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Abstract: Human NQO1 [NAD(H):quinone oxidoreductase 1] is a multi-functional and stress-inducible
dimeric protein involved in the antioxidant defense, the activation of cancer prodrugs and the stabilization
of oncosuppressors. Despite its roles in human diseases, such as cancer and neurological disorders,
a detailed characterization of its enzymatic cycle is still lacking. In this work, we provide a
comprehensive analysis of the NQO1 catalytic cycle using rapid mixing techniques, including
multiwavelength and spectral deconvolution studies, kinetic modeling and temperature-dependent
kinetic isotope effects (KIEs). Our results systematically support the existence of two pathways for
hydride transfer throughout the NQO1 catalytic cycle, likely reflecting that the two active sites in the
dimer catalyze two-electron reduction with different rates, consistent with the cooperative binding of
inhibitors such as dicoumarol. This negative cooperativity in NQO1 redox activity represents a sort
of half-of-sites activity. Analysis of KIEs and their temperature dependence also show significantly
different contributions from quantum tunneling, structural dynamics and reorganizations to catalysis
at the two active sites. Our work will improve our understanding of the effects of cancer-associated
single amino acid variants and post-translational modifications in this protein of high relevance in
cancer progression and treatment.

Keywords: antioxidant enzyme; antioxidant response; cancer; oxidoreductase; enzyme kinetic
analysis; functional cooperativity; hydride transfer; kinetic isotope effects; quantum tunneling;
conformational dynamics

1. Introduction

NAD(P)H quinone oxidoreductase 1 (NQO1; DT-diaphorase; EC 1.6.5.2) is a multi-functional and
stress-inducible flavoprotein whose activity is associated with different pathologies, particularly with
cancer [1,2]. NQO1 has a wide range of substrates and enzymatic functions associated with antioxidant
defense and cancer development, including the NAD(P)H-dependent two-electron reduction of
quinones to form hydroquinones, thus avoiding the formation of highly reactive and cytotoxic
semiquinones [3,4], the maintenance of vitamin K3 and ubiquinone in their reduced state [5-8] and
scavenging of superoxide anions [9]. NQO1 activity is also required for the activation of cancer
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prodrugs [10-14]. In addition, NQOL is capable of interacting with over forty different proteins, such as
p53, p73x and HIF-1«, and the general effect of these interactions is the protection of protein partners
against proteasomal degradation [4,15,16].

NQO1 is upregulated transcriptionally in response to stress [17-20]. The activation of the
antioxidant response induces the expression of NQO1, as well as that of enzymes involved in NADPH
generation [21-25]. The expression of NQOI1 can also be induced by some antioxidants (such as
resveratrol) through the antioxidant response pathway [26,27].

Changes in the activity of NQOI1 are associated to different pathologies, including cancer
and cardiovascular and neurodegenerative diseases [2]. Intriguingly, the role of NQOL1 in cancer
development seems to be twofold. NQOT1 is overexpressed in certain types of cancer and its inhibition
by dicoumarol (Dic), and analogs thereof, arrests the growth of certain cancer cell lines [28,29].
Its overexpression may also contribute to tumor growth through the stabilization of HIF-1«, a master
regulator of angiogenesis, thus critical in cancer development [16]. Conversely, cancer cell lines that
express inactivating and destabilizing NQO1 polymorphic variants (such as p.P187S and p.R139W)
are resistant to certain cancer treatments and are associated with increased cancer risk and poor
prognosis [2,30-32].

Structurally, NQO1 forms functional homodimers in which each monomer has a two-domain
structure, with a large N-terminal domain (approximately residues 1-225) that contains most of the
active site and a tightly bound FAD molecule and C-terminal domain (approximately residues 225-274)
that complete the active site (i.e., the NAD(P)H and substrate binding sites) and the monomer:monomer
interface [33-37]. The enzymatic cycle of NQOI1 follows a ping-pong bi-bi mechanism that can
be grossly divided into two half-reactions, each of them containing ligand binding/release events,
as well as hydride transfer (HT) reactions [2,38,39] (Figure 1A). First, in the reductive half-reaction,
NAD(P)H binds to holo-NQOT1 (the bound flavin is not released during the enzymatic cycle) and
reduces FAD to FADH),, thus releasing NAD(P)". This step is fast, with a second-order rate constant
in the order of 10°-10° M~!s™!. It has been proposed that the reduction of FAD by NAD(P)H)
occurs by direct HT between them, likely leading to the formation of FADH; in the enolate form.
This tautomer would have a negatively charged O2F that may become stabilized upon sequential
proton transfer with the side chains of Y156 and H162. In the oxidative half-reaction, the substrate
binds and is reduced by FADH, (this half-reaction is much faster, with a second-order rate constant of
10° M~1.s71), thus releasing the reduced substrate and regenerating the holo-enzyme [2,34]. In this
second half-reaction, the charge/proton transfer between FADH,, Y156 and H162 would likely occur in
the reverse sense [40,41].
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Figure 1. NQOI1 catalytic mechanism and protein dynamics. (A) Plausible mechanism for the reductive
and oxidative half-reactions (for details see the main text). FADH2 undergoes keto/enol tautomerism.
Here, we show the initial and final structures of FAD in the enol tautomer. Some reaction steps require
the enol or enolate tautomer. (B) Changes in NQO1 structural dynamics upon Dic binding from
hydrogen-deuterium exchange (HDX) analysis [42]. The upper panel shows the position of the FAD,
Y156 and H162 (involved in the stabilization of FADH2) and Y127 and Y129 (critical for Dic and NAD+
binding). (C and D) Dic binding. (C) leads to decreased dynamics in residues covering the whole active
site, particularly regarding the inhibitor and the FAD binding sites that may contribute to optimizing
HT from NAD(P)H and FADH2. (D) A%Dav is a simple stability metric that refers to the averaged
maximal difference in HDX kinetics between two given ligation states according to [42], and a negative
value for this parameter reflects an increase in local stability for a given protein segment upon ligand
binding (i.e., either HDX is slower and/or its amplitude is reduced upon ligand binding, thus reflecting
a locally stabilizing effect upon ligand binding). Note that residue numbering follows the full-length
sequence of the protein.

Importantly, most of our knowledge on the NQO1 kinetic mechanism has come from analysis
of either ligand binding/release events from crystallographic analyses, or from single-wavelength
kinetic analyses focused on the changes in FAD spectral properties associated with chemical steps
(i.e., HT) [34,38,40,43,44]. Several studies have supported that changes in molecular dynamics
throughout the catalytic cycle should also be considered [42,45]. The use in these studies of Dic,
a potent competitive inhibitor of NAD(P)H [6,39], has supported the proposal that NAD(P)H binding
may cause minimal structural changes [46,47] but affects the stability and structural dynamics of the
active site, which contributes to the enhancement of catalysis by reducing the reaction free energy
barrier(s) and/or promoting quantum tunneling effects [42,45] (Figure 1B). Interestingly, Dic binding
might also allow for the communication of local stability effects between active sites during the catalytic
cycle [42,48,49]. The existence of functional and structural non-equivalence between the active sites
may also explain the apparent negative cooperativity found for Dic binding (mainly reflected by
inhibition studies with the holo-protein) [48,49]. A critical role of protein dynamics in the activity and
stability of NQOL1 is further supported by the study of the inactivating and destabilizing effects of
the cancer-associated p.P187S polymorphism [30,31,50-53]. Importantly, long-range communication
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of stability effects due to inactivating mutations and polymorphisms, as well as due to the presence
of suppressor mutations and ligand binding (Figure 1B), seems to be a general phenomenon in
NQO1 [30,33,41,42,50,54-57].

A deep understanding of the kinetic mechanism of this important metabolic and antioxidant
enzyme would allow us to rationalize the effects of missense variants and enable the improved design of
inhibitors and drugs which are activated by NQO1 as chemotherapeutics [56-63]. However, to the best
our knowledge, no study has investigated the NQO1 kinetic mechanism from an integrated perspective
of the changes occurring in the NQOL1 structure and dynamics that facilitate HT reactions. We provide
here such an integrated perspective on the NQO1 catalytic mechanism by kinetically evaluating
the different events occurring in the reductive and oxidative half-reactions by using stopped-flow
spectrophotometry with photodiode detection combined with temperature-dependent kinetic isotopic
effects (KIEs) [64]. Overall, our results show that HT from NAD(P)H to FAD occurs through two
different pathways with widely different kinetics, likely reflecting that the two active sites in the NQO1
dimer are not equivalent. This non-equivalence may explain the binding cooperativity observed for
Dic. In addition, these two pathways largely differ in the contributions from structural and vibrational
dynamics along the reaction coordinate(s). Thus, this work constitutes an important advance in
deciphering the dynamics at the active site of this structurally complex enzyme during catalysis.
Our work will help in the rational design of more potent and specific mechanism-based NQO1
inhibitors, as well as to understand the functional consequences of naturally occurring NQO1 missense
variants and post-translational modifications and the structural and energetic basis of functional
cooperativity in this enzyme.

2. Materials and Methods

2.1. Materials

All the chemicals were purchased with high purity (typically > 99%) from Sigma-Aldrich and Merck,
and these were used without further purification, unless otherwise indicated. The 5-deazariboflavin
was a gift from the G. Tollin Lab (University of Arizona). The stereospecifically labeled nicotinamide
nucleotide [4R-?H;]-NADH (with the deuterium in the A face of the nicotinamide ring, NADD)
was synthetized enzymatically using [?Hg]-propanol/alcohol dehydrogenase following previously
described protocols [65]. Milli-Q water was obtained from a Milli-Q® Reference water purification
system (Millipore, Madrid, Spain) and used for the preparation of all buffers and media.

2.2. Protein Expression and Purification

The wild-type (WT) NQO1 cDNA was cloned into a pET-46 Ek/LIC vector [31]. This plasmid was
used to transform BL21(DE3) cells (Agilent) for protein expression. Transformed cells were grown
in 240 mL of autoclaved Luria-Bertani (LB) medium containing 0.1 mg-mL~! ampicillin (Canvax
Biotech) (LBA) overnight at 37 °C. These cultures were diluted into 4.8 L of LBA and grown at 37 °C
for 3 h under shaking (at 150-160 rpm) to reach an optical density of about 0.6. Then, cultures were
cooled down to 25 °C and induced with 0.5 mM isopropyl 3-D-1-thiogalactopyranoside (IPTG, Canvax
Biotech). After 4 h, cells were harvested by centrifugation (8000 g, 15 min, 4 °C) and cells were
frozen and maintained at —80 °C overnight. Cells were resuspended in binding buffer (BB; 20 mM
NaH;POy4 300 mM NaCl, 50 mM imidazole; pH was adjusted to 7.4 using concentrated HCI) plus 1 mM
phenylmethylsulfonyl fluoride (PMSF), sonicated in an ice bath and centrifuged at 24,000 g for 20 min
at 4 °C. Supernatants (soluble extracts) were loaded into immobilized-metal affinity chromatography
(IMAC) columns (His Gravitrap, Ni Sepharose 6 fast flow resin, 1 mL bed volume, GE Healthcare),
washed with 25 volumes of BB and eluted with 2.5 mL of BB containing 500 mM imidazole (pH was
adjusted to 7.4 by addition of concentrated HCI). These eluates were buffer exchanged using PD-10
columns (GE Healthcare) to the storage buffer (50 mM HEPES-KOH pH 7.4), frozen in liquid nitrogen
and stored at —80 °C. Typically, this procedure yielded about 20 mg of purified NQO1 protein.
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About 20 mg of protein from IMAC were thawed, centrifuged for 10 min at 24,000 g and 4 °C,
diluted in storage buffer to a final volume of 5.5 mL and 5 mL of this protein solution were injected
into a HiLoad® 16/600 Superdex® 200 pg (GE Healthcare). Size-exclusion chromatography (SEC)
was carried out using 20 mM HEPES-NaOH, 200 mM NaCl pH 7.4 as a mobile phase at 20 °C
and using a 1.5 mL-min~! flow rate. Void (Vj) and total (V1) volumes were determined using
blue dextran and acetone, respectively (Figure 2A). Fractions eluting between 75 and 90 mL were
pooled, concentrated using Amicon® Ultra-15 Centrifugal Filter Units-30,000 NMWL (Millipore),
mixed with a final concentration of 1 mM FAD and exchanged to HEPES-KOH 50 mM pH 7.4 using
PD-10 columns. The UV-visible absorption spectra of the purified protein were collected at a 20 uM
protein concentration using 1-cm pathlength quartz cuvettes on a Cary 50 or 100 spectrophotometer
(Agilent). Protein concentration and FAD content were determined from the absorbance at 280 nm
and 450 nm, respectively [50]. Briefly, the experimental spectrum was converted into molar extinction
units (M~'.cm™) using the absorbance at 280 nm considering that the extinction coefficient of NQO1
monomer with bound FAD is the sum of its intrinsic protein extinction coefficient (47,900 Ml.em™,
based on its amino acid sequence) plus the contribution from bound FAD (22,000 M~!-cm™! -fraction
of bound FAD per monomer) [31]. The former contribution can be assessed experimentally for each
spectrum from the absorbance at 450 nm (e450 = 11,300 M~Lem™) [66]. As we have previously
indicated [50], this approach considers that the spectral properties of FAD are similar when bound
to NQOL1 to those of the free ligand. NQO1 samples obtained from different purifications contained
0.97-0.99 moles of FAD per mole of NQO1 monomer as assessed by this procedure (Figure 2B).
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Figure 2. Purification of NQO1. (A) Size-exclusion chromatography (SEC) chromatogram of NQO1
protein. About 20 mg of protein from IMAC (immobilized-metal affinity chromatography) were injected
into a HiLoad® 16/600 Superdex® 200 pg (GE Healthcare) running on 20 mM HEPES-NaOH, 200 mM
NaCl pH 7.4 at 20 °C. Void (Vj) and total (V) volumes are indicated. Fractions eluted between 75 and
90 mL were pooled and concentrated. The purity was checked by SDS-PAGE in 12% acrylamide gels
(inset). (B) Concentrated protein was exchanged to HEPES-KOH 50 mM pH 7.4 and the UV-visible
absorption spectrum was collected at a 20 uM protein concentration. The extinction coefficient of free
FAD is indicated for sake of comparison.

2.3. NQOT1 Redox Properties Evaluated by Absorption Spectroscopy

Photoreduction of NQO1 was achieved by irradiating the oxidized protein (NQO1,x) under
anaerobic conditions in the presence of 2 mM EDTA and 8 uM 5-deazariboflavin [67]. Experiments
were performed in HEPES-KOH, pH 7.4 at 25 °C in home-made spectrophotometer cuvettes. Glucose
(at a 310 mM final concentration) and glucose oxidase (at a 10 units-mL~! final concentration) were
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added to all the solutions to remove trace amounts of oxygen. The stepwise reduction of the protein
was achieved by light irradiation from a 250 W slide projector for different periods of time, for which
the UV-visible spectrum was then recorded in a Cary 100 spectrophotometer (Agilent). Once fully
reduced (no variation in the UV-visible spectra despite further irradiation), the protein was re-oxidized
by breaking the anaerobic conditions and exposure to atmospheric air, and absorption spectra were
recorded until complete re-oxidation.

The ability of NAD" to re-oxidize the hydroquinone form of the protein (NQO1p) was evaluated
by using anaerobic solutions of photoreduced NQO1 (7.5 uM), produced by following the above
described procedure in specially designed cuvettes. NQO1q was them mixed with an NAD" solution
placed in the same cuvette lateral arm, providing a final 1:1 protein:coenzyme ratio and the kinetics of
the re-oxidation of the enzyme were followed in the full protein spectral range using an Agilent 8453
photodiodearray spectrophotometer (Agilent).

2.4. Stopped-Flow Pre-Steady-State Kinetic Measurements

Fast HT reactions from NAD(P)H/D to NQO1,x, as well as from NQO1,q4 (generated by NQOTox
mixed with NADH at stoichiometric ratio) to 2,6-dichlorophenol indophenol (DCPIP), were measured
using a stopped-flow spectrophotometer from Applied Photophysics (SX.18MV, Applied Photophysics
Ltd., Leatherhead, UK) interfaced with a photodiode array detector and under anaerobic conditions,
following previously established protocols [68,69]. All samples were made anaerobic (in specially
designed tonometers by successive evacuation and O;-free argon flushing) before introduction into the
stopped-flow syringes. NQO1x (7.5 uM) was mixed with NADH/D at concentrations ranging from 1:1
to 1:14 NQO1,x:NADH)/D ratios, while when using NADPH, the single 1:1 ratio was used. To evaluate
re-oxidation, NQO1yq (7.5 uM) was mixed with stoichiometric amounts of DCPIP. Additionally, Dic
was used as an inhibitor of both the reductive and oxidative half-reactions, adding it at 1:1 and 1:4
NQOT1: Dic ratios. Reactions were studied in 20 mM HEPES-KOH, pH 7.4 with glucose/glucose oxidase
(310 mM/10 units:mL!), at 25 °C and/or 6 °C. Multiple wavelength absorption data in the flavin
absorption region (400-900 nm) were collected and processed using the ProData-SX software (Applied
Photophysics Ltd.). Time-dependent spectral deconvolution was performed by global analysis and
numerical integration methods using Pro-Kineticist (Applied Photophysics Ltd.). Collected data
were fitted to either single- or multi-step (A—B—n ... .—Z) models allowing for estimation of
the corresponding observed conversion rate constants (kopsa—B, kobsB—cC, --- ) at each NAD(P)H/D
concentration, as well of the spectra of intermediate and final species [70]. A, B, n and Z are spectral
species, reflecting a distribution of enzyme species at any time throughout the course of the enzyme:
coenzyme interaction, including HT (or deuteride transfer, DT) or reorganization processes, and do not
necessarily represent a single distinct enzyme intermediate. Since none of them represents individual
species, their spectra cannot be included as fixed in the global fitting.

The kgps values showing hyperbolic dependence profiles on the NAD(P)H/D concentration were
fitted to a function (1) that describes binding at a single site followed by reorganization or HT/DT
processes, allowing for the determination of the corresponding equilibrium constant (Kg), as well as
the rate constant for the subsequent process (k) [69,70]:

k-[NAD(P)H]
NAD(P)H] + K,

kobs =kasp =kpc = [ (1)
Depending on the process, k might account for the rate constant of the rate-limiting step for complex
formation, kon, or for the HT/DT rate constant, ki or kpr. K4 might respectively account for the
complex dissociation constant, K;\]AD H/D , or for a reorganization constant related to the transition
between reaction intermediate species, K;eg :
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2.5. Kinetic Isotopic Effects (KIEs)

For the estimation of primary kinetic isotopic effects in the HT process [68], HT or DT observed
rate constants (ks or PTkyy,s) from NADH/D to NQO1,, were evaluated at different temperatures
in the 5.3-20 °C range, in samples containing equimolecular mixtures (7.5 pM of each component)
using NADH and [4R-*H]-NADD, unless otherwise indicated.

Kinetic isotope effects (KIEs) on rate constants were calculated as follows:

ket _ HTkobs

KIE = — = 2
kpr DTk ps @
For each isotope, the fitting of the observed rates to the Arrhenius equation was calculated:
Ea
k=Axe kT 3)

providing the values corresponding to Arrhenius pre-exponential (frequency) factors (Ayg and Ap)
and activation energies (E,y and E,p). The temperature dependence of the KIE was analyzed by
combining Equations (2) and (3). Additionally, the activation enthalpies (AH?Y) and entropies (ASH)
were calculated using the Eyring equation:

kobs _ kg 1 AH?*
ln( T = In p + (AS*/R) RT 4)
where kg is the Boltzmann constant (1.3806-1072% J-K~1) and # is the Planck constant (6.626-1073* J-s).

3. Results and Discussion

3.1. Human NQO1 Does Not Stabilize Intermediate Semiquinone States upon Photoreduction

NQO1,x exhibits the characteristic UV—visible spectra of flavoproteins, with maxima at 278, 375
and 449 nm, and shoulders at 422 and 475 nm (Figure 3). Upon photoreduction, the FAD cofactor
exists in the hydroquinone state, NQO1q (i.e., a two-electron reduction), as denoted by the decrease in
absorbance at 370 and 450 nm. Full reduction was achieved after 15 min of irradiation, with equivalent
spectral features to those observed upon reduction with an excess of sodium dithionite (Figure 3).
The photoreduction occurs without the appearance of any red-shifted absorbance band, indicative of
the stabilization of the FAD blue-neutral semiquinone, but subtle changes in absorbance at 375, 400 and
480 nm might point to traces of the red-anionic semiquinone radical [71], as observed for other oxidases,
including rat liver NQO1 [44]. Such a lack of semiquinone intermediates indicates that reduction
of the semiquinone to the hydroquinone state is thermodynamically more favorable and kinetically
faster than the reduction of the oxidized to the semiquinone species [72]. This observation agrees with
the absence of detectable semiquinone paramagnetic signals when evaluating the redox cycle of the
enzyme and with mammalian quinone oxidoreductases, which are a notable exception in that they
only function by a compulsory two-electron transfer [73]. Such observations denote a less negative
midpoint reduction potential of the FADH-/FADH,; couple with respect to the FAD/FADH- one. Finally,
upon mixing the photoreduced protein with atmospheric air, the initial absorbance spectrum of the
oxidized protein was restored (not shown).
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Figure 3. Photoreduction of NQO1. Colored spectra correspond to different illumination time points
throughout the photoreduction process. The dashed black line indicates the spectra corresponding to a
sample chemically reduced by dithionite (5,04%).

3.2. The Catalytic Cycle of NQO1

To evaluate the kinetics of the reductive and oxidative half-reactions in the catalytic cycle of NQO1
(Figure 1A), we studied the spectral changes occurring in the band-I (400-500 nm range) of the flavin
by using fast kinetics stopped-flow spectrophotometry.

3.2.1. Non-Equivalent Active Sites in the NQO1 Dimer throughout the Reductive Half-Reaction

We first evaluated the kinetics of the reductive half-reaction by mixing NQO1,x with NADH at
6 °C under strict anaerobic conditions. A decrease in the absorption at the FAD band-I was quickly
observed without detection of semiquinone traces (Figure 4A), in agreement with FAD reduction
to the hydroquinone form. The final spectrum after the overall HT compares well with the fully
photoreduced NQO1 and dithionite reduced spectra, suggesting full reduction of the cofactor was
achieved (Figure 3 vs. Figure 4A). This observation envisages a less negative reduction potential
of the NQO1 FAD/FADH, pair regarding the NAD*/NADH redox pair (E’y = —320 mV) [74] under
our experimental conditions. This agrees with the value of —159 mV previously reported for the rat
enzyme [44].

To provide further insight into the mechanism of the reductive half-reaction, we submitted these
kinetic data to global spectral deconvolution (Figure 4B). Several mechanisms were evaluated, but
only a minimal three-step non-reversible mechanism (A—B—C—D) (Figure 4B-D) reproduced the
experimental data well. The lack of major spectral changes in the instrumental dead time suggested
that species A corresponds with the initial mixing of NQO1,x and NADH. The conversion of species A
into B was very fast (initial ~10-40 ms of reaction) and contributed to nearly 75% of the decay of the
band-I absorption (Figure 4B). Therefore, this step comprises the HT process from NADH to FAD and
its reduction. The observed rate constants for this process, kopsa—p, showed hyperbolic dependence on
NADH concentration (Figure 4E), allowing for the determination of a NADH dissociation constant
(KgNAPH) as well as of a limiting HT rate constant (kyt1), without considering the occurrence of any
reverse HT reaction. The limiting value for kytq of 284 + 17 s71 (at 6 °C) indicates a very fast HT from
NADH to NQO1,y, which compares well with the steady-state catalytic constant (kcat) of 180200 s
(at 30-37 °C) [31,33,48]. This agreement supports that the HT process is the rate-limiting step within
the reductive half-reaction. Alternative scenarios, in which substrate binding and/or product release
could be rate-limiting steps are discussed in Appendix A. Kinetic analysis on the A—B process also
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allows us to determine a KgNAPH of 16 + 3 1M, a value 10-times lower than the reported KyNAPH
(160-240 uM, using DCPIP as substrate) [31,33,48]. This observation indicates a tighter interaction
in the reactive NQO1,x:NADH complex than in the subsequent complexes formed throughout the
reaction, and justifies the lack of spectroscopic detection of charge-transfer complexes (CTCs).
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Figure 4. Kinetics of the NQOI1 flavin reduction by NADH/D. (A) Spectral evolution on a 0-60 s
timescale after mixing NQO1ox (7.5 uM) with NADH (7.5 pM) in 20 mM HEPES-KOH, pH 7.4, at 6 °C.
Different colored lines correspond to the spectra at different reaction times. (B) Spectral deconvolution
of intermediate species observed during the reaction when fitting to a four-state model and the
corresponding calculated observed rate constants. In panels A and B, the dashed line represents the
spectrum of NQO1,x before mixing. (C,D) Decay of kinetic traces at 450 nm and 475 nm and fittings to
the model. (E) Dependence of ko values on the NADH/D concentration. The trace for the fitting to
Equation (1) for kopsa —p Values is shown as a black line. Error bars correspond to the SD for at least

three different replicates. Spectral evolution (A) and deconvolution (B) are from a single measurement
and representative from n > 3.

This initially observed HT step (A to B) was followed by another process (B to C) that led to
the nearly full reduction of the flavin bound to NQO1. In fact, this process essentially accounted
for the remaining 25% of the total absorption decrease at the flavin band-I, and, therefore, must also
be related to an HT process. The kqpsp—c values were considerably slower than those for kopsa—B,
and roughly dependent on the coenzyme concentration (Figure 4E), providing a limiting rate for this
second HT event, kyyro, in the 10-15 571 range. Our kinetic analysis showed a final step to achieve full
FAD reduction (C to D), but this process accounted for a very small and slow spectroscopic change

(with rate constants 5000 times slower than for the A—B process), suggesting that it might not be of
catalytic relevance.
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NQOI1 can also use NADPH as electron donor, which is a better reductant than NADH (with
six-fold higher catalytic efficiency and a four-fold enhancement in keat, [31,34,75]). Consequently,
NQO1,x mixed with NADPH at a 1:1 ratio shows a faster FAD reduction than when using NADH,
part of which occurs in the instrumental dead time (Figure 5A). The process was best described as a
two-step process (A—B—C) (Figure 5B), with at least 80% of flavin reduction occurring in the first
step. The kopsa—p and kopsp—c values at stoichiometric concentrations were 261 + 13 and 7.8 + 0.3 s71,
respectively, with kopsa—,p being 3.7 times faster than when using the same NADH ratio, while kqpsp—c
values resulted in the same range. Hence, the overall HT process is faster when NADPH is the hydride
donor, consequently preventing studies using higher coenzyme concentrations.

8
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Figure 5. Kinetics of the NQOI1 flavin reduction by NADPH. (A) Spectral evolution on a 0-0.5 s
timescale after the mixing NQO1ox (7.5 uM) with NADH (7.5 uM) in 20 mM HEPES-KOH, pH 7 4, at
6 °C. Different colored lines correspond to the spectra at different reaction times. The inset shows the
decay of kinetic traces at 450 nm and 475 nm, the fittings to the model, and the residuals at 450 nm to
show the quality of the fitting. (B) Spectral deconvolution into the different species observed along the
reaction from fittings to a two-step model and calculated rate constants. Spectral evolution (A) and
deconvolution (B) are from a single measurement and representative from n > 3.

Altogether, and considering that NQO1,y is a dimer, these data allowed us to suggest that the
reduction of each protomer within the dimer might occur at very different rates. We must note that,
according to the change in the flavin band-I magnitudes for the A—B and B—C steps, a part of the
reduction of the slower protomer might occur within the first A—B step. To test this hypothesis, we
used Dic to slow down the reductive half-reaction of NQO1 by NADH [6,39]. Dic competes for the
NAD(P)H binding site, blocking access to the nicotinamide part of the coenzyme and, as a consequence,
preventing the HT from the nicotinamide to the flavin cofactor [46]. As shown in Figure 6, the presence
of Dic causes a considerable slowdown of the overall HT processes by NADH. Moreover, the spectral
evolution was best described by a two-step mechanism (A—B—C), with each of the two steps
accounting for half of the spectral change corresponding to FAD reduction. The full observation of both
individual processes was likely possible because of the considerable reduction in kypsa—p and kopsp—c
caused by Dic, respectively 0.034 + 0.003 and 0.0065 + 0.0005 s~! at stoichiometric concentrations,
which implies a ~2000-fold decrease. Higher Dic ratios (1:1:4 protein/NADH/dicoumarol) produced
further slowdowns of both steps (Table 1), while increasing NADH concentrations (50 uM, 1:6.6:4 of
protein/NADH/Dic) only slightly increased reduction rate constants, hardly preventing Dic inhibition.
Such observations are easily explained by the higher affinity of three orders of magnitude of Dic vs.
NADH (KdDiC typically in the 1-20 nM range; [33,49,55] and Section 3.2.1). Therefore, these inhibition
studies with Dic strongly supported that the reduction of the FAD cofactor at the two active sites of the
NQOI1 dimer occurs at different rates.
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Figure 6. Kinetics of NQOI1 flavin reduction by NADH in the presence of the Dic inhibitor. (A) Spectral
evolution after the mixing in the stopped-flow equipment of NQO1x (7.5 tM) with NADH (7.5 uM) in
the presence of Dic (7.5 uM) in 20 mM HEPES-KOH, pH 7.4, at 6 °C on a 0-800 s timescale. Different
colored lines correspond to the spectra at different reaction times. The inset shows the decay of kinetic
traces at 450 nm and 475 nm, as well as the fitting to a three-state model. (B) Spectral deconvolution
of intermediate species observed during the reaction upon fitting to a two-step model and calculated
observed rate constants. In panels A and B, the dashed line represents the protein spectrum before
mixing. Spectral evolution (A) and deconvolution (B) are from a single measurement and representative
fromn > 3.

So far, our analyses for the reductive half-reaction of NQO1,x by NAD(P)H have pointed to the
reverse HT reactions being practically negligible. To confirm this, we mixed photoreduced NQO1y,q with
stoichiometric concentrations of NADY, in specially designed spectrophotometer cuvettes and under
anaerobic conditions, and followed spectral changes over the time. Once the reaction components were
mixed, the FAD cofactor became very slowly re-oxidized without the stabilization of any semiquinone
or CTC intermediates (Figure 7). The overall protein re-oxidation resulted in a monophasic process
with a rate constant of 0.0025 + 0.0005 s~!'. This parameter would relate to the apparent HT rate
constant for the backward reaction (*PPky.1), being around 28,000 times slower than the corresponding
forward process. Therefore, the equilibrium of the reductive half-reaction is fully displaced towards
the production of NQO1y, in agreement with the main physiological role of the enzyme in the
detoxification of quinones by their reduction.

Table 1. Summary of observed rate constants (kops) for the reductive and oxidative half-reactions
involving NQO1. Measurements were carried out in 20 mM HEPES-KOH, pH 7.4 at 6 °C and the
ratios are indicated between brackets for each reactant. Evolution of the reaction was followed in the
400-1000 nm wavelength range using stopped-flow equipment with a photodiode array detector (n > 3,
mean + SD).

Sample in Tonometer1  Sample in Tonometer 2 k"(l;s;AITB k"(bss_Bﬂ)C
NQO1 (1) NADH (1) 78+1 89+09
NQO1 (1) 4R-NADD (1) 44 £ 2 6.3+0.2
NQO1 (1) NADPH (1) 261 +£13 7.8+0.3

NQO1 (1) + Dic (1) NADH (1) 0.034 + 0.003 0.0065 + 0.0005
NQO1 (1) + Dic (1) NADH (6.6) 0.036 + 0.002 0.010 £ 0.001

NQO1 (1) + Dic (4) NADH (1) 0.018 + 0.003 0.0015 + 0.0001
NQO1 (1) + Dic (1) NADPH (1) 0.036 + 0.006 0.0070 + 0.0008
NQO1 (1) + Dic (4) NADPH (1) 0.017 £ 0.001 0.0020 + 0.0001

NQO1 (1) + NADH (1) DCPIP (1) >500 160 + 14

NQO1 (1) + NADH (1) DCPIP (1) + Dic (1) 38+3 63+12

NQOI1 (1) + NADH (1) DCPIP (1) + Dic (4) 7.7+02 1.3+0.1

NQO1 (1) + NADH (1) Ferricyanide 219 +£12 29+4
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Figure 7. Kinetics of the reaction of NQO1,q with NAD™. (A) Spectral evolution after mixing (in an
anaerobic cuvette) NQO1pq (7.5 uM)) with a 1:1 ratio of NAD* in 20 mM HEPES-KOH, pH 7.0, at 6 °C
on a 0-35 min timescale. Different colored lines correspond to the spectra at different reaction times.
(B) Detail of kinetic traces at 450 nm and 475 nm and fitting to a single exponential function. Spectral
evolution (A) is from a single measurement and representative from n > 3.

3.2.2. Non-Equivalent Active Sites in the NQO1 Dimer throughout the Oxidative Half-Reaction

Although NQOT1 can reduce a wide variety of substrates [4], most of them are not appropriate
for enzymatic studies due to their low solubility in aqueous solutions, their characteristic spectral
properties or, in some cases, their fast reduction that precludes pre-steady-state kinetic characterization
using stopped-flow spectroscopy [34,44]. We have here used DCPIP, a suitable and artificial electron
acceptor often used in activity measurements of human NQO1 [4], to study its oxidative half-reaction.
Nonetheless, mixing NQO1q with DCPIP at equimolecular concentrations also resulted in the
extremely fast re-oxidation of the protein, even at low temperatures, and with nearly 50% of the spectral
changes occurring in the instrumental dead time (Figure 8A—C). The observed overall process was best
fitted to a two-step mechanism (A—B—C), with the initial step accounting for most of the spectroscopic
changes and exhibiting observed rate constants, kopsp—B, above the instrumental measurement limit
(>500 s71, at stoichiometric reactant ratios). Conversely, the second step (B—C) shows minor, and
probably biased, contributions both in terms of kypsp_c (160 s71) and amplitude. These values for
the rate constants in the oxidative half-reaction further reinforce that the reductive half-reaction is
rate-limiting in NQOL catalysis, also preventing additional analyses at higher NQO1y,4:DCPIP ratios.

Although Dic is usually reported as an inhibitor of the reductive half-reaction, we also evaluated its
effect in the oxidative half-reaction. The re-oxidation of NQO1,q by DCPIP is also significantly slowed
down in the presence of Dic (1:1 of protein/NADH mixed with 1:1 DCPIP/Dic, Figure 8D,E), which might
not be surprising because Dic shares the binding site with both the electron donor and acceptor [46].
The presence of Dic has a considerable effect on both kgpsa—p and kepsp—c, which decreased to 38 + 3
and 6.3 + 1.2 571, respectively, at a 1:1 ratio and even more at higher Dic concentrations (Table 1),
while the amplitudes of the changes became similar for both processes (Figure 8D-F). These data
indicate that the two active sites of NQOL1 are also non-equivalent regarding the kinetics of the
oxidative half-reaction.
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Figure 8. Kinetics of NQO1p re-oxidation by DCPIP (2,6-dichlorophenol indophenol). (A) Spectral
evolution after mixing NQO1yq (7.5 pM) with DCPIP (7.5 pM) in 20 mM HEPES-KOH, pH 74, at 6 °C
on a 0-0.1 s timescale. (B) Spectral deconvolution of intermediate species observed during the reaction
when using a three-state model. (C) Kinetic traces at 450 nm, 475 nm and 600 nm. Experimental data as
well as the fitting to the three-state mechanism are shown. (D) Spectral evolution after mixing NQO1pq
(7.5 uM) with DCPIP (7.5 uM) in the presence of Dic (7.5 uM) in 20 mM HEPES-KOH, pH 7.4, at 6 °C
on a 0-1 s timescale. (E) Spectral deconvolution of intermediate species obtained from analysis using a
three-state model. (F) Kinetic traces at 450 nm, 475 nm and 600 nm. Experimental data as well as the
fitting to the three-state mechanisms are shown. Dashed lines (panels A,B and D,E) correspond to the
initial spectra of NQO1,q and DCPIP (bold), the bold black line is the addition of these two spectra
(species at t = 0) and the different colored lines correspond to the spectra at different reaction times.
Spectral evolution (A,D) and deconvolution (B,E) are from a single measurement and representative
fromn > 3.

Although the main enzymatic role of NQOL1 is associated with the mandatory two-electron
reduction of substrates, reactivity with artificial one-electron oxidants, such as ferricyanide, has been
widely reported for the characterization of Saccharomyces cerevisiae Lot6p and rat and human
NQOL1 [76,77]. The rapid mixing of reduced NQO1yq with ferricyanide (1:1 reduction equivalent
ratio) coursed with the re-oxidation of the FAD cofactor (in ~ 0.4 s) without any trace of semiquinone
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stabilization and with kgpsa g of 219 + 12 57! and kgpsp_c of 29 + 4 571, values considerably lower
when compared to two-electron substrates.

3.3. Dynamics at the NQO1 Active Sites Differentially Contribute to the Two HT Events Representing the
Reductive Half-Reaction

We then used fast kinetics measurements to investigate primary KIEs (using [4R-’H]-NADD), as
well as the temperature dependence of the rate constants and KIEs, in the context of the Arrhenius
equation. The resulting parameters may provide information on the structural organization and
dynamics at the active site of enzymes during HT catalysis [68]. Due to HTk 1sasp values being close
to the instrumental limit upon increasing the coenzyme concentration (see black closed circles in
Figure 4E), equimolecular concentrations of enzyme and coenzyme were the most suitable choice to
overcome the technical limitations for the temperature-dependent studies. Nonetheless, since KqNAPP
may differ from KqNAPH, the KIEs obtained in this way might be apparent. However, this does
not seem to be the case, since the K4NAPP at 6 °C is quite similar to that of KgNAPD (12 + 2 uM vs.
16 + 3 uM, Figure 4E), indicating that, at this temperature, the deuterated substrate hardly influences
this parameter. Moreover, the comparison of the limiting kpr; of 122 £5s ~1 with kyyry (284 + 17 s71)
resulted in a moderate value of 2.3 + 0.5 for the KIE5_,g at 6 °C. On their side, PTkypsp_c values
were considerably lower (Figure 4E, red open circles) with a limiting kpr, ~ 7 s~! and therefore a
KIEp_,c may also be close to a value of 2. KIEs usually exhibit maximal values at lower temperatures,
suggesting this might be a nearly limiting value. The magnitude of primary H/D KIEs theoretically
can reach a maximum value of 8, although there are considerably larger values reported for some
enzymes [78]. Nonetheless, primary KIEs can also decrease towards 1 when the C-H bond is either
broken less (i.e., earlier transition state) or more (i.e., later transition state) in the transition state structure
(asymmetrical), or if the transition state is nonlinear [79,80]. This suggests that, in the NQO1 reductive
half-reaction, the transition state, at least for the first HT, is either moving away from symmetrical or it
is non-linear.

The magnitude of the KIE is itself informative, but the size of its temperature dependence also
serves as a key descriptor of the reaction coordinate [64]. In particular, we applied the environmentally
coupled tunneling model by determining HT and DT observed rate constants, namely " Tkgpsa 5,
HTY bsBocs PTkopsa—sp and PTk pepc, at different temperatures (Figure 9A). As indicated above, we
used equimolecular concentrations of the enzyme and the coenzyme substrate (instead of saturating) to
avoid entering the detection limit of the instrument upon increasing the temperature. The determined
kops values provided apparent KIEA g and KIEg_,¢c values of ~1.8 (Table 2), which were temperature
independent (Figure 9B). Despite these values being apparent, they match with the limiting one
obtained under saturating conditions and low temperature. HTK bsaop and PTkpa_p showed a
weaker temperature dependence than Tk ,ss_,c and PTkypep_»c, and in both cases the Arrhenius
plots for HT and DT hardly deviated from parallel lines, indicating very similar E, values (Figure 9A).
E, values are moderate for the fast HT/DT event and 1.5 times larger for the second process, while AE,
(EapT — Eanr) is nearly 0 for both processes. In addition, the calculated isotope effect on the Arrhenius
frequency factor (Ay/Ap) strongly differed between both HT/DT events, with a value close to the
unity for the faster one and about 10 for the slower one. As a consequence of the marginal differences
between E,pr and E,yr and the small values for the apparent KIEs, the activation enthalpies and
entropies for HT and DT are also small when these results are analyzed in the context of the Eyring
equation (Equation (4), see Figure 9C and Table 3).
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Figure 9. Temperature dependence of kinetic parameters for the two hydride/deuteride transfer
(HT/DT) processes from NADH to NQO1. (A) Arrhenius plots of kinetic constants. (B) Temperature
dependence of the kinetic isotope effects (KIEs). (C) Eyring plots of kinetic constants.

Table 2. KIEs for the HT in the reduction of NQO1 by NADH. All values correspond to data obtained
with equimolecular concentrations of the reactants in the stopped-flow equipment. (n > 3, mean + SD).
Analysis was performed using Equations (2) and (3) (see Figure 9A,B).

HT DT AE,
EapT — Eanr
HT s 2 Eant An DTk ops 2 EapT Ap KIE (lzcal»mola*“ An/Ap
(s71) (kcal-mol-1) (s (s71) (kcal-mol-1) (s71)
A-B 78 £1 61+02  (53+1.2)-10° 4 +2 63+04  (41+£1.1)10° 1.8+0.1 02+04 1.3+06
B—C 8.9+09 109+05 (3.4 +0.9)10° 53+0.2 98+05  (26+06)108 18+03 -1.1+07 13+6

a Values at 6 °C.

The temperature independence of the KIE is generally interpreted in the context of full tunneling
models, where the reaction barrier is attributed to the heavy atom motions that affect the probability of
wave function overlap and little, or no, sampling of the distance of the reacting atoms [81]. Thus, our
data show that both HT events in NQOL1 are consistent with transitions under the barrier (i.e., quantum
tunneling) and with asymmetrical or non-linear transition states. Moreover, the lower E, and close
to zero AE, values and, particularly, the close to unity Ay/Ap ratio for the fast HT process support
for this event some contribution of dynamics, and/or donor-acceptor distance (DAD) fluctuations
of the active site heavy atoms, to the tunneling. Thus, the fast HT process resembles the behavior
most commonly found in native enzyme-mediated HT processes, in which catalytic enhancement is
achieved by promoting and optimizing vibrations in active sites that minimize DAD fluctuations [81,82].
Conversely, the second HT event also shows almost temperature-independent KIEs and still similar
E,p and E,y values, but higher E, and Ay/Ap considerably greater than the unity (Figure 9, Table 2).
The higher E,j; values suggest larger reorganization energies as the main source of the E,, whereas
the rest of the parameters, particularly the Ap/Ap ratio, support a larger contribution to the active
site environment to promote a close approach between the hydride donor and the acceptor atom
with little DAD sampling. Altogether, these data indicate that for the slower HT process the initial
pre-organization complex situates the reacting atoms, N5 of FAD and the C4-H of the nicotinamide
of NADH, at optimal tunneling distance, creating a stiffer active site for the competent HT when
compared to the active site of the fast HT process.
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Table 3. Activation enthalpies (AHY) and entropies (ASY) obtained using the Eyring equation
(Equation (4)) and temperature-dependent ks values (see Figure 9C).

HT DT
Activation Parameters
A—-B B—C A—-B B—C
AH¥ (kcal'mol™) 53+03 11+1 57+0.6 9.8+0.8
AS¥ (cal'mol~1. K1) 311 -16+2 -30+2 —20+3

4. Conclusions

Our understanding of the roles of the multifunctional NQO1 protein in many physiological
and pathological states, particularly in those associated with oxidative insults such as cancer and
neurological disorders, is growing steadily [1,2,4,16]. In addition, NQO1 is an excellent example of
an oligomeric human protein in which functional ligands exert remarkable cooperative effects with
important implications for the understanding of how human genetic variability, divergent evolution
and post-translational modifications shape the complex functional chemistry of multifunctional
proteins [2,28,31,34,42,50,51,54-57,83]. We provide here a kinetic analysis of the oxidoreductase cycle
of NQOI1 in unprecedented detail. One of the main conclusions of our study is the existence of
non-equivalent active sites in the protein dimer that differ in activity by about 20-fold and, thus,
this could explain previous reports on the negative binding cooperativity towards inhibitors such as
Dic [48,49]. At this point, we must note that in a thermodynamic sense, the existence of two active sites
with different efficiencies (i.e., non-identical active sites) cannot be distinguished from two active sites
displaying negative cooperativity (i.e., identical and non-independent active sites) [32,84]. We also
report details on chemical aspects of the NQOT1 catalytic cycle, such as the contributions to HT from
quantum tunneling, and asymmetric transition states, as well as conformational and vibrational
dynamics along the reaction coordinate. We anticipate that this detailed kinetic analysis will be
valuable for understanding the effects of naturally occurring missense variants and post-translational
modifications in NQO1, as well as in the rational design of novel inhibitors targeting NQO1 activity
and biomacromolecular interactions [2,4].

Considering previous equilibrium binding and kinetic studies [31,48,49,54], the strong evidence
provided in this work for the existence of non-equivalent active sites in the human NQO1 is not
striking. Thus, our work helps to reconcile previous binding and steady-kinetic analyses focused on
NAD(P)H and Dic. By looking at the NAD(P)H coenzyme, we have found strong evidence for HT
occurring with a 20-fold difference in rate constants between active sites, although the fast process
accounts for 75-80% of the overall HT process. This could imply that the fast pathway for HT using
this coenzyme dominates the observed steady-state kinetics, thus contributing to an explanation
for the lack of negative cooperativity observed in coenzyme dependence studies by steady-state
kinetics [31]. However, we observed that about half of the HT process occurred through fast and slow
pathways in the presence of Dic (that slowed down both pathways by three orders of magnitude).
These results indicate that Dic binding causes a larger kinetic uncoupling between the two active
sites, thus contributing to an explanation for the negative, but not extreme, cooperativity observed in
inhibition studies (with Hill coefficients of about 0.5, corresponding to a cooperative binding Gibbs
energy of about 1.5 kcal'mol™; [48,49]). Interestingly, negative cooperativity between FAD binding
sites of a similar magnitude is also observed in the apo-enzyme [54]. A detailed structural explanation
for these observations, and the derived mechanistic implications, is difficult to provide for several
reasons. If we consider that the two active sites intrinsically differ (i.e., non-identical and independent
active sites), high-resolution structural information of the holo-enzyme with and without bound
Dic would have revealed such structural differences between the monomers in the dimer. However,
this has not been the case to the best of our knowledge (of course, we can always suggest that the
reported technical aspects of the X-ray crystallography experiments, such as low temperature data
acquisition, the refinement approaches used and the fact that the protein is not in solution, might
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have contributed to hiding such structural heterogeneity) [36,46]. If negative cooperativity exists
(i.e., identical and dependent active sites), the clue would reside in the properties of the half-ligated
species (i.e., the holo-enzyme dimer with one NAD(P)H/Dic binding site occupied) [42]. However,
again, we have no structural information on these half-ligated states. However, recent molecular
dynamics (MD) simulations and hydrogen-deuterium exchange (HDX) analyses have provided some
clues to the structural basis of these cooperative effects [42,48]. MD simulations combined with a
Gaussian network model have supported that, in the half-ligated species, the binding of Dic to one
site might trigger changes in dynamics that propagate to the (empty) binding site of the adjacent
monomer [48]. In addition, the holo-protein in solution shows a remarkably complex behavior in
terms of local stability, supporting that, in the absence and the presence of bound Dic, different
conformational substates with widely different local stability (and plausibly, intrinsic binding affinities
for this inhibitor) may also be populated [42].

The kinetic heterogeneity described in this work for the two active sites in NQO1 has been further
characterized by analysis of the KIEs for this enzymatic reaction. Although we must be cautious
in the interpretation of these potentially apparent KIEs, according to current models of HT [64,81],
these analyses supported different contributions from quantum tunneling, conformational dynamics
and molecular vibrations for the fast and the slow HT processes catalyzed by NQO1. For instance,
the activation enthalpies and entropies for the fast and slow pathways clearly differed, showing that
the fast pathway must overcome a larger activation entropic component (Table 3). Importantly, as
indicated by one of the reviewers, more robust conclusions will be drawn when several technical
issues are overcome to yield the values of intrinsic KIEs in NQO1. However, at this point, it is
important to keep in mind that the overall enzyme dynamics are substantially altered (not only at
the active site) when Dic, the competitive inhibitor of NADH, binds to the enzyme [42] (Figure 1B).
In addition, the conformational dynamics of the holo-enzyme (and to a lower extent when Dic is bound)
is significantly altered by disease-associated and artificial mutants of NQO1 [30,33,50,55], as well as by
phosphorylation at S82 [57], and these effects are long range (i.e., dynamic alterations are observed at
regions far from the perturbed site). Therefore, the methodology presented here will pave the way to
dissect at the molecular level how the dynamic alterations caused by these single-site perturbations
may differently affect the fast and slow HT processes catalyzed by NQOL1.
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Appendix A. Kinetic Solvent Viscosity Effects (KSVEs)

As pointed out by one of the reviewers, the role of additional steps, such as substrate
binding/product release as a rate-limiting step, should be considered. To this end, we analyzed
the so-called kinetic solvent viscosity effects (KSVEs) on the steady-state parameters of NQO1. [85].
The diaphorase activity of NQO1 was evaluated using DCPIP as the electron acceptor at different
concentrations of glycerol as a viscogen. Reaction mixtures contained 20 uM DCPIP, 1 nM recombinant
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NQO1 and NADH at varying concentrations at 25 °C. The reaction was triggered by the addition of the
enzyme and followed by absorption changes at 600 nm for 1 min in 1-cm path length quartz cuvettes
in a thermostatized Cary 100 spectrophotometer (Agilent). The specific activity was calculated using
£620nm = 21,000 M~!.cm~! for DCPIP. Kinetic parameters were determined by varying the NADH
concentration [34]. The ket and Ky values were determined using the Michaelis—-Menten equation.
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Figure A1. Viscosity dependence of NQO1 steady-state parameters. (A) Plot of (kcat/Km)o/(kcat/Km)n
VS, Mrel- (B) (kcat)o/(kcat)n Vs. Mrel. Dashed lines guide the eye along slopes with values of 1 and
0, respectively.

A plot of (kcat)o/(kcat)n Vs. relative viscosity (1) yields a slope below unity (0.55 + 0.05) (Figure A1),
indicating that product(s) release could be partially limiting the enzyme turnover rate. A plot of
(kcat/Kn)o/ (kcat/Kn)n Vs. Myrel yields a slope over 1 (1.6 + 0.1) (Figure Al), thus supporting that the
diffusion of substrates is not relevant and that the viscogen could manifest inhibitory behavior due to
effects on structural dynamics (e.g., in protein loops).
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