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Abstract

Nowadays, many companies and institutions need fast and reliable identification systems that are able to deal with

very large databases. Fingerprints are among the most used biometric traits for identification. In the current literature

there are fingerprint matching algorithms that are focused on efficiency, whilst others are based on accuracy.

In this paper we propose a flexible dual phase identification method, called DPD-DFF, that combines two fingers

and two matchers within a hybrid fusion scheme to obtain both fast and accurate results. Different alternatives are

designed to find a trade-off between runtime and accuracy that can be further tuned with a single parameter.

The experiments show that DPD-DFF obtains very competitive results in comparison with the state-of-the-art

score fusion techniques, especially when dealing with large databases or impostor fingerprints.

Keywords: Real-time identification, large databases, minutiae matching, fingerprint fusion, decision fusion, score

fusion, parallel computing, biometrics

1. Introduction

Personal identification has arisen as an important issue in the last few years for many companies and institu-

tions [1]. Identification databases grow larger every year, ranging from a few tens of people for small companies to

several millions for institutions such as the police. Although there are various biometric traits that allow for iden-

tification, fingerprints are widely used because of their uniqueness and universality, among other properties [2, 3].

Fingerprint recognition can be tackled from two different perspectives: verification [4] and identification [5]. The

former consists of matching two fingerprints to determine whether they belong to the same finger or not. The latter

aims to identify an input fingerprint from a set of fingerprints and determine which of them matches with the input. In
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this context, an Automatic Fingerprint Identification System (AFIS) is a tool that allows us to perform identifications

in fingerprint databases [3].

Fingerprints are composed of a pattern of ridges and valleys, from which diverse features can be extracted. Among

these features, minutiae are widely used for fingerprint matching, mostly due to their distinctiveness [2, 6]. When two

fingerprints are to be compared, the minutiae are extracted from the images, and then a matching algorithm is applied

over the two minutiae sets to determine a similarity level. There are multiple proposals of minutiae-based matching

algorithms in the literature [7]. Some of them are very efficient due to their simplicity [8], while others are very

accurate [9]. However, these two objectives are usually not reached together because accurate algorithms tend to

be complex, and therefore time-consuming. This restriction complicates the development of AFIS that are able to

identify people in very large databases in a suitable time frame without precision loss.

Moreover, as the overall response time of an identification procedure is linear with respect to the size of the

database, even the fastest matching algorithms may become useless when the database grows too large. Moreover, the

huge number of matchings causes an accuracy loss.

Information fusion is a widely used paradigm that improves overall precision in many fields, including biomet-

rics [10, 11, 12]. In particular, two main approaches have been proven to enhance the recognition capabilities: the

use of several fingerprint images [13] and the use of several matching algorithms [14]. The information fusion can be

performed at different levels:

• Feature fusion approaches merge the characteristics extracted from different fingerprint images, coming either

from the same finger or different fingers [15, 16].

• Score fusion methods perform separate matchings and then sum up the scores [14, 17].

• Decision fusion methods apply the matching algorithms in a hierarchical mode over the fingerprints [11, 18].

Although these approaches increase the accuracy of the AFIS, they also slow the identification down because the

processing workload is higher. In this work, we combine the ideas of multi-finger and multi-algorithm identification

to improve the runtime along with the accuracy.

High Performance Computing (HPC) is an important tool to speed up the runtime of a system [19, 20], and

several proposals in the literature apply it to AFIS. However, these systems focus on objectives other than precision,

such as high availability [21], load balancing [22] or reduced matching times [18]. Other systems provide the ability

to identify in very large databases [23, 24, 25], but their accuracy is not improved with respect to a sequential AFIS.

There are currently several systems in the world that maintain large fingerprint databases. For example, as of

September 2015, India’s UIDAI system [26] stores the fingerprints of around 907 million people, although so far they

are only used for verification purposes, not identification. FBI IAFIS [27] (now included within Next Generation

Identification, NGI) keeps the fingerprints (among other data) for around 104 million subjects, and is able to perform

searches in an average time of 72 minutes.
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In this paper, we propose a flexible, Dual Phase Distributed AFIS with Double Fingerprint Fusion (called DPD-

DFF) that integrates two fingerprints and two matching algorithms, aiming to overcome the weaknesses of isolated

approaches: high identification time and accuracy loss. To do so, the identification is split into two phases, each of

which can either use a single fingerprint or fuse two of them, conforming a mixed score fusion and decision fusion

process:

• In the first phase, the database is explored by a fast matching algorithm to select a candidate set. Jiang’s

algorithm [8] has been selected for this phase due to its high running speed [7].

• Then, the second phase applies a more accurate algorithm to identify the correct identity within this candidate

set. The matcher used in this phase is Minutia Cylinder-Code (MCC) [9], which is very precise [7].

With this design, the fingerprint fusion is powerful and flexible as it is performed at two separate levels. Further-

more, this strategy has been integrated within the parallel framework proposed in [23] in order to reach full scalability

for arbitrarily large databases.

This manuscript is structured as follows. First, Section 2 provides the background information on the problem

at hand. Section 3 presents DPD-DFF, the approach proposed in this paper. Section 4 describes the experiments

performed and their results. Finally, Section 5 details the conclusions. Complementary material to the paper including

tables, plots and identification times as well as additional studies over other databases can be found at http://sci2s.

ugr.es/DPDDFF and in the associated Technical Report [28].

2. Preliminaries

A fingerprint is a pattern of valleys and ridges located on a fingertip. Although there are several ways to perform

a matching between two fingerprints, many matching algorithms use the minutiae [3, 7, 29], comparing two minutiae

sets to return a similarity score. The matching is performed once for each comparison between two fingerprints. Some

of the existing matching algorithms offer very good matching precision [9], and others provide a fast response with

slightly diminished accuracy [8], according to the taxonomy and results presented in [7].

There are two main variants of the fingerprint recognition problem [3]. Verification [4] is a 1:1 comparison to

check if two fingerprints represent the same finger. Identification [5] consists of determining which fingerprint in a

database of previously captured and stored templates T = {T1,T2, ...,Tn} corresponds to a given input fingerprint I.

An identification algorithm compares I to every Ti and returns the identity with the best matching score as shown in

Eq. 1, where Q(I,Ti) is the matching function. Thus, identification is a 1:n comparison.

Identity = arg max
i

Q(I,Ti) i ∈ {1, 2, ..., n} (1)
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This paper is focused on identification. Section 2.1 explains the current proposals for fast and scalable identifi-

cation within large databases. Then, Section 2.2 presents the previous work about fingerprint fusion to improve the

identification accuracy.

2.1. Scalable fingerprint recognition in large databases

The bottleneck of an AFIS when attempting to identify within a large database is the matching algorithm. Several

proposals in the literature aim to overcome this problem.

FPGA-based systems implement the matching into a Field Programmable Gate Array [18, 30], a hardware device

that performs some operations very quickly, so that the overall identification time is reduced.

Other approaches reduce the penetration rate in the database by using a previous classification or indexing step [31,

32, 33, 34]. Nevertheless, in large databases this step may become the bottleneck, and the size of the subsets can

become too large. Accuracy is degraded when the penetration rate is too small or the collision rate too high [33].

HPC is a common solution for reducing high execution times [19, 20]. By using q computers with c cores each

to perform a parallel search, the execution time can be reduced by up to a factor of qc. Moreover, the availability of

more RAM memory allows more template fingerprints to be kept in a fast access device, avoiding slow access to sec-

ondary memory. Therefore, an adequate parallel framework can constitute a suitable tool for solving the identification

problem in large databases [23, 24, 25].

2.2. Fingerprint information fusion

This section introduces two of the main trends to improve the accuracy of fingerprint recognition. On the one hand,

the use of several fingers [13] increases the distinctiveness of the identities and tries to avoid the difficulties posed by

injured fingertips or low quality scans. The matching function for f fingerprints becomes of the form Q(I,Ti) where

I = {I j | j ∈ {1, ..., f }} and Ti = {Ti j | j ∈ {1, ..., f }}. This approach has been successfully applied over latent

fingerprints, which are of very low quality [35].

On the other hand, the combination of several matchers [14, 36] aims to profit from their advantages, while leaving

aside their weaknesses. Multi-algorithm techniques work in a similar way as multi-finger ones, so that the fused score

obtained for f algorithms is Q(I,Ti) = F
(
Q1(I,Ti), ...,Q f (I,Ti)

)
, where F is an aggregation function.

Multi-finger and multi-algorithm approaches can be categorized together according to the type of fusion they

perform:

• Feature fusion [15, 16, 37, 38]: this approach merges all f fingerprints of an identity into a single structure,

which is compared to all n template structures. This avoids the necessity of performing f matchings per identity,

but requires specific matching algorithms to handle such structures, as well as an additional conversion step.

• Score fusion [14, 17, 36, 39, 40]: this method applies several matchings (one for each fingerprint or algorithm)

and aggregates the results into a single score. Although it does not need a specific matching algorithm, the use

of f fingerprints or f matchings multiplies the identification time by f .
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• Decision fusion [10, 11, 18, 32]: can be seen as a special case of score fusion, where matching is performed

hierarchically. When the f input fingerprints are compared with some f template fingerprints for a given

identity, the first pair is compared first. If the resulting score meets a certain condition, the second pair is

compared, and so on.

Most fusion approaches are focused on improving accuracy, without considering runtime. Therefore, they are

not adapted to address the identification in large databases because the execution time is higher than it is for simpler

approaches. Empirical results obtained by some of the methods mentioned above can be found in the Technical Report

associated with this paper [28].

3. Dual Phase Distributed Scheme with Double Fingerprint Fusion

DPD-DFF carries out a hybrid fusion between two matching algorithms and two fingers within a flexible dual

phase scheme that is implemented in a parallel HPC system. The proposal seeks to tackle large fingerprint databases

with a good trade-off between two seemingly opposed objectives:

• Accuracy: identification accuracy must be better than it is for isolated models.

• Efficiency and scalability: the system should provide a real-time response. The runtime threshold depends on

the specific application; it can vary between a few milliseconds and several minutes. Ideally the identification

time should be lower than when using an isolated AFIS.

First, a fast matcher explores the whole database and extracts a set of candidate identities C. Then, an accurate

matcher compares the input fingerprints with the templates in C. This corresponds to a decision fusion identification

method as described in Section 2.2, in which the separate use of both algorithms avoids the necessity of transforming

their respective outputs to a common domain and the consequent loss of precision, as it does for traditional multi-

algorithm score fusion approaches. The overall identification procedure is applied as follows:

1. Fast phase: according to the results obtained in [7], Jiang’s algorithm [8] has been selected to perform this first

identification phase, because of its speed and its appropriate accuracy. Two different criteria may be used to

compose the set C:

• Rank: given a rank r, select the r identities that provide the best scores. Thus, C has a fixed size |C| = r.

• Threshold: all templates Ti whose score is higher than a fixed threshold φ when compared to the input

fingerprint I are included in C. Therefore, the size of C is not previously known and will likely be different

for each input fingerprint pair. The set can be described as C = {Ti | QJiang(I,Ti) ≥ φ}.

2. Accurate phase: the MCC algorithm [9] has been chosen for this phase due to its high accuracy. After com-

paring the input fingerprints with the templates in C, the identity with the best score is returned as the found

match, as shown in Eq. 2.
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Identity = arg max
i
{QMCC(I,Ti) | Ti ∈ C} (2)

TAB = {Ti | Ti = {TiA,TiB} , i ∈ {1, 2, ..., n}} (3)

In addition to this multi-algorithm scheme, we also use two different fingers (let them be finger A and finger B) per

identity to even further improve identification accuracy. Two template fingerprints per person are stored, constituting a

database TAB with n fingerprints pairs as described in Eq. 3. An identification requires an input set of two fingerprints

I = {IA, IB}. According to this structure, each of the previously described identification phases can be carried out

using either a single fingerprint or both fingerprints:

• Single finger: a single fingerprint of each identity is compared, as shown in Eq. 4. This alternative is proposed

in a search for speed, minimizing the computation load.

QJiang(I,Ti) = QJiang(IA,TiA) (fast phase)

QMCC(I,Ti) = QMCC(IB,TiB) (accurate phase)
(4)

• Double finger: both fingerprints are used for the comparison. This constitutes in itself a fusion method. Thus,

a score-based fusion has been implemented, using the average as the aggregation function (Eq. 5), as recom-

mended by the results of [17]. This approach is obviously slower than using a single finger, but it is much more

accurate.

QJiang(I,Ti) =
QJiang(IA,TiA) + QJiang(IB,TiB)

2
(fast phase)

QMCC(I,Ti) =
QMCC(IA,TiA) + QMCC(IB,TiB)

2
(accurate phase)

(5)

Table 1: Names of the eight considered variants of DPD-DFF

Fingers used Candidate set criterion

First phase Second phase Prefix Rank (*R) Threshold (*T) Objective

Single (A) Single (B) SS* SSR SST High speed

Single (A) Double (A,B) SD* SDR SDT Trade-off

Double (A,B) Single (B) DS* DSR DST Trade-off

Double (A,B) Double (A,B) DD* DDR DDT High accuracy

The described method performs a hybrid fusion that uses both score and decision fusion to combine two fingers

and two algorithms. The overall workflow is depicted in Figure 1. A pseudocode of the identification procedure

6



Figure 1: Workflow of DPD-DFF. Dashed lines are pathways that correspond to double finger variants. Dotted lines correspond to single finger

variants. Continuous lines are pathways that are always taken.

is shown in Algorithm 1. Out of this design, we take eight variants of the algorithm into consideration, which are

denoted with three letters as shown in Table 1. The first two letters represent the fingers that are taken for the fast

and accurate phases respectively (S for single and D for double). The last letter stands for the criterion to build the

candidate set (R for rank, T for threshold).

Note that the variants that use both fingers within a same phase (SD*, DS* and DD*) will eventually apply both

matching algorithms over the fingerprints in C. This can enhance the identification accuracy, due to the synergy

between two algorithms that perform the matching differently [14].

Along with the algorithm variant, the choice of the parameters to build the candidate set (r or θ) is critical, as it

will determine its size |C|, which in turn determines the trade-off between speed and accuracy: a small candidate set

relies more on the fast phase and provides faster results (though less accurate), whilst a large candidate set leads to
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Input: T , I, crit, r, θ

C ← ∅

// Fast phase

foreach Ti ∈ T do
q← QJiang(I,Ti)

if crit == “Ranking” then

if |C| < r then C.append(Ti);

else
minC = arg mini{QJiang(I,Ti) | Ti ∈ C}

if QJiang(I,TminC ) < q then
C.remove(TminC )

C.append(Ti)

end

end

else if crit == “Threshold” and QJiang(I,Ti) ≥ θ then
C.append(Ti)

end

end

// Accurate phase

maxq ← 0

identity← null

foreach Ti ∈ C do

if QMCC(I,Ti) > maxq then
maxq ← QMCC(I,Ti)

identity← Ti

end

end

return identity
Algorithm 1: DPD-DFF algorithm

more accurate results but needs longer runtime.

Despite the separation between fast and accurate phases, if the structure proposed so far is implemented in a

sequential manner the scalability problem will eventually appear for arbitrarily large databases. To achieve high

scalability, DPD-DFF has been developed within the two-level parallel framework proposed in [23], as described in

the Technical Report [28]. Hence, the scheme can be efficiently executed in a cluster of computers.
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4. Experiments and results

This section describes the experiments performed over several fingerprint databases: a large database of SFinGe-

generated fingerprints (Section 4.2), a database captured by the authors (Section 4.3), the well-known NIST-DB14

(Section 4.4) and several other public databases (Section 4.5). Section 4.1 describes the hardware and software used

for these experiments.

The number of True Positives (TP), False Positives (FP) and False Negatives (FN) are used as accuracy measures,

along with the True Positive Rate (TPR). The average identification time is denoted by tavg and measured in seconds

in all cases. For the threshold variants, the average candidate set size |C|avg is also given. The plots include the

accuracy and identification time of three reference AFIS: an isolated one that uses a single finger and a single matcher

(as described in [8, 9]), and two score fusion approaches, one multi-finger (as described in [17, 41]) and one multi-

algorithm (as described in [11, 17, 36]).

Note that for a fair comparison, both DPD-DFF and the reference AFIS were implemented in the framework

proposed in [23] and executed over the same hardware. It is out of the scope of this paper to analyze the performance

of the parallel procedure; the study is focused on the behavior of the proposed hybrid fusion method.

Additional details and results (such as tables, figures, database statistics, identification times, hardware con-

figuration and results with more databases) are available in the associated Technical Report [28] and at http:

//sci2s.ugr.es/DPDDFF.

4.1. Hardware and software environment

The experiments carried out for this paper have been executed in a cluster of 12 nodes, each of them with two Intel

Xeon E5-2620 processors (6 cores each). The executions were performed with 12 slave processes (one in each node),

each of them composed of 24 threads. Note that a smaller subset of nodes was used for the databases of small size.

All fingerprint minutiae were extracted using the NIGOS mindtct software [42], whose parameters are detailed in

Table 2. The authors have written their own implementation of the underlying matching algorithms [8, 9], with the

sole aid of their respective original publications. The parameters used for these algorithms are also presented in the

table.

To ensure a fair comparison, the same parameters were used for all the tested databases, so as to avoid any kind

of over-fitting of the results. Even though this may produce low accuracy values for some of the databases, this setup

aims to assess the robustness of the proposed method in different use cases.

4.2. SFinGe database

This section describes the experiments performed over a database of 50 000 fingerprint pairs, synthetically gener-

ated with the SFinGe software [3, 43]. First, Section 4.2.1 details the used fingerprint database. Then, Section 4.2.2

describes the experiments carried out and the obtained results.
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Table 2: Parameters for the methods used in the experimentation

Algorithm Parameters Reference

Jiang

wd = 1,wθ = 0.3 180
π
,wφ = 0.3 180

π

[8]
wn = 0,wt = 0,Consolidation step iterations = 5

Minutiae neighborhood size = 2

BG1 = 8, BG2 = π
6 , BG3 = π

6

MCC

R = 70,Ns = 8,Nd = 6, σs = 28
3 , σd = 2π

9

[9]

µΨ = 0.01, τΨ = 400, ω = 50,minVC = 0.75

minM = 2,minME = 0.60, σθ = π
2 ,maxnp = 12

Floating-point-based version: enabled, µP = 20

wR = 0.5, µρ1 = 5, τP = 0.6,minnp = 4, τρ1 = −1.6

µ
ρ
2 = π

12 , τ
ρ
2 = −30, µρ3 = π

12 , τ
ρ
3 = −30, nrel = 5

mindtct
output format = ANSI INCITS 378-2004

[42]
image enhancement = enabled

4.2.1. Database generation and parameters of the algorithms

In order to obtain very large databases and to control the fingerprint characteristics, we used the SFinGe soft-

ware [3, 43] to generate synthetic fingerprints using the parameters specified in Table 3. The fingerprint pairs are

composed by joining two synthetic fingerprints. A fingerprint cannot be included in more than one pair to ensure that

all pairs are unique and disjoint in the database.

Table 3: Parameter specification used with the SFinGe tool

Scanner parameters Generation parameters Output settings

Acquisition area: 14.6mm x 19.6mm. Impression per finger: 25. Output file type: WSQ.

Resolution: 500 dpi. Class distribution: Natural.

Image size: 288 x 384. Varying quality and perturbations.

Background type: Optical. Generate pores: enabled.

Background noise: Default. Save ISO templates: enabled.

Crop borders: 0 x 0.

The test set for all the experiments carried out in this paper with the SFinGe database is composed of 1000 random

input pairs, which are used to perform 1000 different identifications in the database of 50 000 template fingerprint

pairs. Each input pair is formed by a different impression of each fingerprint of a template pair. Therefore, we obtain

accuracy measures that range from 0 to 1000.
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4.2.2. Discussion of the results

This section discusses the obtained results for all the described variants of DPD-DFF over the SFinGe database.

For the experiments, the rank values used to build the candidate set have been taken among the multiples of the number

of cores of the cluster (144 in our setup), to maximize the throughput. However, we have also used lower values of

the rank those in order to enrich the study and obtain more information about the behavior of the obtained accuracy.

Table 4: Results of DPD-DFF with 1000 test identifications (rank)

SSR SDR DSR DDR

r TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s)

12 927 73 0 0.1588 928 72 0 0.1845 994 6 0 0.2870 996 4 0 0.3174

24 948 52 0 0.1597 949 51 0 0.1872 994 6 0 0.2776 997 3 0 0.3190

48 956 44 0 0.1589 958 42 0 0.1884 993 7 0 0.2815 997 3 0 0.3199

96 968 32 0 0.1597 970 30 0 0.1882 993 7 0 0.2889 997 3 0 0.3190

144 972 28 0 0.1606 974 26 0 0.1889 995 5 0 0.2833 999 1 0 0.3212

288 973 27 0 0.1603 976 24 0 0.1890 995 5 0 0.2916 999 1 0 0.3230

576 980 20 0 0.1696 983 17 0 0.2095 994 6 0 0.2977 999 1 0 0.3447

1152 984 16 0 0.1889 988 12 0 0.2680 992 8 0 0.3215 999 1 0 0.3788

2304 990 10 0 0.2412 995 5 0 0.3345 993 7 0 0.3485 1000 0 0 0.4483

4608 989 11 0 0.2897 996 4 0 0.4547 990 10 0 0.4185 1000 0 0 0.5887

9216 987 13 0 0.4313 996 4 0 0.7369 990 10 0 0.5665 1000 0 0 0.8665

18432 988 12 0 0.7379 998 2 0 1.3333 990 10 0 0.8481 1000 0 0 1.4356

36864 989 11 0 1.4270 1000 0 0 2.5521 989 11 0 1.4728 1000 0 0 2.5772

Table 5: Results of DPD-DFF with 1000 test identifications (threshold)

SST SDT DST DDT

φ |C|avg TP FP FN tavg (s) TP FP FN tavg (s) |C|avg TP FP FN tavg (s) TP FP FN tavg (s)

0.05 46528.2 989 11 0 1.5153 1000 0 0 2.9382 49242.4 989 11 0 1.7302 1000 0 0 3.1920

0.10 22913.0 989 11 0 0.8381 999 1 0 1.6204 23580.8 990 10 0 1.0345 1000 0 0 1.8055

0.15 5404.7 989 11 0 0.3223 993 7 0 0.5450 2511.3 993 7 0 0.3727 999 1 0 0.4911

0.20 685.4 964 30 6 0.1925 967 27 6 0.2319 81.7 995 4 1 0.2865 997 2 1 0.3197

0.25 39.9 911 54 35 0.1583 912 53 35 0.1878 1.8 969 0 31 0.2819 969 0 31 0.3170

0.30 1.5 796 26 178 0.1515 796 26 178 0.1792 0.9 884 0 116 0.2722 884 0 116 0.3115

Tables 4 and 5 present the results of the eight variants of DPD-DFF. Note that columns |C|avg and tavg contain

average values over the 1000 performed identifications. Accordingly, Figure 2 plots the TPR along with the average

identification time (note the logarithmic scale) for each variant of DPD-DFF and each reference AFIS. The following

highlights can be extracted:

• The accuracy increases along with the amount of used information, so that DS* and DD* approaches are the

most accurate ones.

• For a same average candidate set size, the rank approach produces more accurate results than the threshold

variants, especially for small candidate sets. This might seem surprising because given an input pair, if both

variants produce a candidate set of the same size, then these candidate sets are the same. However, recall that
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Figure 2: Average identification time and accuracy with the SFinGe database (N = 50000)

Table 5 shows the average set size. The actual value of |C| in the threshold variant is different for each input

pair, which makes the variant less robust.

• The rank ensures that there are no false negatives because it allows us to fix the size of the candidate set,

ensuring |C| > 0 and offering better control of the overall identification time.

• Even for a small |C|, the rank variants outperform Jiang over a single fingerprint.

• Similarly, for a very large |C|, DPD-DFF relies more on the second phase and therefore the results get closer to

those obtained by MCC. The DS* variants are a particular case because the accuracy decreases as |C| increases.

As the candidate set grows, they rely less on multi-finger Jiang, and more on single-finger MCC, which is less

accurate than the former.

• The most accurate variant is DDR, which uses the two fingerprints with both algorithms and the rank.
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• The DS* and DD* variants of DPD-DFF outperform all reference AFIS, reaching 100% TPR along with the

multi-finger approach with MCC.

If the average identification time is also taken into account, the following conclusions arise:

• As expected, in general the more precise variants also take more time. These results show how DPD-DFF can

be tuned according to the system needs, so that reasonably good results can be obtained very quickly (SSR

variant, r = 576), and very precise results can be obtained with slower configurations (DDR variant, r = 2304).

• These tables also show that given a certain variant, the configurations with small candidate sets have a very

similar runtime because all the matchings can be performed in parallel, but the accuracy is better for bigger

candidate sets. Therefore, in a real environment, configurations with less than one candidate per core are

usually not interesting, as they do not use the whole capacity of the cluster.

In summary, the DPD-DFF model dominates in time and accuracy all the tested AFIS, even the multi-finger

approaches which provide very good accuracy. The DDR variant reaches 100% TPR in about 0.45 seconds, while the

only reference AFIS that reaches this accuracy (multi-finger MCC) takes 3 seconds.

4.3. DBSpain654

A database of 654 fingerprint pairs was captured by the authors to test DPD-DFF on a controlled framework.

This section describes the database (Section 4.3.1), the results obtained (Section 4.3.2), and an additional study with

impostor fingerprints (Section 4.3.3). Due to the size of this database, all experiments described in this section were

carried out using a single computer.

4.3.1. Database description

The fingerprints belong to the forefinger and middle finger of both hands of 334 non-experienced subjects from

three different cities. Note that 14 fingerprint pairs failed in their enrolment and therefore were excluded from the

database, making the resulting number of 654 pairs.

Both fingerprints of each pair were captured within the same image using a Suprema RealScan-D sensor. Each

pair was captured 2 times as a template and 12 as an input over 3 different sessions several weeks apart. To compose

the database and the test input set for this study, a single template and a single random input capture were selected

for each pair. Then, the NIGOS nfseg algorithm [42] was used to segment the image and separate both fingerprints of

each pair before applying the minutiae extraction.

4.3.2. Discussion of the results

Tables 6 and 7 present the results of the eight variants of the proposed DPD-DFF. Figure 3 depicts both accuracy

and the average identification time of all tested AFIS. The following conclusions can be extracted from these results:
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• The algorithms behave in the same way as in the previously studied databases: Jiang is less precise than MCC,

and the multi-finger approaches obtain the best results both among the reference AFIS and the DPD-DFF

variants.

• Again, the rank variants show more robust behavior than the threshold ones for the same average size of the

candidate set. The DDR variant obtains the best performance possible for any number of candidates.

• DDR and DSR dominate all the considered multi-algorithm AFIS, and get the same TPR as multi-finger MCC

in a much faster time.

• The multi-finger Jiang algorithm is faster than DPD-DFF. Actually, it corresponds to the first phase of the DS*

and DD* variants, and it is clear that its accuracy is significantly improved with a small time overhead.

Table 6: Results of DPD-DFF with 654 test identifications (rank)

SSR SDR DSR DDR

r TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s)

2 614 40 0 0.0622 614 40 0 0.1000 652 2 0 0.0891 653 1 0 0.1264

4 623 31 0 0.0641 623 31 0 0.1020 652 2 0 0.0902 654 0 0 0.1277

8 629 25 0 0.0655 629 25 0 0.1030 651 3 0 0.0915 654 0 0 0.1296

12 634 20 0 0.0658 635 19 0 0.1040 648 6 0 0.0919 654 0 0 0.1302

24 639 15 0 0.0666 642 12 0 0.1058 647 7 0 0.0927 654 0 0 0.1315

48 642 12 0 0.0805 645 9 0 0.1330 647 7 0 0.1073 654 0 0 0.1598

Table 7: Results of DPD-DFF with 654 test identifications (threshold)

SST SDT DST DDT

φ |C|avg TP FP FN tavg (s) TP FP FN tavg (s) |C|avg TP FP FN tavg (s) TP FP FN tavg (s)

0.15 113.5 641 13 0 0.1165 646 8 0 0.2114 61.1 647 7 0 0.1205 654 0 0 0.1863

0.20 19.3 631 17 6 0.0694 632 16 6 0.1128 4.1 645 1 8 0.0893 646 0 8 0.1266

0.25 2.0 600 19 35 0.0619 600 19 35 0.0972 1.0 616 2 36 0.0867 616 2 36 0.1211

0.30 0.8 545 2 107 0.0590 545 2 107 0.0924 0.9 562 0 92 0.0857 562 0 92 0.1194

4.3.3. Results using impostor fingerprints

This section provides additional accuracy results for the DBSpain654 database.

In this section, the introduction of impostor fingerprints in the database requires additional error measures to study

the behavior of DPD-DFF:

• False Acceptance Rate (FAR): rate of impostor fingerprints that are erroneously identified as genuine ones.

• False Rejection Rate (FRR): rate of genuine fingerprints that are erroneously rejected.

• Equal Error Rate (EER): error when FAR and FRR are equal.
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Figure 3: Runtime and accuracy with the captured database (N = 654)

• FAR100, FAR1000: FRR when FAR is 1% and 0.1%, respectively.

• True Negatives (TN): number of input fingerprints that are not in the database, and are correctly detected as

such.

• True Negative Rate (TNR): quotient of TN and the number of impostor test fingerprints.

Tables 8 and 9 depict these error measures for all tested variants of DPD-DFF. To calculate these values, we took

3 random input fingerprint pairs for each of the 654 templates, and matched them with all the templates, making a

total of 1 283 148 matchings for each matcher and each finger.

These tables show that the error rates become very low when the candidate set is big enough, especially for the

DDR variant. Additionally, the FAR100 and FAR1000 values are very similar in most cases, meaning that the FAR

drops quickly while the FRR remains almost constant, stating the robustness of DPD-DFF. The DRR variant obtains

a very low FAR1000 when r = 48, which corresponds to a system that is robust against attacks (0.1% FAR), while

avoiding rejections of genuine identities (0.25% FRR).
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Table 8: Additional error measures (in percentages) using DPD-DFF (rank)

SSR SDR DSR DDR

r EER FAR100 FAR1000 EER FAR100 FAR1000 EER FAR100 FAR1000 EER FAR100 FAR1000

2 6.2691 6.2691 6.3462 6.2691 6.2691 6.2691 1.3252 1.3252 1.4547 1.3252 1.3252 1.3252

4 5.3007 5.3007 5.4536 5.3007 5.3007 5.3007 0.9684 0.9684 1.1879 0.9684 0.9684 0.9684

8 4.4852 4.4907 4.6406 4.4852 4.4852 4.4852 0.8396 0.7875 1.2571 0.7645 0.7645 0.7645

12 3.8226 3.9012 4.0571 3.8226 3.8226 3.8226 0.7715 0.7344 1.1956 0.6116 0.6116 0.6116

24 2.7405 2.8525 3.2449 2.7013 2.7013 2.7077 0.5750 0.5607 1.0508 0.3568 0.3568 0.3818

48 2.0346 2.0897 2.5592 1.8858 1.8858 1.9217 0.6132 0.4497 1.2210 0.2039 0.2039 0.2519

Table 9: Additional error measures (in percentages) using DPD-DFF (threshold)

SST SDT DST DDT

θ EER FAR100 FAR1000 EER FAR100 FAR1000 EER FAR100 FAR1000 EER FAR100 FAR1000

0.15 1.9888 2.0829 2.7641 1.7848 1.7848 1.8358 0.6938 0.5347 1.3761 0.3058 0.3058 0.3851

0.20 4.5385 4.6810 4.9608 4.5385 4.5385 4.5385 1.6820 1.6820 1.8941 1.6820 1.6820 1.6820

0.25 9.5360 9.5360 9.6470 9.5360 9.5360 9.5360 5.8104 5.8104 5.8104 5.8104 5.8104 5.8104

0.30 18.2050 18.2050 18.2050 18.2050 18.2050 18.2050 15.4944 15.4944 15.4944 15.4944 15.4944 15.4944

To conclude this section, we performed a new test, for which half of the fingerprints were randomly removed from

the database, so that 50% of the input fingerprints become impostors trying to break into the system. The criterion

used by DPD-DFF to determine if a fingerprint does not belong to the database is a score threshold within the accurate

phase: if the fingerprint selected as the most similar to the input does not reach that threshold, the input is considered

to be an impostor. The threshold used for these tests was the one that gives 0.01% FAR for the standalone MCC

algorithm.

Table 10: Results of DPD-DFF with impostors and 654 test identifications (rank)

SSR SDR DSR DDR

r TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN

2 303 327 0 24 309 324 3 18 321 326 1 6 327 325 2 0

4 305 327 0 22 311 324 3 16 321 326 1 6 327 325 2 0

8 308 327 0 19 314 324 3 13 321 326 1 6 327 325 2 0

12 310 327 0 17 316 323 4 11 321 325 2 6 327 323 4 0

24 313 326 1 14 319 322 5 8 321 322 5 6 327 321 6 0

48 317 324 3 10 323 320 7 4 321 320 7 6 327 320 7 0

The results presented in Tables 10 and 11 show that, in contrast to the behavior of the TP, the TN decreases as the

candidate size grows. This happens because a smaller candidate set allows the impostors to be detected during the first

phase, while a bigger set makes the system more vulnerable to such attacks. This behavior provides good flexibility

for the system: it can focus either on rejecting impostors or avoiding false rejections by modifying the rank parameter.

All rank variants of DPD-DFF show very good accuracy results when detecting impostors while identifying gen-

uine fingerprints, keeping both FP and FN very low. As an example, DDR obtains the best result with the smallest r,

and therefore the fastest configuration, without any false negatives in all cases. Similarly, the SSR variant is the one
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Table 11: Results of DPD-DFF with impostors and 654 test identifications (threshold)

SST SDT DST DDT

θ TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN

0.15 316 323 4 11 322 320 7 5 321 319 8 6 327 321 6 0

0.20 308 326 1 19 314 323 4 13 319 326 1 8 325 324 3 2

0.25 295 327 0 32 301 325 2 26 307 327 0 20 311 327 0 16

0.30 260 327 0 67 264 327 0 63 279 327 0 48 281 327 0 46

that is more robust against false positives, although this happens at the cost of a worse false negative rate.
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Figure 4: True positive rate and true negative rate with the captured database

Figure 4 shows how the proposed system dominates by far all reference AFIS in terms of the trade-off between

false rejections and false acceptances. It can be seen that the DDR variant reaches almost 100% of both measures at

the same time.
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4.4. NIST-DB14 database

The NIST-DB14 database is composed of 27 000 rolled fingerprints, each of which was captured twice [44].

Tables 12 and 13 present the results of DPD-DFF over the NIST-DB14 database for the rank and threshold variants,

respectively, using 12 slave machines. Figure 5 displays graphically the values of the tables.

Table 12: Results of DPD-DFF with 1000 test identifications (rank)

SSR SDR DSR DDR

r TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s)

12 244 756 0 2.0345 275 725 0 2.3242 335 665 0 3.5431 357 643 0 3.8281

24 259 741 0 2.0564 312 688 0 2.3920 357 643 0 3.5769 393 607 0 3.9234

48 272 728 0 2.0726 340 660 0 2.4209 367 633 0 3.5816 418 582 0 3.9301

96 287 713 0 2.0865 369 631 0 2.4353 382 618 0 3.5872 442 558 0 3.9446

144 294 706 0 2.0891 383 617 0 2.4418 388 612 0 3.5965 458 542 0 3.9531

288 303 697 0 2.1033 405 595 0 2.4644 393 607 0 3.6070 485 515 0 3.9681

576 311 689 0 2.2739 431 569 0 2.8361 391 609 0 3.7861 507 493 0 4.3407

1152 324 676 0 2.5856 458 542 0 3.5211 393 607 0 4.1169 528 472 0 5.0399

2304 318 682 0 3.1847 482 518 0 4.8292 395 605 0 4.7404 544 456 0 6.3622

4608 331 669 0 4.3706 499 501 0 7.3712 381 619 0 5.9571 556 444 0 8.9160

9216 336 664 0 6.6912 518 482 0 12.3243 369 631 0 8.2953 559 441 0 13.8824

Table 13: Results of DPD-DFF with 1000 test identifications (threshold)

SST SDT DST DDT

φ |C|avg TP FP FN tavg (s) TP FP FN tavg (s) |C|avg TP FP FN tavg (s) TP FP FN tavg (s)

0.10 13065.3 344 656 0 8.9011 535 465 0 17.0552 13380.5 360 640 0 10.7978 555 445 0 19.1454

0.15 3820.7 329 670 1 4.2518 484 515 1 7.2158 2197.2 394 605 1 4.9861 529 470 1 6.8838

0.20 367.3 298 684 18 2.2591 389 593 18 2.8427 49.7 342 540 118 3.5687 380 502 118 3.9022

0.25 6.0 191 476 333 1.9899 202 465 333 2.2579 0.2 137 31 832 3.4112 137 31 832 3.5791

It has to be noted that the TPR is surprisingly low, in discrepancy with other studies that highlight these matchers

as accurate for the NIST-DB14 database. However, they may require specific tuning to be optimized for rolled

fingerprints, which falls beyond the scope of this study. Therefore, we focus on the results obtained with general-

purpose parameters that can highlight the robustness of the tested AFIS. For this database, which is difficult and

computationally expensive, DPD-DFF outperforms all other approaches, in terms of both identification time and

accuracy. The DDR variant is able to obtain better accuracy than the multi-finger MCC in about 25% more of the time

than that required by the latter.
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Figure 5: Average identification time and accuracy with NIST-DB14 (N = 21600)

4.5. Other real databases

We have performed an extensive experimental study over several publicly available databases composed of real

fingerprints. The objective of this study is to analyze the behavior of DPD-DFF in several realistic systems, where the

fingerprints have been captured by different sensors and techniques, and to do so in a reproducible way. DB25496 is a

mixture of the other four real databases formed by plain fingerprints (DBSpain654, CASIA-FingerprintV5, MCYT100

and FingerPass), where four captures of each fingerprint pair were included into the template database. Table 14

summarizes the characteristics of the three selected databases. Figure 6 displays graphically the time and accuracy

values obtained for them.

Again, the DDR variant is able to obtain the same results as the multi-finger MCC, in a much shorter time frame.

For the smaller databases, the multi-finger Jiang AFIS is able to obtain results that are faster than any of the variants of

DPD-DFF. However, this time difference is less than 0.1s, which is usually an acceptable time to spend if the accuracy

is improved. For a bigger database with the same characteristics, the relative difference in time would decrease as the

accurate phase overhead would represent a smaller proportion of the overall time, thus making DPD-DFF even more
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Table 14: Summary of the used real databases

Database Subjects Fingers Template pairs Input pairs Machines used Reference

CASIA-FingerprintV5 500 8 4000 1000 4 [45]

MCYT100 100 10 1000 1000 1 [46]

FingerPass 90 8 720 720 1 [47]

DB25496 1024 – 25 496 1000 12 [28]

suitable for the identification. This is reflected in the largest and most difficult databases (CASIA-FingerprintV5 and

DB25496), as well as in the previously analyzed NIST-DB14, where DPD-DFF improves accuracy in all the reference

results.
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Figure 6: Average identification time and accuracy with the additional real databases
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5. Conclusions

In this paper, we have proposed a novel dual phase identification model (denoted DPD-DFF) to address the identi-

fication problem in large fingerprint databases. Its goal is to overcome the two problems that arise when dealing with

this kind of database: the accuracy loss and the long runtime. To do so, the model combines two matching algorithms

and two fingerprints per identity, using a mixed decision-level and score-level fusion, and has been implemented in a

distributed system.

One of the main strengths of the proposed system is its flexibility, so that it can be tuned to the desired balance

between accuracy and speed. Furthermore, the proposal has been tested over six fingerprint databases of diverse

characteristics. The attained results have shown that the solutions obtained by our model dominate both in time and in

accuracy over those obtained by using a single fingerprint or score fusion with either two fingerprints or two matchers,

especially when large or complex databases are involved.

With a database of 50 000 fingerprint pairs, the algorithm reaches 100% TPR for identification taking only 0.44

seconds in a cluster of 12 machines. As for the fast results, 98.0% accuracy is obtained within 0.17 seconds.

The experiments carried out over the remaining databases have confirmed these conclusions. The additional study

including impostor scores claims that DPD-DFF is much more precise than the three reference AFIS in terms of the

trade-off between TPR and TNR, being able to eliminate any false negatives within a fast identification time.
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