X ↓ follow the notation introduced
in Fig. 2.8. Nothing, Atraction and Repulsion are the visible e�ects be-
tween the clones cytonemes. Following our sign convention in (2.2), 0©, +©,
−© stand for null-charge, positive-charge and negative-charge respectively.
x VS y stands for the interaction between regions with charges x and y, for
x, y = { 0©, +©, −© }, in the interaction range of around 5µm.

To model this e�ect, we can de�ne an interaction nucleus with compact
support W (r) �xed at the maximum distance that a cytoneme can interact,
where r is the distance between the cytoneme and ρ(~r, t). In this way we
de�ne the magnitude φ(~r, t) as

φ(~r, t) = (W ∗ ρ)(~r, t) =

∫
~s∈D

W (|~r − ~s |)ρ(~s, t)d~s , (2.3)

being D the domain of the imaginal disc. That is, φ(~r, t) represents an inter-
action potential, which measures all the interactions sensed by a cytoneme
located at position ~r of the extracellular matrix, at time t. Since the interac-
tion kernelW (r) has compact support (remember that this distance is about
5µm, but for simplicity we will leave the notation free), we are truncating
the sensing of ρ to a �nite scope restricted precisely at said maximum inter-
action distance, at each position ~r in D. Following the theory of potential,
given φ(~r, t) we can obtain a vector �eld of interactions

~O(~r, t) = −~∇φ(~r, t) = −
∫

~s∈D

~∇W (|~r − ~s |)ρ(~s, t)d~s . (2.4)

The �eld lines of ~O(~r, t) de�ne the orientation that the cytoneme should take.
Note that in a certain way ~O(~r, t) can also be seen as the force �eld felt by the
cytoneme being in position ~r and at time t . This interpretation bears a direct
similarity to the potentials generated by charges. ~O represents the `force'
that a `point charge, with unit modulus and positive charge' would feel. This
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is a direct consequence of how we have de�ned the constants βX in (2.2). In
this way, Ihog could be seen as a source of a positive �eld, while Dlp-Dally
would play the role of a source of negative charge. It is important to note
that, although proteins are e�ectively de�ned by a net charge, the `charge'
we are talking about in this model does not coincide with the electrostatic
charge of these proteins. The sign that we are attributing to Ihog and Dlp-
Dally only comes from their opposite properties in the orientation e�ect of
cytonemes, and has nothing to do with their electrical properties. On the
other hand,W (r) measures the intensity with which the cytoneme is oriented
towards the regions of maximum variation of ρ(~r, t). Experimentally we have
no indication of how the cytoneme accelerates or decelerates in the ECM. In
fact, it appears that the orientation process is quite linear, with relatively
constant speeds. For this reason, we will model the variation of W (r) by the
function

W ′(r) :=



Kδα0
rα

, r ∈ (0, δ0),

K, r ∈ [δ0, δ1),

K

1 + e
2r−(δ1+δ2)

(δ2−r)(r−δ1)

, r ∈ [δ1, δ2),

0, r ∈ [δ2,∞),

(2.5)

where K is the orientation intensity, α > 0 a parameter that measures the
singular interaction at the origin, and 0 < δ0 < δ1 < δ2 values de�ning
ranges of di�erent cytoneme behaviors:

1. 0 ≤ r < δ0: Collision/Repulsion range. If the cytoneme is close
enough to a source, you will feel a pull towards it (if the charge of
the source is opposite to the e�ective charge of the cytoneme1), or in
the opposite direction (if the source charge is the same as the e�ective
charge carried by the cytoneme).

2. δ0 ≤ r < δ1: Orientation range. At these distances, the cytoneme is
oriented with the �eld at a constant speed.

3. δ1 ≤ r < δ2: Attenuation range. Here the cytoneme feels less and
less the contribution of ρ.

4. δ2 ≤ r: Non-interaction range. Sources in this range will not be
sensed by the cytoneme.

Please note that we are de�ning the variation of W , i.e., W ′(r). As we
will see in the next spteps, we don't need to de�ne W (r), but if we were
about to do it, we would need additionally an initial condition (for instance,
W (δ2) = 0). The region belonging to the collision/repulsion has been added

1Recall that cytonemes also have concentrations of Ihog and Dlp-Dally
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Figure 2.4: Interaction kernel variationW ′(r) for K = 0.01, α = 1
2 , δ0 = 0.5,

δ1 = 4 and δ2 = 5.

in the interaction nucleus in order to reproduce with the model contacts be-
tween opposite cytonemes (which attract each other if they carry opposite
charges), and repulsion between cytonemes of the same type (equal charges).
We want this interaction region to be as intense as possible, and therefore we
have added a singular term proportional to 1/rα. However, if we remember
the de�nition of ρ in (2.1), this singular term would come into play for both
concentrations in cytoneme membranes [X]cyt(~r, t), as concentrations in the
membrane of any cell [X](~r). The latter is a continuous concentration, as we
saw in Fig. 2.2. This would imply that, for every point ~r of the extracellular
matrix, we would always �nd some contribution of ρ that is inside of the
singular range of collision/repulsion. And this is an e�ect that we do not
want in our model since the concentrations [X](~r) are there to orient only
the cytonemes along with the extracellular matrix, and not to stick to it.
Fortunately biology, in this regard, helps us to understand why this does
not happen. Earlier we said that the imaginal disc can be approximated
by a plane. This is essentially true, but the plane certainly has a biological
limit on its thickness. This limit is precisely tied to the size of a cell, which
we introduced in the introductory chapter that occupied an area of 10µm2.
Approaching the cell to a sphere, and assuming that said area is the one
projected in the imaginal disc plane, we then have that the minimum thick-
ness of the plane on which the cytonemes move is about 4µm. A certain
number of cytonemes move through the tangle of cells within this thickness,
but the vast majority of cytonemes tend to interact on the surface of the
plane, where they have greater freedom to make contact. This surface is
what is known as the Basal of the imaginal disc. For this reason, when in
our model we speak of position ~r in the extracellular matrix, we are really
referring to the position in the Basal plane, and not within the disc volume.
Due to this, when we calculate the distance between the cytoneme and the
concentrations [X](~r) given by the cells, we are intrinsically calculating the
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projected distance in the plane. Therefore, we can choose δ0 < 4µm in (2.5)
to always be outside the collision/repulsion region, and thus ensure that for
this region we only consider concentrations [X]cyt(~r, t) on the Basal plane.

2.1.2 Equation of motion of a cytoneme

Once ~O(~r, t) was built, we would have completed most of our goal. That is,
given the experimental concentration of [Ihog], [Dally] and [Dlp] we would
be able to predict the path that a cytoneme should take following the lines
of the �eld ~O(~r, t). However, we have yet to de�ne mathematically how a
cytoneme can follow these �eld lines. To do this, we will model a cytoneme
as a parameterized curve ~γ(ξ, t) equipped by a typical load ρ̄. We consider
that the cytoneme does not elongate, imposing a restriction on ~γ of the kind

|~γ ′(ξ, t)| = 1 , (2.6)

which means that the curve is parameterized by the arc, with ~γ ′ ≡ ∂~γ
∂ξ .

Since cytonemes can grow and retract, the length L(t) of the curve depends
on time. Please, note that we are saying that the cytoneme is not able to
elongate, but it can grow. Speci�cally, this means that we are not allowing
the cytoneme to modify its actual inner structure, i.e., the actual actin �bers
that con�gures it. But it can grow by creating new blocks of actin via
polymerization. We will assume a linear polymerization growth at constant
rate v, such that ∫ L(t)

0
|~γ ′(ξ, t)|dξ = L(t) = L0 + vt , (2.7)

where we have taken into account the constraint (2.6) and L0 is the initial
length of the cytoneme. The sign of v will give us the state of growth or
retraction of the cytoneme, where we will say that

• The cytoneme grows if v > 0,

• The cytoneme retracts if v < 0,

• The cytoneme does not change its length if v = 0.

Please note that v could be time dependent, or even depend on the interac-
tion potential φ. However, due to the lack of experimental evidences in this
work we have considered a constant grow/retraction velocity (i.e., v = cte),
with its corresponding sign. On the other hand, the cytoneme will be in�u-
enced by the ~O �eld generated by (2.3). Since it is equipped with an e�ective
charge ρ̄, we can attribute to it a potential energy as ρ̄φ(~γ, t). We de�ne the
cytoneme Lagrangian as

L(ξ, t, ~γ,~γ ′, ~̇γ) =
1

2
|~̇γ|2 − ρ̄φ(~γ, t) , (2.8)
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with ~̇γ ≡ ∂~γ
∂t . Please note that we have assumed unit mass in the kinetic

energy term to simplify the notation. Once the Lagrangian is obtained, we
will say that the cytoneme will be that curve ~γ(ξ, t) such that it minimizes
the total action S de�ned by L and constrained to (2.6), that is

min S[~γ] =

∫∫
ΩT

L(ξ, t, ~γ,~γ ′, ~̇γ) dt dξ,

s.t. C(~γ ′) = |~γ ′| = 1 ,

(2.9)

for all (ξ, t) within a domain ΩT (Fig. 2.5) such that

ΩT := {(ξ, t) : ξ ∈ [0, L(t)] , t ∈ [0, T ]} . (2.10)

To obtain the equation of motion of the cytoneme we have to impose bound-
ary conditions on the boundary of ΩT . A priori, we can set three conditions
that come directly from the biology of the problem:

~γ(ξ, 0) = ~γ0(ξ) , initial shape of the cytoneme, with initial length L0 ,

~̇γ(ξ, 0) ≡ ∂~γ
∂t (ξ, 0) = ~̇γ0(ξ) ,

~γ(0, t) = ~r0 , base position of the cytoneme .
(2.11)

However, we see that we still need a boundary condition that controls the
evolution of the moving end of the cytoneme. This condition can be seen
in Fig. 2.5, where the boundary delimiting the parameter ξ is variable with
time according to L(t) = L0 + vt. To deduce what the ideal condition for
this boundary should be, we must �rst deduce the Euler-Lagrange equations
attributed to our action functional. However, we have to keep in mind that
we are dealing with a system restricted to (2.6). To solve this problem, we
�rst introduce a new Lagrangian taking constrains into account:

L∗(ξ, t, ~γ,~γ ′, ~̇γ, λ) = L(ξ, t, ~γ,~γ ′, ~̇γ)− 1

2
λ(|~γ ′|2 − 1) . (2.12)

By the method of Lagrange multipliers, we know that the curves ~γ mini-
mizing (2.9) are also minimum of the functional

S∗[~γ] =

∫∫
ΩT

L∗(ξ, t, ~γ,~γ ′, ~̇γ, λ) dt dξ . (2.13)

To derive the Euler-Lagrange equations, we introduce a perturbation of the
curve ~γ of the type

~β(ξ, t) = ~γ(ξ, t) + ε~α(ξ, t) , (2.14)

where ε� 1 and ~α(ξ, t) a generic perturbation. To make ~β compatible with
the boundary conditions (2.11), we will force the perturbation ~α to cancel in

~α(ξ, 0) = ~0 ,

~α(ξ, T ) = ~0 ,

~α(0, t) = ~0 ,

(2.15)
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Figure 2.5: Integration domain for the functional (2.9).

for all (ξ, t) ∈ ΩT . On the other hand, since ~γ is a minimum of S∗, automat-
ically we get that

dS∗

dε
[~β]

∣∣∣∣∣
ε=0

= 0 , (2.16)

which holds if and only if2∫∫
ΩT

(
∂L∗

∂~γ
~α+

∂L∗

∂~γ ′
~α ′ +

∂L∗

∂~̇γ
~̇α

)
dξdt = 0 . (2.17)

Our goal is to leave the integral as a perturbed function ~α. To do this, we
�rst apply integration by parts in the addend with ~α ′∫∫

ΩT

∂L∗

∂~γ ′
~α ′ =

∫ T

0

∂L∗

∂~γ ′
~α(L(t), t)dt−

∫∫
ΩT

d

dξ

∂L∗

∂~γ ′
~αdξdt , (2.18)

where we have taken into account the �rst boundary condition of (2.15).
On the other hand, the term with ~̇α requires a bit more work since the
integration limit at ξ is time dependent. To obtain the dependency with ~α,
we rewrite the term as a function of the total derivative with respect to time∫∫

ΩT

∂L∗

∂~̇γ
~̇αdξdt =

∫∫
ΩT

d

dt

(
∂L∗

∂~̇γ
~α

)
dξdt−

∫∫
ΩT

d

dt

∂L∗

∂~̇γ
~αdξdt , (2.19)

where the �rst term can be written using the fundamental theorem of calculus∫∫
ΩT

d

dt

(
∂L∗

∂~̇γ
~α

)
dξdt =

[∫ L(t)

0

∂L∗

∂~̇γ
~αdξ

]T
0

−
∫ T

0

∂L∗

∂~̇γ
~α(L(t), t)vdt .

(2.20)
2Please note that we are doing the formal deduction of the equations of motion of a

system de�ned by the Lagrangian (2.12). However, it is important to remark that L is
written in terms of ρ, which by (2.1), depends on delta functions on curves (i.e., all the
existing cytonemes). Hence, the equations of motion given by this Lagrangian may need
of a more rigorous study to justify the preceding steps. This falls outside of the scope of
the present tesis.
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The �rst term is null by the boundary conditions (2.15), and in this way the
equation (2.17) is of the form∫∫

ΩT

(
∂L∗

∂~γ
− d

dξ

∂L∗

∂~γ ′
− d

dt

∂L∗

∂~̇γ

)
~αdξdt (2.21)

+

∫ T

0

(
∂L∗

∂~γ ′
− v∂L

∗

∂~̇γ

) ∣∣∣∣∣
ξ=L(t)

~α(L(t), t)dt = 0 .

Since the perturbation is completely generic, the terms of the equation can
be set to zero separately, where

∂L∗

∂~γ
− d

dξ

∂L∗

∂~γ ′
− d

dt

∂L∗

∂~̇γ
= ~0 (2.22)

are the Euler-Lagrange equations and(
∂L∗

∂~γ ′
− v∂L

∗

∂~̇γ

) ∣∣∣∣∣
ξ=L(t)

= ~0 (2.23)

are the transversality conditions, for the boundary problem with free bound-
ary L(t) = L0 +vt. Deriving explicitly using (2.12), we are left with the �nal
system of equations for the evolution of the cytoneme:

~̈γ = −ρ̄~∇φ(~γ, t)− ∂

∂ξ
(λ~γ ′),

~γ(0, t) = ~r0,

~γ(ξ, t) = ~γ0(ξ) y ~̇γ(ξ, 0) = ~̇γ0(ξ),
|~γ ′(ξ, t)| = 1,

~̇γ(L(t), t)v = λ(L(t), t)~γ ′(L(t), t) .

(2.24)

As we can see, the last equation represents the boundary condition at the
tip of the cytoneme, which links growth with constrains via the Lagrange
multiplier λ. On the other hand, the �rst equation would be equivalent to
Newton's second law for the curve ~γ, where the term ∂

∂ξ (λ~γ ′) would represent
the binding force that maintains the constant tension of the cytoneme. Since
the cytoneme is also subject to friction in the extracellular matrix, we can
add a friction term of the type 1

τ ~̇γ, obtaining the �nal system

~̈γ = −ρ̄~∇φ(~γ, t)− ∂

∂ξ
(λ~γ ′)− 1

τ
~̇γ,

~γ(0, t) = ~r0,

~γ(ξ, t) = ~γ0(ξ) y ~̇γ(ξ, 0) = ~̇γ0(ξ),
|~γ ′(ξ, t)| = 1,

~̇γ(L(t), t)v = λ(L(t), t)~γ ′(L(t), t) .

(2.25)

As can be seen, it is di�cult to obtain a solution to this system because
both the multiplier λ(ξ, t) and the curve ~γ(ξ, t) are interrelated. However,
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the transversality condition links the Lagrange multiplier with the growth
speed at the tip of the cytoneme. This gives us the idea that, if we integrate
the �rst equation of the system (2.25) between any position of the curve
and the extreme, we could somehow eliminate the dependency on λ. Indeed,
after integrating and taking into account the boundary condition we arrive
at the integro-di�erential equation

d

dt

∫ L(t)

ξ
~̇γ(ξ′, t)dξ′ = λ(ξ, t)~γ ′(ξ, t)−

∫ L(t)

ξ

(
1

τ
~̇γ(ξ′, t)− ρ̄~∇φ(ξ′, t)

)
dξ′ .

(2.26)
Lastly, the dependency on λ can be completely removed by multiplying on
both sides by the normal vector to the curve at position ξ (ie, ~γ ′⊥(ξ, t)),
resulting (

d

dt

∫ L(t)

ξ
~̇γ(ξ′, t)dξ′

)
~γ ′⊥(ξ, t) (2.27)

= −
∫ L(t)

ξ

(
1

τ
~̇γ(ξ′, t) + ρ̄~∇φ(ξ′, t)

)
~γ ′⊥(ξ, t)dξ′ .

2.1.3 Generalized coordinates of the cytoneme and discretiza-
tion

Our next goal will be to discretize the system (2.27) for its subsequent nu-
merical implementation. The �rst thing we are going to do is to introduce a
change of coordinates that allows us to describe ~γ from the angle formed by
its tangent vector to the curve, that is:

~γ ′(ξ, t) = (cos θ(ξ, t), sin θ(ξ, t)) , (2.28)

where θ(ξ, t) is the tangent indicatrix [93] (i.e., the angle formed by the
tangent vector to ~γ) at position ξ and time t. Note that the binding condition
(2.6) is still maintained. This allows us to rewrite the vector system (2.27)
as the scalar integro-di�erential equation

d

dt

∫ L(t)

ξ

∫ ξ′

0
cos(θ(ξ′′, t)− θ(ξ, t))θ̇(ξ′′, t) dξ′′ dξ′

−
∫ L(t)

ξ

∫ ξ′

0
sin(θ(ξ′′, t)− θ(ξ, t))θ̇(ξ′′, t)θ̇(ξ, t) dξ′′ dξ′

= −1

τ

∫ L(t)

ξ

∫ ξ′

0
cos(θ(ξ′′, t)− θ(ξ, t))θ̇(ξ′′, t) dξ′′ dξ′

− ρ̄
∫ L(t)

ξ

(
(− sin θ(ξ, t))∂xφ(t, ~γ(ξ′, t)) + (cos θ(ξ, t))∂yφ(t, ~γ(ξ′, t))

)
dξ′.

(2.29)
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To solve numerically the equation (2.29), we can discretize the curve ~γ by a
chain of particles (nodes) that occupy positions ~ri(t) ≈ ~γ(ξi, t) where

~ri(t) = ~r0 +
i∑

j=1
lj(t)(cos θj(t), sin θj(t)) , ∀i = 1, . . . , N(t)

ξi(t) =
i∑

j=1
lj(t) , ∀i = 1, . . . , N(t) .

(2.30)

Please note that the number of nodes varies with time to account for the
elongation or retraction of the cytoneme. By adding nodes every time the
separation between the tip and the penultimate node reaches a certain value
l, we achieve that the cytoneme increases or decreases in discrete time inter-
vals

tn =
l

|v|
n , ∀n ∈ Z+

0 . (2.31)

In this way we can describe N(t) and the lengths li(t) for each n and
tn−1 < t < tn according to Table 2.2. That is, all the nodes are sepa-

Elongation dynamics (v > 0)
N(t) = N0 + n

li(t) =

{
l ∀i = 1, . . . , N0 + n− 1

tv − (n− 1)l i = N0 + n

Retraction dynamics (v < 0)
N(t) = N0 − (n− 1)

li(t) =

{
l ∀i = 1, . . . , N0 − n

tv − (n− 1)l i = N0 − (n− 1)

Table 2.2: Law that describes the dynamics of growth and decrease of a
cytoneme (discrete version)

rated by a �xed distance l except the tip, which will grow (or decrease) at
a constant speed v until it reaches the typical length l. Upon reaching this
separation, a new node is created, repeating the process over time. With
this discretization we can approximate the integrals in (2.29) by sums, ap-
proximating the di�erentials by the distances between the nodes de�ned in
(2.2). That is, for each ξi and tn−1 < t < tn we would make the change{

ξ′ ≈ ξj → dξ′ ≈ lj(t) ,∀j = i, . . . , N(t) ,
ξ′′ ≈ ξk → dξ′′ ≈ lk(t) ,∀k = 1, . . . , j ,

(2.32)

changing the integrals (2.29) into their discrete version:

M(~θ(t), t)~̈θ(t)T = −1

τ
M(~θ(t), t)~̇θ(t)T + ~g(~θ(t), ~̇θ(t), t)T , (2.33)

with
~θ(t) = (θ1(t), . . . , θN(t)(t)) ∈ RN(t) , (2.34)
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Figure 2.6: Discretization of ~γ(ξ, t)

M(~θ(t), t) =
(
Mi,j(~θ(t), t)

)
∈MN(t)×N(t)(R) tal que

Mi,j(~θ(t), t) =

 N(t)∑
k=max{i,j}

lk(t)lj(t)

 cos(θi(t)− θj(t)) , (2.35)

and ~g(~θ(t), ~̇θ(t), t) ∈ RN(t) such as

gi(~θ(t), ~̇θ(t), t) = −v
N(t)∑
j=1

lj(t)θ̇j(t) cos(θj(t)− θi(t)) (2.36)

+

N(t)∑
j=i

lj(t)ρ̄
(

sin θi(t)(∂xφ)(~rj(t), t)− cos θi(t)(∂yφ)(~rj(t), t)
)

+

N(t)∑
j=i

lj(t)

j∑
k=1

lk(t)θ̇
2
k(t) sin(θk(t)− θi(t)) . (2.37)

The system (2.33) can be solved �rst by inverting the matrix M with some
numerical method (for the simulations in the next section the L-U decom-
position was used). Once the matrix is inverted, we would have a system
of second order ordinary equations, which can be solved numerically in a
simple way using the Runge-Kutta method (in our case, R-K4).

2.2 Drosophila aplication

In this last section we will test the results that we obtain with the model
against experimental measurements. The numerical simulations have been
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taken �rst in Wild-Type situations, where Isabel Guerrero's laboratory mea-
sured the stationary concentrations of Ihog, Dally and Dally-Like in the
entire volume of di�erent imaginal discs. Each measurement was projected
in the basal plane (Z), in each imaginal disc. Afterwards, the mean concen-
tration of each protein obtained was taken, generating a mean ellipse with
the three concentrations. This ellipse was used as the input in our model,
thus obtaining ρ(~r, t) according to (2.1). Since the concentrations are sta-
tionary, in this simulation the temporal variation of ρ will be zero at all
time instants. However, this measure allows us to calculate the orientation
�eld ~O(~r, t) using (2.4). This would be the �eld that we would obtain in
stationary situations, which we collect in Fig. 2.7. As we can see, we obtain
a region where the �eld is most intense around the A/P border. This coin-
cides with what was expected, and was experimentally measured in previous
works such as [50]. Using this �eld, we have simulated the temporal evolution
(2.33) for cytonemes emitted by six cells, three belonging each compartment.
In the Fig. 2.7 we have collected several frames of this simulation. To check
the extensibility of the model, we have also simulated situations outside the
Wild-Type conditions. For this we have used the clones generated in Isabel
Guerrero's laboratory as data, where there are situations of:

• Cellular regions with Ihog clones, interacting with cellular regions with
clones of Ihog (Fig. 2.8 up).

• Cellular regions with Ihog clones, interacting with cellular regions with
clones of Dally-Dlp (Fig. 2.8 down).

To simulate various cytonemes in these conditions, we �rst removed the
cytonemes we want to simulate from the experimental data (marked in blue
in the Fig. 2.8). In order not to create an arti�cial zero of concentration
in these regions, we have added noise with a mean value of the background
that existed in that region. These new modi�ed data are what we have
used to calculate ρ(~r, t), where depending on the simulation we have taken
zero concentrations that do not show overexpression. This approach makes
sense since overexpressing a protein causes the levels obtained to double the
concentrations under conditions in WT, which makes the others negligible.
Once ρ has been calculated, we have simulated curves ~γ(~r, t) with the base
located in the cytonemes deleted from the experimental data (Fig. 2.8 right).
The results obtained with the model are capable of reproducing the shape of
the erased cytonemes, which shows that the model is capable of performing
well even in biologically arti�cial situations. With this we conclude this
section on cytoneme orientation modeling. In the last chapter of the thesis
we will return to discuss in a little more detail how this model could be
adapted to take into account the transport of morphogens, a work that is
still in progress (see Chapter 4).



2.2. Drosophila aplication 31

t
Figure 2.7: Simulation of the orientation �eld ~O(~r, t) for an imaginal disc
with average Wild-Type concentrations of Ihog, Dally and Dlp. The color
of the arrows indicates the intensity of the �eld, blue being the least intense
and red being the most intense. The gray curve that cuts the disc in half
marks the A/P boundary. At the bottom, 6 possible cells are shown emitting
cytonemes that are oriented according to the calculated �eld, in di�erent
instants of time. Simulation parameters can be seen in Table B.1 in Appendix
B.
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Figure 2.8: Simulation of cytonemes under overexpression conditions. Red
and gray colors depicts Ihog overexpression clones, and in green Dlp-Dally
overexpression clones. The images on the left correspond to the experi-
mental image, while the images on the right show the reconstruction of the
cytonemes marked in blue. Simulation parameters can be seen in Table B.1
in Appendix B.
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Chapter 3

Transcription dynamics

In previous chapters we have been studying the morphogenesis focusing on
the signaling part. The morphogen, after being absorbed by the receptor
cells, triggers complex signalling pathways that provoke cell responses [14,
65, 52, 72]. These responses are regulated by the transcription of di�erent
target genes of the morphogen signal, and typically ends up with the syn-
thesis of protein which shape and function is encoded in the gen [72]. As
we introduced in chapter 1, gene regulation is a complex process that fol-
lows several consecutive steps. The RNA polymerase (PolII) binds to DNA
promoters, and its activity is directly activated or repressed by the transcrip-
tion factors (TFs) that binds DNA enhancers [14, 72]. The transcription is
hence controlled by the relative concentration of these proteins, the natural
tendency of the proteins to bind the DNA (commonly referred as a�nity),
and the cleavage rules that drive their binding process. The cleavage rules
in themselves are compounded, where the binding can involve competition
for the same DNA binding sites, or assistance of other already bound ele-
ments (cooperativity) [85, 22, 9, 10]. Transcriptional control results in the
gene (protein) production rates being controlled by the bound transcription
factors which in turn use several biochemical mechanisms [88, 89, 87].

The numerous variables mentioned above makes di�cult the understand-
ing of the biochemical mechanisms that are really involved in a speci�c sys-
tem. For this reason, experimental discussions in literature are frequently
supported by theoretical models in order to decipher how these mechanisms
interact [83, 62]. The modelling of transcriptional processes has been tack-
led from di�erent mathematical perspectives [7, 61, 43, 20, 32], such as
Bayesian [37, 36, 75, 28, 78] and Boolean [114], among others. In this work
we will focus on models based on the statistical thermodynamic equilibrium
approach [1, 97, 11, 17, 21]. The statistical thermodynamic approach, in-
troduced in the pioneering works of Ackers�Shea and coworkers [1, 97], is
also known as the BEWARE method (Binding Equilibrium Weighted Av-
erage Rate Expression) because transcription, and thus expression, is con-

35
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sidered to be proportional to the probability of transcript initiation [47].
This modelling considers transcript initiation an average of all the possible
micro-states where the system (proteins/binding sites) can be present. The
micro-states are characterised by the equilibrium binding con�gurations.

As already mentioned in [96] the thermodynamic models follow one of
two di�erent biological control processes: �recruitment� or the �stimulated
transcription� [89, 87, 67]. The use of one or the other will establish the
role of the transcription factors in the PolII functionality later in the mod-
elling. In the recruitment approach, all the con�gurations with a bound
PolII have the same transcriptional e�ciency, but the TFs control the PolII
recruitment by TFs-PolII cooperative/anti-cooperative interactions. That is,
the TFs are able to alter the PolII a�nity for the promoter both positively
(activators) and negatively (repressors) [11, 30, 54]. Alternatively, in the
stimulated transcription approach, the PolII binding a�nity is assumed to
be �xed but the translational strength of any con�guration is modulated in
terms of the bound activators/inhibitors [62, 63, 69]. Although recruitment
is considered to be the main way of controlling gene transcription by Ci/Gli
factors [81, 79], Hh/Shh pathways have been modelled in recent publica-
tions either using the recruitment [83, 18, 46, 45, 8, 71, 123] or the stimu-
lated [62, 69, 94, 111] approaches. See [98] for a comprehensive introduction
to these kinds of modelling and [7, 96, 95, 34] and references therein for a
review of case-study scenarios implemented in di�erent areas. As we will see
in next chapters, results obtained from di�erent models are really sensitive
to the modeling choice. Moreover, it is important to note that the averaging
procedure performed in the thermodynamic methodology reveals one of its
main drawbacks: the complexity of the deduced mathematical expressions
when the model takes into consideration the wide variety of biochemical
mechanisms involved in the original process: competition of multiple ligands
for multiple binding sites [51], a�nities, roles played by each ligand, signal
strength and cooperativity [99, 101, 26], among others). The large number of
micro-states produce entangled mathematical expressions, so the only way
to extract valid information from the models is to go through a multiple-
parameter non-trivial calibration process [7, 122]. In this thesis we propose
an alternative use of this kind of model based on experimental results to
understand the e�ect of the transcriptional control exerted by an enhancer,
and how to use this information to connect with the tissular scale.

3.1 Thermo-statistical Modeling: BEWARE

In this section we will �rst deduce brand-new expressions of the BEWARE
operator. We will work in a general framework, where we will assume that
the gen expression is controlled by a number of M cooperative transcription
factors. In the literature, both competition and cooperativity have been
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determinant factors that tend to convolute greatly the mathematical expres-
sions, even in the most simple case of two transcription factors. Hence, in
order to get to the right expression of the BEWARE operator, we �rst need
to declare brie�y which are the model assumptions and, from there, how the
competition and cooperativity are de�ned. Let us consider a promoter of a
gene p controlled transcriptionally by the TFs T = {T1, ..., TM} by binding
competitively to an enhancer with n binding sites. Let us mention that the
transcription can be controlled by more than one enhancer. In this section
we will deduce the model considering the transcription contribution of only
one enhancer, but keep in mind that these expression can be generalized to
any number of enhancers, with any number of binding sites.

We consider that some of the TFs will increase the production rates
of the protein P (activators) while the rest try to repress the same rates
(repressors). Thus T is divided in two di�erent families, Ma activators TA =
{T1, ..., TMa} and Mr = M − Ma repressors TR = {TMa+1, ..., TM} such
that T = {TA, TR}. The goal of the statistical thermodynamic model is to
describe the synthesis rate of P in terms of the TFs concentrations and their
activator/repressor rol, that is,

d[P ]

dt
= BEWARE([T1], ..., [TM ]) (3.1)

where �BEWARE()� is the function specifying the dependence on the TFs,
and is subjected to the biochemical mechanisms involved in all these pro-
cesses. Our aim in this section is to show a methodology for deriving explicit
simple analytical expressions for the BEWARE operator by using thermody-
namic modelling. Although it is out of the main goals of this chapter, let us
remark that the right hand side of model (3.1) is usually accompanied by a
degradation contribution, −β[P ], being β a degradation rate [90]. As men-
tioned in the introductory section, here we will distinguish between models
based on either recruitment or stimulated mechanisms. In order to clarify
the di�erence between these two models, we enumerate in next paragraphs
the main assumptions that are used in their development. We also outline in
Fig. 3.1 the biochemical mechanisms, which are mainly related with a�nity,
cooperativity or the manner in which TFs control transcriptional activity.

3.1.1 Thermodynamic description: assumptions

H1) Separated time scales: The reactions driving transcriptional control
are much more faster than the changes in TFs concentrations and the
synthesis of the protein P. Thus, TFs/PolII binding in enhancers/pro-
moter will be considered in thermodynamical equilibrium given by the
Law of Mass Action [86]. For instance, in chick embryo neural tube
Shh signalling, it has been pointed out that changes in Gli protein
concentrations take place at a timescale of days compared to mRNA
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variations in timescales of minutes or hours [62, 90].
The binding of a TF Ti to one of the n free binding sites, B, can be
interpreted as the chemical reaction

Ti +B
k

(1)
+i−−⇀↽−−
k

(1)
−i

BTi,

where the Law of Mass Action establishes that the complex BTi has
concentration at equilibrium given by

[BTi] =
k

(1)
+i

k
(1)
−i

[Ti][B] :=
[Ti]

K
(1)
i

[B] .

In the notation proposed K(1)
i = k

(1)
−i /k

(1)
+i is the dissociation constant

of the reaction, with units of concentration so that the quotient [Ti]

K
(1)
i

is

dimensionless. The superscript (1) stands for the dissociation constant
of a reaction that takes place in absence of another TF previously
bound in the enhancer module. The dissociation constants quantify
the a�nity of the TFs for their binding sites, being more a�ne those
TFs with lower dissociation constants. The binding of PolII in the
promoter follows the same rule, which concentration at equilibrium is

[PolII] =
k+RP

k−RP
[PolII][B] :=

[PolII]

KRP
[B] .

Please note that KRP doesn't need any superscript since we are work-
ing with biological modules that are controlled by n enhancers but only
one promoter, hence the maximum number of bound PolII is reduced
to one. In Fig. 3.1 these admisible bounds are indicated by black
doubled sided arrows.

H2) TFs binding sites, B, are constituted by n identical sites that can be
occupied competitively by any TF. The basic rule of this competition is
that the dissociation constant of the free sites con�guration does not
depend on their position but might depend on other existing bound
TFs in the same module.

Let us suppose the reaction of the binding between a molecule Ti and
a free enhancer con�guration B occurred. Then, if a second molecule
Tj binds to this con�guration we have

Tj +BTi
k

(2)
+j−−⇀↽−−
k

(2)
−j

BTiTj
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with respective equilibrium concentration

[BTiTj ] =
[Ti][Tj ]

K
(1)
i K

(2)
j

[B]

where now the superscript (2) denotes the dissociation constant for a
reaction of a TF that binds the operator with already one TF in some
other site. Let us remark that previous expression is independent of
the enhancers occupied since we are considering them identical. Note
that the product could be also obtained by simply changing the order
of linkage of the TFs, i.e.,

Ti +BTj
k

(2)
+i−−⇀↽−−
k

(2)
−i

BTjTi

although the corresponding concentration could not be the same as we
explain in next paragraph.

In biological literature [9, 83, 11, 69] it has been observed that in
this competition for the enhancers it could be involved a well known
mechanism, called cooperativity, that assumes that one ligand supports
the binding of others [53]. Thus, we will call non cooperative to TFs
all those proteins whose enhancer's a�nities are not modi�ed because
of any previously bound TFs, that is, they verify K

(2)
l = K

(1)
l for

all l = 1, ...,M . If that is the case, it is plausible to assume the
same relation for later bindings, that is, K(m)

l = K
(1)
l for m ≥ 2

and in consequence of this sequential independence we will denote the
dissociation constant by Kl skipping the superscript. Then, if all the
TFs under consideration are non cooperative we easily deduce that the
concentration at equilibrium of a generic con�guration with ji proteins
of the Ti specie is

[BT j11 ...T jMM ] = [B]
M∏
i=1

(
[Ti]

Ki

)ji
(3.2)

independently of the sequential order of binding and of the speci�c
positions occupied for the TFs. Let's recall that, since n denotes the

total number of free binding sites for TFs, then
M∑
i=1

ji ≤ n has to be

veri�ed. j0 = n−
M∑
i=1

ji(≥ 0), in the subsequent, will denote the number

of free spaces in the con�guration.

Cooperativity occurs when the existence of other previously bound
protein, Ti, a�ects to the a�nity of the new binding protein Tj (coop-
erativity is represented graphically by dotted arrows in Fig. 3.1). If the
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binding process of a protein Tj is facilitated by other already bound Ti
protein, TF-TF cooperativity, this can be modelled by considering:

K
(2)
j = K

(1)
j /c being c > 1 .

If cooperativity occurs in the presence of multiple TFs it would be nec-
essary to know which TFs are a�ected by others TFs since the equilib-
rium concentration will depend on these relations. Regarding to this
question in the literature several options have been considered. Par-
tial cooperativity [83] would occur when the existence of a speci�c TF,
Ti, modi�es equally the a�nity of any posterior transcription factor
binding of the same family, that is K(m)

i = K
(1)
i /ci for m ≥ 2. Total

cooperativity [69] would occur when the presence of any bound TF,
Ti, modify the a�nity of any posterior binding in the same manner,
i.e. K(m)

j = K
(1)
j /c for m ≥ 2 and j = 1, ...,M . These relations have

been represented in Fig. 3.1 with red dotted arrows. Then, by direct
adaptation of the previous considerations we have that

[BT j11 ...T jMM ] = [B]c

(
M∑
i=1

ji−1

)
+

M∏
i=1

(
[Ti]

Ki

)ji
(3.3)

in the presence of total cooperativity while

[BT j11 ...T jMM ] = [B]
M∏
i=1

c
(ji−1)+

i

(
[Ti]

Ki

)ji
(3.4)

if partial cooperativity for TFs occurs. Here (·)+ denotes the positive
part function needed because cooperativity is not present unless two
or more cooperative TFs are present in the con�guration. In the subse-
quent we will denote by {{T1, ..., TM}c} and {{T1}c1 , ..., {TM}cM } the
total and partial cooperativity respectively. Let us observe that this
notation covers the case of non cooperativity since it would correspond
to the case {{T1, ..., TM}1} or equivalently {{T1}1, ..., {TM}1}. Since
cooperativity has been described to cause deep changes in transcrip-
tional logic [18], in this work we present our results generalising both
partial and total cases. The straightforward extension of total-partial
cooperativity concepts is to consider that total cooperativity can oc-
cur only between some of the TFs, that is, between the elements of
certain subsets of transcription factors. We will refer to this as mixed
cooperativity, {{T1}c1 , ..., {TN}cN }, where Ti denotes each of the N
disjoint subgroups of TFs cooperating with cooperativity constant ci.
By analogue arguments we obtain that, for mixed cooperativity,
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[BT j11 ...T jMM ] = [B]

 N∏
i=1

c

( ∑
h∈Ii

jh−1

)
+

i


[
M∏
i=1

(
[Ti]

Ki

)ji]
, (3.5)

where Ii = {h;Th ∈ Ti} is the set of subindexes of the TFs belonging to
Ti. As we will see in next paragraphs, this generalization will become
very handy since we can deduce the expressions of di�erent cooperative
cases from this description.

H3) The action of a bound TF is independent of the speci�c enhancer it is
occupying, so the transcriptional contribution of con�gurations with the
same number of TFs bound at di�erent speci�c positions is the same.
Since the TFs compite for free enhancers, and there is not a predeter-
mined binding order [115], multiple spatial con�gurations of occupied
operators are allowed. So, in general, there is not an unique spatial
distribution for a given con�guration with a distribution of (j1, ..., jM )
bound transcription factors and j0 free sites. For instance if we con-
sider n = 3, M = 3 and j1 = j2 = j3 = 1 there are six possible spatial
distributions with the same elements (T1T2T3, T2T1T3, T1T3T2, T2T3T1,
T3T2T1, T3T2T1). In our description spatial localisation of bound par-
ticles is not relevant, so for a concrete con�guration (j1, ..., jM ) and j0
free sites, we will identify the n!

j0!
M∏
i=1

ji!

spatial di�erent plausible con-

�gurations.

Assumption H2) and H3) describe the possible con�gurations of TFs
bound to the binding sites. Let us observe that these assumptions not only
imply the spatial but also the sequential independence of the equilibrium
concentrations. As mentioned in the introductory section, our deduction
separates now in two modelling versions: the recruitment and the stimu-
lated approaches [96, 87]. Our next hypotheses describe the PolIIs/promoter
binding process in both versions.

HR4) Recruitment assumption: TFs work by bringing the transcriptional ma-
chinery by TFs/PolII (anti-)cooperativity [87, 88]. In [11], the synergy
between a TF and PolII is interpreted in terms of a �glue-like� interac-
tion that would give rise to a modi�cation of the PolII binding a�nity
modelled analogously to a TFs/PolII cooperativity: each bound ac-
tivator tries to pull the PolII in the promoter, modifying its a�nity

constant with a factor
Ma∏
i=1

ajii where we denote ai > 1 to the i-th acti-

vator transcription intensity for i = 1, ...,Ma. On the other hand, in
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a symmetric manner we can model the e�ect of M −Ma repressors in
terms of a �repulsive-like� interaction by modifying the PolII binding

a�nity with a factor
M∏

i=Ma+1

rjii , where ri < 1 is the i-th repressor tran-

scription intensity for i = Ma− 1, ...,M in this case. Then, in general,
the PolII binding a�nity will take the form

KRP

M∏
i=1

tjii

,

with ti = ai > 1 ∀ i = 1, ...,Ma and ti = ri < 1 ∀ i = Ma + 1, ...,M .
These TFs/PolII cooperative type interactions are indicated by a blue
dotted arrow in Fig. 3.1. Please note that this description is in con-
cordance with the a�nity de�nition: If the denominator is larger than
one, then PolII will be more a�ne. Since the denominator depends on
the number of transcription factors and their activation/repression in-
tensities, we are promoting or impeding the PolII cleavage, and hence,
promoting or impeding the transcription itself.

HS4) Stimulated assumption: Unaltered a�nity of PolII at the promoter,
that is, the binding a�nity of PolII to the promoter, KRP , is invariant
with respect to the bound TFs.

It is important to remark that only very few of the regulatory motifs
shown in [11] match with the generality presented in this work. More con-
cretely the cases of simple repressor and activator coincide with the case of
a single binding site, n = 1, and glue-like interaction for activators and total
repression, r = 0 for repressors. This comes from the speci�c character of the
binding sites considered in [11], i.e. one binding site can be only occupied
by an unique kind of molecule, which does not allow the competition we are
describing in this work.

Let us consider the multi-index ~j = (j1, ..., jM ) ∈ NM0 with ji the number
of bound TFs of the i-th specie in the set of enhancers, j0 the number of free
sites and jP = 1 if there is a bound PolII and jP = 0 otherwise. Sumarizing
we have that all the possible ways of obtaining an equilibrium concentration
with (~j, jP ) TFs-PolII bound is given by the microstates

Z(n)(~j, jP = 1; C) = C(C) n!
M∏
i=0

ji!

[B]

(
[PolII]

KRP

) M∏
i=1

(
ti[Ti]

Ki

)ji
, (3.6)

Z(n)(~j, jP = 0; C) = C(C) n!
M∏
i=0

ji!

[B]
M∏
i=1

(
[Ti]

Ki

)ji
,
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if the recruitment approach, HR4), is assumed and

Z(n)(~j, jP ; C) = C(C) n!
M∏
i=0

ji!

[B]

(
[PolII]

KRP

)jP M∏
i=1

(
[Ti]

Ki

)ji
(3.7)

when stimulated assumption HS4) is considered. In both cases the variable C
describes the relation of cooperativity, if there exist, between the TFs. More
concretely, by using (3.3), (3.4) and (3.5), the cooperativity function C takes
the value

C(C = {T1, ..., TM}c) = c

(
M∑
i=1

ji−1

)
+ , (3.8)

when total cooperativity holds,

C(C = {{T1}c1 , ..., {TM}cM }) =
M∏
i=1

c
(ji−1)+

i , (3.9)

if partial cooperativity is veri�ed, and �nally

C(C = {{T1}c1 , ..., {TN}cN }) =

N∏
i=1

c

( ∑
h∈Ii

jh−1

)
+

i (3.10)

when mixed cooperativity occurs. Let us observe that de�nitions (3.6)-(3.7)
are absolutely consistent with the usual convention 0j = 0 when j > 0
because in the absence of a certain binding particles it is impossible to get
any con�guration with that kind of particles, and 0! = b0 = 1 with b ≥ 0
since con�gurations with no bound particles of certain type are independent
of that substance concentration.

3.1.2 Con�gurations probability

Now, the thermodynamic methodology proposes to describe from previous
calculations a probability for any possible con�guration [1, 97]. Let us notice
that the sample space is determined by the multi-indices set

Ω =
{

(~j, jP ) ;~j ∈ NM0 , |~j| ≤ n , jP = 0, 1
}
, (3.11)

where the constraint on |~j| =
M∑
i=1

ji ≤ n is due to the limit of capacity of the

n enhancers for accepting bound TFs. Now, using the description of all the
possible con�gurations in terms of the concentrations of TFs and PolII, we
de�ne the probability of �nding the module in a particular con�guration of
jP PolII and j1, ..., jM TFs with cooperativity function C as

P (n)(~j, jP ; C) =
Z(n)(~j, jP ; C)∑

{~j′,j′P }∈Ω

Z(n)(~j′, j′P ; C)
, (3.12)
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Figure 3.1: Representation of the biochemical mechanisms involved in tran-
scriptional control. Competitive binding process of the TFs (red and purple
circles) to an enhancer with n identical binding sites (green). RNA Poly-
merase (brown oval) binds to the promoter (brown rectangle). A�nities
are indicated by black arrows. Alternative biochemical mechanisms are rep-
resented with discontinuous arrows: total vs partial binding cooperativity
between TFs (red) and recruitment vs stimulated approaches for transcrip-
tional control exerted by the TFs (blue). See assumption H2, HS4 and HR4
in section 3.1.1 for details.

for all (~j, jP ) ∈ Ω.
In next subsections these probabilities, corresponding to each microstate,

will be averaged (BEWARE operator) accordingly to the recruitment/stim-
ulated transcription approaches.

3.1.3 Recruitment BEWARE operator

In the work of Shea et al [97], the BEWARE operator for the synthesis of
a certain protein depends on the total probability of �nding PolII in the
promoter (i.e., proportional to the marginal distribution in the number of
TFs evaluated at jP = 1). This constitutes a new assumption, denoted by
HR5, that has been widely used assuming recruitment assumption HR4 (see
for instance [83, 11]). We will denote by the recruitment BEWARE operator
the function

BEWAREr(~T , [PolII]; C) = CB
∑
|~j|≤n

P (n)(~j, jP = 1; C)

where in de�nition (3.12) expression (3.6) is assumed and CB is a propor-
tionality constant. Let us note that CB could depend on the control exerted
in other enhancer modules or later stages of the whole genetic regulation pro-
cess. Here ~T denotes a vector collecting the concentrations of all the TFs,
that is, ~T = ([T1], ..., [TM ]), and C can be any of the cooperativity relations
stablished in assumption (H2) whose contribution is determined by (3.8)-
(3.10). Splitting the denominator in two sums, depending on the existence
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of PolII bound to the con�guration, this expression can be easily rewritten
in terms of the regulation factor function Freg:

BEWAREr(~T , [PolII]; C) =
CB

1 +

∑
|~j|≤n Z

(n)(~j,0;C)∑
|~j|≤n Z

(n)(~j,1;C)

=
CB

1 + KRP
[PolII]Freg(~T ;C)

(3.13)
where

Freg(~T ; C) =

∑
|~j|≤n

C(C) n!
M∏
i=0

ji!

M∏
i=1

(
ti[Ti]
Ki

)ji
∑
|~j|≤n

C(C) n!
M∏
i=0

ji!

M∏
i=1

(
[Ti]
Ki

)ji . (3.14)

Let us remark that activators and repressors play symmetric roles, mathe-
matically speaking, since their activating/repressing nature is only re�ected
in the value of the parameter ti being bigger than 1 for activators and smaller
than 1 for repressors.

3.1.4 Stimulated BEWARE operator

On the other hand, the stimulated transcription approach associates to any
con�guration with a bound PolII a transcription density [63, 62, 69]. We will
call this new assumption HS5. In this point we are going to follow the pro-
posal of [69], adapted in later works [111, 94], where activators and repressors
have to be distinguished. Let us consider that ~TA = ([T1], ..., [TMa ]) ∈ RMa ,
~TR = ([TMa+1], ..., [TM ]) ∈ RMr the activators and repressors vectors, and
~jA = (j1, ..., jMa) ∈ ZMa

+ , ~jR = (jMa+1 , ..., jM ) ∈ ZMr
+ the number of bound

activators/repressors of the i-th specie, such that M = Ma +Mr. Consider-
ing the standard concatenation operator we have that ~T = (~TA, ~TR) ∈ RM
and ~j = (~jA,~jR) ∈ ZM+ .

Furthermore, it is necessary to �x the basal and maximal/minimal tran-
scription levels de�nition:

i) rbas is basal transcription rate one would expect from a completely
empty con�guration with no stimulated transcription at all. If basal
transcription is not assumed then rbas = 0.

ii) (ν
(n)
max+rbas): is the level of maximal transcriptional rate of the system,

given by a con�guration �lled with n of the most powerful activator.
The dependence of ν(n)

max with respect to the total number of enhancers
can be justi�ed from the experiments developed in [83] (see Fig. 4)
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where it was observed that a diminishing in the number of enhancers
produces a reduction in the maximal expression levels.

iii) rbasr̃
n
M , with r̃M < 1, the level of minimal transcriptional rate, that

would correspond to the con�guration completely bound to the most
powerful repressors, assumed to be TM .

From these basic levels and the probabilities P (n), given by (3.12) and
(3.7), the activation or repression levels of all the possible con�gurations are
determined by the following expressions:

(i) for states with PolII but no bound activators, that is ji = 0 for any
i = 1, . . . ,Ma,

rbas

(
M∏

i=Ma+1

r̃jii

)
P (n)(~j, jP = 1; C) ,

where r̃M ≤ r̃i < 1 is a constant that stands for the repression strength
of the i-th repressor.

(ii) and in the opposite case, that is states with some bound activators
(|~jA| > 0 that is ji > 0 for some i = 1, . . . ,Ma )(
Ma∏
i=1

ãjii

)(
M∏

i=Ma+1

r̃jii

)(
rbas + ν(n)

maxẽ
j0+

∑M
i=Ma+1 ji

)
P (n)(~j, jP = 1; C) ,

where ẽ < min{ãi; i = 1, . . . ,Ma} is a constant of transcriptional e�-
ciency proportional to free or repressor occupied enhancers, and ãi ≤ 1
is a constant that stands for the activation strength of the i-th activa-
tor, being ãi = 1 in the case of the most powerful activator.

(iii) If we assume that the level of transcription of con�gurations with the
same number of activators and repressors should coincide indepen-
dently of the total number of sites in the con�guration (n) this allow
us to conclude a plausible expression for

ν(n)
max =

ν
(1)
max

ẽn−1
(3.15)

where ν(1)
max is de�ned in terms of the maximal transcription when only

one enhancer is available.

The synthesis of the protein under consideration depends, therefore, on the
addition of all these transcriptional e�ciencies of states with a bound PolII,
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which written in terms of the common factors rbas and ν
(n)
max can be expressed

as

BEWAREs(~T , [PolII]; C)

=
rbas

1 + KRP
[PolII]

Basal(~T ; C) +
ν

(n)
max

1 + KRP
[PolII]

Promoter(~T ; C) (3.16)

in terms of the Basal and Promoter functions

Basal(~T ; C) =

∑
|~j|≤n

C(C) n!
M∏
i=0

ji!

[
Ma∏
i=1

(
ãi[Ti]
Ki

)ji][ M∏
i=Ma+1

(
r̃i[Ti]
Ki

)ji]
∑
|~j|≤n

C(C) n!
M∏
i=0

ji!

M∏
i=1

(
[Ti]
Ki

)ji , (3.17)

Promoter(~T ; C) =

∑
|~j|≤n
|~jA|>0

C(C) n!
M∏
i=0

ji!

ẽj0
[
Ma∏
i=1

(
ãi[Ti]
Ki

)ji][ M∏
i=Ma+1

(
r̃iẽ[Ti]
Ki

)ji]

∑
|~j|≤n

C(C) n!
M∏
i=0

ji!

M∏
i=1

(
[Ti]
Ki

)ji .

(3.18)
Let us note that in [69] it was deduced the particular expression of these

functionals for modelling the transcriptional rates of two Shh target genes,
by acting on an enhancer module with n = 3 sites, where M = 3 TFs can
bind, being Ma = 2 of them activators and Mr = 1 repressor. In that work
the theoretical expressions assume the same a�nity for activators and the
repressor, and the activators have the same activation strength ã1 = ã2 = 1.
Those expressions also consider total cooperativity between TFs and the
e�ects of PolII and its a�nity is involved in the constants rbas and ν

(n)
max.

A remarkable fact that can be pointed out from expressions (3.13), (3.14),
(3.16), (3.17) and (3.18) is that all the BEWARE operators, independently
of the biochemical mechanisms involved, depend on the TFs concentrations
and their binding sites a�nities, [Ti] and Ki respectively, but always through
the quotients [Ti]/Ki. Despite of being a trivial observation, this will be the
key ingredient for the appearance of the elasticity when the variability of the
activation/repression thresholds is analysed in terms of a�nity variations.

These two approaches focus on the transcription process, which is the
�rst mechanism involved in the genetic activity control. However the whole
process can be a�ected during the posterior RNA managing and interpreta-
tion. These process in this work are assumed to be linear and their e�ects
are undercover in the value of the constants CB, rbas and ν

(n)
max appearing in

(3.13) and (3.16).
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3.1.5 Simpli�cation of BEWARE operators expressions

One of the key points of the deduction developed in this tesis is the fact
that the regulation factor (3.14), basal (3.17) and promoter (3.18) functions
can be explicitly computed. This will give rise to simple rational and poly-
nomical expressions, whose analysis may contribute to the understanding of
the general biological process. These calculations exploit a classical strategy
employed for obtaining the derivation of the General Binding Equation more
than a century ago [53]. For instance in [18] we take advantage of particular
cases of these simple expressions to deduce several transcription logics deter-
mined by the type of cooperativity between the TFs in the framework of Hh
target genes. We start by remarking that the regulation factor, basal and
promoter are rational functions where numerators and denominators corre-
spond to polynomial expressions that can be expressed using next de�nition.
Let ~x = (x1, . . . , xM ) ∈ RM , C any of the cooperativity relations stablished
in Subsection 3.1.1 (H2) and C(C) determined by (3.8)-(3.10). Then we
de�ne the polynomial function

S(n)
e (~x; C) =

∑
|~j|≤n

C(C) n!
M∏
i=0

ji!

ej0
M∏
i=1

xjii , (3.19)

where the multi-index ~j ∈ NM0 , |~j| =
∑M

i=1 ji and j0 = n− |~j|.
Please recall the vectorial notation ~T = (~TA, ~TR) ∈ RM where

• ~TA = ([T1], ..., [TMa ]) ∈ RMa is the vector of activators,

• ~TR = ([TMa+1], ..., [TM ]) ∈ RMr is the vector of repressors,

being the whole set of TFs concentrations ~T = (~TA, ~TR) ∈ RM . In concor-
dance with previous vectors let us also consider

• ~a , ~̃a ∈ RMa , the vector of the activation intensities such as ai ≥
1 and ãi ≤ 1 ,∀i = 1, ...,Ma,

• ~r , ~̃r ∈ RMr , the vector of the repression intensities such as ri , r̃i ≤
1 ∀i = 1, ...,Mr,

• ~KA ∈ RMa , the vector of the activators binding a�nities,

• ~KR ∈ RMr , the vector of the repressor binding a�nities.
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Then, (3.14), (3.17), (3.18) can be equivalently written as

Freg(~T ; C) =
S

(n)
1

((
~a ◦ ~TA/ ~KA, ~r ◦ ~TR/ ~KR

)
; C
)

S
(n)
1

((
~TA/ ~KA, ~TR/ ~KR

)
; C
) , (3.20)

Basal(~T ; C) =
S

(n)
1

((
~̃a ◦ ~TA/ ~KA, ~̃r ◦ ~TR/ ~KR

)
; C
)

S
(n)
1

((
~TA/ ~KA, ~TR/ ~KR

)
; C
) , (3.21)

Promoter(~T ; C) =
S

(n)
ẽ

((
~̃a ◦ ~TA/ ~KA, ẽ~̃r ◦ ~TR/ ~KR

)
; C
)

S
(n)
1

((
~TA/ ~KA, ~TR/ ~KR

)
; C
)

−
S

(n)
ẽ

((
~0, ẽ~̃r ◦ ~TR/ ~KR

)
; C
)

S
(n)
1

((
~TA/ ~KA, ~TR/ ~KR

)
; C
) (3.22)

where ~x ◦ ~y and ~x/~y denote the Hadamard (pointwise) product and division
operators. Let us recall that the concatenation operator, (~x, ~y), is used to
express the main argument of the previous expressions.

Our aim is to compute equivalent simpli�ed expressions for (3.19). In
the case of non-cooperativity, C(C) = 1, expression (3.19) can be very easily
computed,

S(n)
e ((x1, . . . , xM ); {T1, . . . , Td}1) =

(
e+

M∑
i=1

xi

)n
, (3.23)

by direct application of the multinomial theorem. Accordingly to this result
we will adopt the mathematical de�nition of (3.19) for empty vectors, that
is when M = 0, as S(n)

e (·, ·) = en.
On the other hand, in the presence of cooperativity the multinomial the-

orem can not be applied so straightforwardly, and in this case the expression
of (3.19) is strictly determined by the cooperativity relations (3.8)-(3.9).
However, we can use our de�nition of the general mixed cooperation (3.10)
and resume all the possible cooperative cases in one general expression of
the function S

(n)
e . This is, we will assume a general mixed cooperativity

con�guration C = {{T1}c1 , ..., {TN}cN }, and

• Ij , the indices of the components of ~x corresponding to the TFs inside
of the cooperative family with cooperativity constant cj .
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Then, it can be shown (see Appendix A.1) that

S(n)
e

(
(x1, . . . , xM );

{
{T1}c1 , ..., {TN}cN

})
=

∑
|~h|∞≤1
~h∈NN0

e+

N∑
j=1

hjcj
∑
i∈Ij

xi

n N∏
j=1

(
1− 1

cj

)1−hj

(cj)hj
(3.24)

where the addition on the multi-index ~h = (h1, . . . , hN ) ∈ NN0 considers all
the possible combinations where the components, hj , can only be 0 or 1,
that is |~h|∞ = maxj{hj} ≤ 1.

From this general result we can get, as particular cases, the value of (3.19)
in the total and partial cooperativity cases. In the total cooperativity case
all the TFs cooperate between them with the same cooperativity constant c,
thus N = 1 and the possible values of ~h are only ~h = (0) or ~h = (1) which
leads to the expression

S(n)
e ((x1, . . . , xM ); {T1, . . . , TM}c) =

(
1− 1

c

)
en +

1

c

(
e+ c

M∑
i=1

xi

)n
.

(3.25)
Let us observe that this expression coincides with (3.23) when c = 1, that
is, in absence of cooperativity.

On the other side, if TFs cooperate only between the proteins of the same
specie we have that N = M , Ii = {i}, and expression (3.24) reads,

S(n)
e ((x1, . . . , xM ); {T1}c1 , . . . , {TM}cM )

=
∑
|~h|∞≤1
~h∈NM0

e+

M∑
j=1

hjcjxj

n M∏
j=1

(
1− 1

cj

)1−hj

(cj)hj
(3.26)

for anyM . Specially useful for next section will be the case of only two TFs,
M = 2. In this case ~h can be (0, 0), (1, 0), (0, 1) or (1, 1) giving rise to the
expression:

S(n)
e ((x1, x2); {T1}c1 , {T2}c2) =

(
1− 1

c1

)(
1− 1

c2

)
en (3.27)

+
(e+ c1x1)n

c1

(
1− 1

c2

)
+

(e+ c2x2)n

c2

(
1− 1

c1

)
+

(e+ c1x1 + c2x2)n

c1c2
.

3.2 Extreme cooperativity approach: Hill modules

In this section we are going to relate the developed thermodynamical mod-
elling with a very frequently employed modelling approach in genetic con-
trol, the Hill modules. Using the analogy with Michaelis-Menten kinetic
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equations some groups have proposed Michaelis-like functions for modelling
genetic control (see [98, 43] and references therein). This approach has been
used in order to capture cooperativity e�ects via adding Hill coe�cients [55]
to the Michaelis-like functions. It is frequently assumed in the literature,
see for instance [17, 3, 80, 77], that the genetic transcription is controlled by
combinations of Hill type functions. For example, the transcription obtained
by a single activator/repressor corresponds to the expressions:

d[P ]

dt
= α

[A]n

Kd + [A]n
+ η

d[P ]

dt
=

β

Kd + [R]n
+ γ . (3.28)

where α and β are proportional constants, and η, γ correspond respectively
to optional basal or minimal expression levels.

In [98] the authors show that the Hill functions can approximate the
transcription rates under conditions of high cooperativity. In this section
we will show that, indeed, the Hill functions (3.28) can be framed into the
thermodynamic approach by assuming extreme cooperativity.

The stimulated BEWARE operators corresponding to a single activa-
tor/repressor transcription factor would be obtained from (3.16) and using

Basal
(
[A]; {A}c

)
= 1 ,

P romoter
(
[A]; {A}c

)
=

1
c

(
ẽ+c

[A]
KA

)n
− 1
c
ẽn

(1− 1
c )+ 1

c

(
1+c

[A]
KA

)n , (3.29)

in the single activator case Basal
(
[R]; {R}c

)
=

(1− 1
c )+ 1

c

(
1+cr̃[R]/KR

)n
(1− 1

c )+ 1
c

(
1+c[R]/KR

)n ,

P romoter
(
[R]; {R}c

)
= 0 ,

(3.30)

for a single repressor. Let us remark that these expressions have been ob-
tained from (3.21), (3.22).

The extreme cooperativity assumption implies that the cooperative bind-
ing constant c is large [98]. However, we cannot compute directly a limit in
c without assuming some natural restrictions. By de�nition (see assump-
tion H2 in section 3.1.1), the cooperativity interactions essentially modulate
the binding a�nity of the transcription factors in the binding sites. More
speci�cally, if K∗ is the a�nity constant of a transcription factor, the a�nity
constant of a consecutive cleavage will be K∗/c with c > 1 (recall the inverse
relation where, for lower a�nity constants, the transcription factor will have
higher binding a�nity). Moreover, if we �ll the n enhancers with the same
transcription factor, it is clear to see that the �global� a�nity constant of the
whole process will be Kd = Kn

∗ /c
n−1. The extreme cooperativity assump-

tion claims that, since we are interested on only modifying the cooperativity
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between the transcription factors, we will compute a limit of c→∞ without
modifying the global a�nity constant in the process, keeping Kd = cte (and
consequently, K∗ → 0 [98]). These limits can be computed easily, so we get

lim
c→∞
Kd=cte

Promoter
(
[A]; {A}c

)
=

[A]n

Kd + [A]n
,

lim
c→∞
Kd=cte

Basal
(
[R]; {R}c

)
=

Kd + r̃n[R]n

Kd + [R]n

which allow us to justify previous Hill modules because the limits of the
corresponding BEWARE operators coincide with (3.28) by taking

α = rbas
1+KRP [PolII]−1 ,

η = ν
(n)
max

1+KRP [PolII]−1 ,

β = rbasKd(1−r̃n)
1+KRP [PolII]−1 ,

γ = rbasr̃
n

1+KRP [PolII]−1 .

Let us notice that the optimal values η and γ vanish when rbas = 0 or r̃ = 0
respectively, which corresponds in the thermodynamical model to null basal
level and a repressor executing a total repression once it is bound. Indeed,
these are some extra hypothesis employed in [98] for justifying (3.28) (with
η = 0 and γ = 0) that are not required in our approach.

It is also interesting to mention that the same reasoning can be used
to prove that, under the extreme cooperativity assumption, the recruitment
BEWARE operators also converge toward a generalised Hill type functions.
Since

lim
c→∞
Kd=cte

Freg
(
[A]; {A}c

)
=

Kd + an[A]n

Kd + [A]n
,

lim
c→∞
Kd=cte

Freg
(
[R]; {R}c

)
=

Kd + rn[R]n

Kd + [R]n
,

the associated recruitment BEWARE operators verify

lim
c→∞
Kd=cte

BEWAREr([A], [PolII]; {A}c) = α
[A]n

δKd + [A]n
+ η ,

lim
c→∞
Kd=cte

BEWAREr([R], [PolII]; {R}c) =
β

εKd + [R]n
+ γ ,

where now η = CB
1+

KRP
[PolII]

and γ = CBr
n

rn+
KRP

[PolII]

are respectively a basal and min-

imal transcriptional rates, and α = CB
1+

[PolII]
KRP

an−1
an+1 , β = KRP

[PolII]
CBKd(1−rn)(
rn+

KRP
[PolII]

)2 ,
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δ =
1+

KRP
[PolII]

an+
KRP

[PolII]

and ε =
1+

KRP
[PolII]

rn+
KRP

[PolII]

are constants. Let us observe that the limits

in this case are generalisations of the Hill classical modules (3.28) because
of parameters δ < 1 and ε > 1.

When the modelling by Hill modules involve the e�ects of several tran-
scription factors (see for instance [3]) it is not so clear which are the counter-
parts of (3.28). If the binding sites or any TF are independent and there are
no cooperativity interactions, the Hill candidates can be computed straight-
forwardly [17, 11]. However, the same question is not clear when the TFs
compite for the same binding sites or cooperate between them. Our mod-
elling approach give us a clear strategy to propose Hill type modules in the
presence of several TFs competing for the same enhancers. They might be
deduced from the extreme cooperativity limit of the stimulated/recruitment
BEWARE operators if the total cooperativity holds between the TFs:

lim
c→∞
Kd=cte

Freg
(
([T1], ..., [TM ]); {{T1, ..., TM}c}

)
=

Kd +

(
M∑
i=1

ai[Ti]

)n
Kd +

(
M∑
i=1

[Ti]

)n , (3.31)

lim
c→∞
Kd=cte

Basal
(
([T1], ..., [TM ]); {{T1, ..., TM}c}

)
=

Kd +

(
M∑
i=1

ãi[Ti]

)n
Kd +

(
M∑
i=1

[Ti]

)n ,

(3.32)

lim
c→∞
Kd=cte

Promoter
(
([T1], ..., [TM ]); {{T1, ..., TM}c}

)

=

(
Ma∑
i=1

ãi[Ti]+
M∑

j=Ma+1
ẽr̃i[Tj ]

)n
−
(

M∑
j=Ma+1

ẽr̃i[Tj ]

)n
Kd+

(
M∑
i=1

[Ti]

)n ,

or

lim
c→∞
Kd=cte

Freg
(
([T1], ..., [TM ]); {{T1}c, ..., {TM}c}

)
=

Kd +
M∑
i=1

(ai[Ti])
n

Kd +
M∑
i=1

[Ti]n
,

(3.33)
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lim
c→∞
Kd=cte

Basal
(
([T1], ..., [TM ]); {{T1}c, ..., {TM}c}

)
=

Kd +
M∑
i=1

(ãi[Ti])
n

Kd +
M∑
i=1

[Ti]n
,

(3.34)

lim
c→∞
Kd=cte

Promoter
(
([T1], ..., [TM ]); {{T1}c, ..., {TM}c}

)
=

Ma∑
i=1

(ãi[Ti])
n

Kd +
M∑
i=1

[Ti]n
,

when only partial cooperativity is present between TFs (see Appendix A.2
for a general proof).

3.3 Global Activator/Repressor variables reduction

Up until this point we have been able to obtain BEWARE operators that
modelize situations with any number of transcription factors. However, even
though these are di�erent proteins, it is important to recall that the role they
play in the transcription can be resumed as a binary function: activation
of the signal, or repression. This makes us wonder if there is a possible
way to group all the TFs in only two 'global' terms, one grouping all the
activators, and the other all grouping all the repressors. Indeed, recalling
the previous expressions, we can clearly see that this can be done if the
following assumptions are ful�lled

• All the activators (repressors) have the same activation (repression)
strength.

• All the activators (repressors) cooperate in the same family with the
same cooperativity constant.

In this case the e�ect of all the activators and repressors in the BEWARE
functional can be summarised in a global activator (repressor) variables:

[A] =

Ma∑
i=1

[Ti]

K̄i
; K̄i =

Ki

KA
being KA =

Ma∑
i=1

Ki

Ma
,

[R] =
M∑

i=Ma+1

[Ti]

K̄i
; K̄i =

Ki

KR
being KR =

M∑
i=Ma+1

Ki

Mr
.
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The fact that the BEWARE operators only depend on these two global vari-
ables can be easily checked by replacing the new variables in the expressions
of Sẽ of (3.20), (3.21) and (3.22), and noting that the new functions obtained
correspond to the expressions of the functions Sẽ in the case of M = 2 tran-
scription factors. More speci�cally, the regulation factor, basal and promoter
functions read

Freg
(

([A],[R]);{{A,R}c}
)

=
(c−1)+ᾱnr

(
c[A]
KA

,
c[R]
KR

)
(c−1)+αnr

(
c[A]
KA

,
c[R]
KR

) , (3.35)

Basal
(

([A],[R]);{{A,R}c}
)

=
(c−1)+ᾱns

(
c[A]
KA

,
c[R]
KR

)
(c−1)+αns

(
c[A]
KA

,
c[R]
KR

) , (3.36)

Promoter
(

([A],[R]);{{A,R}c}
)

=
βns

(
c[A]
KA

,
c[R]
KR

)
−β̄ns

(
c[A]
KA

,
c[R]
KR

)
(c−1)+αns

(
c[A]
KA

,
c[R]
KR

) , (3.37)

for the total cooperativity case and

Freg
(

([A],[R]);{{A}cA ,{R}cR}
)

(3.38)

=
(cA−1)(cR−1)+(cR−1)γnr

(
cA[A]
KA

)
+(cA−1)β̄nr

(
cR[R]
KR

)
+ᾱnr

(
cA[A]
KA

,
cR[R]
KR

)
(cA−1)(cR−1)+(cR−1)γ̄nr

(
cA[A]
KA

)
+(cA−1)βnr

(
cR[R]
KR

)
+αnr

(
cA[A]
KA

,
cR[R]
KR

) ,

Basal
(

([A],[R]);{{A}cA ,{R}cR}
)

(3.39)

=
(cA−1)(cR−1)+(cR−1)λns

(
cA[A]
KA

)
+(cA−1)γ̄ns

(
cR[R]
KR

)
+ᾱns

(
cA[A]
KA

,
cR[R]
KR

)
(cA−1)(cR−1)+(cR−1)λns

(
cA[A]
KA

)
+(cA−1)γns

(
cR[R]
KR

)
+αns

(
cA[A]
KA

,
cR[R]
KR

) ,

P romoter
(

([A],[R]);{{A}cA ,{R}cR}
)

(3.40)

=
(cR−1)δns

(
cA[A]
KA

)
+βs

(
cA[A]
KA

,
cR[R]
KR

)
−(cR−1)δ̄ns −β̄

n
s

(
cR[R]
KR

)
(cA−1)(cR−1)+(cR−1)λns

(
cA[A]
KA

)
+(cA−1)γns

(
cR[R]
KR

)
+αns

(
cA[A]
KA

,
cR[R]
KR

) ,

in the case of partial cooperativity, where we have written the Recruitment
operators in terms of the polnomials



αr(x̃, ỹ) = 1 + x̃+ ỹ ,
ᾱr(x̃, ỹ) = 1 + ax̃+ rỹ ,
βr(ỹ) = 1 + ỹ ,
β̄r(ỹ) = 1 + rỹ ,
γr(x̃) = 1 + ax̃ ,
γ̄r(x̃) = 1 + x̃ ,

(3.41)
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and the Stimulated operators in terms of

αs(x̃, ỹ) = 1 + x̃+ ỹ ,
ᾱs(x̃, ỹ) = 1 + x̃+ r̃ỹ ,
βs(x̃, ỹ) = ẽ+ x̃+ ẽr̃ỹ ,
β̄s(ỹ) = ẽ+ ẽr̃ỹ ,
γs(ỹ) = 1 + ỹ ,
γ̄s(ỹ) = 1 + r̃ỹ ,
δs(x̃) = ẽ+ x̃ ,
δ̄s = ẽ ,
λs(x̃) = 1 + x̃ .

(3.42)

This reduction is not trivial. In [62] it was addressed the problem of col-
lecting the control executed by di�erent TFs into two global Activation/Re-
pression variables in the particular case of the Shh system. In this case the
transcription is controlled by the concentration balance of M = 3 TFs: a
pair of activators GliA, Gli3A and a repressor Gli3R competing for n = 3
binding sites. Gli-DNA enhancers binding a�nities were described by disso-
ciation constants K1 for Gli1 and K3 for both forms of Gli3. Since the model
suggested total cooperativity between all the TFs and the activators, GliA
and Gli3A, it can be seen that the BEWARE operator deduced in [69, 94]
depends on the global activator variable

[A] =
[GliA]

K̄1
+

[Gli3A]

K̄3

with dissociation constant KA = K1+K3
2 where the weights for de�ning A are

given by K̄1 = K1
KA

, K̄3 = K3
KA

. Since only one repressor was taken into con-
sideration, Gli3R, this plays the role of repressor variable with dissociation
constant K3.

Let us observe that these expressions allow us to relate the parameters
in these models with measurable reference values as the minimal, basal and
maximal expression levels, following the ideas presented in [62]. These values
can be easily computed by letting [A]→ 0 , [R]→∞ or [A]→ 0 , [R]→ 0 or
[A]→∞ , [R]→ 0 respectively. As we resume in Table 3.1, these levels can
be used to relate parameters of both Recruitment and Stimulated models.

3.4 Activation threshold and spatial genetic expres-
sion

Genetic experiments analyse the gene expression that results in the segre-
gation of a protein P . The experiments work with either wild-type expres-
sion and/or expressions measured in mutants where some of the biochem-
ical conditions have been modi�ed. Examples are: Shh/Hh target genes



3.4. Activation threshold and spatial genetic expression 57

Table 3.1: Theoretical values for minimal, basal and maximal transcrip-
tional rates for BEWARE operators in presence of global activator/represor
variables.

Minimal Basal Maximal
Recruitment CB

1+
KRP

[PolII]rn

CB
1+

KRP
[PolII]

CB
1+

KRP
[PolII]an

Stimulated rbasr̃n

1+
KRP

[PolII]

rbas
1+

KRP
[PolII]

rbas+ν
(n)
max

1+
KRP

[PolII]

in [83, 62, 79, 3, 74, 91, 80], other Drosophila's target genes [6, 59] and
prototypical biological systems, such as the λ phage [5, 112]. Of all these
experimental approaches, of particular interest are those that compare tran-
scription rates against basal levels. Correctly de�ning the basal transcription
level is quite important because it depends on which part of the transcrip-
tional control system you are considering. Since in our case we are focusing
on the transcriptional e�ects due to signalling in the speci�c module of n
binding sites, the basal level is the expression of P observed when these
enhancers are disabled from receiving that signalling [83, 74]. These basal
levels can still be signal-dependent since they could collect the signalling ef-
fects coming from other modules of enhancers or TFs. The deduced models
allow us to predict when cells can be relatively activated or repressed with
respect to the basal (net activated-repressed), in the presence of two oppos-
ing signals (activators vs repressors). This can be easily done by using a
threshold level between the transcription factors. Each BEWARE operator
de�nes a curve (function) in the [A]− [R] plane which separates that plane in
two regions. If the BEWARE is evaluated on concentrations of TFs that are
below this curve, then it will predict an expression of P higher than the basal
rate (and lower for concentrations above the curve). We have called these
concentrations of transcription factors �Activation/Repression regions�, and
are depicted in Fig. 3.2 (C). It is important to note that the thresholds (i.e.,
the interphase between the Activation/Repression regions) depend strongly
on the biochemical mechanisms involved in the transcriptional binding pro-
cess by means of the BEWARE operator used in their determination. We
can de�ne the threshold for n binding sites as a function, fm,l([A];n), where
the corresponding BEWARE operator ful�ls the equation:

BEWAREm([A], fm,l([A];n), [RNAP ]; C) = BEWAREm(0, 0, [RNAP ]; C)
(3.43)

where C = {[A], [R]}c in the case of total cooperativity (l = t) and C =
{{[A]}cA , {[R]}cR} in the case of partial cooperativity (l = p). That is,
the thresholds are the BEWARE operator level curves corresponding to the
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Figure 3.2: Activation-repression threshold and net activated/re-
pressed tissular regions. (A) BEWARE operator representation. Blue,
green and red correspond to values of the BEWARE operator, lower than,
close to or higher than the basal level. (B) Triangles represent the tissu-
lar activator/repressor gradients governing gene transcription. Lower circles
show net activated/repressed tissular regions determined by the upper gra-
dients and the BEWARE operator in �gure (A). The limiting position, x0

corresponds to cells that have TF concentrations determined by the white
circled in �gure (C). (C) Representation of (A) and (B) in the [A]-[R] plane.
The blue region is concentrations leading to BEWARE values below the
basal level. The red region is concentrations leading to BEWARE values
above the basal level. The green curve is the activation/repression thresh-
old, that is, concentrations leading to the basal level. The grey curve shows
the TF concentrations represented by the triangles in (B). The intersection
between the green and grey curves, i.e. white circle, determines tissular re-
gions where cells are net activated or repressed according to the BEWARE
operator. Parameter values can be found in Table B.2. in Appendix B.
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absence of signalling in the enhancers module, the basal level. It is important
to note that fm,l([A];n) is also a strictly increasing function (please, refer to
Appendix A.4 for a proof of both existence and properties of this function).
As we will see in the following, this curve can be used to extrapolate several
pieces of transcriptional information from the molecular to the tissular level.

3.4.1 Net Activated Cell regions

Usually, morphogens are secreted from a speci�c part of the tissue and by
spreading give rise to a gradient in the receptor cells which causes oppos-
ing gradients of activators and repressors of the corresponding transcription
factors. The balance between the activator and repressor gradient gives a
tissular region with higher levels of activators and lower levels of repressors
depending on how close the cells are to the morphogenetic source. When all
the enhancers are mutated to abolish TF binding we get basal expression
levels. These levels take into account the control of other modules or other
TFs. Then, the e�ect of the abolished enhancers can be measured by com-
paring the gene expression under the original enhancers distribution with the
expressions in the mutant with removed enhancers. This comparison should
determine the net e�ect of the removed enhancer, since in those tissular re-
gions where the expression is higher/lower than the basal level the module
causes relative activation/repression. Recalling the threshold function, fm,l
predicts if a cell is activated or repressed by simply checking if the concen-
tration of repressors inside of the cell is higher or lower than the threshold
corresponding to its activators concentration. Or in other words, a cell with
levels [A] and [R] of activators and repressors will be

• relatively activated if [R] < fm,l([A], n)

• or relatively repressed if [R] > fm,l([A], n).

Hence, if we know the distribution of TF concentration across the developing
tissue, we can deduce the position of cells that will be activated or repressed
(Net Activated/Repressed Cell regions from now on). The information given
by the activation and repression regions, added to the knowledge of the
distribution of the transcription factors across the tissue, allows the analysis
of how the activation pro�le is distributed spatially.

3.4.2 Opposing TF gradients

The pattern of activated-or-repressed cells is essential in the development of
several biological systems. However, many morphogens, including Hedgehog,
create opposing activator and repressor gradients that control the proper for-
mation of these patterns. This is the case of for instance Drosophila's wing
development, by the target genes dpp and ptc [18, 102], among others. The
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study of the tissular activation/repression patterns due to opposing TF gra-
dients has been extensively studied via modi�cations of several biochemical
properties of the development system. Variations such as modi�cation of
TFs binding sites a�nities, or even the number of binding sites, have been
shown to have important e�ects in the pattern formation [83]. In order to
model these opposing TFs concentrations, we are going to assume that they
do not change over time and both are monotonic along the tissue,

[A] = [A](x) strictly decreasing and [R] = [R](x) strictly increasing
(3.44)

in terms of the position x in the tissue. Moreover, we will consider that total
amount of TFs

h(x) = [R](x) + [A](x) , (3.45)

is a non decreasing function on x. With this properties we obtain an spatially
opposed TF gradient, where the concentration of repressors increases, and
the concentration of activators decreases.

By (3.45), we have a curve in the [A] − [R] plane of the form ~γ(x) =
([A](x), [R](x)) (see �gure 3.2C). This curve, from (3.44), can be reparametrized
by [A] such as ~γ([A]) = ([A], φ([A])). It is important to note that φ([A]) is
a decreasing function since

φ′([A]) = R′([A]−1([A]))
1

[A]′([A])
< 0.

Now, please recall that the threshold function fm, l([A];n) is an increas-
ing function that divides the A-R plane in the Activation/Repression re-
gions. Hence, there exists an intersection point [A]0 such that φ([A]0 =
fm,l([A]0;n), and a position x0 such that ~γ(x0) = ([A]0, fm,l([A]0;n)). x0

de�nes a spatial boundary that establish two simple (and connected) regions
in the tissue: the net activated and repressed cells regions (NAC). This as-
sures that the transcriptional control of an opposing-gradient is enough to
establish activation patterns in the tissue, where the cells are either acti-
vated or repressed (see Fig. 3.2 B). Indeed, let us suppose that we have two
threshold functions f (1)

m,l([A];n) and f (2)
m,l([A];n) such as the activation region

of f (1)
m,l is higher than the activation region of f (2)

m,l (i.e., we have f
(1)
m,l > f

(2)
m,l

for all [A]). Then, it is easy to check that the intersection points [A]
(1)
0 (in

the position x(1)
0 ) and [A]

(2)
0 (in x(2)

0 ) with φ([A]) will maintain the order:

[A]
(1)
0 < [A]

(2)
0 → x

(1)
0 > x

(2)
0 . (3.46)

This is, �xing a concentration of opposing transcription factors gradient,
the higher the activation region is, the higher the number of activated cells
(NAC) we should obtain in the tissue. This proves the potential of the
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threshold function as an analytic tool in the modelling of transcription pro-
cesses. The information, given in terms of concentrations of transcription
factors inside of the cell, now can be decoded at tissular level outside the cell
via the analysis of fm,l([A];n).

As a matter of fact, it is important to remark that the monotonicity of
fm,l does not necessarily correspond to the monotonicity of the BEWARE
operator with respect to the TFs. Our analysis predicts concentration re-
gions where the BEWARE operators involving total cooperation can exhibit
behaviours of `inverse logic' such as increases in the transcription rate where
there is an increase in the concentration of repressors (or decreases where
there is an increase in the concentration of activators). We refer to this ef-
fect as the �pull-e�ect�, and it takes place when total cooperativity is very
strong. Indeed, the analysis performed allows us to describe in great detail
when these e�ects can be found (see A.3 for mathematical analysis, and Fig.
3.3 for a graphical explanation of these e�ects).

Figure 3.3: Inverse logic for a Recruitment BEWARE operator with total
cooperativity. (A) Activators inverse logic. (B) Repressors inverse logic.
Parameter values can be found in Table B.3 in Appendix B.
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3.4.3 Sensitivity analysis of the threshold functions: Elastic-
ity

In order to test out the change in the activation/repression regions, we have
analysed the behaviour of the threshold function fm,l under the following
perturbations:

1. proportional reduction in a�nity for the enhancers:

KA → ηKA and KR → ηKR being η ≥ 1 , (3.47)

2. decrease in the number of available binding sites:

n→ n− 1 . (3.48)

(3.47) represents the fact that an increase in the perturbation parameter
η corresponds to lower a�nities between the TFs and the enhancers, re-
membering that K∗ are dissociation constants. Our study predicts that the
response obtained by these perturbations are closely related in the case of
stimulated and recruitment operators. Although both alterations interfere
with the action of activators and repressors in the same way, it is surprising
that in all these models the response to perturbations (3.47) and (3.48) is
qualitatively predicted by the elasticity of the function fm,l,

εm,l([A];n) =
[A]f ′m,l([A];n)

fm,l([A];n)
≈

∆fm,l([A];n)/fm,l([A];n)

∆[A]/[A]
, (3.49)

where ∆fm,l([A];n) = fm,l([A] + ∆[A];n) − fm,l([A];n). ε is a quantity
usually used in Economics in order to measure a system's responses to pro-
portional perturbations [58]. It is also known as a condition number in
Numerical Analysis [44]. This index has also been introduced in biological
contexts, for instance in Ecology [19]. Indeed, there exists a direct relation-
ship between elasticity and the threshold response to perturbations (3.47)
and (3.48). This is, if we annalyse the sign of the variation of the threshold
with respect the perturbations (3.47) and (3.48), we can check that

sign

{
δfm,l
δη

([A];n)

∣∣∣∣
η=1

}
= sign {fm,l([A];n− 1)− fm,l([A];n)}

= sign {1− εm,l([A];n)} . (3.50)

This is applicable to recruitment and stimulated operators (m = r, s) in their
total and partial cooperativity versions (l = t, p). Please note, both identities
in (3.50) show that the Activation/Repression thresholds under signalling
interferences (3.47) and (3.48) react in the same qualitative manner. The
thresholds:
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• will decrease in the elastic regime, that is, if εm,l([A];n) > 1,

• will not be modi�ed in the unit elastic regime, that is, if εm,l([A];n) =
1,

• will increase in the inelastic regime, that is if εm,l([A];n) < 1.

We can interpret this result in terms of a loss of competitive advantage be-
tween the transcription factors. Binding cooperativity mechanisms between
TFs are the clearest example of this competitive advantage. If TFs cooperate
in their binding process this cooperation constitutes an advantage for such
TFs, and this advantage is clearly ampli�ed in the presence of

• high a�nity enhancers, because the �rst binding required for coopera-
tivity is more likely to occur,

• a high number of enhancers, because they allow improvement of TF's
a�nity by cooperativity.

So, perturbations (3.47) and (3.48) are clearly limiting the advantage given
by cooperativity. This is more obvious in the case of (3.48) since in the limit
case, n = 1, cooperativity can not operate at all. As we will see in next
section, binding cooperativity is not the only advantage we can detect by
means of the elasticity.

The inelastic case is interpreted as a situation where repressors �lose
their advantage� over the activators, since a global decrease in a�nity or
number of enhancers gives rise to an increase in the threshold, as seen in
(3.50), and consequently an increase of the activation region (see Fig. 3.2).
Remembering that, given a �xed activator concentration, an increase of the
threshold function implies that an increase of the repressor concentration is
needed in order to get the same transcription rate as the basal. That is to
say, the cells will enter in the activated state (i.e., transcription rates higher
than the basal) �more easily� in the new situation because the repressors'
advantage is not as e�ective as before. The same goes for the elastic case.
In this case, the activators seem to lose the bene�t of the advantage. Here
(3.50) shows that the thresholds decrease, so the activation region decreases,
because of perturbations (3.47) and (3.48). The unit elastic regime can
be seen as a stable situation, where none of the perturbations modify the
threshold (i.e., both activators and repressors have the same transcriptional
advantage and perturbations a�ect both in the same way). Please note also
that the same reasoning can be applied to proportional decrease in activators
and repressors concentrations because of de�nition (3.49). In Fig. 3.4 these
qualitative behaviours have been illustrated using a stimulated BEWARE
operator where three sets of parameters have been chosen to represent all
these situations.
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Figure 3.4: Activation-repression threshold variations under TFs sig-
nalling interferences (3.47) and (3.48). Thresholds determined by a stim-
ulated BEWARE operator exhibiting di�erent elasticities depending on the
values of the model parameters. Orange, green and purple continuous lines
are used to represent thresholds with elasticity greater than, equal to or less
than one respectively. In (A) perturbation (3.47) has been applied with
η = 10. In (B) perturbation (3.48) is where the number of enhancers
changes from n = 2 to n = 1. The thresholds after perturbations are de-
picted in both cases as dotted lines. Orange and purple arrows show the
threshold variations in the elastic and inelastic cases, since in the unit elas-
tic case (green threshold) there is no change, in accordance with eq. (3.50).
Parameter values can be found in Table B.4 in Appendix B, and the estima-
tion of the elasticities for these values are in Table 3.2.
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With the threshold de�nition (3.43), obviously fm,l([A] = 0;n) = 0 holds
true. So, the elasticity coe�cient has a very simple geometrical interpre-
tation: the comparison between the slope of the tangent line at the point(
[A], fm,l([A];n)

)
and the slope of the secant line intersecting the threshold

curve at the origin (0, fm,l(0;n)) and at the point ([A], fm,l([A];n)). That
is,

εm,l([A];n) > 1 ⇐⇒ f ′m,l([A];n) >
fm,l([A];n)− fm,l(0;n)

[A]− 0
.

This expression also tells us that if fm,l is convex then it is elastic. In the
same way, the concavity of fm,l implies being inelastic. Nevertheless, as we
can see in Fig 3.4, this geometrical interpretation of ε can not always be
easily recognised at �rst glance.

Although Hill models have been deduced in this work from the stimulated
and recruitment BEWARE operators by extreme cooperativity hypothesis,
these types of models do not inherit relationships (3.50). So this conceptual
streamlining loses the original relationship between perturbations (3.47) and
(3.48) and the elasticity function. Indeed, in Appendix A.6 it is proven that
Hill threshold functions exist but they are always straight lines whose slope
can change with the number of enhancers.

Lastly it is very important to remark that, knowing the behavior of the
threshold under perturbations (3.47) and (3.48), we automatically can de-
duce the behaviour of the Net Activated Cells regions. I.e., if under (3.47)
and (3.48) the threshold

• is elastic, then the NAC region decreases,

• is unit elastic, then the NAC region does not change,

• is inelastic, then the NAC region increases.

Which can be easily checked taking into account the relations (3.50) and
(3.46). With this we have ful�lled our main goal: to connect fruitfully the
molecular information that comes from the threshold function, with the tis-
sular information described at celular level.

3.4.4 Recruitment, Stimulated and Hill BEWARE opera-
tors: Threshold comparative analysis

The end of this section is devoted to comparing the e�ects of the perturba-
tions (3.47) and (3.48) on the activation/repression regions in terms of the
thresholds predicted by the di�erent BEWARE operators considered. This
study shows the existence of two main factors that are seen to determine
the model's response: the �rst one is the binding cooperativities involved in
the TF binding process and the second is how the transcriptional e�ects of
activators and repressors are modelled.
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In order to understand the cooperativity e�ects between TFs in their
binding process we have divided the partial cooperative case in two extreme
scenarios: activator cooperative (cA > 1, cR = 1) and repressor cooper-
ative (cA = 1, cR > 1) cases. Then, we have included the null and total
cooperative case in the same scenario, since the only di�erence between the
operators is the value of c (i.e., c = 1 for the null cooperative case and
c > 1 for the total cooperative case). This allows us to identify more easily
cases where the activators or repressors should lose �competitive advantages�
or not. Particular cases with partial cooperativity between activators and
repressors should be estimated numerically.

We analysed stimulated and recruitment BEWARE operators with each
kind of cooperativity, obtaining interesting (but unexpected) results which
are summarised in Table 3.2 (detailed proofs can be found in A.5.1 and A.5.2
).

Table 3.2: Analytical estimations of elasticity for thresholds deduced from
the BEWARE operators in the global activator/repressor framework. The
values t1, h1, t2, h2 appearing in the case of the stimulated operator with
two enhancers are de�ned in terms of the rest of the model parameters (see
A.5.2 in Supplementary Material, for explicit de�nitions).

Act coop. null/total coop. Rep coop.
Recr. ε > 1 ε = 1 ε < 1

Stim.
(n=2)

ε < 1 if ẽ>t2

ε ≤ 1 if ẽ<t2 & [A]≤h2

ε > 1 if ẽ<t2 & [A]>h2

ε < 1 if ẽ>t1

ε = 1 if ẽ=t1

ε > 1 if ẽ<t1

ε < 1 if ẽ>cRt1 & [A]>h1

ε ≥ 1 if ẽ>cRt1 & [A]≤h1

ε > 1 if ẽ≤cRt1
Hill ε = 1 ε = 1 ε = 1

From the modelling point of view (and following the intuition), the ex-
pected behaviour in relation to perturbations (3.47) and (3.48) should be:

• Null/Total cooperative case: The activators and repressors lose no com-
petitive advantage in the null case or lose exactly the same amount
of competitive advantage in the total cooperativity case. Hence the
threshold function should not vary (unit elastic case).

• Activator cooperative case: The activators lose that competitive advan-
tage over the repressors. Hence the threshold function should decrease
(elastic case).

• Repressor cooperative case: The repressors now lose the competitive
advantage over the activators. Hence the threshold function should
increase (inelastic case).

Estimations exhibited in Table 3.2 show that the Recruitment BEWARE
operator behaves as expected, that is, the elasticity of the thresholds deter-



3.4. Activation threshold and spatial genetic expression 67

mined by these operators are proven to be εr,p > 1 in the Activator Coopera-
tive case, εr,p < 1 in the Repressor Cooperative case and εr,t = 1 in the case of
null/total cooperativity. In the case of the Stimulated BEWARE operators,
the analysis of the elasticity variable (at n = 2) is more entangled. Here, the
elasticity value is related not only to the cooperativities but also to other pa-
rameters that determine each micro-state transcription rate. In fact, we can
observe that regardless of the (binding) cooperativity considered, we can get
elastic, inelastic or unit-elastic situations depending on certain relationships
between the parameters involved in the modelling. Let us explain this con-
clusion revealed by elasticity. Remembering that the basal transcriptional
level, corresponding to the transcriptional rate of an empty micro-state, in
this approach is tr∅,∅ = rbas. Here ∅ represents an enhancer with non bound
TFs. The transcriptional rates associated to micro-states with a single bound
activator/repressor are trA,∅ = rbas + ẽν

(2)
max = rbas + ν

(1)
max and trR,∅ = r̃rbas

respectively. If the linkage of a second TF of the same family occurs, then
the new transcription rates become trA,A = rbas + ν

(2)
max = rbas + ν

(1)
max/ẽ and

trR,R = r̃2rbas.
Let us observe that the ratio in the variation of the transcriptional rate

due to the binding of a repressor is constant regardless of the existence of
other already bound repressor, that is,

trR,∅
tr∅,∅

=
trR,∅
trR,R

= r̃ .

However, in the case of activators the analogous rates depend on the values
of ẽ, ν(1)

max and rbas

trA,∅
tr∅,∅

= 1 +
ν

(1)
max

rbas
and

trA,∅
trA,A

=
rbas + ν

(1)
max
ẽ

rbas + ν
(1)
max

and can vary from the �rst to the second binding protein. Then, the existence
of the second binding site implies

1. a transcriptional advantage for repressors if
trA,∅
tr∅,∅

>
trA,∅
trA,A

, because in
that case comparatively the binding of a second activator is less e�ec-
tive than the binding of a second repressor,

2. a transcriptional advantage for activators if
trA,∅
tr∅,∅

<
trA,∅
trA,A

, because in
that case comparatively the binding of a second activator is more ef-
fective than the binding of a second repressor,

3. no advantage for any TF when
trA,∅
tr∅,∅

=
trA,∅
trA,A

because in that case the
binding of a second TF is equally as e�ective as the �rst bound TF.

It is easy to check that (i), (ii) and (iii) directly correspond to the elastic,
inelastic or unit-elastic cases under null/total cooperativity determined in



68 Chapter 3. Transcription dynamics

Table 3.2. That is, in the absence of binding cooperativity, the advantage
that elasticity demonstrates is related to the possibility that the functioning
of two adjacent activators can be more/less e�ective together than sepa-
rately. Indeed, this �functional (anti-)cooperativity� mechanism is not new
in literature, it was already proposed in [63]. However, with the elasticity we
are able to analyse some speci�c cases of the models proposed in [63] and the
values that the elasticity function takes reveal inconsistencies with the mod-
elling guidelines proposed in that work (In Table B.4, we introduced some
identi�cations/choices that can be made in order to �t the model proposed
in [63] into the expression of a stimulated BEWARE operator). The last
row of Table 3.2, that is, the estimates of the elasticity corresponding to the
thresholds deduced from stimulated BEWARE operators with two enhancers
(n = 2). This analysis shows that there are acceptable parameter values for
the model that give us inelastic threshold functions that are fully compatible
with the non existence of �functional cooperativity� (εA = εR = 1 according
to notation in [63]). In Fig. 3.4, the inelastic threshold function (continuous
purple line) has been obtained using some of these parameters (see values in
Table B.4). In the same �gure we can see how perturbed thresholds vary ac-
cording to the elasticity being less than one. On the other hand, this model
was deduced without considering binding or functional cooperativity.

So, our analysis shows that the model in [63], deduced from non �func-
tional� and non �binding� a�nity assumptions, can have an inelastic thresh-
old. And it reacts as it has been proven to do under perturbations (3.47) and
(3.48). This can be seen in Fig. 3.4. Our argument supports the notion that
the asymmetric approach that has been adopted in stimulated operators for
modelling the activators and repressors functionalities is causing this e�ect.
The elasticity can also be estimated in the presence of partial binding coop-
erativity and we have seen that in both cases elasticity is able to balance the
e�ects of both cooperativities.

This unexpected e�ect needs to be taken into account in analysis such as
those developed in [18] because, if used, it can seriously alter the conclusions.
This example is one reason why we were interested in performing sensitivity
analysis in this work.

Regarding the Hill versions of the Recruitment and Stimulated operators,
we can say that εh = 1 for any kind of cooperativity and operator. However,
it is important to note that identities in (3.50) are not valid in this framework.
That is, the extreme cooperativity approach used to get the Hill type models
is incompatible with the information that elasticity provides.

3.5 Drosophila aplication

Along the present tesis we have been working with Hedgehog (Hh). In Dro-
sophila's wing imaginal disc the secretion of Hh from the Posterior com-
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partment cells induces the expression of several target genes inside the cells
in the Anterior compartment. Among them are decapentaplegic (dpp) and
patched (ptc). Both give rise to the synthesis of their corresponding proteins,
Dpp and Ptc, which are essential for the wing central domain development
[102, 105].In the embryonic ectoderm Hh also regulates wingless (wg) and
stripe (sr) genes. However, it is known that the same signal of Hh produces
di�erent spatial expression of theses genes. That is to say, the expression
of ptc is only limited to disc zones close to the Anterior/Posterior (A/P)
border with high Hh concentrations, while dpp expresses in a broader disc
range under low Hh concentrations (�gure 3.5). This poses a question: Why
does the same signal give rise to di�erent spatial expressions for di�erent
genes? The answer to this question is still under debate. The current under-
standing is that both genes respond, basically, to the same principles that
we list below.

Figure 3.5: Spatial expression of the genes patched (ptc), decapentaplegic
(dpp) and engrailed (en, not discussed in this thesis) in terms of the gradient
of Hedgehog (Hh). Even under the same concentration of morphogen, ptc is
expressed in a shorter region than dpp, depicted as High-Low (Hh) threshold
target genes. Image obtained from Tabata's work [102].

Hh transcriptionally controls both Dpp and Ptc through the transcription
factors Cubitus interruptus (Ci). As we already know, the transcription rate
of the target genes is controlled by the TFs, in this case Cubitus Interruptus.
Ci is present in two opposite forms: activator and repressor. The activators,
CiA, attempt to promote the transcription rate while the repressors, CiR,
attempt to decrease it. Please recall that Hh is secreted from the posterior
into the anterior compartment (at around 60% of the DV axis). In the
absence of Hh Ci appears in its repressed form but when the signal of Hh is
absorbed by the cell, Cubitus changes it role presenting its activator form.
So, the Hh gradient in the Anterior compartment creates opposing activator
(CiA) and repressor (CiR) gradients of the wing imaginal disc. This means
that we can model Cubitus as and opposing TF gradient, following what we
have seen in section 3.4.2. This is, [CiA](x) is a decreasing function with
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the distance x from the A/P boundary. On the other hand, the experiments
also shows that the total amount of Ci

h = [CiR](x) + [CiA](x) , (3.51)

is constant. Hence, the concentration of CiR must increase with the distance
from the A/P border. Following [83], we can model these concentrations with
an exponential function

[CiA](x) = he−x/
√
D , [CiR](x) = h− [CiA](x) , (3.52)

being h the TFs total concentration and D is the steepness of the gradient
(see subplot in Fig. 3.6B).

Some recent works [83, 116, 91, 2] postulate that the reason for the proper
spatial expression of these genes could be found in certain biochemical factors
involved in the transcription process. Firstly, the binding of both PollII
and Ci in the promoter and enhancer is carried out by chemical reactions.
As we have discussed in section 3.1, these require some free energy that is
commonly characterised by the binding a�nity. This a�nity depends on
several characteristics of the promoters and enhancers of each transcribed
gene. In fact, in [91] it was observed that the enhancers with lower relative
a�nity seem to be necessary to obtain normal expression of dpp in regions
of low signal. Secondly, it is possible that transcription factors that are
already bound in some enhancers can modify the a�nity of other binding
elements. In this case, bound TFs may modify the free energy of a later
binding reaction of either TF or RNAP via cooperativity.

The combination of all these biochemical factors (competition, cooper-
ativity and binding a�nities) gives rise to a very complex balance between
the concentration of activators and repressors making it di�cult to discern
their interacting e�ects at tissular level. In [83, 91], the spatial expression
of some of the Hh target genes was related to the respective binding a�n-
ity between Cubitus proteins and Hh/Ci module enhancers. The relative in
vitro a�nities of Ci sites in the ptc and dpp enhancers have been measured
by electrophoretic mobility shift assays (see [83]). In [116], the Ci binding
a�nity of four Ci sites in the wg embryonic ectoderm enhancer was measured
by using the same methodology. In [91], they predicted the binding a�nity
for Ci in the Drosophila genome for which Hh/Ci-regulated enhancers have
been functionally characterised. It has been observed that ptc is activated
by Hh/Ci in larval imaginal discs via a module with high-a�nity Ci sites,
by contrast, with the relative low-a�nity of dpp, wg and sr enhancers lo-
cated in their corresponding Hh/Ci modules. The experiments developed
in [83] con�rm that, under moderate Hh signal, the wild type low-a�nity
sites in dppD produce activation, whereas if they are substituted by high-
a�nity sites produce repression. Similar results were obtained in embryonic
enhancers of wg and sr in [91, 116].
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The large amount of biochemical variables that are present in the system
calls for mathematical models that can shed some light on the origins of the
di�erential spatial expression in the target genes of Hh, among others. In
the next section we will use our new BEWARE operator expressions in order
to have a better understanding of the transcriptional logic of target genes
controlled by a Hh/Ci module of enhancers.

3.5.1 The case of Ptc and Dpp: Cooperativity between re-
pressors

Since we have one gradient of activator (CiA) and one repressor (CiR), we
can discuss in terms of the Global Activator/Repressor variables without
loss of generality. Moreover, we can take advantage of this framework and
use the threshold function in order to analyze the variations of the Net Ac-
tivated Cells (NAC) regions introduced in section 3.4.1. We have discussed
how the elasticity analysis of the threshold function could be used in or-
der to deduce variations in the spatial expression of a gene. Hence we can
use the same reasoning in this particular case for the expression of ptc and
dpp. By the experiments, it is known that ptc shows a NAC region shorter
than dpp. Since we have shown that the spatial expression variation is re-
lated to the threshold variations, the idea that we propose here is to analyze
how the thresholds of ptc and dpp change with experimental perturbations,
in a Recruitment BEWARE operator. In particular, the experimental evi-
dences that motivate our analysis are mainly related with the a�nity and the
number n of binding sites. By electrophoretic mobility shift assays Parker
and coauthors found in [83] that Ci binding sites in the ptc enhancer have
considerably higher a�nity than dpp sites. The same authors constructed
transgenic �y lines that allow them to compare the transcriptional activity
of reporter genes containing di�erent variants of these sites modifying their
a�nity. Please recall that these modi�cations are the experimental realiza-
tion of the theoretical perturbations (3.47) and (3.48) that we de�ned in
section 3.4.3. Hence, we can use the results described in such section to
deduce theoretically e�ects in the system that can be supported with the
experimental evidences. Using the notation from [83, 91], we will work with
di�erent versions of the dpp enhancer, containing:

• n Low-a�nity sites dppD-nxCiWT , with n = 3, 1, similar to the WT
conditions of dpp enhancer.

• n High-a�nity sites (dppD-nxCiptc), with n = 3, 1, similar to the WT
conditions of ptc enhancer and

• three null-a�nity sites (dppD-3xCiKO).

The results obtained in their work can be resumed in the following three
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experiments:

Exp. 0: Measurement of the Basal transcription
The reporter gene with null-a�nity sites provided the basal expres-
sion, which by de�nition in the previous sections, can be used to de�ne
the NAC regions. Indeed, in [83, 91] the e�ects of Ci signalling with
low- or high-a�nity enhancers was measured comparing the gene ac-
tivity versus the basal in any cell. Cells expressing a gene with higher
expression rates than the basal level are called net activated cells, con-
stituting the NAC range. Fig 3.6 shows how this range is determined
by using our thermodynamic model in the same way as was done from
measurements in [83].

Exp. 1: Transcriptional e�ects of the reduction in binding sites
In dppD-1xCiptc, the range of net activated cells resulted wider than
the range of net activated cells for dppD-3xCiptc.

Essentially, the reduction from n = 3 to n = 1 binding sites implies
the vanishing of any possible kind of cooperativity between Cubitus.
If both activator and repressor interact with of total cooperativity, the
threshold function for the Recruitment operator should be unit elastic.
In such case, the interactions should be symmetric for CiA and CiR,
and hence their disappearance should not modify the balance between
net activated or repressed cellular ranges. However, the result obtained
in the �rst experiment of Parker and coauthors di�ers from this. The
NAC range changes with the reduction of the number of binding sites,
which should imply some kind of asymmetry in the interactions. This
could apply if partial cooperativity is present, either only between CiA
or CiR. In this case the reduction of sites would provoke a modi�cation
in the threshold, due to its (in)elasticity. This is, when the coopera-
tivity between activators is removed the NAC range should decrease
(elastic) and increase when the repressor cooperativity is abolished (in-
elastic). In Fig 3.7 the reader can �nd the graphical representation of
this reasoning for the �rst experiment.

Since the NAC region for CiA-CiR decreases with the number of en-
hancers, the theory deduces that there should be an asymmetric co-
operativity that enhances more interactions between CiR than CiA.
Moreover, by the relation (3.50), our model deduces that this behaviour
should be also reproduced if perturbation (3.47) takes place. This can
be corroborated with the second experiment of Parker et.al.

Exp. 2: Di�erential a�nity e�ects
In dppD-3xCiWT the range of net activated cells resulted wider than
the range of net activated cells for dppD-3xCiptc.
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Figure 3.6: Net activated cellular (NAC) range. A) Schematic of the
experiment for NAC range determination. The arrows represent all the possi-
ble interactions captured by a thermodynamic model determining the tran-
scription rates: double-headed straight arrows show protein-DNA binding
site a�nities while single-headed black and red arrows are TFs-RNAP and
TFs-TFs cooperativities respectively. The net activated cellular range of
dppD3xCiptc, a reporter gene with a version of the dpp enhancer with three
high-a�nity binding sites, is obtained by comparing its theoretical transcrip-
tional activity with the activity of dppD3xCiKO, a gen containing di�erent
version of the dpp enhancer containing three null-a�nity sites. Both cases
are represented in the upper and lower schemes respectively. TFs binding
sites are represented by rounded rectangles �lled in green (high-a�nity) or
black (null a�nity). B) Theoretical transcription rates predicted for both
genes in cells of the Anterior compartment. This compartment occupies the
60% of the Drosophila imaginal disc and the Posterior compartment the rest
(60% to 100%). The expression levels given by the BEWARE operators are
between 0nM/min and 1nM/min being the basal level equal to 0.5nM/min.
These reference expression levels have been chosen for a proper appreciation
of signal modulation. Since dppD3xCiKO has been modelled independent
of external factors it is expressed at basal level anywhere. Cells expressing
dppD3xCiptc more than the basal level are in the NAC range. The expression
of both genes in the wing imaginal disc is also indicated by using coloured
bars. The blue circle inside the bar, indicate the position of a cell expressing
dppD3xCiptc at the basal level. The color scale used in these bars is shown
in C) black meaning no expression (0nM/min), and full color meaning high
expression (1nM/min). The inset in B) depicts the activator/repressors
(CiA/CiR) gradients generated by Hh signalling: activator concentrations
are higher close to the Anterior/Posterior border. Model parameters used
in this plot can be found in Table B.5 of Appendix B. Image obtained from
[18].
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Figure 3.7: Transcriptional responses to the experiment 1. First col-
umn: schematic of the experiment 1: comparison of the expression ranges
of reporter genes with 3 high-a�nity sites (dppD-3xCiptc) and a single high-
a�nity Ci site (dppD-1xCiptc). A) corresponds to the non/total cooper-
ativity case where, if cooperativity holds, all the TFs cooperate between
them, C) to the activators cooperativity case, only activators cooperate,
and �nally E) to the repressors cooperativity case where only repressors co-
operate. Second column shows the di�erent transcriptional responses that
can be theoretically described depending on the case of cooperativity con-
sidered. The schemes and plots employ the same keys explained in Fig 3.6,
and perturbed parameters in Table B.6. Image obtained from [18].
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On the one hand, this result was expected from the biology itself. After
all, it is known that the WT expression of ptc is shorter than the WT
expression of dpp. However, on the other hand, this result is tremen-
dously interesting from the mathematical modeling point of view: It
provides a direct experimental proof of the property (3.50), which we
obtained theoretically and directly from the BEWARE model. More-
over, with this result we can deduce that the repressor cooperative
model is the only in concordance with the results observed for dppD-
3xCiptc and dppD-3xCiWT in [83] (see �gure 3.8).

Lastly, it is important to remark that the theory is also able to de-
duce the order (in size) of the NACs in each reporter gene. Let us consider
partial cooperativity between CiR, and the thresholds functions f1×CiPtc

r,p ,

f1×CiWT

r,p ,f3×CiWT

r,p , f3×CiPtc
r,p for each reporter gene. Then, taking into ac-

count the relation (3.50) and the fact that the threshold in the repressor
partial cooperative case is inelastic, we automatically get that

f1×CiPtc
r,p > f1×CiWT

r,p > f3×CiWT

r,p > f3×CiPtc
r,p

Which means that, by (3.46),

NAC1×CiPtc > NAC1×CiWT
> NAC3×CiWT

> NAC3×CiPtc

This is, the NAC range for dppD-1xCiptc should contain the NAC range
for dppD-3xCiWT , and the latest should contain the NAC range for dppD-
3xCiptc. This has also been corroborated experimentally, where in [83] it can
be observed that the NAC ranges for dppD-1xCiptc, dppD-CiWT and dppD-
3xCiptc occupy from the 43%, 49% and 54% of the disc width, respectively,
to the A/P border (which is around to the 60% of the disc width).
With this we get to the end of this chapter, and the main contents of the
thesis. In next chapter we will discuss some on-going works, as well as
possible modi�cations that can improve the models presented in previous
chapters.
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Figure 3.8: Transcriptional responses to the experiment 2. Figures
in the �rst column: schematic of the experiment 2: comparison of the ex-
pression ranges of reporter genes with 3 high-a�nity sites dppD-3xCiptc or
3 low-a�nity site dppD-3xCiWT . TFs-DNA binding site a�nities are indi-
cated by thicker or thinner double-headed straight arrows. A) correspond to
the non or total cooperativity case where, if cooperativity holds, all the TFs
cooperate between them, C) to the activators cooperativity case, only acti-
vators cooperate, and �nally E) to the repressors cooperativity case where
only repressors cooperate. Figures in the second column shows the tran-
scriptional responses that can be theoretically described depending on the
case of cooperativity considered. The schemes and plots employ the same
keys explained in Fig 3.6, and perturbed parameters in Table B.6. Image
obtained from [18].



Chapter 4

Results, conclusions and future

work

Along chapters 2 (Cytonemes) and 3 (Transcription dynamics), we have in-
troduced and developed di�erent mathematical models in di�erent biological
scales. The application of these models have been tested in each chapter,
using experimental evidences in di�erent stages of Drosophila's �y develop-
ment. The results reveal that each model is able to, at some extent, capture
the complexity of the systems. More speci�cally,

• In Chapter 2: we saw that a glypican-concentration based potential
theory can deduce cytonemes orientations in di�erent tissues. The
results have been tested in Drosophila's imaginal disc, in both Wild-
Type and overexpression conditions, obtaining cytoneme trajectories
that resemble the experimental ones.

• In Chapter 3: we saw that, using the correct hypotheses and general
notation, the thermostatistical approach (i.e., BEWARE operators)
can be reformulated as polynomical expressions. These allow novel
mathematical and sensitivity analysis, that are able to connect di�er-
ent biochemical properties with elements that are de�ned at higher
scales. Among these, we have been able to obtain the Threshold func-
tion. This is a strong tool that relates the tissue spatial information
of an expressed protein, with cellular biochemical properties such as
TF-TF;TF-PolII cooperativity, binding a�nity and enhancers. The
results have been tested in Drosophila's Hh pathway, in di�erent tar-
get genes (ptc and dpp) that are controlled by the same concentration
of transcription factors (Ci). The model is able to predict what is
the biochemical framework that better �ts the experimental evidences.
Moreover, the developed tools can be applied to perform straightfor-
ward sensitivity analysis and �tting of the model parameters.

However, it is important to remark that these model are in their initial states,
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subjected to changes and possible improvements:

• Cytonemes model: In Chapter 2 we have deduced the trajectories of
the cytonemes in terms of the vector �eld ~O(~r, t). However, note that
we are not still saying anything about the e�ect that these trajectories
have over the �ux of morphogen. Recall that, in the case of Drosophila,
Hh is produced by cells in the Posterior compartment. Then, it is
traded via cytonemes to the cells in the Anterior compartment. It
is in these cytoneme-cytoneme contacts (in biology terms, synaptic
buttons), where the vesicles of Hh are interchanged. Hence, in order
to describe mathematically how the gradient of Hh is formed in the
imaginal disc, we need to determine an equation that describes the
vesicles �ux along the cytonemes, and the cytoneme-cytoneme contacts
(some works has already proposed brand new mathematical models in
this framework, such as in [66]). Please note that the vesicles �ux
should be described over the curve ~γ described in (2.25). Hence, the
�ux equations may be described in a dynamic 1-manifold, making the
problem highly non-linear. This is a work that is still on process, in
collaboration with Isabel Guerrero's laboratory (CBM, Madrid).

• BEWARE operator model: In Chapter 3 we have deduced the BE-
WARE operator in general for any number M of transcription factors
and n binding sites. Remarkably, we have also deduced possible hy-
pothesis that makes possible the reduction to an M = 2 system (what
we called the Global Activator/Repressor variables, in Section 3.3). In
this framework, we have deduced the threshold function, which has
proven to be an essential tool for most of our analysis. It is important
to recall that the threshold function is de�ned as the solution of the im-
plicit equation (3.43). We have shown that the threshold exists, and it
is unique in the case ofM = 2. This de�nes a curve (i.e., 1-manifold) in
the [A]− [R] plane. The question now arises: is it possible to prove the
existence of threshold for any numberM of transcription factors? And
if that is the case, what is the behavior of the (M−1)-manifold thresh-
old in the space of ~T? Answering these questions, we could repeat the
questions that we did in the Global Activator/Repressor framework:
relating the spatial expression of any gen with the biochemical prop-
erties for any number of TFs, obtaining sensitivity annalysis for any
parameter, etc. This is a model extension that may me tackled in the
future.

4.1 Future work: Burst dynamics

In this last section we are going to introduce brie�y some of the current
work developed during the research stay done by the author of the thesis.
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The stay took place in the Institute of Quantitative Biosciences (University
of Tokyo), at Dr. Takashi Fukaya's laboratory. There, the research team
focused on the annalysis of the transcription dynamics at cellular level.

Recent advances in microscopic visualization technology have made pos-
sible to analyze events occurring in gene transcription with high precision
and temporal resolution [41]. Let us remember that in Chapter 3 we already
discussed the temporal relationship that existed between the evolution of
the transcription to which a certain gene was copied with its protein prod-
uct. The time scale in which proteins are produced is much longer than the
scale in which the various events occur in DNA to result in transcription
[62, 90]. Let us remember that these events are related to the anchoring
/ undocking of both RNA polymerase and the transcription factors in the
promoter and number of enhancer binding sites. These, in balance, give
rise to an average protein synthesis level that depends on both the position
in the tissue (regulated by the concentrations of transcription factors), and
the biochemical properties themselves in the cells that populate said region.
However, recently the scienti�c community is making great e�orts to follow
this process on a much smaller scale, focusing on analyzing the problem in a
way that is much more focused on the discrete transcription itself. Indeed,
as shown in Fig. 4.1, the experiments reveal punctuated peaks and troughs
in the number of active RNAP molecules (and in consequence, the number
of copies of mRNA). These features have been related to the rate of RNAP

Figure 4.1: Transcription bursts in Drosophila embryo, in the gene snail.
A) Scheme of sna promoter and enhancer (shadow enhancer in the pic). B)
Transcription bursts of sna. The y-axis represents the number of transcripts
in �uorescence intensity (see [38] for details of the experimental setup). Im-
age also obtained from [38].

initiation is `burst-like' [107], with the promoter rapidly loading multiple
RNAP molecules onto the gene at a constant rate during discrete `bursts' of
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activity [13]. This and other evidence from live imaging [13, 39, 23], as well
as data from �xed-tissue approaches [124, 82, 73, 118], support the idea that
mathematical models should take into account the stochastic events of PolII
binding in the promoter. In particular, recently the scienti�c community
proposes what is called a 2-state Continuous-Time Markov Model (CTMM)
of promoter switching [84, 119, 64].

4.1.1 Two-state model

In this model, promoters switch stochastically between ON and OFF states
with rates kON and kOFF . This is, kON and kOFF are the rate parameters of
two exponential random variables, each one representing the time between
each OFF-ON and ON-OFF state jump such that

Pt(t;OFF → ON) = kONe
−kON t (4.1)

is the probability distribution of the time between OFF-ON events and

Pt(t;ON → OFF ) = kOFF e
−kOFF t (4.2)

is the probability distribution of the time between ON-OFF events. Pro-
moters in the ON state engage in the loading of PolII (and, correspondingly,
mRNA production) at rate r [106, 42] (see Fig. 4.2)1. It is important to
note that this process happens inside of any cell. As we saw in the previous
chapter, the tissular position of the cells is important for the synthesis of the
proteins, which was regulated by the spatial morphogen gradient and concen-
tration of transcription factors. Hence, normally the ON/OFF ratios depend
on the position ~r that the cell occupies in the tissue (i.e., kON = kON (~r) and
kOFF = kOFF (~r)). A two-state model is de�ned by a master equation of two

Figure 4.2: Two-state model of bursting of a single promoter. The promoter
switches between the states OFF (PolII unbound) and ON (PolII bound)
with rates kON and kOFF , respectively.

ordinary di�erential equations:{
d
dtp(OFF ;~r, t) = −kON (~r)p(OFF ;~r, t) + kOFF (~r)p(ON ;~r, t) ,

d
dtp(ON ;~r, t) = kON (~r)p(OFF ;~r, t)− kOFF (~r)p(ON ;~r, t) ,

(4.3)

1This is just one (and the simplest) way of developing a two-state model. Please refer
to [84] for a complementary discussion.
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being p(OFF ;~r, t) and p(ON ;~r, t) the probability for the promoter of being
in the OFF and ON states, inside of a cell positioned at position ~r in the
development tissue and time t, respectively. The system (4.3) can be also
rewritten in the matricial form

d

dt
~P (~r, t) = ~P (~r, t)Q(~r) (4.4)

with ~P (~r, t) = (p(OFF ;~r, t), p(ON ;~r, t)) and

Q(~r) =

(
−kON (~r) kON (~r)
kOFF (~r) −kOFF (~r)

)
(4.5)

is called the Q-Matrix of the two-state CTMC, for each cell at position ~r.
Additionally, we could compute the approximate variation of the copies of
produced mRNA as

d

dt
[mRNA](~r, t) = r

d

dt
p(ON ;~r, t) , (4.6)

where for the sake of simplicity we are not taking into account the mRNA
degradation term. Please also recall that this step is closely related to the
Recruitment hypothesis that we took in Section 3.1.3. There, we assumed
that the production of protein P was proportional to the number of copied
mRNA, which at the same time was proportional to the probability of �nding
PolII in the promoter. The main di�erence here is that those probabilities
were considered stationary (see Hypothesis H1 in Section 3.1.1), since the
time scales for the evolution of protein P were bigger than the time scale
of the binding events. Now we are trying to understand the transcriptional
bursting dynamics, starting from a smaller time scale where the events are
governed by the promoter states. This is what motivates the use of stochastic
models, as for instance the two-state CTMM. However, as a matter of fact,
normally (4.6) is not used. The main reason is that the study of discrete
burst events can be estimated more straightforwardly with the parameters
of the two-state model.

4.1.2 Burst properties in the two-state model

Following [124], from (4.4) several properties related to the bursts can be
obtained. Firstly, by (4.1) it is straightforward to see that the expected
value for the time in the OFF state is

tOFF =
1

kON
. (4.7)

By the same reason, using (4.2) we see that the expected the expected value
for the time in the ON state (also known as burst size in the literature) is

tON =
1

kOFF
. (4.8)
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This allows us to de�ne the expected burst frequency in the promoter activity
as

f =
1

tON + tOFF
=

kONkOFF
kON + kOFF

= kOFF 〈ON〉 , (4.9)

being

〈ON〉 =
kON

kON + kOFF
. (4.10)

Please note that (4.10) can be seen as the mean promoter occupancy. In
fact, it easy to check that this magnitude is, indeed, the stationary solution
of p(ON ;~r, t) in (4.3). Moreover, it is important to recall that (4.8)-(4.10)
are de�ned at each cell position ~r, since the rates kOFF and kON are cell-
dependent. This means that the burst dynamics could also depend on the
tissular position, which is indeed the case (see next section). However, why
these rates change with the tissular position is still under debate.

Some recent works [70] propose logistic regressions of these parameters
with the transcription factors. However, the importance of considering the
combinatory behaviour of the transcription factors in the enhancers has been
already pointed out in several works [120, 100]. Moreover, the interaction
between the enhancers and promoter is an important and emerging �eld [40].
This is, enhancers are thought to be responsible for driving transcriptional
bursting from their target promoters [38]. Our plan is to study these two
components (TFs and enhancer-promoter interactions) by using stochastic
models similar to (4.4). However, in order to take into account the tran-
scription factors in the burst dynamics, we would need to modify the 2-state
model. I.e., we may need to take into account all the possible enhancer-
promoter states (this is, all the states compatible to the state space Ω de�ned
in (3.11)), with di�erent transition rates that could be governed by the asso-
ciation (+) / dissociation (-) reaction dynamics of each transcription factor
(see Fig. 4.3).

This approach opens new interesting questions, from both the theoretical
and experimental point of view. As we saw in Fig. 4.1, the bursts appears
to have some kind of oscillatory behavior. This could come from the balance
between the binding events that occur in the enhancer, where ON states help
the transitions to other ON states (cooperativity). Interestingly, there are
some works that analyze the existence of cycles in multi-state Markov Chains
[60]. Hence, there could exist a connection between TF-TF cooperativity,
promoter-enhancer interactions, and the periodicity of the states. Moreover,
the combination of experiments and stochastic numerical methods applied to
Markov Chains (suchs as Viterbi, Forward-Backward Algorithms, etc) would
be required in order to get to the point of the question. This is an exciting
question that is still on preparation, done by the author of the thesis in
collaboration with Takashi Fukaya's Laboratory (IQB, Tokyo).
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Figure 4.3: Scheme for the extension of the 2-state model of bursting, for
single promoter controlled by M transcription factors. The scheme depicts
the possible transitions for a state [T j11 ...T jMM PolIIjP ]. The dotted arrows
stand for the remaining reactions (not drawn in the scheme), for j2, ..., jM−1.
The notation of the scheme is the same as the one used in Chapter 3.
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Appendix A

Proofs

A.1 Proof of equation (3.24)

In order to obtain equation (3.24) we �rst describe an iterative rule which
will allow us to concrete the desired result for any mixed cooperativity con-
�guration, covering as particular cases total and partial cooperativity.

Lemma 1.1 Let us assume a general mixed cooperativity con�guration C =
{{T1}c1 , ..., {TN}cN }, where Ii denotes the indices of ~x ∈ RM of the N sub-
groups of TFs cooperating with cooperativity constant ci. Let us consider ~xi
a vector collecting all the values xh with h ∈ Ii. Then,

i) the reordering of the values xh does not a�ects to expression (3.19), in
particular,

S(n)
e

(
(x1, . . . , xM );

{
{T1}c1 , ..., {TN}cN

})
= S(n)

e

(
(~x1, . . . , ~xN );

{
{T1}c1 , ..., {TN}cN

})
. (A.1)

ii) The value of S
(n)
e evaluated on N cooperating subfamilies of TFs admits

a a decomposition as the addition of two S
(n)
e functions evaluated on

N − 1 cooperative families, accordingly to next iterative rule:

S(n)
e

(
(~x1, . . . , ~xN−1, ~xN );

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}cN

})
=

1

cN
S(n)
e

(
(~x1, . . . , ~xN−1, cN~xN );

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})
+

(
1− 1

cN

)
S(n)
e

(
(~x1, . . . , ~xN−1,~0);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})
.

Proof.
Assertion i) is obviously true since the value of S(n)

e depends multiplicatively
of xi.
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In order to proof ii), let us reorder the vector of indexes ~j = (~j1, . . . ,~jN ),
being ~jN = (jα+1, . . . , jM ) the M − α TFs cooperating with cooperativity
cN . By splitting the addition in terms those terms where ~jN is null and those
where it is not we can rewrite

S(n)
e

(
(~x1, . . . , ~xN );

{
{T1}c1 , ..., {TN}cN

})
=

1

cN

∑
|~j|≤n
|~jN |≥1

(
N−1∏
i=1

c
(|~ji|−1)

+

i

)
n!

M∏
i=0

ji!

ej0

(
α∏
i=1

xjii

)(
M∏

i=α+1

(cNxi)
ji

)

+
∑
|~j|≤n
|~jN |=0

(
N−1∏
i=1

c
(|~ji|−1)

+

i

)
n!

M∏
i=0

ji!

ej0

(
α∏
i=1

xjii

)
. (A.2)

Then, adding and subtracting the term

1

cN

∑
|~j|≤n
|~jN |=0

(
N−1∏
i=1

c
(|~ji|−1)

+

i

)
n!

M∏
i=0

ji!

ej0

(
α∏
i=1

xjii

)(
M∏

i=α+1

(cNxi)
ji

)

in previous expression we get (A.2)

S(n)
e

(
(~x1, . . . , ~xN );

{
{T1}c1 , ..., {TN}cN

})
=

1

cN

∑
|~j|≤n

(
N−1∏
i=1

c
(|~ji|−1)

+

i

)
n!

M∏
i=0

ji!

ej0

(
α∏
i=1

xjii

)(
M∏

i=α+1

(cNxi)
ji

)

+

(
1− 1

cN

) ∑
|~j|≤n
|~jN |=0

(
N−1∏
i=1

c
(|~ji|−1)

+

i

)
n!
α∏
i=0

ji!

ej0

(
α∏
i=1

xjii

)

=
1

cN
S(n)
e

(
(~x1, . . . , ~xN−1, cN~xN );

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})
+

(
1− 1

cN

)
S(n)
e

(
(~x1, . . . , ~xN−1,~0);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})
.

�
Previous iterative property allow us to face up the proof of equation

(3.24).
Proof of equation (3.24) The proof of the formula stated can be done

by induction over the number of cooperating subfamilies. As mentioned in
the main text, expression (3.24) reduces to (3.25) in the case of a single
cooperating family, that is N = 1. (3.25) can be easily deduced by ap-
plying Lemma 1.1 and taking into consideration (3.23). Let us assume as
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inductive hypothesis that (3.24) is valid when there exists N −1 cooperative
subfamilies. Then, by using twice Lemma 1.1 we can write:

S
(n)
e

(
(~x1,...,~xN−1,~xN );

{
{T1}c1 ,...,{TN−1}cN−1

,{TN}cN
})

= 1
cN

S
(n)
e

(
(~x1,...,~xN−1,cN~xN );

{
{T1}c1 ,...,{TN−1}cN−1

,{TN}1
})

+
(

1− 1
cN

)
S

(n)
e

(
(~x1,...,~xN−1,~0);

{
{T1}c1 ,...,{TN−1}cN−1

,{TN}1
})

=
S

(n)
e

(
(~x1,...,~xN−2,cN−1~xN−1,cN~xN );

{
{T1}c1 ,...,{TN−2}cN−2

,{TN−1∪TN}1

}})
cNcN−1

+

(
1− 1
cN−1

)S(n)
e

(
(~x1,...,~xN−2,

~0,cN~xN );

{
{T1}c1 ,...,{TN−2}cN−2

,{TN−1∪TN}1

})
cN

+
(

1− 1
cN

)
S

(n)
e

(
(~x1,...,~xN−1,~0);

{
{T1}c1 ,...,{TN−1}cN−1

,{TN}1
})

(A.3)

Since all the S(n)
e operators are evaluated on data with onlyN−1 cooperating

subfamilies we can apply them the inductive hypothesis and observe that:

• the �rst term on the right hand side of (A.3) would correspond to all
the additive terms in the right hand side of (3.24) with multi-indices
of the form (h1, . . . , hN−2, 1, 1),

• the second term on the right hand side of (A.3) would correspond to
all the additive terms in the right hand side (3.24) with multi-indices
of the form (h1, . . . , hN−2, 0, 1),

• the third term on the right hand side of (A.3) would correspond to all
the additive terms in the right hand side (3.24) with multi-indices of
the form (h1, . . . , hN−2, hN−1, 0),

where all the hj can be 0 or 1. In consequence the addition of the three
terms in (A.3) coincides with expression on the right hand side of (3.24)
which concludes the proof. �

A.2 Deduction of the general Hill BEWARE oper-
ators

In order to deduce expressions (3.32)-(3.35) we need to recall �rst the general
expressions of the Regulation Factor (3.20), Basal (3.21) and Promoter (3.22)
functions de�ned in terms of the polynomial function (3.19). Since all these
functions are written in terms of rational relations between Se, we can de�ne
a general rational function

R(n) =
S

(n)
e1 ((x1/K, ..., xM/K); {{X1}c, ..., {XN}c})
S

(n)
e2 ((y1/K, ..., yM/K); {{Y1}c, ..., {YN}c})

(A.4)
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with S(n)
e de�ned in the mixed cooperative case (3.24). Then, if we de�ne

the global a�nity constant Kd = Kn/cn−1, we can rewrite (A.4)

R(n) =

∑
|~h|∞≤1
~h∈NN0

(
e1 +

N∑
j=1

hjc
∑
i∈Ij

xi
K

)n
N∏
j=1

(1− 1
c )

1−hj

chj

∑
|~h|∞≤1
~h∈NN0

(
e2 +

N∑
j=1

hjc
∑
i∈Ij

yi
K

)n
N∏
j=1

(1− 1
c )

1−hj

chj

=

∑
|~h|∞≤1
~h∈NN0

(
e1 + c

K

N∑
j=1

hj
∑
i∈Ij

xi

)n
N∏
j=1

(c− 1)1−hj

∑
|~h|∞≤1
~h∈NN0

(
e2 + c

K

N∑
j=1

hj
∑
i∈Ij

yi

)n
N∏
j=1

(c− 1)1−hj

=

∑
|~h|∞≤1
~h∈NN0

(
e1 + c1/n

K
1/n
d

N∑
j=1

hj
∑
i∈Ij

xi

)n
N∏
j=1

(c− 1)1−hj

∑
|~h|∞≤1
~h∈NN0

(
e2 + c1/n

K
1/n
d

N∑
j=1

hj
∑
i∈Ij

yi

)n
N∏
j=1

(c− 1)1−hj

.

By splitting the sums in those terms that have |~h|∞ = 0 and |~h|∞ = 1 we
�nally get

R(n) =

(c− 1)N + c
Kd

∑
|~h|∞=1
~h∈NN0

(
K

1/n
d

c1/n
e1 + c1/n

K
1/n
d

N∑
j=1

hj
∑
i∈Ij

xi

)n
N∏
j=1

(c− 1)1−hj

(c− 1)N + c
Kd

∑
|~h|∞=1
~h∈NN0

(
K

1/n
d

c1/n
e2 + c1/n

K
1/n
d

N∑
j=1

hj
∑
i∈Ij

yi

)n
N∏
j=1

(c− 1)1−hj

.

Please note that both (c− 1)N and

c

Kd

∑
|~h|∞=1
~h∈NN0

K1/n
d

c1/n
e1 +

c1/n

K
1/n
d

N∑
j=1

hj
∑
i∈Ij

xi

n
N∏
j=1

(c− 1)1−hj
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are polynomials of degree N in the c variable, since |~h|∞ = 1 automatically

implies that
N∑
j=1

1−hj ≤ N −1. We are interested on computing lim
c→∞
Kd=cte

R(n),

hence by l'Hôpital's rule the only terms that will remain in the limit will be
those coe�cients that multiply to cN , this is, those terms such as |~h| = 1:

lim
c→∞
Kd=cte

R(n)

=

1 + 1
Kd

∑
|~h|=1
~h∈NN0

(
N∑
j=1

hj
∑
i∈Ij

xi

)n

1 + 1
Kd

∑
|~h|=1
~h∈NN0

(
N∑
j=1

hj
∑
i∈Ij

yi

)n =

Kd +
N∑
j=1

(∑
i∈Ij

xi

)n

Kd +
N∑
j=1

(∑
i∈Ij

yi

)n . (A.5)

Please note that we can now directly deduce the expressions (3.32)-(3.35)
assuming that Ki = K and ci = c for all i = 1, ...,M .

A.3 Existence/non existence of inverse logic in the
activator/repressor framework: pull e�ect

In this Appendix we are going to analyse the consistency of previous ex-
pressions with the fundamental notion of activators established in [33], this
is, when activator concentrations are scaled up then the transcriptional ac-
tivity increases. Analogously, it can be declared the fundamental notion of
repressors saying that increases in repressor concentrations would diminish
transcriptional activity. This basic idea is translated mathematically into:

∂BEWARE
(
([A], [R]), [PolII]; C

)
∂[A]

> 0 , (A.6)

∂BEWARE
(
([A], [R]), [PolII]; C

)
∂[R]

< 0 . (A.7)

However, as we will show this basic logic may not hold in some of the
proposed models, and e�ects of `inverse control logic' (i.e., an inversion on
the inequalities (A.6) and (A.7)) can appear. In this case, both versions of
modelling stimulated and recruitment, coincide predicting that this inverse
logic would happen in the presence of strong enough cooperativity between
activators and repressors. Furthermore, they coincide predicting that in the
presence of cooperativity only between TFs of the same nature, that is partial
cooperativity, the basic activator/repressor logic (A.6)-(A.7) always holds.

The results of the performed analysis are summarised in next Lemma.
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Lemma 3.2 BEWARE operators (3.13)-(3.16) depending only on two func-
tional opposite TFs

i) can exhibit inverse control logic when total cooperativity is considered.
This occurs for large enough cooperativities for certain ranges of the

parameters a, r, ν
(n)
max and rbas stablished in Table A.1.

ii) However, this basic control logic always holds when partial cooperativity
(3.9) is considered.

Table A.1: Parameter requirements for existence of inverse logic for bifunc-
tional BEWARE operators in presence of total cooperativity.

Act. Inv. Log. (A.6) Rep Inv. Log. (A.7)

Recruitment r < a
1

1−n & c > cath r > a1−n & c > crth

Stimulated ν
(n)
max
rbas

< 1−r̃n−1

(ẽr̃)n−1 & c > c̃ath
rbas

ν
(n)
max

< ẽr̃
1−r̃ & c > c̃rth

The analysis developed in this Appendix for proving Lemma 3.2 also al-
lows to describe the values of the concentrations that give rise to inverse
logic. In the presence of relative low concentrations of activators (this is, low
activators concentrations compared to the concentrations of repressors), the
system could show an unnatural response to an increase of the activators,
presenting a decrement in the transcription rate (BEWARE function). This
`pull e�ect' is a direct consequence of the total cooperativity. Since an in-
crease of the activator concentration implies more activator bindings, these
additional bindings improve the cleavage of any other transcription factor,
included repressors. Taking into account that there is higher concentration
of repressors in the system than activators, it is much more likely to `pull'
repressors in the enhancers, �nding in consequence more states with more re-
pressors than activators (i.e., more repression and hence less transcription).
The delicate balances occurring in that case between activation, repression,
a�nities and binding cooperativity is re�ected in Table A.1. Fig 3.3 il-
lustrates these e�ects. Although behavioural tendencies (A.6)-(A.7) could
appear to be very naive their relevance in our logical scheme is undoubtable.
This can be seen in the proof of Proposition 4.1 where the existence of ac-
tivation/repression thresholds is stated. In those cases where (A.6)-(A.7)
does not hold, this requieres an extra e�ort in order to apply the Implicit
Function Theorem. This kind of basic properties are also really relevant in
speci�c applications, as for instance in repressilator type models [25].

In these arguments it will be helpful to use the positive symmetric func-
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tions de�ned by:

Hn(X,Y ) =
n−1∑
i=0

XiY n−1−i for any X ,Y ∈ (0,+∞) (A.8)

when n > 1 and H1(X,Y ) = 1 when n = 1.
It can be easily checked that using this notation we have

Xn−1 − Y n−1 = Hn−1(X,Y )(X − Y ) =
Hn−1(X,Y )

Hn(X,Y )
(Xn − Y n) n ≥ 2.

(A.9)
We will employ in the subsequent several easy properties of these functions
collected in next Lemma.

Lemma 3.3 Let X ,Y ∈ (0,+∞), then

1. Hn−1(X,Y )
Hn(X,Y ) is strictly decreasing with respect to X and Y.

2. If X > Y , the following relations are ful�lled

1
Y
n−1 +X

≤ Hn−1(X,Y )

Hn(X,Y )
≤ 1

X
n−1 + Y

.

3. If Z ≤ X then Hn−1(X,Y )
Hn(X,Y ) Z < 1.

Proof
Properties i) and ii) can be trivially proven by using the identities:

Hn−1(X,Y )

Hn(X,Y )
=

1
X∑n−2

i=0 (Y/X)i
+ Y

=
1

Y∑n−2
i=0 (X/Y )i

+X
.

Estimate iii) can be also check by considering

Hn−1(X,Y )

Hn(X,Y )
Z =

n−2∑
i=0

Y iXn−2−iZ

n−1∑
i=0

Y iXn−1−i
≤

n−2∑
i=0

Y iXn−1−i

n−1∑
i=0

Y iXn−1−i
< 1 .

�

A.3.1 Existence of inverse logic in presence of high total co-
operativity

This sub-appendix is devoted to prove statement i) in Lemma 3.2. That is,
in presence of strong enough total cooperativity recruitment and stimulated
approaches predict that the intuitive behavioural tendencies (A.6) or (A.7)
can be violated. For the sake of simplicity, we will note x̃ = c[A]

KA
and ỹ = c[R]

KR
.
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• Activators inverse logic for the Recruitment BEWARE operator
Since the recruitment BEWARE operator is increasing with respect to
the regulation factor operator, we have

sign

{
∂BEWAREr

(
([A], [R]), [PolII]; {A,R}c

)
∂[A]

}

= sign

{
∂Freg

(
(x̃, ỹ); {A,R}c

)
∂x̃

}
= sign

{
(c− 1)

(
aᾱn−1

r − αn−1
r

)
+ ᾱn−1

r αn−1
r (aαr − ᾱr)

}
(A.10)

where ᾱr = ᾱr(x̃, ỹ) = 1+ax̃+rỹ, αr = αr(x̃, ỹ) = 1+ x̃+ ỹ. Since we
are assuming r < 1 < a we have that aαr − ᾱr > 0. This proves that
in absence of cooperativity (c = 1) the sign of (A.10) will be always
positive. Nevertheless, if aᾱn−1

r −αn−1
r takes a negative value and c is

high enough, that it,

c > 1 +
ᾱn−1
r αn−1

r (aαr − ᾱr)
αn−1
r − aᾱn−1

r
(A.11)

the sign of (A.10) can become negative. It can be checked that
(
aᾱn−1

r −
αn−1
r

)
< 0 if and only if a

1
n−1 r < 1 and in that case it would occur for

values in the cone

Hr,a =

{
(x̃, ỹ) ∈ (R+

0 )2; ỹ >
(a

1
n−1 − 1) + (a

n
n−1 − 1)x̃

1− a
1

n−1 r

}
.

Thus, for any

c > cath = inf
(x̃,ỹ)∈Hr,a

{
1 +

ᾱn−1
r αn−1

r (aαr − ᾱr)
αn−1
r − aᾱn−1

r

}
we can assure that there exist some values (x̃, ỹ) ∈ H such that the
sign computed in (A.10) will be negative.

• Repressors inverse logic for the Recruitment BEWARE operator
By an analogous argument we get

sign
{
∂BEWAREr([A], [R], [PolII]; {A,R}c)

∂[R]

}
= sign

{
∂Freg(x̃, ỹ)

∂ỹ

}
= sign

{
(c− 1)

(
rᾱn−1

r − αn−1
r

)
+ ᾱn−1

r αn−1
r (rαr − ᾱr)

}
(A.12)
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Since we are assuming r < 1 < a we now have that rαr−ᾱr < 0. Thus,
the sign of (A.12) will be always negative in absence of cooperativity
c = 1 . On the other hand, if

(
rᾱn−1

r − αn−1
r

)
takes a positive value

and c is high enough, that it,

c > 1 +
ᾱn−1
r αn−1

r (ᾱr − rαr)
rᾱn−1

r − αn−1
r

(A.13)

the sign of (A.12) can become positive. It can be checked that
(
rᾱn−1

r −
αn−1
r

)
> 0 if and only if ar

1
n−1 > 1 and in that case it would happen

for values in the cone

Hr,r =

{
(x̃, ỹ) ∈ (R+

0 )2; x̃ >
(1− r

1
n−1 ) + (1− r

n
n−1 )ỹ

ar
1

n−1 − 1

}
.

Thus, for any

c > crth = inf
(x̃,ỹ)∈Hr,r

{
1 +

ᾱn−1
r αn−1

r (ᾱr − rαr)
rᾱn−1

r − αn−1
r

}
we can assure that there exist some values (x̃, ỹ) ∈ H such that the
sign computed in (A.12) will be positive.

• Activators inverse logic for the Stimulated BEWARE operator

sign
{
∂BEWAREs([A], [R], [PolII]; {A,R}c)

∂[A]

}
= sign

{
rbas

1 + KRP
[PolII]

∂Basal(x̃, ỹ)

∂x̃
+

ν
(n)
max

1 + KRP
[PolII]

∂Promoter(x̃, ỹ)

∂x̃

}
= sign

{
(c− 1)

(
(ᾱn−1

s − αn−1
s )rbas + βn−1

s ν(n)
max

)
+ αn−1

s

(
ᾱn−1
s (αs − ᾱs)rbas + (βn−1

s (αs − βs) + β̄s)ν
(n)
max

)}
(A.14)

where adopting previous notation we have ᾱs = ᾱs(x̃, ỹ) = 1 + x̃+ r̃ỹ,
αs = αs(x̃, ỹ) = 1 + x̃ + ỹ, β̄s = β̄s(ỹ) = ẽ + ẽr̃ỹ, βs = βs(x̃, ỹ) =
ẽ+ x̃+ ẽr̃ỹ. Please note also that thanks to r̃ < 1 and X,Y ≥ 0 next
relations are veri�ed

αs ≥ ᾱs ≥ βs ≥ β̄s > 0. (A.15)

By using these estimates we can easily check

αn−1
s

(
ᾱn−1
s (αs − ᾱs)rbas + (βn−1

s (αs − βs) + β̄s)ν
(n)
max

)
> ẽν(n)

max > 0 .

(A.16)
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Hence if(
(ᾱn−1

s − αn−1
s )rbas + βn−1

s ν(n)
max

)
< 0 for some x̃, ỹ (A.17)

holds then the partial with respect to x̃ could change the sign for c
large enough, more concretely,

c > 1−
αn−1
s

(
ᾱn−1
s (αs − ᾱs) + (βn−1

s (αs − βs) + β̄s)
ν

(n)
max
rbas

)
(ᾱn−1

s − αn−1
s )rbas + βn−1

s
ν

(n)
max
rbas

. (A.18)

Let us also observe that the inverse logic is not possible in the absence
of total cooperativity, that is, c > 1 is required. Obviously, (A.17) will
occurs whenever

ν
(n)
max

rbas
< sup

x̃,ỹ

(αn−1
s − ᾱn−1

s )

βn−1
s

=
1− r̃n−1

(ẽr̃)n−1

where the supremum can be easily calculated thanks to

(αn−1
s − ᾱn−1

s )

βn−1
s

≤ (αn−1
s − (r̃αs)

n−1)

(ẽr̃αs)n−1

=
1− r̃n−1

(ẽr̃)n−1
= lim

x̃→0,ỹ→∞

(αn−1
s − ᾱn−1

s )

βn−1
s

. (A.19)

Thus, we conclude that, always that

ν
(n)
max

rbas
<

1− r̃n−1

(ẽr̃)n−1

the set

Hs,a =
{

(x̃, ỹ) ∈ (R+
0 )2|

(
(ᾱn−1

s − αn−1
s )rbas + βn−1

s ν(n)
max

)
|x̃,ỹ) < 0

}
is non empty and for any

c > c̃ath = inf
Hs,a

1−
αn−1
s

(
ᾱn−1
s (αs − ᾱs) + (βn−1

s (αs − βs) + β̄s)
ν

(n)
max
rbas

)
(ᾱn−1

s − αn−1
s )rbas + βn−1

s
ν

(n)
max
rbas


there exist points (x̃, ỹ) where the sign on the right hand side of (A.14)
is negative. Obviously, the value of c will determine the �nal set of
values where it occurs by condition (A.18).
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• Repressors inverse logic for the Stimulated BEWARE operator
The sign of the partial derivative of the BEWARE operator with re-
spect to the repressor variable is

sign
{
∂BEWAREs([A],[R],[PolII];{A,R}c)

∂[R]

}
= sign

 rbas

1+
KRP

[PolII]

∂Basal(x̃,ỹ)
∂ỹ

+
ν
(n)
max

1+
KRP

[PolII]

∂Promoter(x̃,ỹ)
∂ỹ


= sign

{
(c−1)

(
(ᾱn−1
s r̃−αn−1

s )rbas+ẽr̃(β
n−1
s −β̄n−1

s )ν
(n)
max

)
(A.20)

+ αn−1
s

(
ᾱn−1
s (r̃αs−ᾱs)rbas+(ẽr̃(βn−1

s −β̄n−1
s )−(βns −β̄ns ))ν

(n)
max

)}
.

Here

αn−1
s

(
ᾱn−1
s (r̃αs − ᾱs)rbas + (ẽr̃(βn−1

s − β̄n−1
s )− (βns − β̄ns ))ν(n)

max

)
< 0 ,

(A.21)
since r̃αs − ᾱs < 0 by de�nition and

ẽr̃(βn−1
s − β̄n−1

s )− (βns − β̄ns ) = (βns − β̄ns )

(
Hn−1(ẽr̃βs, ẽr̃β̄s)

Hn(βs, β̄s)
− 1

)
< 0

(A.22)
by (A.9) and Lemma 3.3 ii). By this reason, if

(ᾱn−1
s r̃ − αn−1

s )rbas + ẽr̃(βn−1
s − β̄n−1

s )ν(n)
max > 0 (A.23)

then for c large enough, more concretely when

c > 1−
αn−1
s

(
ᾱn−1
s (r̃αs − ᾱs) + (ẽr̃(βn−1

s − β̄n−1
s )− (βns − β̄ns ))ν

(n)
max
rbas

)
(ᾱn−1

s r̃ − αn−1
s ) + ẽr̃(βn−1

s − β̄n−1
s )ν

(n)
max
rbas

(A.24)
the sign computed in (A.20) can be positive. Again, this can not be
longer true in absence of cooperativity, that is, when c = 1. Now,
(A.23) can occur if and only if

rbas

ẽr̃ν
(n)
max

< sup
βn−1
s − β̄n−1

s

αn−1
s − r̃ᾱn−1

s
=

1

1− r̃
(A.25)

where analogously as was done before, the supremum can be easily
calculated from

βn−1
s − β̄n−1

s

αn−1
s − r̃ᾱn−1

s
≤ ᾱn−1

s

ᾱn−1
s − r̃ᾱn−1

s
=

1

1− r̃
= lim

x̃→∞,ỹ→0

βn−1
s − β̄n−1

s

ᾱn−1
s r̃ − αn−1

s
.

Then, arguing as before, we can conclude that (A.20) can be positive
in the points determined by a set Hs,r de�ned in terms of the condition
de�ning by (A.23) and the for values c bigger than c̃rth determined by
the lower term of (A.24).
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A.3.2 Direct logic in the presence of partial cooperativity

Now we prove that in the presence of partial cooperativity between activators
and/or repressors the inverse logic can not occurs as stated in Lemma (3.2)
ii). In the rest of this proof we will denote x̃ = cA[A]

KA
and ỹ = cR[R]

KR
.

• Activator direct logic for the partial cooperative recruitment BEWARE
operator
Using the increasing character of the recruitment BEWARE operator
with respect to the regulation factor operator, we have

sign

{
∂BEWAREr([A],[R],[PolII];{A}cA,{R}cR )

∂[A]

}
=sign

{
∂Freg(x̃,ỹ)

∂x̃

}
= sign

{
(cA−1)(cR−1)2

(
aγn−1
r −γ̄n−1

r

)
+(cR−1)2γn−1

r γ̄n−1
r

(
aγ̄r−γr

)
+ᾱn−1

r αn−1
r (aαr−ᾱr)+(cA−1)

(
a
ᾱr
ᾱnr β

n
r − 1

αr
αnr β̄

n
r

)
+(cR−1)

(
ᾱnr γ̄

n
r

(
a
ᾱr
− 1
γ̄r

)
+γnr α

n
r

(
a
γr
− 1
αr

))
+(cA−1)(cR−1)

(
aᾱn−1

r −αn−1
r +aγn−1

r βnr −γ̄
n−1
r β̄nr

)}
(A.26)

where ᾱr = ᾱr(x̃, ỹ) = 1 + ax̃ + rỹ, αr = αr(x̃, ỹ) = 1 + x̃ + ỹ,
β̄r = β̄r(ỹ) = 1 + rỹ, βr = βr(ỹ) = 1 + ỹ, γ̄r = γ̄r(x̃) = 1 + x̃,
γr = γr(x̃) = 1 + ax̃. From these de�nitions we can easily check that
almost all the terms inside the sign function are positive by using the
estimates:

ᾱr ≥ γr ≥ γ̄r , aγ̄r ≥ γr ,
a

ᾱr
≥ 1

αr
,

a

γr
≥ 1

αr
,

ᾱrβr ≥ αrβ̄r , αrγr ≥ ᾱrγ̄r ,
a

γr
≥ 1

γ̄r
, αr ≥ βr ≥ β̄r .

(A.27)

The positivity of the last term can be checked by observing that the
expression

(
aᾱn−1

r − αn−1
r + aγn−1

r βnr − γ̄n−1
r β̄nr

)
is increasing with

respect to the variable a. Then, this will be always positive if it is for
a = 1. In this sense, we estimate

(1+x̃+rỹ)n−1−(1+x̃+ỹ)n−1+(1+x̃)n−1(1+ỹ)n−(1+x̃)n−1(1+rỹ)n

≥(1+r ỹ
1+x̃)

n−1−(1+ ỹ
1+x̃)

n−1
+(1+ỹ)n−1−(1+rỹ)n−1

where the lower term is positive since using (A.9) we get

(1 + ỹ)n−1 −
(

1 +
ỹ

1 + x̃

)n−1

≥(1 + rỹ)n−1 −
(

1 + r
ỹ

1 + x̃

)n−1

⇐⇒ Hn−1

(
1 + ỹ, 1 +

ỹ

1 + x̃

)
≥ rHn−1

(
1 + rỹ, 1 + r

ỹ

1 + x̃

)
(A.28)

which holds because of the increasing character of the operator Hn−1.
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• Repressor direct logic for the partial cooperative recruitment BEWARE
operator

The fact that the partial derivative of BEWAREr with respect to the
repressor variable is negative when partial cooperativity between ac-
tivator and repressor can be veri�ed in an analogous manner by the
symmetric roles of activators and repressors in the recruitment opera-
tors.

• Activator direct logic for the partial cooperative stimulated BEWARE
operator Since Basal(([A], [R]); {{A}cA , {R}cR}) has the same expres-
sion as the Regulation Factor (3.14) with a = 1, the sign of the deriva-
tives can estimated following exactly the deduction for the recruitment
operator. Hence, we need to check the sign only for the partial deriva-
tives of the Promoter

(
([A], [R]); {{A}cA , {R}cR}

)
function

(cR − 1)(δns − δ̄ns ) + βns − β̄ns
(cA − 1)(cR − 1) + αns + (cR − 1)λns + (cA − 1)γns

in order to conclude the proof of Lemma 3.2. In previous de�nition we
have used αs = αs(x̃, ỹ) = 1 + x̃+ ỹ , ᾱs = ᾱs(x̃, ỹ) = 1 + x̃+ r̃ỹ , βs =
βs(x̃, ỹ) = ẽ+ x̃+ ẽr̃ỹ , β̄s = β̄s(ỹ) = ẽ+ ẽr̃ỹ , γs = γs(ỹ) = 1 + ỹ , γ̄s =
γ̄s(ỹ) = 1 + r̃ỹ , δs = δs(x̃) = ẽ + x̃ , δ̄s = δ̄s = ẽ , λs = λs(x̃) = 1 + x̃
where, again, we are assuming that each function is evaluated on x̃ =
cA[A]
KA

and ỹ = cR[R]
KR

. The sign of the partial derivative with respect the
activator variable will come from the sign of

sign

 ∂BEWAREs

(
([A],[R]),[PolII];{{A}cA,{R}cR}

)
∂[A]


= sign

{
−
(
αn−1+(cR−1)λn−1

s

)(
(cR−1)(δns−δ̄ns )+βns −β̄ns

)
+

(
(cR−1)δn−1

s +βn−1
s

)(
(cA−1)(cR−1)+αns+(cR−1)λns+(cA−1)γns

)}
which, rearranging the terms, translates to check the sign of

sign
{

(cR−1)2
(

(cA−1)δn−1
s + λn−1

s (λsδ
n−1
s − δns + δ̄ns )

)
+ αn−1

s (βn−1
s αs − βns − β̄ns )

+ (cR−1)(cA−1)
(
δn−1
s γns + βn−1

s

)
+ (cA−1)γns β

n−1
s

+ (cR−1)
(
δn−1
s αns + λnsβ

n−1
s − αn−1

s (δns − δ̄ns )− λn−1
s (βns − β̄ns )

)}
.

The �rst terms are trivially positive since λs > δs and αs > βs. Also it
is positive the last term that can be rewritten, up to the multiplicative
constant (cR−1), as

λn−1
s βn−1

s (λs − βs) + αn−1
s δn−1

s (αs − δs) + λn−1
s β̄n−1

s + αn−1
s δ̄ns ≥ 0
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thanks to |λs − βs| ≤ (αs − δs) and αsδs ≥ λsβs.

• Repressor direct logic for the partial cooperative stimulated BEWARE
operator
On the other hand,

sign

 ∂BEWAREs

(
([A],[R]),[PolII];{{A}cA,{R}cR}

)
∂[R]


= sign

{(
ẽr̃(βn−1

s −β̄n−1
s )

)(
(cA−1)(cR−1)+αns+(cR−1)λns+(cA−1)γns

)
−

(
αn−1
s +(cA−1)γn−1

s

)(
(cR−1)(δns−δ̄ns )+βns −β̄ns

)}
and rearranging the terms, the same sign can be obtained from

sign

{
(cA−1)(cR−1)

(
ẽr̃(βn−1

s −β̄n−1
s )−γn−1

s (δn−δ̄ns )

)
+ (cR−1)

(
(ẽr̃λs)(λsβs)n−1

(
1− β̄

n−1
s

βn−1
s

)
+δs(δsαs)n−1

(
δ̄ns
δns
−1
))

+ (cA−1)
(

(γsβs)n−1(ẽr̃γs−βs)+(γsβ̄s)n−1(β̄s−ẽr̃γs)
)

+ (αsβs)n−1(ẽr̃αs−βs)+(αsβ̄s)n−1(β̄s−ẽr̃αs)
}
. (A.29)

The �rst term in (A.29)

ẽr̃(βn−1
s − β̄n−1

s )− γn−1
s (δns − δ̄ns )

= (δs − δ̄s)(ẽr̃Hn−1(βs, β̄s)− γn−1
s Hn(δs, δ̄s))

= (δs − δ̄s)(ẽr̃Hn−1(βs, β̄s)−Hn(γsδs, γsδ̄s))

= (δs − δ̄s)Hn(γsδs, γsδ̄s)

(
ẽr̃Hn−1(βs, β̄s)

Hn(γsδs, γsδ̄s)
− 1

)
≤ (δs − δ̄s)Hn(γsδs, γsδ̄s)

(
ẽr̃Hn−1(γsδs, γsδ̄s)

Hn(γsδs, γsδ̄s)
− 1

)
≤ 0

is negative because βs ≤ γsδs, β̄s ≤ γsδ̄s and Lemma A.9 iii) is used
being ẽr̃ ≤ γsδs. The rest of the terms in (A.29) can be proven to be
negative following next estimates

(ẽr̃λs)(λsβs)n−1

(
1− β̄n−1

s

βn−1
s

)
+δs(δsαs)n−1

(
δ̄ns
δns
−1
)
≤ δs(δsαs)n−1

(
δ̄ns
δns
− β̄

n−1
s

βn−1
s

)
(γsβs)n−1(ẽr̃γs−βs)+(γsβ̄s)n−1(β̄s−ẽr̃γs) ≤ (γsβ̄s)n−1(β̄s−βs)

(αsβs)n−1(ẽr̃αs−βs)+(αsβ̄s)n−1(β̄s−ẽr̃αs) ≤ (αsβ̄s)n−1(β̄s−βs)

and thanks to

αs > γs ≥ γ̄s , λsβs ≤ αsδs , ẽr̃λs ≤ δs , 1 ≥ β̄s
βs
≥ δ̄s
δs
,

αs > δs ≥ δ̄s , β̄s ≤ βs , ẽr̃γs ≤ βs , ẽr̃αs ≤ βs .
(A.30)

�
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A.4 Existence of threshold

This appendix is devoted to proving the existence of activation/repression
thresholds implicitly deduced from the BEWARE operators.

Proposition 4.1 In the global activator/repressor framework each BEWARE
operator, determines an unique, positive and increasing function

[R] = fm,l([A];n)

ful�lling (3.43). This function determines the threshold between two regions
in the plane ([A], [R]). Each region contains concentrations providing tran-
scriptional levels either over the basal level, if [R] < fm,l([A];n), or under
the basal level, when [R] > fm,l([A];n).

These threshold functions depend on all the biochemical factors consid-
ered in the derivation of the BEWARE operator: the Recruitment (m = r)
(3.13) or Stimulated (m = s)(3.16) (with rbas > 0) approaches, the bind-
ing cooperativity mechanisms between the TFs (cooperative, total cooperative
l = t or partial cooperative l = p) or the number of enhancers (n). The parti-
cular case of the dependence with respect to the a�nities coe�cients KA-KR

is given by

fm,l([A];n) := KRf̃m,l

(
[A]

KA
;n

)
(A.31)

where f̃m,l is independent of both, KA and KR.

Remark 4.1 A very easy example can be shown in the case of the BEWARE
operators with null/total cooperativity (3.8). Because of the increasing char-
acter of the recruitment operator (3.13), with respect to the regulation factor
Freg equation (3.43) translates directly to

Freg
(
([A], fr,t([A];n)); C

)
= Freg

(
(0, 0); C

)
= 1 . (A.32)

When we substitute the de�nition of the regulation factor (3.35) in this ex-
pression we directly get that the threshold corresponds to the linear expression

fr,t([A];n) =
KR

KA

a− 1

1− r
[A] .

Let us remark that, although in expression (3.35) the cooperativity constant
c and the number of enhancers n are present, they are not in this threshold
expression. That implies that the thresholds for this model are the indepen-
dent of the intensity of the total binding cooperativity between the species or
the number of enhancers.
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Remark 4.2 A similar argument can be performed for the stimulated BE-
WARE operator when n = 1. Obviously, this is independent of any kind of
binding cooperativity because it can not occurs when only one binding site is
available. In this case, direct computations gives rise to

fs,t([A]; 1) =
KR

KA

ν
(1)
max

rbas

1

1− r̃
[A] .

As we will mention in the subsequent the thresholds under the stimulated
approach with total cooperativity are not in general independent of the num-
ber of enhancers, which will represent a remarkable di�erence between the
stimulated and recruitment approach.

Remark 4.3 Proposition 4.1 is no longer true for Stimulated operators when
rbas is null as can be trivially deduced from expressions (3.37) and (3.40). In
this case the threshold coincides with the axis [A] = 0, and any pair concen-
trations ([A], [R]) with [A] > 0 leads to activation levels. Nevertheless, we
have to remark that this threshold does not depends on cooperativity relations,
number of enhancers nor a�nities.

Sketch of the Proof of Proposition 4.1

Here, we have adopted the notation x = [A]
KA

, y = [R]
KR

for convenience. Let
us mention that the threshold for the recruitment BEWARE operator with
n enhancers and null/total cooperativity was already calculated in Remark
4.1 solving explicitly the equation

Gr,t(x, y;n) = (1 + acx+ rcy)n − (1 + cx+ cy)n = 0 (A.33)

which is equivalent to (A.32). In current notation the solution to this equa-
tion is given by:

y = f̃r,t(x;n) =
a− 1

1− r
x , (A.34)

where f̃r,t(x;n) is the function stated in (A.31). Now, undoing our original
change of variable x = [A]

KA
, y = [R]

KR
we recover the expression deduced in

Remark 4.1 .
Although, in this case the the de�nition of these thresholds can be done

explicitly, we would like to remark that the general existence result provided
by the implicit function theorem provides very useful information for sub-
sequents analysis. The argument we adopt follows the same scheme for all
the BEWARE functionals considered, so we now introduce the outlines of
the general proof and in sub-A.4.1 we check the validity of each particular
model dependent requirements.

When we substitute the concrete expressions of the BEWARE opera-
tors (3.13)-(3.16) with their corresponding expressions for regulation factors,
basal and promoter functions (see (3.35)-(3.40)) into equation (3.43) this is
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equivalent to a equation Gm,l
(

[A]
KA

, f([A])
KR

;n
)

= 0. In the case of the recruit-

ment BEWARE operators we get

Gr,t(x,y;n) = ᾱr(cx,cy)n−αr(cx,cy)n , (A.35)

Gr,p(x,y;n) = ᾱr(cAx,cRy)n−αr(cAx,cRy)n+(cA−1)(β̄r(cRy)n−βr(cRy)n)

+ (cR−1)(γr(cAx)n−γ̄r(cAx)n) ,

being ᾱr(X,Y ) = (1 + aX + rY ), αr(X,Y ) = (1 +X +Y ), β̄r(Y ) = 1 + rY ,
βr(Y ) = 1+Y , γ̄r(X) = 1+X and γr(X) = 1+aX. In the stimulated cases
we obtain in the same way

Gs,t(x,y;n) = rbas(ᾱ
n
s (cx,cy)−αns (cx,cy))+ν

(n)
max(βns (cx,cy)−β̄ns (cy)) , (A.36)

Gs,p(x,y;n) = rbas

(
ᾱns (cAx,cRy)−αns (cAx,cRy)+(cA−1)(γ̄ns (cRy)−γns (cRy))

)
+ ν

(n)
max

(
βns (cAx,cRy)−β̄ns (cRy)+(cR−1)(δns (cAx)−δ̄ns )

)
where now ᾱs(X,Y ) = 1+X+ r̃Y , αs(X,Y ) = 1+X+Y , β̄s(Y ) = ẽ+ ẽr̃Y ,
βs(X,Y ) = ẽ + X + ẽr̃Y . γ̄s(Y ) = 1 + r̃Y , γs(Y ) = 1 + Y , δ̄s = ẽ and
δs(X) = ẽ + X. As it has been done in (A.33)-(A.34) G functions and
the corresponding thresholds f will be denoted with subindices: s, r, t,
p, corresponding to stimulated, recruitment, total/null cooperativity and
partial cooperativity respectively. Some other dependences can be included
whenever necessary by using parameters, as for instance Gm,l(·, ·;n) deter-
mining that G a bivariate polynomial function of order n. In the subsequent,
subindexes as well as the parameter will be skipped in all those cases where
they are not relevant. Let us also notice that all the functions G have been
de�ned such that

G

(
[A]

KA
,
[R])

KR

)
> 0 ⇐⇒ BEWARE([A], [R]) > basal level. (A.37)

In order to prove the existence of an implicit function determined by the
equation G(x, y) = 0 for each of these problems, we propose to check next
items:

a) for any x > 0, the equation

G(x, ·) = 0 (A.38)

function has at least one root becauseG(x, 0) > 0 and limy→∞G(x, y) =
−∞ ,

b) for any (x, y) root of the equation (A.38) then ∂G
∂y (x, y) < 0,

c) and for any (x, y) root of the equation (A.38) then ∂G
∂x (x, y) > 0.
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For instance, items a), b) and c) can be easily checked for Gr,t de�ned in
(A.33) thanks to r < 1 < a. These ingredients allow us to conclude the proof
easily. Assertion b) implies the uniqueness of the roots stated in a) because
G(x, ·) is strictly decreasing at any of them. Since the partial derivative
with respect to y is non-zero, the implicit function theorem assures that,
given a point (x1, y1) such that G(x1, y1) = 0, then in some small enough
neighbourhood of (x1, y1) there exist a parametrisation (x, f̃(x)) such that
G(x, f̃(x)) = 0. This really justi�es that, the function f̃(x) is globally de�ned
and unique. Finally, this function is also monotone increasing because of b)
and c), since

f̃ ′(x) = −
∂G
∂x
∂G
∂y

> 0 (A.39)

Let us see that these functions de�ne the thresholds. Coming back to our
original notation, the function f stated in Proposition 4.1 takes the value
expression given by (A.31). These thresholds will depend as much as from
the cooperative relations between TFs: not cooperative/total cooperative
(t) or partial cooperative (p) as from the recruitment (r) or stimulated (s)
approaches reason why we will add subindexes t/p, r/s to f function denoting
any threshold, as it was done in de�nition (A.34). It is also true that the
thresholds will depend on the number of enhancers n which will be introduced
as a parameter dependence fm,l([A];n). �

A.4.1 Existence of thresholds for bifunctional beware oper-
ators in the activator/repressor framework

The rest of the Appendix is devoted to declaring the functions G determining
the activation/repression thresholds and check the hypothesis a) − c) they
have to verify in order to conclude Proposition 4.1 for all the considered
BEWARE models.

Proof of Proposition 4.1

• Stimulated BEWARE operator with null/total cooperativity (rbas > 0)

From de�nitions (3.16) and the corresponding basal level, see Table
3.1, we get that equation (3.43) in this case study translates into

rbas
(
Basal([A], [R]); C)−1

)
+ν(n)

maxPromoter([A], [R]); C) = 0 . (A.40)

Replacing de�nition Basal and Promoter functions according to ex-
pressions (3.36) and (3.37), equation (A.40) leads to

Gs,t(x, y;n) (A.41)

= rbas (ᾱns (cx, cy)− αns (cx, cy)) + ν(n)
max

(
βns (cx, cy)− β̄ns (cy)

)
= 0 ,
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where x = [A]
KA

, y = [R]
KR

, ᾱs(X,Y ) = 1+X+r̃Y , αs(X,Y ) = 1+X+Y ,
β̄s(Y ) = ẽ + ẽr̃Y , βs(X,Y ) = ẽ + X + ẽr̃Y . Let us assume in the
subsequent that n ≥ 2 since Proposition 4.1 is obviously true for n = 1.
For simplicity we will note αs = αs(cx, cy), ᾱs = ᾱs(cx, cy), βs =
βs(cx, cy) and β̄s = β̄s(cy). Using estimates (A.15) it is easy to prove
a), that is, Gs,t(x, 0;n) > 0 and lim

y→+∞
Gs,t(x, y;n) = −∞, so equation

(A.41) has at least one real root.

A similar procedure can be used in order to prove b). In this case

sign
{
∂Gs,t
∂y

}
= sign

{(
rbas

(
r̃ᾱn−1

s − αn−1
s

)
+ ν(n)

maxẽr̃
(
βn−1
s − β̄n−1

s

))}
.

(A.42)

Obviously b) holds when n = 1 because r̃ < 1. When n > 1, Let us
observe that we know that under certain circumstances the right hand
side on (A.42) can be positive by (A.25). Nevertheless, we can prove
that this does not occurs at the solutions of (A.41). From (A.25), we
get by simple algebra

y

(
rbas

(
r̃ᾱn−1

s − αn−1
s

)
+ ν(n)

maxẽr̃
(
βn−1
s − β̄n−1

s

))
= −rbas(1 + x)

(
r̃ᾱn−1

s − αn−1
s

)
− ν(n)

maxẽ
(
βn−1
s − β̄n−1

s

)
− ν(n)

maxxβ
n−1
s

< −(1 + x)

(
rbas

(
r̃ᾱn−1

s − αn−1
s

)
+ ν(n)

maxẽr̃
(
βn−1
s − β̄n−1

s

))
. (A.43)

On the other hand, we also can directly overestimate r̃ᾱn−1
s by taking

r̃ = 1 since r̃ < 1 and ᾱs > 0(
rbas

(
r̃ᾱn−1

s − αn−1
s

)
+ ν(n)

maxẽr̃
(
βn−1
s − β̄n−1

s

))
≤

(
rbas

(
ᾱn−1
s − αn−1

s

)
+ ν(n)

maxẽr̃
(
βn−1
s − β̄n−1

s

))
. (A.44)

Since the upper bound in (A.43) coincides with the upper bound in
(A.44) multiplied by a negative constant we can deduce that the right
hand side on (A.42) is negative for y > 0. That is, b) is veri�ed.

In order to check c) we have that

sign
{
∂Gs,t
∂x

}
= sign

{(
rbas

(
ᾱn−1
s − αn−1

s

)
+ ν(n)

maxβ
n−1
s

)}
. (A.45)

Now, by using (A.9) and (A.41) as before we get
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(
ν(n)
maxβ

n−1
s + rbas

(
ᾱn−1
s − αn−1

s

))
= ν(n)

max

(
βn−1
s − Hn−1(αs, ᾱs)

Hn(αs, ᾱs)

(
βns − β̄ns

))
= ν(n)

maxβ
n−1
s

(
1− Hn−1(αs, ᾱs)

Hn(αs, ᾱs)
βs

)
+ ν(n)

max

Hn−1(αs, ᾱs)

Hn(αs, ᾱs)
β̄ns ,

which is trivially positive, thanks to to Lemma 3.3 iii) using βs < αs

from (A.15). Hence, ∂Gs,t∂x

∣∣∣∣
Gs,t=0

> 0. Thus, we can assert the existence of

a unique increasing function f̃s,t such that

Gs,t
(
x, f̃s,t(x;n);n

)
= 0 x ∈ (0,∞) (A.46)

for any c > 0.

• Stimulated BEWARE operators with partial cooperativity (rbas > 0)

Now, in the case of BEWARE operators in presence of partial cooper-
ativity the proofs are much more easy because we can take advantage
of the direct activator/repressor logic veri�ed by these models as was
stated in Lemma 3.2.

The expression de�ning the threshold condition (3.43) leads to:

BEWAREs([A], [R], [PolII]; {A}cA , {R}cR)− rbas

1 + KRP
[PolII]

= 0 .

Then, multiplying this equation by 1 + KRP
[PolII] times the denominator

of the basal and promoter expressions, Dens([A], [R]), and substitut-
ing the corresponding expressions of the basal and promoter function-
als,(3.39) and (3.40), we get

0=Dens([A],[R])×

×

((
1+

KRP
[PolII]

)
BEWAREs([A],[R],[PolII];{A}cA ,{R}cR)−rbas

)
= rbas(ᾱ

n
s (cAx,cRy)−αns (cAx,cRy)+(cA−1)(γ̄ns (cRy)−γns (cRy)))

+ ν
(n)
max(βns (cAx,cRy)−β̄ns (cRy)+(cR−1)(δns (cAx)−δ̄ns ))

= Gs,p(x,y;n) , (A.47)

where, in addition to the functions αs, ᾱs, βs and β̄s appearing in
(A.41), we now also have γ̄s(Y ) = 1 + r̃Y , γs(Y ) = 1 + Y , δ̄s = ẽ and
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δs(X) = ẽ + X. Equation (A.47) has at least one real root for any
x > 0, since Gs,p(x, 0;n) > 0 and lim

y→+∞
Gs,p(x, y;n) = −∞, that is,

a) holds.

We can now check b) and c) very easily by observing that

sign

 ∂Gs,p
∂y

∣∣∣∣
Gs,p=0

=sign
{
∂BEWAREs

∂[R]
([A],[R],[PolII];{A}cA ,{R}cR)

}
<0 ,

sign

 ∂Gs,p
∂x

∣∣∣∣
Gs,p=0

=sign
{
∂BEWAREs

∂[A]
([A],[R],[PolII];{A}cA ,{R}cR)

}
>0 ,

thanks to identities (A.47) and Lemma 3.2 ii) proved in A.3.2.

• Recruitment BEWARE operators with partial cooperativity

As it was introduced in Remark 4.1 the threshold equation, (3.43),
translates directly to (A.32) for Recruitment BEWARE operators.

Then, by multiplying this equation by the denominator of the regula-
tion factor (3.38), Denr([A], [R]), we get the equivalent expression

0 = Denr([A], [R])
(
Freg

(
([A], [R]); {{A}cA , {R}cR}

)
− 1
)

= ᾱr(cAx, cRy)n − αr(cAx, cRy)n + (cA − 1)(β̄r(cRy)n − βr(cRy)n)

+ (cR − 1)(γr(cAx)n − γ̄r(cAx)n) = Gr,p(x, y;n) (A.48)

with ᾱr(X,Y ) = (1 + aX + rY ), αr(X,Y ) = (1 + X + Y ), β̄r(Y ) =
1+rY , βr(Y ) = 1+Y , γ̄r(X) = 1+X and γr(X) = 1+aX. Note that
equation (A.48) veri�es a) sinceGr,p(x, 0;n) > 0 and lim

y→+∞
Gr,p(x, y;n) =

−∞ for any x > 0 thanks to a > 1 and r < 1 are assumed.

In this case, the testing b)−c) is again trivial by using identities (A.48)
and Lemma 3.2 ii) as indicated

sign

{
∂Gr,p
∂y

∣∣∣∣
Gr,p=0

}
= sign

{
∂Freg
∂[R]

(
([A], [R]); {{A}cA , {R}cR}

)}
< 0 ,

sign

{
∂Gr,p
∂x

∣∣∣∣
Gr,p=0

}
= sign

{
∂Freg
∂[A]

(
([A], [R]); {{A}cA , {R}cR}

)}
> 0 .

�

A.5 Proof of equation (3.50)

In this Appendix it can be found the results linking the elasticity functions
with perturbations (3.47) and (3.48) as well as the elasticity estimates sum-
marised in Table 3.2.
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Lemma 5.4 The sense of variation of the threshold function under the a�n-
ity perturbation (3.47) is determined by the elasticity function (3.49), by the
expression

δfm,l
δη

([A];n)

∣∣∣∣
η=1

= fm,l([A];n)
(

1− εm,l([A];n)
)
.

Proof. This result is a trivial consequence of equation (A.31) because that
expression allow us to directly compute the variability of the threshold under
perturbation (3.47)

∂fm,l
∂η

([A];n) =
∂

∂η

(
ηKRf̃m,l

(
[A]

ηKA
;n

))
= KRf̃m,l

(
[A]

ηKA
;n

)
− ηKR

[A]

η2KA
f̃ ′m,l

(
[A]

ηKA
;n

)
and in consequence

δfm,l
δη

([A];n)

∣∣∣∣
η=1

= fm,l([A];n)−[A]f ′m,l([A];n) = fm,l([A];n)
(
1−εm,l([A];n)

)
,

where we have used f ′m,l([A];n) = KR
KA

f̃ ′m,l

(
[A]
KA

;n
)
. �

Corollary 5.1 The thresholds determined by stimulated and recruitment BE-
WARE operators (m = s/r), (3.16) and (3.13) respectively, considering
(3.35)-(3.40) (l = t/p) and assumption (3.15), change in the same manner
under a�nity and enhancers number reductions, that is (3.47) and (3.48)
since:

sign
δfm,l
δη

([A];n) = sign

(
Gm,l (x, y;n− 1)|

x=
[A]
KA

,y=
fm,l([A];n)

KR

)
,

= sign
(
fm,l([A];n− 1)− fm,l([A];n)

)
.

Furthermore, in both cases, the limit behaviours they would tend to in the
case of very low a�nities (η → ∞) and on the case of one only available
enhancer coincides, that is,

lim
η→∞

fm,l([A];n) =
∂fm,l
∂[A]

([A] = 0;n)[A] = fm,l([A]; 1).

Proof.

Combining Lemma 5.4 with expression (A.39) we have that for any BE-
WARE operator it is veri�ed

δfm,l
δη

([A];n) = 1
η

(
ηKRf̃m,l

(
[A]
ηKA

;n
)
−[A]

KR
KA

f̃ ′m,l

(
[A]
ηKA

;n
))

= 1

η
∂Gm,l
∂y

(
y
∂Gm,l
∂y

(x,y;n)+x
∂Gm,l
∂x

(x,y;n)
)∣∣∣
x=

[A]
ηKA

,y=ηKRf̃m,l

(
[A]
ηKA

;n

)
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which gives

δfm,l
δη

([A];n)
∣∣∣
η=1

= 1
∂Gm,l
∂y

(
y
∂Gm,l
∂y

(x,y;n)+x
∂Gm,l
∂x

(x,y;n)
)∣∣∣
x=

[A]
KA

,y=
fm,l([A];n)

KR

(A.49)

Now, simple algebraic computations allow to rewrite this expression since

y
∂Gm,l
∂y

(x, y;n) + x
∂Gm,l
∂x

(x, y;n) = nGm,l(x, y;n)− nGm,l(x, y;n− 1) .

Let us remark that this expression is only valid in the stimulated approach
if hypothesis (3.15) is assumed.

The �rst identity of the statement of this Corollary can be trivially de-
duced from these expressions because

Gm,l (x, y;n)|
x=

[A]
KA

,y=
fm,l([A];n)

KR

= 0

holds by de�nition and, as mentioned in the proof of Proposition 4.1, it is
also veri�ed that:

∂Gm,l
∂y

(x, y;n)

∣∣∣∣
x=

[A]
KA

,y=
fm,l([A];n)

KR

< 0 .

The second identity is also obvious since

Gm,l (x, y;n− 1)|
x=

[A]
KA

,y=
fm,l([A];n)

KR

> 0 ⇐⇒ fm,l([A];n) < fm,l([A];n− 1) .

Let us now justify the thresholds limit in the case of very low a�nity,
that is, η →∞

lim
η→∞

fm,l([A];n) = lim
η→∞

ηf̃m,l

(
[A]

ηKA
;n

)

=
KR

KA
[A] lim

η→∞

f̃m,l

(
[A]
ηKA

;n
)
− f̃m,l (0;n)

[A]
ηKA

=
KR

KA
f̃ ′m,l(0;n)[A] .

(A.50)

From (A.39) we directly get f̃ ′(0) = −
∂G
∂x
∂G
∂y

(0, 0). By a direct substitution of

G functions expressions for any BEWARE operator we get

f̃ ′r,∗(0;n) =
a− 1

1− r
f̃ ′s,∗(0;n) =

ν
(n)
maxẽn−1

rbas(1− r̃)
=

ν
(1)
max

r̃bas(1− r)

respectively for the recruitment and stimulated approaches. Substituting
these expressions in (A.50) we conclude the proof thanks to Remarks 4.1
and 4.2 in A.4. �
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These formulas stated in this Corollary con�rms that the reaction to per-
turbation (3.47) is strongly related with the variation of the same threshold
under perturbation (3.48). Indeed, in all these expressions

Gm,l (x, y;n− 1)|
x=

[A]
KA

,y=
fm,l([A];n)

KR

(A.51)

gives the value of the function G when the BEWARE operator has only
n−1 enhancers evaluated on the threshold obtained for the same BEWARE
operator but with n enhancers. The sign of this computation is directly
related to the relative positions of the thresholds for n or n − 1 enhacers
because of (A.37).

Our last Lemma is devoted to showing how di�erent are the predicted
behaviours to perturbations in a�nity or the number of enhancers, that
is (3.47) or (3.48), depending on the stimulated or recruitment approach
adopted to deduce the BEWARE operator. Our results suggests that under
the recruitment approach the behaviour of the thresholds is determined ba-
sically by the kind of binding cooperativity relationships between the TFs,
in the sense that if some TFs specie cooperate only between them then this
is a competitive advantage that perturbations (3.47)-(3.48) interrupt. On
the other side, the thresholds deduced from stimulated BEWARE operators
are not only dependent on the cooperativity relations but also on the value
of the parameter ẽ. This, a priory harmless parameter, has been proven
to change the threshold elasticities provoking qualitative di�erent responses,
that is, it is able to alter the competitive advantages that cooperativities
between TFs provide in an unclear way. The elasticity can be analitically es-
timated for thresholds deduced from BEWARE models for both stimulated
and recruitment approaches in some cooperativity speci�c regimes: null/-
total cooperativity and in those cases when either only activators or only
repressors can cooperate. All these estimates are collected in Table 3.2.

Now we focus on checking the elasticity estimates in Table 3.2 by con-
sidering separately the recruitment and stimulated approaches.

A.5.1 Deduction of elasticity estimates in Table 3.2: recruit-
ment case.

As we have shown in (A.32), the threshold functions for the recruitment op-
erator with total cooperativity are straight lines independent on the number
of enhancers n. Both facts allow us to deduce the unit elastic character of
those thresholds.

Imposing cA = 1 and cR > 1 in de�nition (A.35) we get that the the
implicit equation for the threshold fr,p(x;n) in the repressor cooperative
case is

Gr,p(x, y;n)|
x=

[A]
KA

,y=
fr,p([A];n)

KR

= ᾱnr − αnr + (cR − 1)(γnr − γ̄nr ) = 0 (A.52)
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where ᾱr, αr, γr and γ̄r are evaluated at the points
(

[A]
KA

, cR
fr,p([A];n)

KR

)
. Please

note that, since γr ≥ γ̄r by de�nition, then αr ≥ ᾱr and we can order the
functions such as

αr ≥ ᾱr ≥ γr ≥ γ̄r . (A.53)

The idea of the proof is to relateGr,p(·, ·;n) withGr,p(·, ·;n−1) by considering
the function

g(z) = z
n
n−1 . (A.54)

It is trivial to see that, by the mean value theorem,

αnr−ᾱnr = g(αn−1
r )−g(ᾱn−1

r ) = g′(c)(αn−1
r −ᾱn−1

r ) =
n

n− 1
c

1
n−1 (αn−1

r −ᾱn−1
r )

(A.55)
for a c ∈ R such as αn−1

r > c > ᾱn−1
r . The same goes for γnr − γ̄nr , where

γnr − γ̄nr =
n

n− 1
c̃

1
n−1 (γn−1

r − γ̄n−1
r ) (A.56)

for a c̃ ∈ R such as γn−1
r > c̃ > γ̄n−1

r . Obviously, inequalities (A.53) imply
c > c̃. Taking this relation into account, if we replace (A.55)-(A.56) in
(A.52), we obtain the following inequality

n

n− 1
c

1
n−1

(
ᾱn−1
r − αn−1

r + (cR − 1)(γn−1
r − γ̄n−1

r )
)
> 0 ,

which implies
Gr,p(x, y;n− 1)|

x=
[A]
KA

,y=
fr,p([A];n)

KR

> 0

and hence the inelastic character (εr,p < 1) of the threshold fr,p([A];n) in
the repressor cooperativity case by Lemma 5.4 and Corollary 5.1.

Analogously, we get in the opposite regime, cR = 1 and cA > 1, that

Gr,p(x, y;n)|
x=

[A]
KA

,y=
fr,p([A];n)

KR

= ᾱnr − αnr + (cA − 1)(β̄nr − βnr ) = 0

where now β̄r < βr < αr < ᾱ holds. Then, by using the function g in the
same way we can prove:

Gr,p(x, y;n− 1)|
x=

[A]
KA

,y=
fr,p([A];n)

KR

= ᾱn−1
r −αn−1

r +(cR−1)(γn−1
r −γ̄n−1

r ) < 0 ,

which, using Lemma 5.4 and Corollary 5.1, proves the elastic character
(εr,p > 1) of the threshold fr,p([A];n) whenever cR = 1 and cA > 1.

A.5.2 Deduction of elasticity estimates in Table 3.2, Stimu-
lated case (n = 2)

Recalling from (4.2) that the threshold fs,p(x; 1) is a straight line of slope

m = ν
(1)
max
rbas

1
1−r̃

KR
KA

, and evaluating the implicit threshold function (A.47) on
it, it is easy to check that

Gs,p(x,mx) = K0 +K1x+K2x
2 (A.57)
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with

Ki =
2!

i!(2− i)!

(
rbas

(
(1 +mr̃)i − (1 +m)i + (cA − 1)

(
(r̃m)i −mi

))
+ν(2)

maxẽ
2

((
1

ẽ
+mr̃

)i
− (mr̃)i + (cR − 1)

(
1

ẽ

)i))
.

(A.58)

In the null cooperativity case, cA = cR = 1, we get K0 = K1 = 0 and in
consequence

• Gs,p(x,mx) = 0 and ε = 1 ∀x ≥ 0 ⇐⇒ K2 = 0 ⇐⇒ 1
ẽ =(

2 + ν
(1)
max
rbas

)
:= t−1

1 ,

• Gs,p(x,mx) < 0 and ε < 1 ∀x ≥ 0 ⇐⇒ K2 < 0 ⇐⇒ 1
ẽ < t−1

1 ,

• Gs,p(x,mx) > 0 and ε > 1 ∀x ≥ 0 ⇐⇒ K2 > 0 ⇐⇒ 1
ẽ > t−1

1 .

In the repressor cooperativity regime, cA = 1 and cR > 1, it can be esti-
mated that K0 = 0 , K1 > 0 and in consequence

• Gs,p(x,mx) > 0 and ε > 1 ∀x ≥ 0 ⇐⇒ K2 > 0 ⇐⇒ cR
ẽ >= t−1

1 .

• When K2 ≤ 0, which happens if and only if cRẽ ≤ t
−1
1 ,we get

� Gs,p(x,mx) ≥ 0 and ε ≥ 1 for 0 ≤ x ≤ 2 cR−1
1
t̃1
− cR

ẽ

:= h1
KA

,

� Gs,p(x,mx) < 0 and ε < 1 ∀x > h1
KA

,

being t1 =
(

2 + ν
(1)
max
rbas

)−1

and t2 =
(
d2 + ν

(1)
max
rbas

cA(1+r̃)+2r̃
1−r̃

)−1

described in

Table 3.2.
Finally, in the case activators cooperativity regime, cA > 1 and cR = 1,

we get K0 = 0 , K1 < 0 and in consequence

• Gs,p(x,mx) < 0 and ε < 1 ∀x ≥ 0 ⇐⇒ K2 < 0 ⇐⇒ 1
ẽ <

2 + cA(r̃+1)+2r̃
1−r̃

ν
(1)
max
rbas

:= t−1
2 .

• When K2 ≥ 0 , which occurs if and only if 1
ẽ ≥ t

−1
2 then we have that

� Gs,p(x,mx) ≤ 0 and ε ≤ 1 for 0 ≤ x ≤ 2 cA−1
1
ẽ
− 1
t2

:= h2
KA

,

� Gs,p(x,mx) > 0 and ε > 1 ∀x > h2
KA

.
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Let us mention that the proof of the total cooperativity case is analog to the
proof of the null cooperativity case.

In summary, the elasticities of the thresholds of the stimulated oper-
ator with two enhancers depends not only on the cooperativity consid-
ered, but also on the rest of the model parameters in terms of the quan-

tities: t1 =
(

2 + ν
(1)
max
rbas

)−1

, h1 = 2KA
cR−1
1
t1
− cR

ẽ

, t2 =
(

2 + ν
(1)
max
rbas

cA(1+r̃)+2r̃
1−r̃

)−1

,

h2 = 2KA
cA−1
1
ẽ
− 1
t2

.

A.6 Threshold sensitivity analysis with Hill type
operators

Please note that the previous sensitivity analysis can be also applied in the
Hill modelling framework. This is, making the reduction to the global Acti-
vation and Repressor variables,

lim
c→∞
Kd=cte

Freg
(
([A], [R]); {{A,R}c}

)
=

1 +
(
a [A]
Kd

+ r [R]
Kd

)n
1 +

(
[A]
Kd

+ [R]
Kd

)n , (A.59)

lim
c→∞
Kd=cte

Basal
(
([A], [R]); {{A,R}c}

)
=

1 +
(

[A]
Kd

+ [R]
Kd

)n
1 +

(
[A]
Kd

+ [R]
Kd

)n , (A.60)

lim
c→∞
Kd=cte

Promoter
(
([A], [R]); {{A,R}c}

)
=

(
[A]
Kd

+ ẽr̃ [R]
Kd

)n
−
(
ẽr̃ [R]

Kd

)n
1 +

(
[A]
Kd

+ [R]
Kd

)n ,

and

lim
c→∞
Kd=cte

Freg
(
([A], [R]); {{A}c, {R}c}

)
=

1 +
(
a [A]
Kd

)n
+
(
r [R]
Kd

)n
1 +

(
[A]
Kd

)n
+
(

[R]
Kd

)n , (A.61)

lim
c→∞
Kd=cte

Basal
(
([A], [R]); {{A}c, {R}c}

)
=

1 +
(

[A]
Kd

)n
+
(
r̃ [R]
Kd

)n
1 +

(
[A]
Kd

)n
+
(

[R]
Kd

)n , (A.62)

lim
c→∞
Kd=cte

Promoter
(
([A], [R]); {{A}c, {R}c}

)
=

(
ẽr̃ [R]

Kd

)n
1 +

(
[A]
Kd

)n
+
(

[R]
Kd

)n ,
(A.63)



114 Appendix A. Proofs

where we can deduce the threshold implicit function

GH∗,∗(x, y;n) |
x=

[A]
Kd

,y=
fH∗,∗([A];n)

Kd

= 0 , (A.64)

with fH∗,∗([A];n) the threshold function for the Hill modules. Moreover,
Lemma 5.4 is also full�lled in this case, where it is easy to check that all
thresholds functions are straight lines in the [A]− [R] plane, and hence ε = 1.
In order to proof that fH∗,∗([A]) are linear for all the Hill BEWARE operators
(A.59)-(A.63), we need to �rst obtain the implicit equation for each thresh-
old. Following the same procedure done in the non-extreme cooperativity
case, we get

GHr,t(x, y;n) = (ax+ ry)n − (x+ y)n , (A.65)

GHs,t(x, y;n) = rbas
(
(x+r̃y)n−(x+y)n

)
+ν(n)

max

(
(x+ẽr̃y)n−(ẽr̃y)n

)
, (A.66)

GHr,p(x, y;n) = (rn − 1)yn + (an − 1)xn (A.67)

and
GHs,p(x, y;n) = rbas(r̃

n − 1)yn + ν(n)
maxx

n . (A.68)

Since, all these functions are homogeneous, that is, GH(x, y;n) = xnGH(1, y/x;n)
it is straightforward to check that(

y
∂GH∗,∗
∂y

(x, y;n) + x
∂GH∗,∗
∂x

(x, y;n)

)
= nGH∗,∗(x, y;n)

which means, from equation (A.49), that the threshold is a straight line in
the [A]− [R] plane, and hence ε = 1 from Lemma 5.4.

However, it is important to note that Collorary 5.1 is not ful�lled in
general, and the dependence of fH∗,∗([A];n) with the number of enhancers
varies depending on di�erent parameter relations in the Hill versions of the
Recruitment and Stimulated BEWARE operators.
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Parameters

Parameter Value

α (a.u) 1

β (a.u) −1

γ (a.u) −1

k (µm2st−2) 0.01

δ0 (µm) 0.5

δ1 (µm) 4

δ2 (µm) 5

l (µm) 0.05

v (µmst−1) 1

τ (st) 0.01

Table B.1: Parameters used for all the simulations of cytonemes in Chapter
2. a.u stands for arbitrary units; st stands for simulation timescale.

Parameter Value

CB (nMmin−1) 1

KRP /[PolII] (a.u) 1

cA (a.u) 25

cR (a.u) 100

a (a.u) 4.7

Parameter Value

r (a.u) 0.2

KA (nM) 0.8

KR (nM) 0.8

n (a.u) 3

Table B.2: Parameters used in Fig. 3.2 for the Recruitment BEWARE
operator with partial cooperativity
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Parameter (A) (B)

CB (nMmin−1) 1 1

KRP /[PolII] (a.u) 1 1

c (a.u) 400 400

a (a.u) 1.1 2.5

r (a.u) 0.1 0.9

KA (nM) 20 100

KR (nM) 100 20

n (a.u) 3 3

Table B.3: Parameters used in Figure 3.3 for the Recruitment BEWARE
operator with total cooperativity (inverse logic case)

Parameter (present work) Parameter (in [63]) ε > 1 ε = 1 ε < 1

ẽ (a.u) 0.5εA 0.1 0.25 0.5

r̃ (a.u) ρ = 0.5εR 0.5 0.5 0.5

rbas (nMmin−1) SXB 50 50 50

ν
(1)
max (nMmin−1) SXA 100 100 100

KA (nM) KA1 = KA2 4 4 4

KR (nM) KR1 = KR2 1 1 1

c (a.u) cA = cR = cAR 1 1 1

KRP /[PolII] (a.u) 1 1 1

Table B.4: Parameters used in Figure 3.4 for the Stimulated BEWARE op-
erator with null cooperativity under perturbations (3.47) and (3.48). These
parameters have been adopted from [63]
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BEWARE constant CB 1nMmin−1

Transcriptional activation intensity a 4.35

Transcriptional repression intensity r 5× 10−5

Dissociation constant of activators for gene enhancers KA 9× 101 nM

Dissociation constant of repressors for gene enhancers KR 9× 101 nM

RNA polymerase binding a�nity KRP [PolII]

RNA polymerase concentration [PolII] KRP

Total cooperativity constant c 1

Activator partial cooperativity constant (cooperative activators) cA 10

Repressor partial cooperativity constant (cooperative activators) cR 1

Activator partial cooperativity constant (cooperative repressors) cA 1

Repressor partial cooperativity constant (cooperative repressors) cR 10

TFs total concentration h 24nM

TFs gradient steepness D 593

Table B.5: Parameters used for the green curves in �gures 3.6, 3.7
and 3.8. The values for CB, [PolII] and KRP imply that the expression
levels given by the BEWARE operators are bounded by 1nM/min being
the basal level equal to 0.5nM/min. In this way signal modulations can be
properly appreciated.

Perturbation Value

Higher activator a�nity (perturbation (3.47)) KA → KA × 10−1

Higher repressor a�nity (perturbation (3.47)) KR → KR × 10−1

Lower number of binding sites (perturbation (3.48)) n→ 1

Table B.6: Parameters used for the magenta curves in �gures 3.6,
3.7 and 3.8, using the non-perturbed parameters in Table B.5.
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�¾Qué te parece desto, Sancho? � Dijo Don Quijote �

Bien podrán los encantadores quitarme la ventura,

pero el esfuerzo y el ánimo, será imposible.

Segunda parte del Ingenioso Caballero

Don Quijote de la Mancha

Miguel de Cervantes




